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Abstract—A selective wavelet shrinkage algorithm for digital
image denoising is presented. The performance of this method is
an improvement upon other methods proposed in the literature
and is algorithmically simple for large computational savings. The
improved performance and computational speed of the proposed
wavelet shrinkage algorithm is presented and experimentally
compared with established methods. The denoising method incor-
porated in the proposed algorithm involves a two-threshold vali-
dation process for real-time selection of wavelet coefficients. The
two-threshold criteria selects wavelet coefficients based on their
absolute value, spatial regularity, and regularity across multires-
olution scales. The proposed algorithm takes image features into
consideration in the selection process. Statistically, most images
have regular features resulting in connected subband coefficients.
Therefore, the resulting subbands of wavelet transformed images
in large part do not contain isolated coefficients. In the proposed
algorithm, coefficients are selected due to their magnitude, and
only a subset of those selected coefficients which exhibit a spatially
regular behavior remain for image reconstruction. Therefore, two
thresholds are used in the coefficient selection process. The first
threshold is used to distinguish coefficients of large magnitude and
the second is used to distinguish coefficients of spatial regularity.
The performance of the proposed wavelet denoising technique is
an improvement upon several other established wavelet denoising
techniques, as well as being computationally efficient to facilitate
real-time image-processing applications.

Index Terms—Image denoising, selective wavelet shrinkage, two-
threshold criteria.

I. INTRODUCTION

THE recent advancement in multimedia technology has
promoted an enormous amount of research in the area of

image and video processing. Included in the many image and
video processing applications, such as compression, enhance-
ment, and target recognition, are preprocessing functions for
noise removal. Noise removal is one of the most common and
important processing steps in many image and video systems.

Because of the importance and commonality of prepro-
cessing in most image and video systems, there has been an
enormous amount of research dedicated to the subject of noise
removal, and many different mathematical tools have been
proposed. Variable coefficient linear filters [6], [19], [22], [29],
adaptive nonlinear filters [11], [18], [20], [31], DCT-based
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solutions [13], cluster filtering [28], genetic algorithms [27],
fuzzy logic [14], [24], etc., have all been proposed in the
literature.

The wavelet transform has also been used to suppress noise
in digital images. It has been shown that the reduction of abso-
lute value in wavelet coefficients is successful in signal restora-
tion [16], [17], [21], [30]. This process is known as wavelet
shrinkage. Preliminary methods of wavelet shrinkage predict
the contribution of wavelet coefficients based on their magni-
tude [26], [30], and others predict the contribution based on in-
trascale dependencies of wavelet coefficients [4], [8], [15], [17].
More recent denoising methods are based on both intra- and
interscale coefficient dependencies [7], [10], [12], [16], [21].
Also, in addition to the calculation of a coefficient’s contribu-
tion, there are two basic approaches to modifying the coefficient.
We define them as probabilistic wavelet shrinkage and selective
wavelet shrinkage.

The difference between probabilistic wavelet shrinkage
methods of [16] and [21] and the selective wavelet shrinkage
methods of [17] and [30] is in the modification of the wavelet
coefficients. In the first method, the level of reduction of coeffi-
cient magnitude is continuous between 0 and 1. In other words,
the magnitude of the wavelet coefficient is reduced by the prob-
ability of its contribution to the overall quality of the image.
The second method uses a binary method where the reduction
of coefficient magnitude is either 0 or 1, i.e., coefficients are
either selected or removed. both methods have to evaluate the
contribution of the wavelet coefficients to determine the modifi-
cation, but the first method usually involves more computation
not necessarily resulting in better performance, as is shown in
this paper.

Mallat and Hwang prove the successful removal of noise in
signals via selective wavelet shrinkage method based on Lips-
chitz (Hölder) exponents [17]. The Hölder exponent is a mea-
sure of regularity in a signal, and it may be approximated by
the evolution of wavelet coefficient ratios across scales. Thus,
this regularity metric used in selecting those wavelet coefficients
which are to be used in reconstruction, and those which are
not. Although this fundamental work in image denoising is suc-
cessful in the removal of noise, its application is broad and not
focused on image noise removal, and the results are not optimal.

Malfait and Roose use the probabilistic shrinkage method by
applying a Bayesian probabilistic formulation, and modeling
the wavelet coefficients as Markov random sequences [16].
This method is focused on image denoising and its results are
an improvement upon [17]. The Lipschitz (Hölder) exponents
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are roughly approximated by the evolution of coefficient values
across scales, i.e.,

where is the approximated Hölder exponent of position
of scale and is the wavelet coefficient of scale and po-
sition . The rough approximation is refined by assuming that
the coefficient values are well modeled as a Markov chain, and
the probability of a coefficient’s contribution to the image can
be well approximated by the Hölder exponents of neighboring
coefficients. Coefficients are then assigned binary labels
of position depending on their predicted retention for recon-
struction , or predicted removal . The
binary labels are then randomly and iteratively switched until

is maximized, where and . The
coefficients are modified by , and
the denoised image is formed by the inverse wavelet transform
of the modified coefficients. Each coefficient is reduced in mag-
nitude depending on the probable contribution to the image, i.e.,

.
Later, Pizurica, et al. [21] continued on the work done by [16]

by using a different approximation of the Hölder exponent given
by

where

is the approximation of the Hölder exponent, and
is the set of coefficients surrounding . This work ap-
plies the same probabilistic model as in [16], using the new
approximation of the Hölder exponent. Coefficients are as-
signed binary labels, , depending on their predicted
retention for reconstruction , or predicted re-
moval . The binary labels are then randomly and
iteratively switched until is maximized. Unlike
[16], the significance measure of a coefficient, , is not
merely its Hölder exponent, but evaluated by the magnitude
of the coefficients as well as its Hölder approximation, i.e.,

. Thus, a
joint measure of coefficient significance is developed based on
both the Hölder exponent approximation and the magnitude of
the wavelet coefficient. As in [16], the coefficients are modified
by .

Although both algorithms in [16] and [21] show promising
results in denoised image quality, the iterative procedure neces-
sary to maximize the probability adds computational
complexity making the processing times of the algorithms
impractical for most image and video processing applications.
Also, the Markov random field (MRF) model used in the cal-
culation of is not appropriate for analysis of wavelet
coefficients because it ignores the influence of nonneighboring
coefficients. The MRF model is strictly used for simplicity and
conceptual ease [16].

From the review of the literature, one can see that image de-
noising remains to be an active and challenging topic of re-
search. The major challenge lies in the fact that one does not
know what the original signal is for a corrupted image. The
performance of a method can only be statistically estimated or
practically measured by comparing the denoised image with its
known origin. In this paper, we propose a new denoising ap-
proach which delivers better performance than the best results
of the previous works of [16] and [21]. The approach consists
of two components. The first component is the selective wavelet
shrinkage method, and the second is a two-threshold criterion in
determining the significance of a wavelet coefficient for its se-
lection or rejection.

The first threshold of the two-threshold selection method de-
termines the importance of a wavelet coefficient by its magni-
tude, and the second determines its importance by its spatial
support of neighboring wavelet coefficients which as a group
represent a feature residing in the original image; thus, a fea-
ture-based selective wavelet shrinkage method. Furthermore,
the method is based upon minimizing the error between the
wavelet coefficients of the denoised image and the wavelet co-
efficients of an optimally denoised image produced by a method
using supplemental information. The supplemental information
provided produces a denoised image that is far superior than any
method which does not utilize supplemental information. Thus,
the image produced by the method utilizing supplemental in-
formation is referred to as an optimally denoised image. Using
several test cases, the two threshold values which produce the
minimum difference between the wavelet coefficients of the de-
noised image and the wavelet coefficients of the optimally de-
noised image are chosen as the threshold values for the general
case.

The two-threshold coefficient selection method results in a
denoising algorithm which gives improved results upon those
provided by [16] and [21], but without the computational com-
plexity. The two-threshold requirement investigates the regu-
larities of wavelet coefficients both spatially and across scales
for predictive coefficient selection, providing selective wavelet
shrinkage to nondecimated wavelet subbands.

Following the Introduction, Section II gives theory on the
two-dimensional (2-D) nondecimated wavelet analysis and
synthesis filters. Section III gives the theoretical base of the
proposed method. Section IV then describes the coefficient se-
lection process prior to selective wavelet shrinkage. Section V
gives testing results for parameter selection. Section VI gives
the estimation algorithms for proper parameter selection, and
Section VII gives the results. Section VIII concludes the paper.

II. TWO-DIMENSIONAL NONDECIMATED WAVELET

ANALYSIS AND SYNTHESIS

To facilitate the discussion of the proposed method, non-
decimated wavelet filterbank theory is presented. In certain
applications, such as signal denoising, it is not desirable to
downsample wavelet coefficients after decomposition, as in
the tradition wavelet filterbank. The spatial resolution of the
coefficients is degraded due to downsampling. Therefore, for
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Fig. 1. Nondecimated wavelet decomposition.

the nondecimated case, each subband contains the same number
of coefficients as the original signal.

Let and be scaling and wavelet coefficients, re-
spectively, of scale and position . Also let and be the
filter coefficients corresponding to the low-pass and high-pass
filter, respectively, of the wavelet transform.

Thus

(1)

where are the nondecimated scaling function coefficients,
and are the nondecimated wavelet coefficients. Equation
(1) is substituted into the scaling analysis filterbank equation to
find the nondecimated filterbank equation

(2)

The scalar introduced into (2) is equivalent to upsampling
by prior to its convolution with . Similarly, (1)

is substituted into the wavelet analysis filterbank equation to
obtain

(3)

Fig. 1 gives a block diagram of the nondecimated wavelet de-
composition.

The synthesis of the nondecimated wavelet transform also
differs from the downsampled case. From the wavelet synthesis
filterbank equation, we obtain

(4)

Substituting , we obtain

(5)

Fig. 2. Nondecimated wavelet synthesis.

Substituting (1) into (5)

(6)

and

(7)

Looking at (7), samples are being thrown away by downsam-
pling and by 2 prior to convolution. Because
the downsampling in the analysis filters is eliminated, a down-
sample by 2 is shown in the synthesis equation, (7). If a down-
sample by 2 is not performed, i.e., , then we must
divide by 2 to provide power equality. That is

(8)

Fig. 2 gives a block diagram of the nondecimated wavelet trans-
form synthesis.

The above analysis is expanded to the 2-D case. For a 2-D
discrete signal,

(9)

where

(10)
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The four coefficient sets given in (9) is referred to as the low–low
band , the high–low band , the low–high band

, and the high–high band . The subbands are
named due to the order in which the scaling and/or the wavelet
filters process the scaling function coefficients.

For the synthesis of

(11)

Equation (9) is recursively computed to produce several levels
of wavelet coefficients, and the reconstruction of the 2-D signal,

is accomplished by the recursive computation of (11).
The nondecimated wavelet transform has a number of advan-

tages in signal denoising over the traditional decimated case.
One, each subband in the wavelet decomposition is equal in size,
and, thus, it is more straightforward to find the spatial relation-
ships between subbands. Two, the spatial resolution of each of
the subbands is preserved by eliminating the downsample by
two. Because of the elimination of the downsampler, informa-
tion contained in the wavelet coefficients is redundant, and this
redundancy is exploited to determine the coefficients comprised
of noise and the coefficients comprised of feature information
contained in the original image.

III. THEORETICAL BASE OF THE PROPOSED METHOD

As mentioned in the introduction, wavelet shrinkage methods
reduce the magnitude of wavelet coefficients of corrupted im-
ages by a parameter between 0 and 1

(12)

where is the modified wavelet coefficient of scale
and spatial location , and is the
wavelet coefficient of the corrupted image. In [16] and [21],

is selected to be the marginal probability .
The selective wavelet shrinkage method uses binary shrinkage,

or . That is, is either selected or rejected
according to the significance of the wavelet coefficients. Unfor-
tunately, no theory has been provided by any previous works re-
garding the performance of the two methods. It is obvious that
one can only determine the performance statistically because the
noise which corrupts the image is assumed to be random with a
normal distribution.

The goal of the proposed method, as well as the methods of
[16] and [21], is to minimize the difference between the orig-
inal image and the denoised image. Similarly, a quality metric
known as PSNR is used for comparison purposes and is given
by

(13)

where

(14)

is the mean-squared error (MSE) between the original
image and the denoised image , and and are
the width and height of the image, respectively. In the above
equation, represents the power of the difference between
the original and denoised images. According to Parseval’s
Theorem [1], minimizing (14) is equivalent to minimizing

(15)

where is the wavelet coefficient of the original
image at location and scale , and

, where is the noise repre-
sented in the wavelet domain. is the number of wavelet
coefficients. Since is a random variable, and
is unknown, we can only minimize the expectation of ,
i.e., . The goal is to find such that
is minimized. Taking the derivative of with respect
to , one obtains

(16)

using the assumption that and are independent, and
is zero mean. To minimize , (16) is set equal to

zero, which leads to

(17)

Equation (17) means that if one wants to maximize the PSNR
of the denoised image, has to be selected individually ac-
cording to the ratio between and . Note that (17) is
similar to the classical Weiner filter which minimizes the differ-
ence between the power spectra of the original and the corrupted
signals [9]. The difference here is that the classical Weiner is de-
rived through the Fourier transform over the correlation between
the original signal and noise, which leads to the ratio between
the power spectra of the original signal and the noise. Here the
energy of the difference is represented by (15) using the indi-
vidual wavelet coefficients due to Parseval’s Theorem applied
in the wavelet domain.

Unfortunately, is a random variable and is not
known once corrupted. Consequently, can only be
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Fig. 3. Probability density function of c[�] generated empirically from (top) four test images with an identical level of random noise and (bottom) one test image
with four different levels of random noise.

estimated based on corrupted wavelet coefficients, , and
the neighboring wavelet coefficients which support at dif-
ferent levels of scale. Statistically we are to find the best estimate
of given the values of those wavelet coefficients,
i.e.,

(18)

where is number of the wavelet coefficients which
support at scale level and is the wavelet co-
efficient at level . Unfortunately, there is no explicit form
for the function given in (18). We use two steps to estimate

. The first step is to judge if is dominated
by or by noise. Once the dominating factor is determined,
we estimate and consequently .

As mentioned earlier, must be greater than a threshold
to be valid, and secondly a valid coefficient is selected if it is
supported by its neighbor wavelet coefficients at the same level.
Furthermore, if the higher level wavelet coefficient covering the
same spatial position, i.e., is valid, the current coeffi-
cient should be selected too. The final criterion is based on an
observation by previous works on wavelet-based image com-
pression. That is, when a parent coefficient is significant and
selected at level , its child coefficients are likely to be sig-
nificant and should be selected [23].

Determining if a wavelet coefficient is dominated by
plays a very important part in the current approach because
the binary mechanism simply keeps the coefficient without any
further computation. In the following we discuss why the bi-
nary mechanism is better that the continuous mechanism once
a wavelet coefficient is judged to primarily represent feature or
noise.

In statistics, to obtain the value of using sam-
ples of random variables is called a point estimate. It is not pos-
sible to tell how close a point estimate is to its true value. Statis-
tically, merit of a point estimator can only be measured by the

probability that the true value of a parameter falls in an interval
[2] which is called the interval estimate. A better point estimate
produces narrower interval with a higher confidence level. In the
following we show that the binary shrinkage approach produces
a better point estimate than the continuous approach as used in
[16], [21].

To find the performance of a point estimate of ,
it is necessary to know the distribution of . is
assumed to have a normal distribution while is assumed
to have an exponential distribution [21]. One can see easily that

is distributed between 0 and , although it is not
possible to formulate the distribution of ex-
actly. From (17) it is realized that the distribution of exists
from 0 to 1.

We use an empirical approach to find the distribution of
using some images which are artificially corrupted by white
noise. Fig. 3 shows such histograms derived from several test
images and a noise function with a number of variances. Values
of are given in Fig. 3, and the images used in the genera-
tions of are given in Fig. 7. The obtained histograms serve
as the estimated probability density function of . One can find
that the distribution has a bowl shape. That is, has a higher
probability to be either 0 or 1 than any other value. Using the
performance of the point estimate, one can find if is greater
than 0.5 or is judged to dominate in based on the
samples of random variables which are shown in (18), is
a better point estimate than any other estimate. This is because a
narrow interval which is between 1 and where is small
number will have a higher confidence level than any other in-
terval of same length except the one between 0 and . The latter
is not possible because already dominates . On the
other hand, if dominates , 0 is the best point estimate
of .

From the above discussion, one can see that 0 or 1 is the best
estimate statistically using the theory of the point estimate. The
continuous approaches using as an estimate of
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is not able to give a narrow interval with a specific confidence
level since could be any value between 0
and 1.

IV. RETENTION OF FEATURE-SUPPORTING

WAVELET COEFFICIENTS

In the previous section, we have shown that the selective
wavelet shrinkage method could have a better performance than
the probabilistic approach if the significance of the wavelet co-
efficient can be determined. In this section, we discuss how the
significance is determined in our approach.

One of the many advantages of the wavelet transform over
other mathematical transformations is the retention of the spa-
tial relationship between pixels in the original image by the co-
efficients in the wavelet domain. These spatial relationships rep-
resent features of the image and should be retained as much as
possible during denoising. In general, images are comprised of
regular features, and the resulting wavelet transform of an image
generates few large, spatially contiguous coefficients, which are
representative of the features given in the original image. We
refer to the spatial contiguity of the wavelet coefficients as spa-
tial regularity.

The concept of spatial regularity has the similar function as
that of signal regularity in previous denoising approaches for
selecting the wavelet coefficients. The key difference is that
spatial correlation of the features is represented by connectivity
of wavelet coefficients rather than statistical models such as
Markov random sequences [16], [21] or (Hölder) exponents
[16], [17], [21] in previous methods. These models are often
computationally complicated and still do not reflect the geom-
etry of the features explicitly. As a result, the current method has
a better performance even with a much simpler computation.

Because of spatial regularity, the resulting subbands of the
wavelet transform do not generally contain isolated coefficients.
This regularity can aid in deciding which coefficients should be
selected for reconstruction, and which should be thrown away
for maximum reconstructed image quality. The proposed coef-
ficient selection method in which spatial regularity is exploited
is shown as follows.

Assume that an image is corrupted with additive noise, i.e.,

(19)

where is the noiseless 2-D signal, is a random
noise function, and is the corrupted signal.

The first step for selecting the wavelet coefficient is to form a
preliminary binary label for each coefficient, which collectively
form a binary map. The binary map is then used to determine
whether or not a particular wavelet coefficient is included in a

Fig. 4. Generic coefficient array.

regular spatial feature. The wavelet transform of gen-
erates coefficients, , from (9) and (10). is used to
create the preliminary binary map,

when
else

(20)

where is a threshold for selecting valid coefficients in the con-
struction of the binary coefficient map. A valid coefficient is
defined as a coefficient, , which results in

; hence, the coefficient has been selected due to its magni-
tude. After coefficients are selected by magnitude, spatial reg-
ularity is used to further examine the role of the valid coeffi-
cient: whether it is isolated noise or part of a spatial feature.
The number of supporting binary values around a particular
nonzero value is used to make the judgement. The sup-
port value, , is the sum of all which support the
current binary value ; that is, the total number of all
valid coefficients which are spatially connected to .

A coefficient is spatially connected to another if there exists
a continuous path of valid coefficients between the two. Fig. 4
gives a generic coefficient map. The valid coefficients are high-
lighted in gray. From Fig. 4 it can be shown that coefficients A,
B, C, and H do not support any other valid coefficients in the co-
efficient map. However, coefficients D and F support each other,
coefficients E and G support each other, and N and O support
each other. Also, coefficients I, J, K, L, M, P, Q, and R all sup-
port one another. Fig. 5 gives the value of for each of
the valid coefficients given in Fig. 4. A method of computing

is given in Appendix. is used to refine the orig-
inal binary map by (21), shown at the bottom of the page,
where is the refined binary map, and is the necessary
number of support coefficients for selection. is calculated
recursively, starting from the highest multiresolution level, and
progressing downward.

when , or
else

(21)
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Fig. 5. Generic coefficient array, with corresponding S values.

Equation (21) is equal to one when there exists enough
wavelet coefficients of large magnitude around the current
coefficient. However, it also is equal to one when the magnitude
of the coefficient is effectively large , but not
locally supported only if the coefficient of the
larger scale is large and locally supported . The
decision to use this criterion is in the somewhat rare case when
a useful coefficient is not locally supported. In the general case,
wavelet coefficients of images are clustered together, but rarely
are they isolated. In [17], wavelet coefficients are modified only
by their evolution across scales. Regular signal features contain
wavelet coefficients which increase with increasing scale. Thus,
if there exists a useful coefficient which is isolated in an image,
it is reasonable that a coefficient in the same spatial location
of an increase in scale will be sufficiently large and spatially
supported. Thus, the coefficient selection method provided by
(22) selects coefficients which are sufficiently large and locally
supported as well as isolated coefficients which are sufficiently
large and supported by scale.

This type of scale selection is consistent with the findings of
Said and Pearlman [23], who developed an image codec based
on a “spatial self symmetry” between differing scales in wavelet
transformed images. They discovered that most image energy
is concentrated in the low-frequency subbands of the wavelet
transform. And because of the self-symmetry properties of
wavelet transformed images, if a coefficient value is insignifi-
cant (i.e., of small value or zero), then it can be assumed that
the coefficients of higher spatial frequency and same spatial
location will be insignificant. In our application, however,
we are looking for significance rather than insignificance, so
we look to the significance of lower frequency coefficients to
determine significance of the current coefficient. In this way,
the preliminary binary map is refined by both spatial and scalar
support, given by (21).

The final coefficients retained for reconstruction are given by

when
else.

(22)

The denoised image is reconstructed using the supported co-
efficients, in the synthesis equation given in (11). Thus

(23)

Equation (23) is calculated recursively producing scaling coef-
ficients of finer resolution until . The denoised image

is then given by

(24)

are the reconstructed scaling function coefficients.
In general, natural and synthetic imagery can be compactly

represented in few wavelet coefficients of large magnitude.
These coefficients are in general spatially clustered. Thus, it
is useful to obtain selection methods based on magnitude and
spatial regularity to distinguish between useful coefficients
which are representative of the image and useless coefficients
representative of noise. The two-threshold criteria for the rejec-
tion of noisy wavelet coefficients is a computationally simple,
noniterative test for magnitude and spatial regularity which can
effectively distinguish between useful and useless coefficients.

V. SELECTION OF THRESHOLD AND SUPPORT

The selection of threshold and support is a key component
of the denoising algorithm. Unfortunately, the two parameters
cannot be easily determined for a given corrupted image because
there is no information about the decomposition between the
original signal and the noise. We derive and using a set of test
images which serve as training samples. These training samples
are artificially corrupted by noise. The noise is then removed by
a series of and . The set of and which generates the best
results is selected for noise removing in general. This approach
has its root in an idea called oracle [4] which is described below.

An oracle is an entity which provides extra information to
aid in the denoising process. The extra information provided
by the oracle is undoubtedly beneficial in providing substan-
tially better denoising results than methods which are not fur-
nished supplemental information. Thus, the coefficient selection
method which uses the oracle’s information is referred to as the
optimal denoising method. By the optimal denoising method,
the threshold and support can be selected using test images of
which both original image and noise are known. The threshold
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Fig. 6. Optimal denoising method applied to noisy “Lena” image. Left: Corrupted image f(x; y), � = 50, PSNR = 14:16 dB. Right: Optimally denoised
image f̂ (x; y), PSNR = 27:72 dB.

and support can then be selected accordingly for any corrupted
images without supplemental information.

An optimal coefficient selection process has been defined
based on the original (noiseless) image. The optimal binary map

is given by

when
else

(25)

where are the wavelet coefficients of the original (noise-
less) image , and is the standard deviation of the noise in
the corrupted image . Thus, the extra information given by
the oracle is the noiseless wavelet coefficients, , and the
standard deviation of the noise. The coefficients which are used
in the reconstruction, , are given by

when
else

(26)

where are the wavelet coefficients of the noisy image.
Note that the method using (25) and (26) does not involve the
support of the neighboring coefficients, but only the magnitude.
The reason again is the supplemental information. Since the
wavelet coefficients of the original image are given, everyone of
them should be used in the reconstruction of the denoised image
regardless of the support by its neighboring coefficients. Only
when a coefficient is severely corrupted by the noise, which
could happen when the standard deviation of the noise is greater,
it is not included. The approach is in agreement with (17) with
an advantage that is known. As a result, the selection and
rejection of a wavelet coefficient has a higher confidence level
than without knowing the true value of the wavelet coefficient.
The coefficient map thus obtained is considered optimal.

The optimal coefficient map is used to create the optimal de-
noised image which is given by

(27)

Equation (27) is recursively computed for lesser values of until
the optimal denoised image is achieved, where

(28)

are the optimal scaling coefficients, and is the
optimal denoised image. Fig. 6 gives the denoising results
of the optimal denoising method when applied to the “Lena”
image corrupted with additive white Gaussian noise (AWGN).
As shown in Fig. 6, the optimal denoising method is able to
effectively remove the noise from the “Lena” image because of
the added information given by the oracle. PSNR is calculated
for performance measurement and is given by (13).

It is rather obvious that the optimal coefficient selection
process is unattainable when no supplemental information is
provided by the oracle for corrupted images. Thus, the optimal
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Fig. 7. Test images.

image denoising method is not possible for practical applica-
tions. However, the knowledge obtained by the optimal binary
map, , is used to compare with the refined coefficient
map generated by the two-threshold criteria, , described
in Section IV. The coefficient selection method is based on the
error between the optimal coefficient subband and the subband
generated by the two-threshold criteria. The error is given by

(29)

where is the exclusive OR operation. Our goal is to minimize
the error using a set of training samples.

The proposed coefficient selection algorithm starts with a se-
ries of test images serving as training samples to derive the func-
tions which determine the optimal set of the values for and

as well as the type of wavelet used for denoising. The orig-
inal data and the statistical distribution of the noise are given
for each of the training samples which are corrupted. The op-
timal set of parameters can then be determined for the training
samples using the approach described earlier. The test images
given in Fig. 7 are all 256 256 pixels. Starting from the upper-
left image and going clockwise, the images are “Lena,” ”Air-
plane,” “Girl,” “Fruits,” “Goldhill,” “Boat,” “Barb,” and “Ba-
boon.” Each of the images shown in Fig. 7 is well known in
the image-processing community and collectively represents as
many kinds of images as possible. In this way, the and ob-
tained will likely perform well in most cases.

A test is used to demonstrate the effectiveness of different
wavelets in denoising. First, each of the eight test images is cor-
rupted with AWGN at various levels. Next, the 2-D nondeci-
mated wavelet transform, given in Section II, is calculated using
several different wavelets. The wavelet coefficients are then hard
thresholded using a threshold ranging from 0–150, and the
inverse wavelet transform is applied to the thresholded coeffi-
cients. The wavelet which gives the reconstructed images with

the highest average PSNR is chosen to be used in the general
case.

Several wavelets were used in the testing. However, for sim-
plicity only five are presented. We have chosen the Daubechies
wavelets [3] (Daub4 and Daub8) for their smoothness proper-
ties, the spline wavelets (first order and quadradic spline) [1]
because of their use in the previous works of [16], [17], [21],
and the Haar wavelet because of its simplicity and compact sup-
port. The results are given in Fig. 8.

After the testing results given in Fig. 8, the Haar wavelet is
selected for image denoising

else
else.

(30)

Testing has shown the Haar wavelet to be the most promising
in providing the highest reconstructed image quality. The com-
pact support of the Haar wavelet enables the wavelet coefficients
to represent the least number of original pixels in comparison
with other types of wavelets. Therefore, when a coefficient is
removed because of its insignificance or isolation, the result af-
fects the smallest area of the original image in the reconstruc-
tion. That could reduce the impact to the image quality even if
a removed coefficient is not only comprised of noise.

The Haar wavelet is used in a nondecimated wavelet decom-
position of the original image. Five subband levels are used, i.e.,

1 to 4. The proposed selective wavelet shrinkage algo-
rithm is applied to all wavelet subbands, and the subbands are
synthesized by the nondecimated inverse wavelet transform.

Testing for the optimal values of and is accomplished
by artificially adding Gaussian noise to each of the eight im-
ages, denoising all eight images with a particular and , and
recording the average error given by (29). Then, the combina-
tion of and which gives the lowest error is the choice for that
particular noise level.
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Fig. 8. Average PSNR values using different wavelets.

Fig. 9. Error results for test images � = 30.

The average error is recorded when denoising each of the
eight test images given in Fig. 7 using ranging from 0–150
and ranging from 0–20. The proposed algorithm is tested by
applying AWGN with a standard deviation of 10, 20, 30,
40, and 50 to each of the test images. The proposed method of
selective wavelet shrinkage is applied to the corrupted image,
and the resulting error is recorded using (29). The results of the
testing in which is given in Fig. 9.

Table I gives the and which provide the lowest average
error for each noise level tested. These particular values are re-
ferred to as and . Table I suggests that parameters

and are functions of the standard deviation of the
noise, .

The two thresholds are obtained by using a number of training
samples (eight in the above process). A question natural to ask is
how the number of training samples will affect the thresholds?
To answer this question, we repeat the above process by using
only the top four images in Fig. 7 and receive and as
shown in Table II. One can see that the difference between the
results in Tables I and II are relatively small. This proves that

TABLE I
MINIMUM AVERAGE ERROR OF EIGHT TEST IMAGES FOR VARIOUS NOISE

LEVELS AND THEIR CORRESPONDING THRESHOLD AND SUPPORT VALUES

TABLE II
MINIMUM AVERAGE ERROR OF FOUR TEST IMAGES FOR VARIOUS NOISE

LEVELS AND THEIR CORRESPONDING THRESHOLD AND SUPPORT VALUES

the proposed method is rather robust to the number of training
samples. On the other hand, more training samples do generate
better denoising results which will be shown later.

Because and generally increase with an increase
in additive noise as shown in Table I, both parameters can be
modeled as functions of the additive noise, . Then, knowing
the level of noise corruption, the threshold levels which pro-
duce the minimum error, given by (29), may be obtained by es-
timating the and functions. The five noise levels
provided in the test are used as sampling points for the estima-
tion of the continuous functions and . With enough
sampling points both and can be effectively esti-
mated, and the correct and can be calculated to denoise an
image with any level of noise corruption, given that the noise
level is known.

The estimated functions of the sampled values and
are referred to as and , respectively. Once

the estimated functions are calculated they are used in the
general case. Thus, given an image corrupted with noise, it is
denoised with no prior knowledge by estimating the level of
noise corruption, calculating the proper thresholds using the

and functions and using the calculated threshold
levels in the denoising process given in Section IV.

VI. ESTIMATION OF PARAMETER VALUES

It can be shown from the values given in Tables I and II that
the parameters and are functions of ; therefore,
we need to estimate the standard deviation of the noise level,
and the functions. These two topics are discussed in this sec-
tion. Another idea for selecting the two parameters is to use the
signal-noise-ratio (SNR) of the image. Unfortunately, the SNR
information for a noised image is not given, and very hard to
derive if not impossible for reasons mentioned earlier, i.e., one
has no idea about the level of the original signal, and has to use
an entirely different way to estimate SNR of a corrupted image.
On the other hand, there are standard procedures for estimating
the standard deviation of the noise level, one of which is shown
below.

A. Noise Estimation

The level of noise in a given digital image is unknown and
must be estimated from the noisy image data. Several well-
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Fig. 10. � (�), s (�) and their corresponding estimates, � (�), s (�).

known algorithms have been given in the literature to estimate
image noise. From [5], [21] a median value of the sub-
band is used in the estimation process. The median noise esti-
mation method of [21] is used

(31)

where are the noisy wavelet coefficients in the high-high
band of the 0th scale. Because the vast majority of useful infor-
mation in the wavelet domain is confined to few and large co-
efficients, the median can effectively estimate the level of noise
(i.e., the average level of the useless coefficients) without being
adversely influenced by useful coefficients.

B. Parameter Estimation

By using the training samples, and are obtained for a
few given standard deviations of the noise. The goal is to ob-
tain and for any standard deviation. From the training
samples, we find that the relationships between and and
between and are almost linear as shown in Fig. 10. We,

therefore, use a first-order polynomial to represent and
and use the most popular linear minimum mean-square error
(LMMSE) method [25] to find the parameters associated with
the polynomial. For the first-order polynomial, two parameters

and are found such that

(32)

The choice of and will minimize the MSE between
and . Similarly, an estimate of , which must be an in-
teger, is found as

(33)

Using the test results generated with the eight sample images
given in Table I, the parameters which minimize the two MSEs
are found to be , , , and

. In addition, using the test results generated with four
sample images given in Table II, the parameters are found to be

, , , and . Each pa-
rameter set is similar to the other, suggesting that the parameter
selection method is robust to different sampling image sets.
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Fig. 11. Results of the proposed image denoising algorithm. Top left: Original “peppers” image. Top right: Corrupted image � = 37:75, PSNR = 16:60 dB.
Bottom: Denoised image using the proposed method PSNR = 27:05 dB.

The LMMSE estimator is shown to be a good fit into the test
data given in Fig. 10. The values of , and gener-
ated by the eight sample images are given, as well as their cor-
responding LMMSE estimates. Note that the support value
must be an integer.

For any corrupted image, the threshold and the support
value are determined by using the estimate of the noise given
by (31). The two thresholds are given by

(34)

VII. EXPERIMENTAL RESULTS

The “peppers” and “house” images are used for gauging the
performance of the proposed denoising algorithm. These two
images have also been used in the results of [16], [17], and
[21]. Therefore, the performance of the proposed algorithm is
compared with other recent algorithms given in the literature.
Both the “peppers” image and “house” image are 256 256
grayscale images which are corrupted with AWGN. The pro-
posed method is used for denoising, and the results are given in
Figs. 11 and 12, using the threshold estimates given from the
eight test images.
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Fig. 12. Results of the proposed image denoising algorithm. Top left; original “house” image. Top right: Corrupted image � = 32:47, PSNR = 17:90 dB.
Bottom: Denoised image using the proposed method PSNR = 29:73 dB.

Table III gives the results of the proposed method, with
threshold estimates given from both eight and four test image
sets, as well as the results of [16], [17], and [21]. Note that
the methods of [16], [17], and [21] all use the quadratic spline
wavelet [1], and each of the algorithms’ coefficient selection
method is based on the Hölder exponent approximation to
determine the amount that a particular coefficient contributes
to the overall image quality. The proposed algorithm uses
the Haar wavelet, given in (30), and the coefficient selection
process is based on the two-threshold approach. As shown in
Table III, the results of the proposed method are an improve-
ment over other methods described in the literature for both
the eight and four training-sample methods. The eight-sample

method generates slightly better results which demonstrates
that more training samples can denoise different types of
images better than few samples as expected. On the other
hand, more training samples would consume more training
time.

Using the and functions determined by the
eight training sample images given in Fig. 7, several other
images are denoised using the proposed two-threshold selec-
tive shrinkage method. A comparison is made between the
two-threshold method and the optimal denoising method given
in Section V. The results of the additional images are provided
in Table IV. All images are 256 256 grayscale and shown in
Fig. 13. Clockwise starting from the upper left, the images are
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TABLE III
PSNR COMPARISON OF THE PROPOSED METHOD TO OTHER METHODS IN THE LITERATURE (IN DECIBELS)

Fig. 13. Various Images used for performance testing.

“Lake,” “Camera,” “Tiffany,” and “Elaine.” One can see from
Table IV that the optimal denoising approach produces better
results as expected. This result is consistent with the purpose
of the oracle approach and shows that the proposed denoising
method is effective by minimizing the difference to the result
of the optimal denoising approach.

In addition to improved performance over previous methods,
the proposed algorithm is computationally simple to facilitate
real-world applications. The proposed algorithm has been
computed on older processors for an accurate comparison,
and the computation time of the proposed method is over an
order of magnitude less than the previous method of highest
performance, [21]. Table V gives the computational results of
the proposed method as well as the results of [16], and [21]. The
proposed algorithm shows a substantial drop in computation

time. Both [16] and [21] used iterative computation in the se-
lection of wavelet coefficients for reconstruction which requires
unreasonable computation time for certain applications. The
current two-threshold technique is a simpler, noniterative coef-
ficient selection method which produces greater performance
results.

VIII. CONCLUSION

In this paper, a new selective wavelet shrinkage algorithm for
image denoising has been described. We have shown that the se-
lective wavelet shrinkage method which either selects or rejects
a wavelet coefficient is statistically better than the probabilistic
method because the former can identify a narrow interval for the
estimated parameter, which is used to adjust the wavelet coeffi-
cient, with a higher confidence level than the latter. For selecting
or rejecting a wavelet coefficient, the proposed algorithm uses
a two-threshold support criteria which investigates coefficient
magnitude, spatial support, and support across scales in the co-
efficient selection process. In general, images can be accurately
represented by a few large wavelet coefficients, and those few
coefficients are spatially clustered together. The two-threshold
criteria is an efficient and effective way of using the magni-
tude and spatial regularity of wavelet coefficients to distinguish
useful from useless coefficients. Furthermore, the two-threshold
criteria is a noniterative solution to selective wavelet shrinkage
to provide a computationally simple solution, facilitating real-
time image-processing applications.

The values of the two-thresholds are determined by min-
imizing the error between the coefficients selected by the
two-thresholds and the coefficients selected by a denoising
method which uses supplemental information provided by an
oracle. The supplemental information provided by the oracle is
useful in determining the correct coefficients to select, and the
denoising performance is substantially greater than methods
which do not use the supplemental information. Thus, the
method which uses the supplemental information provided by
the oracle is referred to as the optimal denoising method.
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TABLE IV
RESULTS OF PROPOSED AND OPTIMAL METHODS ON VARIOUS IMAGES

TABLE V
COMPUTATION TIMES FOR A 256� 256 IMAGE, IN SECONDS

Therefore, by minimizing the error between the two-threshold
method and the optimal denoising method, the two-threshold
method can come as close as possible to the performance of the
optimal denoising method.

Consequently, the two-threshold method of selective wavelet
shrinkage provides an image denoising algorithm which is supe-
rior to previous image denoising methods given in the literature
both in denoised image quality and computation time. The light
computational burden of the proposed denoising method makes
it suitable for real-time image-processing applications.

APPENDIX

The computation of is given by the following
algorithm:

, , ,
if ,
while ,

for to 7,
if

and ,

end if

end for
end while

end if

is a binary value to determine whether a particular
value has been counted previously. is an array of

spatial coordinates of valid coefficients that support the cur-
rent coefficient . is a set of vectors corresponding
to neighboring coefficients.
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