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Abstract—A combined spatial- and temporal-domain wavelet
shrinkage algorithm for video denoising is presented in this paper.
The spatial-domain denoising technique is a selective wavelet
shrinkage method which uses a two-threshold criteria to exploit
the geometry of the wavelet subbands of each video frame, and
each frame of the image sequence is spatially denoised indepen-
dently of one another. The temporal-domain denoising technique
is a selective wavelet shrinkage method which estimates the level
of noise corruption as well as the amount of motion in the image
sequence. The amount of noise is estimated to determine how
much filtering is needed in the temporal-domain, and the amount
of motion is taken into consideration to determine the degree
of similarity between consecutive frames. The similarity affects
how much noise removal is possible using temporal-domain pro-
cessing. Using motion and noise level estimates, a video denoising
technique is established which is robust to various levels of noise
corruption and various levels of motion.

Index Terms—Combined spatial- and temporal-domain pro-
cessing, motion estimation, selective wavelet shrinkage, video
denoising.

I. INTRODUCTION

THE recent advance in multimedia technology has pro-
moted a large amount of research in the area of image

and video processing. Included in many image and video
processing algorithms such as compression, enhancement,
and target recognition are preprocessing functions for noise
removal. Noise removal is one of the most common and impor-
tant processing steps in many image and video systems.

Because of the commonality of noise removal functions in
most image and video systems, there has been an large amount
of research dedicated to the subject of image denoising over the
past several decades, and many different mathematical tools
have been proposed. Various established denoising methods
using variable coefficient linear filters [5], [18], [23], [30],
adaptive nonlinear filters [10], [17], [20], [32], discrete cosine
transform (DCT)-based solutions [12], cluster filtering [29],
genetic algorithms [28], and fuzzy logic [13], [25], etc., have
all been proposed in the literature.

Perona and Malik use a series of Gaussian filters and a method
referred to as anisotripic diffusion to estimate edge locations and
both smooth regions and enhance edges in imagery [19].
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The wavelet transform has also been used to suppress noise
in digital images. It has been shown that the reduction in abso-
lute value of wavelet coefficients is successful in signal restora-
tion [16]. This process is known as wavelet shrinkage. Other
denoising techniques select or reject wavelet coefficients based
on their predicted contribution to reconstructed image quality.
This process is known as selective wavelet shrinkage, and many
works have used it as the preferred method of image denoising
[1], [4], [6], [7], [9], [11], [14]–[16], [27]. Notably, Pizurica
et al. approximate the significance of each coefficient in the
wavelet transform by modeling them as Marcov random se-
quence and applying a Bayesian probabilistic formulation. The
measure of significance is then used to determine the reduc-
tion amount of each coefficient [21]. Also, Zhang uses a thresh-
olding neural network to determine the significance of wavelet
coefficients [31].

However, until recently, the removal of noise in video sig-
nals has not been studied seriously. Cocchia et al. developed
a three-dimensional (3-D) rational filter for noise removal in
video signals [3]. The 3-D rational filter not only removes noise,
but also preserves important edge information. Also, the 3-D
rational filter uses a motion estimation technique. Where there
is no motion detected, the 3-D rational filter is applied in the
temporal domain. Otherwise, only spatial-domain processing is
applied.

Later, Zlokolica et al. uses two new techniques for noise re-
moval in image sequences [32]. Both these new techniques show
improved results upon the method of [3]. The first method is an
alpha-trimmed mean filter of [2] extended to video signals, and
the second is the nearest neighbors (KNN) filter. Both alpha-
trimmed and KNN denoising methods are based on ordering the
pixel values in the neighborhood of the location to be filtered,
and averaging a portion of those spatially contiguous pixels.
Each of these methods attempts to average values which are
close in value, and avoid averaging values which are largely dis-
similar in value. Thus, the image sequence is smoothed without
blurring edges, or smearing motion.

However, because the success of the wavelet transform over
other mathematical tools in denoising images, some researchers
believe that wavelets may be successful in the removal of noise
in video signals as well. Pizurica et al. uses a wavelet-based
image denoising method to remove noise from each individual
frame in an image sequence and then applies a temporal filtering
process for temporal-domain noise removal [22]. The combina-
tion of wavelet image denoising and temporal filtering outper-
forms both wavelet based image denoising techniques [1], [15],
[16], [21] and spatial-temporal filtering techniques [2], [3], [32].
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The temporal-domain filtering technique described in [22] is
a linear IIR filter which will continue to filter until it reaches a
large temporal discontinuity. It will not filter the locations of
large temporal discontinuity where the absolute difference in
neighboring pixel values is greater than a threshold thus pre-
serving motion while removing noise.

Although temporal processing aids in the quality of the orig-
inal image denoising method, the parameter varies with dif-
fering video signals for improved performance. That is, proper
selection of may be large in sequences where there is little
motion for improved noise removal, i.e., there is more redun-
dancy between consecutive frames. Thus, the redundancy may
be exploited by a large to improve video quality. However,
in image sequences where there exists a large amount of mo-
tion, consecutive frames are more independent and there exists
little to no redundancy to exploit. Thus, the parameter must
be small to achieve optimal performance.

In the case of video denoising, it has been fairly well docu-
mented that the amount of noise removal achievable from tem-
poral-domain processing, while preserving overall quality, is de-
pendent on the amount of motion in the original video signal [3],
[22]. Thus, a robust, high-quality video denoising algorithm is
required to not only be scalable to differing levels of noise cor-
ruption, but also scalable to differing amounts of motion in the
original signal. Unfortunately, this principle has not been seri-
ously considered in video denoising.

In this paper, we develop a noise removal algorithm for video
signals. This algorithm uses selective wavelet shrinkage in all
three dimensions of the image sequence and proves to outper-
form the few video denoising algorithms given in the relevant
literature. First, the individual frames of the sequence are de-
noised by the method of [1], which we had developed earlier.
Then a new selective wavelet shrinkage method is used for tem-
poral-domain processing.

Also, a motion estimation algorithm is developed to de-
termine the amount of temporal-domain processing to be
performed. Several motion estimators have been proposed [3],
[22], but few are robust to noise corruption. The proposed
motion estimation algorithm is robust to noise corruption and
an improvement over the motion estimation method of [3].
The proposed denoising algorithm, including the proposed
motion estimation method, is experimentally determined to be
an improvement over the methods of [3], [22], [32].

Following the introduction, Section II gives a brief descrip-
tion of the image denoising method of [1], used as the spatial
denoising method in the proposed video denoising algorithm.
Section III describes the temporal-domain wavelet shrinkage
method and explores the proper order of temporal and spa-
tial-domain processing functions. Section IV provides the
proposed motion estimation index used in the temporal-domain
processing and compares it with the motion estimation method
of [3]. Section V develops the parameters for temporal-domain
processing, and Section VI gives the experimental results of
the proposed method as well as other established methods.
Section VII concludes the paper.

II. SPATIAL DOMAIN DENOISING TECHNIQUE

The proposed video denoising technique uses the selective
wavelet shrinkage algorithm of [1] for denoising of the indi-

vidual frames of the image sequence. A brief review of the al-
gorithm is included in this section for completeness.

A. Coefficient Selection Method

First, we will review the proposed coefficient selection
method of [1]. The coefficient selection method is based on a
two-threshold criteria, selecting wavelet coefficients with large
magnitude and spatial regularity.

Assume that an image signal is corrupted with additive noise,
i.e.,

(1)

where is the noiseless image pixel of position , is a
random noise function, and is the corresponding corrupted
signal.

The wavelet shrinkage algorithm takes the nondecimated
two-dimensional (2-D) wavelet transform of , and selects
the wavelet coefficients for denoising. The first step for se-
lecting the wavelet coefficient is to find a binary label for each
coefficient which collectively forms a binary map. The binary
map is then used to determine whether or not a particular
wavelet coefficient is included in a regular spatial feature. The
nondecimated, 2-D wavelet transform of generates coeffi-
cients of spatial location , resolution , and subband

. The subband designation denotes the
low–high , high–low , and high–high subbands.
For example, the subband is produced by convolving the
input function with the low-pass scaling filter in the hori-
zontal dimension then convolving the result with the high-pass
wavelet filter in the vertical dimension. is used to
create the preliminary binary label .

when

else
(2)

where is a threshold for selecting valid coefficients in the con-
struction of the binary coefficient map. A valid coefficient is de-
fined as a coefficient which results in ; hence
the coefficient has been selected due to its magnitude. After co-
efficients are selected by magnitude, spatial regularity is used to
further examine the role of the valid coefficient: whether it is iso-
lated noise or part of a spatial feature. The number of supporting
binary values around a particular nonzero value is used
to make the judgement. The support value is the sum of
all which support the current binary value ; that
is, the total number of all valid coefficients which are spatially
connected to .

A coefficient is spatially connected to another if there exists
a continuous path of valid coefficients between the two. Fig. 1
gives a generic coefficient map. The valid coefficients are high-
lighted in gray. From Fig. 1 it can be shown that coefficients A,
B, C, and H do not support any other valid coefficients in the co-
efficient map. However, coefficients D and F support each other,
coefficients E and G support each other, and N and O support
each other. Also, coefficients I, J, K, L, M, P, Q, and R all sup-
port one another. Fig. 2 gives the value of for each of
the valid coefficients given in Fig. 1. A method of computing
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Fig. 1. Generic coefficient array.

Fig. 2. Generic coefficient array, with corresponding S values.

is given in [1]. is used to refine the original bi-
nary map by

when
or

else
(3)

where is the refined coefficient map, and is the neces-
sary number of support coefficients for selection. is calcu-
lated recursively, starting from the highest multiresolution level,
and progressing downward.

Equation (3) is equal to one when there exists enough wavelet
coefficients of large magnitude around the current coefficient.
However, it also retains coefficients in which the magnitude of
the coefficient is effectively large but not locally
supported only if the coefficient of the larger scale
is large and locally supported . The decision to
use this criterion is in the somewhat rare case when a useful co-
efficient is not locally supported. In the general case, wavelet
coefficients of images are clustered together, but rarely they are
isolated. In [16], wavelet coefficients are modified only by their

evolution across scales. Regular signal features contain wavelet
coefficients which increase with increasing scale. Thus, if there
exists a useful coefficient which is isolated in an image, it is rea-
sonable that a coefficient in the same spatial location of an in-
crease in scale will be sufficiently large and spatially supported.
Thus, the coefficient selection method provided by (3) selects
coefficients which are sufficiently large and locally supported
as well as isolated coefficients which are sufficiently large and
supported by scale.

This type of scale-selection is consistent with the findings of
Said and Pearlman [24], who developed an image codec based
on a “spatial self-symmetry” between differing scales in wavelet
transformed images. They discovered that most of an images
energy is concentrated in the low-frequency subbands of the
wavelet transform. And because of the self-symmetry properties
of wavelet transformed images, if a coefficient value is insignif-
icant (i.e., of small value or zero), then it can be assumed that
the coefficients of higher spatial frequency and same spatial lo-
cation will be insignificant. In our application, however, we are
looking for significance rather than insignificance, so we look
to the significance of lower frequency coefficients to determine
significance of the current coefficient. In this way, the prelim-
inary binary map is refined by both spatial and scalar support,
given by (3).

The final coefficients retained for reconstruction are given by

when
else.

(4)

The denoised image is reconstructed by synthesizing the sup-
ported wavelet coefficients, using the nondecimated in-
verse wavelet transform.

In general, natural and synthetic imagery can be compactly
represented in few wavelet coefficients of large magnitude.
These coefficients are in general spatially clustered. Thus, it
is useful to obtain selection methods based on magnitude and
spatial regularity to distinguish between useful coefficients
which are representative of the image and useless coefficients
representative of noise. The two-threshold criteria for the rejec-
tion of noisy wavelet coefficients is a computationally simple
test for magnitude and spatial regularity which can effectively
distinguish between useful and useless coefficients.

B. Determining the and Thresholds

In determining the optimal threshold values, it is found that
both thresholds are a function of the noise standard deviation
[1]. Therefore

(5)

and

(6)

where is an estimate of the noise , ,
, and . The estimate of the noise is taken

from that of [21] and is given by

(7)
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where are the noisy wavelet coefficients of the level
and subband. For a more detailed treatment of the proposed
spatial denoising method, refer to [1].

III. TEMPORAL DENOISING AND ORDER OF OPERATIONS

In this section, we develop the principal algorithm for video
denoising. Additional mechanisms required by this algorithm
will be discussed in later sections.

A. Temporal Domain Denoising

Let us define as a pixel of spatial location and frame in
a given image sequence. The nondecimated wavelet transform
applied in the temporal domain is given by

(8)

and

(9)

where

(10)

where is the high-frequency wavelet coefficient of
spatial location , frame , and scale . Also, is the
low-frequency scaling coefficient of spatial location , frame ,
and scale . Thus, multiple resolutions of wavelet coefficients
may be generated from iterative calculation of (8) and (9).

The wavelet function used in the temporal-domain denoising
process is the Haar wavelet given by

else
else.

(11)

The decision to use the Haar wavelet is based on experimen-
tation with several other wavelet functions and finding the
greatest results with the Haar. The compact support of the Haar
wavelet makes it a suitable function for denoising applications.
Because of it’s compact support, the Haar coefficients represent
least number of original pixels in comparison to other types of
wavelets. Thus, when a coefficient is removed because of its
insignificance, the result affects the smallest area of the original
signal in the reconstruction.

Significant wavelet coefficients are selected by their magni-
tude with a threshold operation

when
else

(12)
where are the thresholded wavelet coefficients used
in signal reconstruction, and is the threshold value. The re-
sulting denoised video signal is computed via the inverse non-
decimated wavelet transform

(13)

which leads to

(14)

where is the temporally denoised video signal.

B. Order of Operations

With a spatial denoising technique and a temporal denoising
technique established in Sections II and above, respectively,
there still remains the question of the order of operations. The
highest quality may occur with temporal-domain denoising fol-
lowed by spatial-domain (TFS) denoising, or spatial denoising
followed by temporal (SFT) denoising.

Theoretically, is it not possible to prove and determine
which operation is better because the description of the noise
is not known. However, it is our hypothesis that SFT denoising
can more aptly determine noise from signal information. The
reasoning behind this hypothesis is that removing noise in
the spatial domain is a well known process, and any noise
removal prior to temporal-domain processing is helpful in
discriminating between the residual noise and motion in the
image sequence. However, a validation of this hypothesis is
determined heuristically.

Thus, a simple test is conducted with two test video signals.
The first video signal is one which contains little motion, and
the other contains a great deal of motion. The selected image
sequences are the “CLAIRE” sequence from frame #104-167
and the “FOOTBALL” sequence from frame #33-96.

Both of the image sequences are denoised with and
ranging from 0–30 for both TFS and SFT denoising operations.
Note that in the test, is a single value and spatially indepen-
dent, unlike the temporal threshold used in the final denoising
algorithms which is dependent upon spatial position. Also,
the parameter for feature selection in the image denoising
method described in Section II is calculated by taking (5) and
(6) and solving for s. The parameter is given by

(15)

Also, the number of resolutions of the nondecimated wavelet
transform used in both the spatial and temporal denoising
methods is . The average peak signal-to-noise
ratio (PSNR) of each trial is recorded. The PSNR of an image
is given by

(16)

where

(17)

where is the size of the image, is the denoised pixel of
spatial location and frame , and is the corresponding pixel
of the original signal.

Fig. 3 gives the results of testing. As shown in Fig. 3, the
highest average PSNR is achieved by SFT denoising; first
spatially denoising each frame of the sequence followed by
temporal-domain denoising. Thus, for the proposed denoising
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Fig. 3. Test results of both TFS and SFT denoising methods. Upper left: FOOTBALL image sequence, SFT denoising, max. PSNR = 30:85, � = 18, and
� = 12. Upper right: FOOTBALL image sequence, TFS denoising, max. PSNR = 30:71, � = 18, and � = 12. Lower left: CLAIRE image sequence, SFT
denoising, max. PSNR = 40:77, � = 19, and � = 15. Lower right: CLAIRE image sequence, TFS denoising, max. PSNR = 40:69, � = 15,and � = 21.

method, spatial-domain denoising occurs prior to temporal-do-
main denoising, exclusively.

In addition to a higher average PSNR, there is another ben-
efit to SFT denoising. The level of motion in an image sequence
is known to be crucial in determining the amount of noise re-
duction possible from temporal-domain processing, and a mo-
tion index calculation is inevitably done by comparing consec-
utive frames to one another. Thus, let us define a noisy image
sequence where is a corrupted pixel in spatial position and
frame and is defined by

(18)

where is the noiseless pixel value, and is the noise func-
tion. We can compare consecutive frames by taking the differ-
ence as in [3] and [22] to find

(19)

Thus, by taking the difference between frames to find the level
of motion, the noise function is subtracted from itself, in effect
doubling the amount of noise corruption [26]. Therefore, by ap-
plying spatial denoising prior to motion index calculation we
can reduce the value of and provide a more precise calcu-
lation of the motion given in the image sequence.

IV. PROPOSED MOTION INDEX

A motion index is important in the success of a video de-
noising method in order to discriminate between large temporal
variances in the video signal which are caused by noise and
large temporal variances which are caused by motion in the orig-
inal (noiseless) signal. A motion index is able to aid temporal

denoising algorithms to eliminate the large temporal variances
caused by noise while preserving the temporal variances caused
by motion in the original image sequence, creating a higher
quality video signal. That is, the motion index is used to de-
termine .

A. Motion Index Calculation

Several works have developed a motion estimation index to
determine the amount of temporal-domain processing to per-
form, i.e., the amount of information that can be removed from
the original signal to improve the overall quality [3], [22]. How-
ever, none of these proposed indices are robust to noise corrup-
tion, which is an important feature in a motion index. There are
a few characteristics that a motion index must possess. One, a
motion index should be a localized value. The reasoning behind
a localized motion index is because the amount of motion may
vary in different spatial portions of an image sequence. Thus, the
motion index should be able to identify those differences. Two,
a motion index needs to be unaffected by the amount of noise
corruption in a given video signal. A motion index should be
robust to noise corruption to aptly determine the proper amount
of temporal-domain processing.

Thus, a localized motion index is developed which is rela-
tively unaffected by the level of noise corruption in the original
image sequence. A spatially averaged temporal standard devia-
tion (SATSD) is used as the index of motion. Spatial averaging
is used to remove the noise inherent in the signal, and the tem-
poral standard deviation is used to detect the amount of activity
in the temporal domain.
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Fig. 4. Spatial positions of motion estimation test points. Left: FOOTBALL image sequence, frame #96. Right: CLAIRE image sequence, frame #167.

Let us define as pixel value in the spatial location
of the th frame of an image sequence already processed by

the 2-D denoising method of [1]. The spatial averaging of the
spatially denoised signal is given by

(20)

where is the set of spatial locations which form a square area
centered around spatial location , and is the number of spa-
tial locations contained in ; typically, . The value of

must be an odd value to allow for the square area to set cen-
trally around spatial location . This average is used to find the
standard deviation in the temporal domain

(21)

and

(22)

where is the localized motion index, is the number of
frames in the image sequence, and is the temporal mean of
the spatial average at location .

B. Motion Index Testing

The FOOTBALL and CLAIRE image sequences are used
once more to test the proposed motion index as well as the mo-
tion index given in [3], and two specific spatial locations are
selected from each sequence: a location where there is little to
no motion present, and a location where motion is present. A
frame from each of the two image sequences is given in Fig. 4,
and the four spatial locations for evaluation of the proposed mo-
tion index are highlighted.

The two sequences are corrupted with various levels of noise,
and the motion is estimated at each of the four spatial loca-
tions selected with both the proposed motion index and that
of [3]. The results of the motion index used in [3] is given in
Fig. 5. As shown in Fig. 5, the motion index of [3] is not ro-
bust to noise corruption. That is, the motion calculation from
the same spatial location increases with an increase in noise.
Also, the motion index shows the FOOTBALL image sequence

Fig. 5. Motion estimate given in [3] of image sequences, CLAIRE and
FOOTBALL.

as having a higher motion index than the
CLAIRE image sequence with zero noise
corruption. However, the motion index shows the opposite re-
sults with higher levels of noise. Thus, the motion index gives
conflicting results with the introduction of noise.

The results of the proposed SATSD motion index are given
in Fig. 6. As shown in Fig. 6, the proposed motion index is
much more robust to varying noise levels, and the order of loca-
tions from highest to lowest motion is what one would believe
is correct. The location with the lowest motion index is in the
CLAIRE image sequence where there is no camera motion, and
there are no moving objects in that spatial location. The next
lowest motion location is in the FOOTBALL image sequence
in the spatial location where there are no moving objects. How-
ever, there is some slight camera motion in the sequence, so
the motion index is slightly higher than in the CLAIRE image
sequence. The location with the next highest motion index is
the center of the CLAIRE image sequence, where there is some
motion due to movement of the head, and the location with the
highest motion index is the FOOTBALL image sequence in the
spatial location where many objects cross.
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Fig. 6. Proposed motion estimate of image sequences, CLAIRE and
FOOTBALL.

Fig. 7. � and � parameter testing for temporal-domain denoising.

V. TEMPORAL-DOMAIN PARAMETER SELECTION

The amount of temporal denoising which is beneficial to an
image sequence is dependent upon the amount of noise corrup-
tion as well as the amount of motion. Thus, the threshold
is given by

(23)

where is the motion index of spatial position , and is the
estimated noise standard deviation of the image sequence. The
two parameters and are determined experimentally using
test image sequences.

In the proposed coefficient selection method, we use a
training sample approach. The approach starts with a series of
test image sequences serving as training samples to derive the
functions which determine the optimal set of the values for
and . Theoretically, we may represent each training sample

Fig. 8. Denoising methods applied to the SALESMAN image sequence, std=
10.

Fig. 9. Denoising methods applied to the SALESMAN image sequence, std=
20.

as a vector , , . Those training samples should span a
space which covers more corrupted image sequences than the
training samples

Span (24)

The original data and the statistical distribution of the noise are
given for each of the training samples which are corrupted. The
optimal set of parameters can then be determined for the training
samples using the approach described earlier. Ideally, the space
spanned by the training samples contains the type of the cor-
rupted image sequences which are to be denoised. As a result,
the same set can generate an optimal or close to optimal per-
formance for the corrupted image sequences of same type. It is
clear that more training samples will generate parameters suit-
able for more types of image sequences, while a space of fewer
training samples is suitable for fewer types of image sequences.
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Fig. 10. Denoising methods applied to the TENNIS image sequence, std= 10.

Fig. 11. Denoising methods applied to the TENNIS image sequence, std= 20.

In order to obtain an estimate of the noise level an average
is taken from the noise estimates of each frame in the image
sequence, given by (7). It is reasonable to assume an indepen-
dent, identically distributed (IID) model for the level of noise
for each pixel position since noise in each pixel position is gen-
erated by individual sensing units of the image sensor such as
charge-coupled devices (CCDs) [8] which are independent. As
a result, the estimate of the standard deviation of the noise
in each image also represents the standard deviation of the noise
in the temporal domain. Therefore, we can use the estimate of
the noise in the spatial domain to estimate that in the temporal
domain.

It should be pointed out that after the denoising has occurred
in the spatial domain using the SFT method, the standard de-
viation of the noise is significantly reduced. That reduction is
statistically equal to each frame. As a result, the estimated noise

Fig. 12. Denoising methods applied to the FLOWER image sequence, std =
10.

Fig. 13. Denoising methods applied to the FLOWER image sequence, std =
20.

in the spatial domain can still be nominally used for noise re-
duction in the temporal domain as the reduction of can be
automatically absorbed by .

The sequences CLAIRE, FOOTBALL, and TREVOR are
used for and selection. Each of the image sequences are
corrupted with differing levels of noise corruption ( ,20)
and denoised with the SFT denoising method where (23) is used
as the temporal-domain threshold. Values of and are used
ranging from to 3.0 and to 0.3. The results of
this testing is given in Fig. 7. As shown in Fig. 7 the maximum
average PSNR is achieved when and .
The result is reasonable, of course, because as the motion
increases in an image sequence the redundancy between frames
decreases, and the benefits of temporal-domain processing
decrease. Thus, as the testing has shown, the temporal-domain
threshold decreases as the motion increases. Fig. 7 can be
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deceiving, however, because it seems that the average PSNR is
more greatly affected by changes in than . However, (23)

Fig. 14. Original frame #7 of the SALESMAN image sequence.

Fig. 15. SALESMAN image sequence corrupted std = 20 and PSNR =

22:10.

shows that the PSNR should be equally effected by changes
in both and , assuming that on average noise variance es-
timates and motion estimates carry similar value. The reason
that seems to be a greater factor in determining the PSNR is
that on this particular test, the range of far exceeds the range
of . These ranges were experimentally chosen to find the peak
average PSNR.

VI. EXPERIMENTAL RESULTS

The proposed video denoising algorithm first is applied to
each of the video frames individually and independently. The
method of [1] was developed earlier by our previous research to
denoise images, and is used as the spatial denoising portion of
the wavelet-based video denoising algorithms.

Fig. 16. Results of the 3-D K-nearest neighbors filter [32], PSNR = 28:42.

Fig. 17. Results of the 2-D wavelet denoising filter [1], PSNR = 29:76.

The video signal is then denoised in the temporal domain by
the method developed in Sections III and V. The temporal de-
noising algorithm is a selective shrinkage algorithm which uses
a proposed motion estimation index to determine the temporal
threshold, . The temporal threshold is modified by the mo-
tion index to effectively eliminate temporal-domain noise while
preserving important motion information.

Three image sequences are used to determine the effective-
ness of the proposed video denoising method. They are the
SALESMAN image sequence, the TENNIS image sequence,
and the FLOWER image sequence. These three sequences are
all corrupted with various levels of noise and denoised with
the methods of [1], [3], [22], [32] as well as the proposed
method. Please note that only the temporal-domain denoising
algorithm of [22] is being tested. The spatial-domain denoising
methods of [1] is used for all the wavelet-based video denoising
methods. The results are given in Figs. 8–13. As shown in
Figs. 8–13, the proposed method consistently outperforms the
other methods presented. In all cases, the proposed denoising
method has a higher average PSNR then all other denoising
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Fig. 18. Results of the 2-D wavelet filtering with linear temporal filtering, [22],
PSNR = 30:47.

Fig. 19. Results of the proposed denoising method PSNR = 30:66.

methods tested. Also, note that in the method of [22], the
threshold changes due to video content and noise level to
obtain the highest average PSNR using that particular method.
In the proposed method, the temporal-domain threshold is
automatically calculated due to estimates of the noise level and
motion.

Figs. 14–19 give an example of the effectiveness of each of
the denoising methods. Fig. 14 gives the original frame #7 of
the SALESMAN image sequence, and Fig. 15 gives frame #7
corrupted with noise. Figs. 16–19 give frame #7 denoised by
each of the methods mentioned in the section.

VII. CONCLUSION

In this paper, a new combined spatial and temporal-domain
wavelet shrinkage method is developed for the removal of noise
in video signals. The proposed method uses a geometrical ap-
proach to spatial-domain denoising to preserve edge informa-
tion, and a newly developed motion estimation index for selec-
tive wavelet shrinkage in the temporal domain.

The spatial denoising technique is a selective wavelet
shrinkage algorithm developed in [1] and is shown to outper-
form other wavelet shrinkage denoising algorithms given in the
literature in denoised image quality.

The temporal denoising algorithm is also a selective wavelet
shrinkage algorithm which uses a motion estimation index to
determine the level of thresholding in the temporal domain.

The proposed motion index is experimentally determined
to be more robust to noise corruption than other methods,
and is able to help determine the threshold value for selective
wavelet shrinkage in the temporal domain. With the motion
index and temporal-domain wavelet shrinkage, the proposed
video denoising method is experimentally proven to outperform
other methods given in the literature for various levels of noise
corruption applied to video signals with varying amounts of
motion.
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