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Abstract—We present a novel tracking method for effec-
tively tracking objects in structured environments. The tracking
method finds applications in security surveillance, traffic monitor-
ing, etc. In these applications, the movements of objects are con-
strained by structured environments. Therefore, the relationship
between objects and environments can be exploited as additional
information for improving the performance of tracking. We use
the environment state to model the relationship between the
objects and environments, and integrate it into the framework
of Bayesian tracking. In this paper, distance transform is used to
model the environment state, and particle filtering is employed
as the paradigm for solving the Bayesian tracking problem. The
adaptive dynamics model and environment prior are devised for
the particle filter to fully utilize the environment information in
the tracking process. Experiments on some video surveillance
sequences demonstrate the effectiveness and robustness of our
approach for tracking object motions in structured environments.

Index Terms—Distance transform, object tracking, particle
filtering, structured environments, video surveillance.

I. INTRODUCTION

IDEO SURVEILLANCE has become an indispensable

component for ensuring public safety and order in the
modern world. Sophisticated video object tracking techniques
specially designed for surveillance applications are of increas-
ing importance for analyzing and understanding numerous
surveillance videos in an effective manner. A large majority of
video surveillance applications are concerned with monitoring
activities within structured environments, such as indoor en-
vironments, surrounding areas of buildings, highways, traffic
junctions, etc., the structures of which are often static and
known to the surveillance personnel. One important character-
istic of moving objects in these applications is that the motions
of objects are constrained by the structure of the environment
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under surveillance. Therefore, it is beneficial and essential
to explore the impacts of the environments upon the object
motions, and integrate them into object tracking for improved
performances.

Extensive research on generic video object tracking has been
done during the last two decades. The body of literature on
video object tracking can be categorized into two major classes
according to [1]: object representation and localization, and
filtering and data association. The category of object repre-
sentation and localization is represented by the well-known
mean shift tracking algorithm which uses simple appearance
features, such as color histograms. Based on the kernel density
estimate of the appearance features, the mean-shift algorithm
iteratively calculates the mean-shift vectors until reaching the
local maxima [1]. These algorithms can be considered as local
search methods which have the advantage of low computation
overheads. Kalman filter and its variants [2], and particle
filter [3] are major representations of the filtering and data
association method, also known as Bayesian tracking. This
category of methods solves the object tracking problem by
sequentially estimating the state of object using a sequence of
noisy measurements about the object states [3].

Object representation and localization methods make little
use of the information of the object motions and ignore the
environment related factors, and therefore have limited space
for improvement by considering the motion characteristics of
objects under specific environments. While filtering and data
association provides a flexible framework for modeling object
states and related observations, existing methods do not take
the environment factors into consideration, and are therefore
not efficient and effective when object motions exhibit strong
patterns in structured environments.

There has also been active research on learning based
methods for analyzing and understanding surveillance videos
[4]-[7]. Stauffer and Grimson [4] proposed a method for
learning the activity patterns from surveillance videos. First
an object tracker which is based on an adaptive background
subtraction method is employed to extract a large set of
object motion patterns from surveillance videos over extended
periods of time. Then a codebook of activity patterns is
generated using an online vector quantization on the whole set
of acquired motion patterns. The object tracker of this paper is
relatively simple, and although this method gives an interesting
solution for learning and classifying object activity patterns
under surveillance, it provides little information about motion
prediction, which is crucial for improving the efficiency
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and performance of object tracking in video surveillance.
Hu et al. [5] proposed a method for predicting the object
motion and detecting the abnormal activities from surveillance
videos, which is based on the learning of statistical motion
patterns. An object tracker, which works by clustering fore-
ground pixels using a modified K-means algorithm followed
by the growth and prediction of the cluster centroids, is used
as the frontend of the system for detecting objects and further
extracting object trajectories from the training surveillance
videos. Typical motion patterns under given surveillance en-
vironments are extracted from training trajectories and repre-
sented by chains of Gaussian distributions. Testing trajectories
are compared against these motion patterns for the anomaly
detection and motion prediction.

Junejo and Foroosh [6], [7] did interesting research on the
path learning and modeling for surveillance videos. In [7],
camera calibration and trajectory rectification are incorporated
into the path modeling system to first remove the projective
distortion of the object trajectories. Rectified trajectories are
then clustered into distinct paths on which the path model
of the surveillance scene is built. The path model is further
registered to the aerial imagery to obtain the metric informa-
tion about object motions, such as the actual moving speed.
However, how the numerous trajectories are extracted from
surveillance videos is unclear, and how the information of
the path model can be used to aid the object tracking in
surveillance videos has not been discussed.

Learning based methods are useful for behavior prediction
and anomaly detection in video surveillance applications. For
learning based methods to yield satisfactory performance, a
large number of sample trajectories are required for learning
representative motion patterns. Object tracking algorithms act
as the frontends of the learning based methods for extracting
sample trajectories from a large set of training videos. The
accuracy and efficiency of tracking directly affect the perfor-
mance as well as the computational cost of the trajectory learn-
ing methods. Even though existing object tracking methods
may be able to track objects for surveillance applications under
certain circumstances, ignoring the environment constraints
often results in high computational overhead and possibly low
tracking accuracy, as can be seen in the experiment part of
this paper.

In this paper, we propose a novel approach for tracking
video objects in structured surveillance environments for the
cases where the statistical knowledge about the object motion
patterns is not available. It overcomes the shortcomings of
existing object tracking approaches which ignore the envi-
ronment constraints upon object motions. Considering that
the motions of objects are constrained by the environment,
we explore the relationship between the objects and the
environments as the high-level information to help tracking
the objects. We formulate the tracking problem in struc-
tured environments in the framework of Bayesian tracking
by incorporating the relationship between the objects and the
environments as the environment state into the state vector of
the object. We choose to model the environment state by the
distance between the object and environment boundaries, be-
cause the state reflects the motion pattern of the object. When

objects move approximately parallel to the boundary, such as
people walking along the road and vehicles traveling along the
lane, such distances are approximately constant, when objects
move across regions, such distances are increasing/decreasing
gradually. Our approach for solving this particular problem
is related to two existing techniques: distance transform and
particle filtering. Environment states are modeled by the
distance field using the distance transform and integrated
into particle filtering for effective object tracking. Although
extensive research has been done on these two individual
topics, we are the first to integrate them together for effective
object tracking for surveillance videos.

This paper is organized as follows. Section II presents
the formulation of our tracking method. Section III stud-
ies the details about the environment modeling by the dis-
tance field using distance transform. Section IV discusses
the integration of the distance field into particle filtering
for effective tracking of regular motions as well as covers
irregular motions and the mode switching between regular and
irregular motions. Section V provides experimental results on
the surveillance video sequences, and Section VI concludes the

paper.

II. FORMULATION OF THE TRACKING PROBLEM

In the framework of Bayesian tracking, video object track-
ing is essentially an estimation problem in which the states of
objects are estimated based on noisy observations. The object
state is denoted by the state vector x,, where ¢ € N is the time
index. The observation is denoted by the observation vector
Z, and represents noisy observations that are related to the
state vector [3]. We further denote the sequences of object
states and measurements from time # to #; by X, and z.,,
respectively. From the Bayesian point of view, the problem
is to construct the posterior distribution of the state given
all available observations, i.e., the joint posterior distribution
p(X1|Z1,,) or the marginal posterior distribution p(X;|z;.s).

A. The Environment State

In the existing works of video object tracking, the state
vector only includes the dynamics characteristics of the object,
e.g., location, orientation, scale, etc. In this paper, we refer to
it as the dynamics state, which is denoted by y. For the case of
tracking objects in structured environments, object motion is
constrained by the environment structure, and the relationship
between the object of interest and the environment is also an
important characteristic for estimating the object motion. In
this paper, we introduce the environment state, which models
the environment related characteristics of the object, and is
denoted by e. The environment state may include, but is
not limited to, the geometric relation between the object and
environment entities, the property of the region which the
object is currently in, etc.

Following the discussion above, the state vector at time ¢,
x,, for the object within structured environments is comprised
of two substates:

1) the dynamics state, y,;
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Fig. 1. Graphical probabilistic model for the object tracking with environ-
ment states.

2) the environment state, €.

With the new formulation of the object state, the prob-
abilistic dependences among variables need to be studied.
On the one hand, unlike moving in open spaces the object
motion is not only related to its dynamics but also constrained
by the environment. In terms of probabilistic dependences,
the current dynamics state is dependent upon both previous
dynamics states and previous environment states. On the other
hand, the current environment state depends upon previous
environment states. Current dynamics and environment states
are coupled, in our case by the distance map which will
be discussed in detail in the following section. Although
some works, e.g., [8], have studied the dependences between
observations, our paper focuses on improving the tracking
algorithm by taking environment constraints into consideration
and does not exploit such dependences for simplicity. The
probabilistic dependences among the variables are represented
by the graphical model shown in Fig. 1. Here we assume the
temporal dependences of states to be first order Markovian.
These assumptions will be used in the remainder of this

paper.

B. Bayesian Updating of the Posterior Probability

Based on both dynamics and environment states, the joint
posterior distribution of the object state at time ¢ can be written
as p(Xi.1z1.1) = p(Y1:, €1:42Z1:+). In order to solve the tracking
problem using the recursive Bayesian filters, we first need
to express the posterior distribution in a recursively updating
form. From the Bayes rule, it follows that

p(xlztlzlst)
_ P(@|X1:, 210 1) X1t |Z1:0—1)
- P(Z]Z14-1) (1)
=cp(2;|X) p(X1:4|21:4-1). 2

For (1), we use the conditional independent property
p(Z|X14,214—1) = p(z;|X;), which can be derived from
Fig. 1 according to the d-separation property for directed
graphs [9], [10]. The denominator of (1) is a constant with
respect to the variables x;,, and is represented by c for
clarity.

For the p(Xi:|z;;—1) term in (2), we have

P(X1:|Z1:—1)
= p(er, Yiu4lZ1:—1)
= p(eler—1, Y1 Z1u—1)P(€1:—1, Y1 Z1:—1) 3)
= p(ele,—1)p(er—1, Y1:1lZ14—1) 4)

where p(e.;—1,¥1+|Z14—1) can be further factorized as

pler—1, yrlzi:—1)
= p(yiler—1, Y1.—1, Zi—1) P(€1:1—1, Y1:0—11Z1:4—1) (5)
= p(yilyr—1, &) P11, €1.1—1|Z14—1) (6)

by applying the product rule of probability for (3) and (5)
and the conditional independent properties for (4) and (6),
respectively.

Plug (4) and (6) into (2), and replace the constant terms, the
posterior probability of the object state p(x;.,|z;.,) can finally
be written as

p(xlztlzl:z)
= cp(z:|x;) p(e;le—1) p(y: Y1, €—1) pX1—11Z10—1)  (7)

which is in a recursively updating form and can be
solved by Bayesian filters. The updating terms in (7), i.e.,
P(Yelyi—1, €—1), p(ele—1), and p(z]x,), are referred to as
the adaptive dynamics model, the environment prior, and the
likelihood, respectively.

III. ENVIRONMENT MODELING USING DISTANCE
TRANSFORM

Following the formulation of the tracking problem stated
above, one of the questions remaining is how the environment
state should be modeled. For objects moving in the structured
environment, the geometrical relationships between the ob-
jects and surroundings are useful observations for estimating
object movements. In this section, we introduce the environ-
ment modeling approach using distance transform. We will
first briefly introduce the basic idea of distance transform,
and then discuss our approach of environment modeling in
detail.

A. Distance Transform

Distance transform (DT) generally refers to the transforma-
tion which maps a 2-D binary image into a distance map, in
which the value at each point corresponds to its distance to the
nearest feature point. It was first developed by Rosenfeld and
Pfaltz [11], [12] in the 1960s, and has been widely applied into
many image analysis applications, such as shape description
[12], skeletonization [13], [14], morphological operations [15],
etc. Jarvis [16] successfully extended DT to the problem of
robot path planning, in which a collision-free path in a struc-
tured environment could always be determined by following
the steepest descent direction in the distance map.

Distance transform can be defined as follows in a generic
context [17]. Let P be the set of points which we are interested
in, and I" be the set of feature points. The distance transform
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over the set P associates each point p € P with the value
d(p) = mindist(p, ) (3)
qgell

where dist(p, g) is the distance function which measures the
distance between two points p and g. The distance map is
a matrix with the same dimension as the transformed image
and stores the distance field values d(p) at the corresponding
location for each point p € P. A great deal of effort has been
made to find efficient algorithms for calculating the distance
transform, and there are both exact [18], [19] and approxi-
mate [20] algorithms available. Exact algorithms with linear
time complexity have been proposed by Breu [18], Maurer
[19], etc. Approximate algorithms, often known as chamfer
distance transforms, approximate the global distance compu-
tation with iterative propagation of the local distance within
a small neighborhood mask [20], and therefore have even
lower computational costs.

B. Environment Modeling

In order to represent environment constraints using dis-
tance transform, we need the geometrical information about
the surveillance scene, i.e., how many different regions are
there and where the boundaries are located. Static environ-
ments are assumed in this paper because the background
will not change dramatically over a short period of time
for surveillance applications. We first construct the boundary
map of the surveillance scene, with the pixels corresponding
to region boundaries being ones and otherwise zeros. For
surveillance applications, the site plan is often available and
can be projected onto the surveillance scene to obtain the
boundary map if the scene can be assumed to be planar. The
boundary map can also be obtained by image segmentations
followed by further adjustments with user inputs when the
site plan is not available, such as examples shown in our
experiments. We have used the mean shift algorithm [21] for
segmentation. The raw outputs of the segmented boundaries
are not smooth enough for applying the tracking algorithm
we propose in this paper because we need to look up con-
tours and calculate tangential directions of the contour line.
Therefore, in our experiments we select seed points from
the segmented boundaries and use polynomial curves to fit
each region boundary. For structured environments, such an
environment model is created once and used for an extended
period of time. Thus user-involved segmentation is not a
constant overhead. Furthermore, so long as the manual refining
is more accurate than the localization of particles, which is
true, segmentation will not affect the tracking of the objects
because the distance map is to constrain the distribution of
the particles, not to introduce additional measurements to
the localization of particles. For that reason, how the perfor-
mance is affected by segmentation is not considered in this
paper.

The boundary map S is divided into R disjoint regions
by the boundary pixels I'. Each region €2;,i € 1,2,..., R
corresponds to one of the environmental entities, such as
roads, lawns, buildings, etc. Applying the Euclidean distance

transform [22] upon the binary map, we have

dr(p) = min |[q — p||. )
qel’
The resulting distance field map dr associates each pixel in the
scene with a Euclidean distance field value, which corresponds
to the shortest distance between this pixel and the boundary,
and is related to the distance in the real world by a scale factor
depending on the camera model and depth of view.

For the purpose of our tracking application, not only are we
interested in the value of the absolute distance, but also want
the distance field to distinguish different regions. Because it
is not convenient to use region indices in the probabilistic
formulation of the environment prior, which will be discussed
in detail in the following section, we use weights of different
signs to distinguish adjacent regions such that there will be
different values on different sides of the boundary. The value
of the weighted distance field at a certain point is determined
by both the shortest distance to the boundary and the assigned
weight of the region to which this point belongs. It can be
represented by the following equation:

d(p) = W(p)dr(p)

where the weight w is assigned according to the properties of
the regions, namely

(10)

-1,

w(p) = 1,
OO,

if p € pathway
if p € accessible region excluding pathways
if p € inaccessible region.

The above assignment creates a distance field map which
associates each point of the scene with a distance field
value. Without ambiguity, the weighted distance field is called
distance field in the remainder of this paper. For examples
in our experiments, pathways refer to roads, alleys and etc.,
accessible regions refer to regions except pathways, such as
lawns, and inaccessible regions are chosen where objects are
impossible to appear.

In structured environments, object motion patterns corre-
spond to dynamic processes of environment states. For our
case, when an object moves approximately parallel to the
region boundary, its distance field values keep near constant;
when an object moves across regions, its distance field values
are time-varying. Such processes can be estimated by the
Bayesian filtering together with dynamics states. We model
the environment state by the distance field value d, together
with its velocity d, =d, —d,_, ie.,

e = [d;, dt]T~

It should be noted that because the boundary map con-
structed from image segmentations is based on the unrectified
image domain, distance field values are related to metric
distances in real world by different scaling factors depending
on depths of view. Our modeling of environment states as
a time-varying process is able to handle this problem by
considering changes of scaling factors in velocity terms of
distance field values.

Our approach of environment modeling using the distance
transform has the following advantages.
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1) The distance map characterizes the topological properties
of the environment, and provides an effective way for
describing both the geometric relationship between the
object and the environment as well as the property of the
region which the object is currently in.

2) For the static surveillance scenes, the environment mod-
eling can be done offline and directly applied into the
online tracking. The offline computations are simple; the
online computation only involves several lookups from
the existing distance map, and therefore imposes negligi-
ble computational overhead upon the tracking algorithm.

IV. OBJECT TRACKING USING PARTICLE FILTERING
A. Farticle Filtering with Accept—Reject Sampling

Due to the nonlinearity and non-Gaussianity of the state
transition and observation models in video object tracking,
the posterior probability p(x,|z;,) cannot be calculated in the
closed-form. Particle Filters, which are also known as se-
quential Monte Carlo methods, provide approximate solutions
to the posterior distributions for which the linearizations and
Gaussian assumptions are not applicable. Particle filter has
received a great deal of attention in the computer vision area
in recent years [23]-[25], since the seminal work of Isard and
Blake [23], which first applied particle filter to video object
tracking, and is widely known as the CONDENSATION [23]
algorithm. In this paper, we use one variant of the particle
filter, the bootstrap filter, for the task of object tracking in
structured environments.

The posterior density p(X;|zi.,) is approximated by a set
of N weighted random samples (particles) {x!, w!}¥, with
SN, wi =1, which can be written as

N
Pz =D wh - 8(x, — x)). (11)

i=1
Following our formulation of the tracking problem and the
derivation of the bootstrap filter algorithm, the propagation
of particles between frames can be drawn from the following
conditional distribution:

PX¢|X1—1) o plerle—1) p(yilyi—1, €—1) (12)

which can also be verified by factorizing the state transition
probability p(x;|x;;—1) according to the graphical model in
Fig. 1. The computation of the particle weights is directly
based on the observation likelihood

w' o p(z,]xD). (13)

The minimum mean square error estimation of the object state
is the posterior mean, which is given by

N
X = E w; - X;.
i=1

As can be seen from (12), the state transition model is related
to the environment state, which is consistent with the fact
that the object motion in structured environments is under
the influence of the environment constraints. However, the

(14)

Algorithm 1 Accept-Reject Sampling Algorithm
repeat
Sample x' ~ g(x)
Sample u ~ Ujp 1
until u < A;g(:‘x))
Accept the candidate sample x" as x.

state transition model is now in an unnormalized form of the
product of two probability distribution functions, and e, and
y; are dependent. Therefore, a rejection sampling scheme is
necessary for generating samples according to (12).

As shown in [26], the samples from an unnormalized
target distribution f(xX) can be generated from an instrumental
distribution g(x) with the only requirement that jt”(x) < Mg(x)
on the support of f(x) where M is a bound on %, using the
accept-reject sampling algorithm below, where {/ denotes a
uniform distribution.

For our case, the target distribution f(-) corresponds
to  p(y:|yi—1,e—1)p(e:le,—;), and we choose g(-) to be
p(¥:|y:—1,€—_1). The bound M exists and can be chosen
as max p(e/|e;—1). Rejections of samples are done by the

inequélity in Algorithm 1, the theoretic proof of which is
available in [26]. When a particle with a very small value in
p(e;|e,_1) is sampled, it has a large probability of rejection for
i)
uniform distribution [0, 1]. Formulations of p(y;|y:—1, €—1)
and p(e/|e;_;) are discussed in detail in the following.

being smaller than the random number u drawn from the

B. The Adaptive Dynamics Model

In this paper, the object at time ¢ is modeled by a rect-
angular bounding box defined by the dynamics state y, =
[m,, n;, w,, hy, 0,, iy, iy, Wy, by, 0,17, where m, n, w, h, and
60, correspond to the x/y image coordinates, width, height and
orientation, respectively, and components with over-dots are
their velocities. The dynamics state transition is subject to the
environment constraints, which include the translational con-
straint and rotational constraint and are discussed as follows.

1) The Translational Constraint: Given the estimated
object state X,_; at the previous time step, its position p,_; =
(M,;_1,7,_1) and distance field value d;_; as well as their
velocities are known. Assuming constant velocities for both
displacement and distance field, a translational constraint can
be devised. On the one hand, the assumed object position at
time ¢ should be on the distance field contour £, with a value
of di_4 +d,,1, where d,,l =d,_; —d;_>. On the other hand, the
magnitude of displacement at time ¢ should be approximately
equal to that of time # — 1. The assumed current position of
the object, which is denoted by p? = (m?, n?), can be written
as

0 0 0 0 2 2 22
p[ = (m[v n[) S 'Ctv S.t. ”p[ - pt—l” = m171 +n[71

(15)
and the translational velocity p? = (120, n%) is updated to be
b} =P — Pt (16)

which is shown in Fig. 2(a).
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Region 3

Kegion 2 (Hoad)

Region 1

(a)

Region 3

Region 2 (Road)

Region 1

(b)

Fig. 2. Constrained motion in structured environments. (a) Translational
motion. (b) Rotational motion.

2) The Rotational Constraint: Using the translational
constraint alone is not enough for nonholonomic objects, such
as vehicles, for which orientations of objects are not equal with
directions of translations. In this paper, we consider vehicles
observed from near top-view angles. Assuming that vehicles
follow the direction of road, a rotational constraint can be
imposed upon the orientation of the object. Based on the
above discussion about the translational motion, the position of
the object at time ¢ is likely to be around p’. As a result, the
orientation of the object at time ¢ is likely to be along the
tangential direction of the distance field contour £, at the point
p?, as shown in Fig. 2(b). Therefore, the assumed orientation
of the object at time ¢, denoted by 6?, can be written as

oL
9? = arctan —t
i [pp

(17)
Let the orientation of the tangent line at p,—; be 6;_;, the
assumed angle velocity of the object can be written as

=0"—6,,. (18)

Region 3

Region 2 (Road)

s

Reghon 1 (Tnacoasbls

Fig. 3. Example of the distribution of particles near the region boundaries.

Fig. 4. Examples of surveillance scenes and distance maps used in our
experiments. This figure is best viewed in color. (a) PETS2001. (b) OTCBVS.
(c) Karl-Wilhelm-Stral3e.

Following the discussion above, the adaptive dynamics model
can be devised. For the ease of the sampling, we choose it to
be in the Gaussian form

m, m,_y m? a2 0 0
n | =1\ n_y | +N [, 0 o2 0 (19)
6, 6,1 60 0 0 o2

where m?, i, 6"? are given by (15)—(18), and update equations
of width/height and velocity components are not shown for
simplicity.

Note that although we have assumed constant velocities
of displacement and distance field, the random sampling can
accommodate possible variations of the object motions around
the predicted state. Therefore, rather than imposing an overly
rigid constraint on the particle propagation, our proposed
method provides an informed prediction about the possible
state of the object in the presence of environment constraints.

C. The Environment Prior

The adaptive dynamics model described above provides an
approximation about the dynamics state in the next frame,
around which a large number of particles are randomly dis-
tributed. However, without the environment prior, it is possible
that some of the particles reside in the regions which the object
of interest is unlikely/impossible to visit. An example showing
this problem is illustrated in Fig. 3. By using the rejection
sampling, few particles would be sampled in the regions with
low environment prior values.
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Fig. 5. Tracking results of object A on PETS2001 dataset for frames 2149, 2224, 2324, 2399, and 2499. This figure is best viewed in color. (a) GPF with

150 particles. (b) GPF with 300 particles. (c) Our method with 150 particles.

Now the question is how the environment prior density
p(e;|e;_1) should be modeled. The environment prior should
serve for the purpose of regulating particles around possible
paths and excluding the impossible regions. Based on the
constant velocity assumption, the distance field value d, at time
t should be close to d;_; + d,_l. We model the environment
prior p(e;|e;—1) as a normal distribution, namely

_ _ 2
(dy—dyy d,o) 0)

20,2

1
e/le_1)=—¢€X
p( tl t 1) \/ﬂd’e p(

1 (dt—dtl—dm)
= —¢o|—m"mFFF——|.
Je Ge

Following the formulations of the adaptive dynamics tran-
sition and environment prior in (19) and (21), the term Af;g(’(‘x),)
in Algorithm 1 is written as

2n

J&)  plede) (d,—d,_l

- = 0). 22
Mg(X/) HleaX p(etletfl) ) /(ﬂ( ) ( )

e

Now the particles {X!};=; _y can be readily generated using
the accept-reject sampling described in Algorithm 1. A parti-
cle candidate with a large value of |d, — d,—| — dt,1|, which
either has a large deviation from the regular path or resides in
an inaccessible region, will be almost surely discarded because

P [9(0) — 0.

D. Observation Likelihood

In this paper, we use the color histogram model for evaluat-
ing the observation likelihood, which is introduced in [27]. For
the completeness of the paper, formulations of the observation
likelihood model are briefly described as follows.

Given the state x, of a particle, the observation likelihood
p(z,|x,) is calculated based on the color histogram similarity
between the particle and the reference object model

P@]%;) o exp(—2p D (h(x,), h(X0))) (23)

where
bmax 2
Dy(h(x;), h(Xp)) = (1 - Z Vhe(x,) - h”(Xo)) (24)
b=1

and h(.), h?(") represent the color histogram and the value in
the bin b of the histogram, respectively. D,(h(X,), h(Xp)) in
(24) is known as the Bhattacharyya distance, which measures
the similarity between the color histograms of the particle
and the reference object model. Details about the calculation
of color histogram will not be discussed here, and we refer
the readers to [27].

V. EXPERIMENT RESULTS

The proposed method has been tested and evaluated on three
open surveillance datasets. PETS2001 and OTCBVS datasets
are used to test tracking performances on pedestrians, and
Karl-Wilhelm—-Strafe traffic sequence is tested for vehicle
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tracking. Before presenting detailed results, we first describe
the experiment setup, which includes algorithm implementa-
tions, model definitions and parameters, tracker initializations,
etc.

A. Experiment Setup

Objects are modeled as rectangular bounding boxes. For a
pedestrian object, the bounding box has variable width and
height, and the orientation is not modeled, i.e., always in
the upright orientation. Its distance field value is taken at the
bottom center of the bounding box, which is assumed to be
on the ground plane. Since the traffic sequence in our test
was taken with a near top-view angle, the vehicle object is
modeled as a box with a variable orientation. Scale changes
of vehicles are not considered to keep the dimensionality of
filter state low. Its distance field value is taken at the center
of the box.

For the observation model, color histograms are calculated
in the RGB space with 16 bins for each channel. The parameter
A of the likelihood function is set to be 20 for all the tests.

For the environment modeling, distance maps are obtained
by image segmentations followed by manual smoothing. Only
regions in which objects will be totally occluded, e.g., build-
ings, are considered as inaccessible regions. Roads and alleys
are marked as pathways, and all other regions, such as side-
walks and lawns are marked as accessible regions. Examples
of distance maps used in our experiments are shown in Fig. 4.
For the Karl-Wilhelm-Stralle sequence, only the part related
to our tracking is treated.

Our algorithm is implemented using the OpenCV library
with Python interface. We also implement generic particle
filtering trackers with constant velocity models under the same
framework as baseline algorithms, which are referred to as
GPFs in the rest of the paper. Comparisons are made with
respect to GPFs on the tracking accuracy, robustness against
clutters, and computational costs in terms of the number of
particles.

It should be noted that all trackers are initialized by either
utilizing the available ground truth data (for PETS2001), or
manually defining the bounding box in the first frame (for
the other two datasets). The reference observation template is
calculated from the initial state and kept the same throughout
the tracking process.

B. Results on PETS2001 Dataset

PETS2001 is a popular surveillance dataset. It provides
ground truth data of object trajectories. Dataset 1 includes
two surveillance footages from two static cameras shooting the
same outdoor environment from different view-angles. For our
test, we only use the image sequence from Camera 1, and test
our algorithm on several pedestrian objects. Both qualitative
and quantitative results are shown for this dataset.

The first test case is to track a single person (referred to
as object A) walking along a curved road. The original image
sequence is down-sampled to 5 frames/s for testing. Fig. 5
shows tracking results of GPFs with 150 and 300 particles, and
our method with 150 particles, respectively. As the tracking

25

Error means/deviations

2200 2300

Frame #

(a)

2400 2500

25

Error means/deviations

1]
2100 2200 2300 2400 2500
Frame #
(b)
25
20
W
[
k]
g 15
=
c
2
E 10}
g
w
5

o . =
2100 2200 2300 2400
Frame #

()

2500

Fig. 6. Means and deviations of tracking errors of object A. Results are cal-
culated from 100 repeated runs with a frame rate of 5 frames/s. (a) GPF with
150 particles. (b) GPF with 300 particles. (¢) Our method with 150 particles.

goes, the GPF with 150 particles shows increasingly large
errors in both object locations and scales. Increasing the
number of particles to 300 for GPF improves the tracking
performance, however, scale changes of object are still not well
estimated. Using only 150 particles, our method shows satis-
factory tracking results for both object locations and scales.
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(b)

Fig. 7.

Tracking results of objects B and C using two independent trackers at a frame rate of 5 frames/s. Object B: shown in green boxes. Object C: shown

in blue boxes. Frames shown: 1487, 1587, 1637, 1687, 1787. This figure is best viewed in color. (a) GPFs with 300 particles each. (b) Our method with

150 particles each.

To further evaluate the performance of our proposed method
in a quantitative manner, we repeat experiments for 100 times
and calculate means and deviations of tracking errors against
the ground truth associated with the dataset. The tracking error
is defined as the displacement in pixels, between the ground
truth centroid of the object and the center of tracked bounding
box. Fig. 6 shows error bar plots of GPFs with 150 and
300 particles and our tracker with 150 particles, respectively.
Tracking errors of GPFs with 150 and 300 particles have
similar trends in their means, and large increases in average
errors are observed around frames 2240 to 2290 and 2320 to
2360 when the object is turning along the curved road or close
to some background clutters. Error deviations of the GPF with
150 particles diverge near the end of tracking, which indicates
that the GPF is unable to provide reliable tracking results as
150 particles are not enough to effectively cover the state space
without utilizing environmental constraints. Our proposed
method shows smaller error means and deviations than GPFs.
The average error also has smaller fluctuations compared to
those of GPFs, which can be explained that our adaptive
dynamics model fits the motion of the object better than the
constant velocity model when the object being tracked adjusts
its motion from time to time under environmental constraints.

The second test case is to track two persons walking
together. We refer to the person in the front as object B,
results of which are shown in green, and the one in back
as object C, results of which are shown in blue. It is more
challenging than the first case since two objects have similar
color tops (white versus cream) and occasional occlusions.
We use two independent trackers with no explicit interactions
between them. Tracking results of GPFs with 300 particles
for each object are shown in Fig. 7(a). The tracking result of
object B is unstable. Around frame 1637, objects are moving
near some vehicles with similar color distributions to part of
object B. Particles are attracted by these background clutters,
and tracking errors start to accumulate. Although particles are

able to escape from these clutters later, they are not able
to recover to the true object, and therefore tracking results
afterward are largely inaccurate. Tracking results of object
C show large errors in its widths. The bounding box of C
coalesces onto both objects after temporal occlusions. This is
because the nondistinctive appearances of two objects and no
explicit interactions between two trackers. Fig. 7(b) shows the
tracking results of our method with 150 particles for each
tracker. Tracking results of object B are quite stable, and
particles are kept off from background clutters and effectively
cover the object path. Tracking results of object C also see
considerable improvements over those of the GPF, although
are a little affected by occlusions. Although tracking results
also show tendencies of covering both objects instead of one
near the end of the tracking, as objects become smaller and
feature less distinctive, our method manages to keep separate
tracking of the two objects most of the time without explicit
handling of occlusions and data associations. Fig. 8 shows
the curves of distance field values along the object paths
throughout tracking, where absolute values are shown instead
of negative weighted distances for clarity. Both curves show
quick decreasing at the beginning when objects move toward
the boundary, and fluctuate slowly after objects move parallel
to the boundary. By introducing the distance velocity in the
object state, the tracker can adapt itself to the changes of the
distance field values. Distance field values of object C are
higher than those of object B as it is further from the boundary
all the time, which implies relative positions between two
objects and helps resolve slight occlusions between objects
for this case.

We have also studied the impact of different frame rates
on the performance of tracking algorithm. Three different
frame rates, 12.5/5.0/2.5 frames/s, are tested on both GPF
and our method about tracking accuracies of objects B and
C. Experiments are repeated for 25 times for each case, and
average tracking errors are shown in Fig. 9. Our method has
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low errors for all three frame rates, and performs similarly for
both objects. GPF yields large tracking errors for the low frame
rate of 2.5 frames/s for both objects. For 5.0 and 12.5 frames/s
cases, GPF shows similar performances, and the error for
object B even diverges for 12.5 frames/s tests. This is because
for the higher frame rate, the object has smaller displacements

between frames. It is more difficult for particles to escape from
background clutters once being trapped around them.

C. Results on OTCBVS Dataset

This dataset is taken from IEEE OTCBVS WS se-
ries bench [28], which was recorded on OSU campus
and can be found at http://www.cse.ohio-state.edu/OTCBVS-
BENCH/bench.html. The sequence is recorded by a stationary
surveillance camera at a resolution of 320 x 240, and is
downsampled to 5 frames/s in our tests. Since there is no
ground truth data available, qualitative results are shown
for this dataset. Two scenarios are illustrated: the first one
recording a person walking along one side of the alley, i.e.,
keeping almost equal distance to the boundary, and the second
one recording a person first walking along one side then
crossing to the other side.

Fig. 10 shows the tracking results of the first scenario.
Similar as the single object tracking from the PETS2001
dataset, our proposed method uses half of the particle number
to achieve similar results with the GPF, as particles are
concentrated around high likelihood regions in the state space,
and fewer particles are needed as a result.

The second scenario is used to test whether our method
can keep continuous track of the object when its distance
from the boundary first increases and then decreases. Fig. 11
shows tracking results of our method with 150 particles. In
frames 1300 and 1400, tracking results are slightly inaccurate.
However, the tracker is able to recover and gives accurate
results afterward. It shows that by modeling the environment
state as a dynamic process and including it in the particle
filtering framework, its changes can also be captured.

D. Results on Karl-Wilhelm—Strafle Traffic Dataset

The test video sequences for vehicle tracking are taken
from the online image sequence database at http://i21www.
ira.uka.de/image sequences. We have used two color se-
quences with a resolution of 768 x 576 pixels at 25 frames/s,
which monitor the traffic of the same road during heavy fog
and snow conditions. These two sequences are referred to as
Fog Traffic and Snow Traffic in the following discussions.

For the Fog Traffic sequence, we are to track a car moving
along a curved road. Tracking results of GPF and our method
are shown in Fig. 12, which are zoomed to the region of
interest. Particle numbers of GPF and our method are 300 and
150 respectively. Both trackers can continuously track the car;
however, with fewer particles, our method has better accuracy
than the GPF. In frames 20 and 40, the car is steering along
the curved road segment. Tracking results of GPF in these two
frames deviate from true positions and orientations of the
object, because the dynamics model cannot adapt itself to
environment constraints. With the adaptive dynamics model
and environment prior, our tracker can effectively capture the
motion of the car, and therefore achieves better accuracies in
tracking results.

For the Snow Traffic sequence, we are to track a van of white
color driving along the road with snow covered surroundings.
Considering that we have used the color histogram as the
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Fig. 10. Tracking results on OTCBVS sequence for object 1. Frames shown: 50, 100, 200, 300. (a) GPF with 300 particles. (b) Our method with 150
particles.

Fig. 11. Tracking results of our method with 150 particles on OTCBVS sequence for object 2. Frames shown: 1200, 1300, 1360, 1400, 1540, 1600.

Fig. 12. Tracking results on Fog Traffic sequence. (a) GPF with 300 particles. (b) Our method with 150 particles. Frames shown: 20, 40, 60.

Fig. 13. Tracking results on Snow Traffic sequence. (a) GPF with 300 particles. (b) Our method with 150 particles. Frames shown: 220, 240, 260, 280.
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observation model, this sequence challenges the robustness
of the tracking algorithms against background clutters. In our
experiments, numbers of particles for both trackers are kept
the same as in the Fog Traffic sequence. Fig. 13 illustrates
tracking results of both trackers. In frame 220, both trackers
are tracking the object as the color of surrounding is quite
different from that of the object. However, when the object
is approaching snow covered surroundings, performances of
GPF and our method are different. Tracking results of GPF
have large errors and are at the risk of losing track at the
end of the sequence, because a large portion of particles are
attracted by surrounding regions which have similar color with
the object. This result illustrates the advantage of utilizing
the environment constraints with the presence of environment
clutters.

VI. CONCLUSION

In this paper, we have presented a novel tracking method
for effectively tracking objects in structured environments for
video surveillance applications. Inspired by the fact that the
motions of objects in structured environments are constrained
by the environment and the relationship between the objects
and the environments can be used as extra information for
estimating the object motions, we introduced a novel environ-
ment state term, which is modeled by the distance field using
distance transform, into the Bayesian tracking framework,
and solve the tracking problem using the particle filter. By
this approach, we were able to integrate the impact of the
environment upon object motions into the tracking algorithm.
Experimental results demonstrated that the proposed method
can greatly improve the performance of tracking in the surveil-
lance video. The proposed tracking method has following
features.

1) The dynamics model of the particle filter is adaptive to
the local structure of the environment, i.e., the distance
map. It provides an informed assumption about the object
dynamics based on the environmental context.

2) The rejection sampling based on the environment prior
helps generating particles to cover the regions which the
object is most likely to visit, and avoid the unlikely and
inaccessible regions.

As mentioned in the beginning of this paper, the proposed
method intends for structured environments and relies on
the availability of environment models. For structured en-
vironments, the environment model can be obtained using
segmentation methods which have been extensively studied
in the computer vision field. In our approach, we employ the
mean shift algorithm for segmentation which is followed by
a manual refinement of the boundaries to generate smooth
contours for creating the distance map. Experimental results
prove that using such an environment model, we are able to
produce better results than the generic particle filter approach.
Since the map can be used for an extended time period
for surveillance applications, the manual involvement in the
segmentation process is not a constant overhead.

The proposed method can be extended to complex and
dynamic changing environment provided an effective and

efficient modeling approach for 3-D space is available, which
will be the topic for our future studies. Since modeling objects
by bounding boxes will not be appropriate for more complex
cases, e.g., vehicles not view from near top-view angles,
more sophisticated modeling of objects is another topic of
study in the future. Occlusion handling and data association
for multiple object tracking is the third topic of study for
our future research. With all the three topics resolved the
constrained object tracking as proposed in this paper can be
applied to complex and dynamic environments.
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