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Abstract— A novel probabilistic tracking system is presented,
which includes a sequential particle sampler and a fragment-
based measurement model. Rather than generating particles
independently in a generic particle filter, the correlation between
particles is used to improve sampling efficiency, especially when
the target moves in an unexpected and abrupt fashion. We
propose to update the proposal distribution by dynamically
incorporating the most recent measurements and generating
particles sequentially, where the contextual confidence of the
user on the measurement model is also involved. Besides, the
matching template is divided into non-overlapping fragments,
and by learning the background information only a subset of
the most discriminative target regions are dynamically selected
to measure each particle, where the model update is easily
embedded to handle fast appearance changes. The two parts
are dynamically fused together such that the system is able
to capture abrupt motions and produce a better localization
of the moving target in an efficient way. With the improved
discriminative power, the new algorithm also succeeds in handling
partial occlusions and clutter background. Experiments on both
synthetic and real-world data verify the effectiveness of the new
algorithm and demonstrate its superiority over existing methods.

Index Terms— Haar, low-frame-rate videos, measurement con-
fidence, occlusion, particle filter, proposal distribution, tracking.

I. INTRODUCTION

W ITH the increasing availability and popularity of video
cameras, visual tracking is becoming even more impor-

tant in many applications. Human tracking is used for behavior
analysis or event detection in video surveillance, while vehicle
tracking plays a significant role in intelligent traffic systems. It
is also very useful in human–computer interface, object-based
video compression, video motion capture, etc. Meanwhile,
visual tracking is found to be a challenging problem due to
various reasons, such as rapid nonlinear target motions, clutter
background, occlusions, and so on.

According to [1], there are two kinds of approaches to tackle
the problem of visual tracking, namely target representation
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and localization, and filtering and data association. Mean
shift [2] is a typical one in the first category, which is efficient
and robust in certain scenarios but limited in fast motions and
occlusions. Especially, when it comes to multitarget tracking,
researchers seem to have less confidence and resort to methods
in the second category [3]–[5]. Kalman filter [6] is the classical
one in this category, which renders a closed-form and optimal
solution for linear Gaussian models. Among the state-of-the-
art extensions, particle filter (PF) [7]–[9], or condensation
algorithm [10], has achieved popularity due to its capability
of handling nonlinear and non-Gaussian models and shown
advantages in robustness, occlusion handling, flexibility, etc.
Its main power originates from proposing a large number of
samples (called particles) and making corresponding measure-
ments, and the estimation error could be as small as needed
if the number of particles is sufficiently large.

For a good PF-based tracker, the proposal distribution
(abbreviated as PD or proposal, also called importance den-
sity) and the measurement model are the two key components.
Due to convenience and simplicity, the motion model is usually
selected as the PD to propagate particles, which implicitly
assumes that the particles of the previous frame could be
efficiently moved to the next frame. This may not hold for
discontinuous motions, such as abruptly moving targets, in
low-frame-rate videos, or due to unexpected camera motions.
A simple yet common way to remedy this poor temporal
coherence is to increase the searching space as well as the
number of particles, but the prior information on how large
the space should be is not available most of the time. So the
filter may have to maintain a large number of particles all
the time. Since PF is mainly burdened by the measurement
calculation, increasing the number of particles will increase the
computation dramatically. On the other hand, the measurement
model evaluates each particle on how likely it represents
the true target. A strong discriminative power as well as
efficiency are highly expected for a robust model, and it should
accommodate flexibility to handle appearance changes due to
partial occlusions, target in-plane rotation, etc.

We propose an innovative tracking system, including a new
sampling method and a fragment-based measurement model.
The adoption of the former will greatly enhance the sampling
efficiency, especially when the target moves abruptly, while the
latter handles partial occlusions. Incorporating measurements
into the particle generation, the concepts of detection and
tracking are fused together to exploit the temporal coherence
and the discriminative ability. In addition, by embedding prior
contextual information using a new concept of the measure-
ment confidence, the user is even able to adjust the tradeoff
between efficiency and robustness in a flexible way.
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A. Related Work

Sampling efficiency is a primary issue for a PF-based
tracker, since the module of visual tracking could only be
assigned with a small portion of the computing resource in
a typical real-time system. Researchers have done tremendous
work to improve its efficiency as well as the robustness
in recent years. One way is to introduce adaptation. A
key parameter is the variance of the motion model, which
directly determines the region size that particles are going to
spread over. Kitagawa [11] laid a theoretical foundation for
augmenting the state vector with the variance, which could
be estimated simultaneously and is particularly helpful for
low-dimensional systems. However, augmentation could easily
double the dimensionality, which will increase the number of
particles exponentially and thus the complexity significantly.
Therefore, Oka et al. [12] introduced an adaptive diffusion
control for head pose estimation by adjusting the standard
deviation of each state element proportional to its change.
For a further step, Zhou et al. [13] noticed that adjusting
only the searching space but not the number of particles
might sacrifice the estimation accuracy and proposed to adjust
both dynamically according to the status of tracking. Pan
and Schonfeld [14] proposed to adjust the proposal variance
and the particle number simultaneously over multiple frames
by introducing an optimized resource management given an
overall computing resource. Thus, the target in a difficult
frame will be assigned with more particles, and the overall
tracking quality is maximized. Later, they extended a similar
idea to multitarget tracking in [15] as well. Combining mean
shift with PF is another way. Maggio and Cavallaro [16]
presented a hybrid scheme in which every particle is applied
with mean shift until it reaches a stable position and becomes
more representative for the posterior modes. Cai et al. [17]
introduced a similar boosted PF into multitarget tracking.

To handle abrupt motions, a detector is normally inte-
grated to reconstruct the poor temporal coherence. Porikli and
Tuzel [18] designed an extension to mean shift in low-frame-
rate videos by first applying change detection to locate the pos-
sible target appearing regions. Bouaynaya and Schonfeld [19]
proposed a motion-based PF, where motion detection based on
the adaptive block matching is used to generate the proposal.
The target motion is limited by the size of the window, which
needs user’s prior information. More recently, to deal with both
the poor temporal coherence and swift appearance variations,
Li and Ai [20] adopted a coarse-to-fine methodology and
introduced a cascade PF to refine the filtering result in three
steps, where each step is equipped with a more complex
and discriminative measurement model. An interesting work
to iteratively fuse multiple cues by using set theory was
proposed by Chang and Ansari in [21]. Even though not for
abrupt motions specifically, it also provides a feasible way to
incorporate intermediate observations from different cues to
refine the tracking result efficiently.

On the other hand, researchers are improving the measure-
ment model for a better tradeoff between the discriminative
power and the efficiency. Wang et al. [22] proposed to
integrate a feature selection into the PF, where only the most
discriminative features are selected for the particle search.

Similarly, Shakunaga and Noguchi [23] introduced adaptation
into a sparse template, where only feature points are used
for measurement to outperform the template using all pixels.
Otsuka et al. [24] used a sparse template in the head tracking
for a conversation scene analysis. Rather than feature selection,
Chen and Yang [25] introduced the idea of regional confidence,
where several regions of target blocks were used to learn
the confidence of tracking to provide different discriminative
power. Similarly, Yang et al. [26] used salient image regions
to construct a pool and dynamically selected a portion of it
by ranking their discriminative abilities. Avidan [27] treated
tracking as a binary classification problem by training an
ensemble of classifiers against the background using Adaboost
and localized the target with mean shift once the confidence
map was obtained. Adam et al. [28] directly decomposed the
target into fragments and localized the target by combining the
vote maps. Among all these works, an efficient and effective
way to extract features is the Haar-like wavelet transform
since its successful introduction in face detection by Viola and
Jones [29]. Besides its simplicity, Haar-like features provide
a great flexibility and a sparse way for the feature selection.
Since then, it has become very popular and been used widely
in detection and tracking, such as [20], [22], [30], [31].

B. Overview of Our Approach

To improve the sampling efficiency and the discriminative
power, we introduce a robust tracking system, where our
primary contributions are threefold. Firstly, we introduce a
novel sampling algorithm, named sequential particle gener-
ation (SPG), in which particles are proposed sequentially,
rather than all at once. Based on the likelihood of the current
particle, the proposal is dynamically updated for the next
particle, such that particles are sampled to be either more
concentrated in the high likelihood area or scattered to capture
severe nonlinear motions. This is fundamentally different to
the diffusion control methods [12], [13], [15] since no interme-
diate measurement results were involved previously. In [21],
sequential groups of particles are proposed according to dif-
ferent cues, while all particles are generated sequentially here.
Without resorting to other methods, the intrinsic resource, i.e.,
the knowledge of likelihood, is treated as an intermediate
detection result and fully exploited to improve the sampling
efficiency. Secondly, rather than a template using feature points
in [23] and [24], we propose a new yet simple fragment-
based measurement model, where the template is divided into
non-overlapping regions, where Haar-like features [29] are
extracted efficiently. By learning the target and the peripheral
background, only a subset of the most distinctive and rep-
resentative regions is dynamically selected for the observer,
which also provides a sparse way to maintain and update the
target appearance. Thirdly, we provide a mechanism for the
user to integrate contextual confidence on the measurement
model into the proposed sampling method for a specific appli-
cation. This prior information, defined as the measurement
confidence, helps to determine how the system will employ
the intermediate measurement results, either aggressively or
conservatively. Compared to the methods based on the generic
PF, the proposed algorithm is able to: 1) fully exploit the
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likelihood; 2) capture more abrupt motions; 3) handle partial
occlusions; and 4) be more efficient in many applications.

The rest of the paper is organized as follows. Section II
reviews the generic PF and introduces the proposed sampling
algorithm by a theoretical formulation along with a verification
on the 1-D case. Section III describes the key components of
the whole tracking system, including the motion model and
the new measurement model. In Section IV, comprehensive
experiments are performed to verify the system and compare
the new algorithm with existing methods. Section V discusses
several relevant issues, and Section VI concludes the paper.

II. SEQUENTIAL PARTICLE GENERATION

This section introduces the new SPG algorithm. First we
review the generic PF and its computational limitation to
explain the motivation for the new algorithm. Then the concept
the measurement confidence is introduced, followed by the
presentation of the detailed mathematical formulation. Finally,
a detailed illustration on the 1-D case is given for verification
of the proposed algorithm.

A. Generic Particle Filter

Let xk and zk denote the state vector and the measurement at
time k, respectively, and Z1:k = {z1, . . . , zk} represent the set
of measurements till time k. Under the Bayesian framework,
the fundamental problem is to calculate the posterior proba-
bility p(xk |Z1:k) given the state transition model p(xk |xk−1)
(also called the motion prior) and the measurement model
p(zk |xk). For solving the problem, the PF [7]–[9] is one
of the most successful ways to handle the nonlinear/non-
Gaussian models by implementing a Bayesian filtering based
on the Monte Carlo method. The idea is to use sufficient
number of particles in the state space and their corresponding
weights {xi

k, w
i
k}N

i=1 to approximate the posterior distribution
in a discrete way by p(xk |Z1:k) ≈ ∑N

i=1 wi
kδ(xk − xi

k), where
N is the number of particles. A carefully designed proposal
distribution q(xk |xk−1, zk) is used to generate all particles xi

k
for time k, while the associated un-normalized weights w̃i

k are
calculated iteratively using the following equation based on
the factorization of both the posterior and PDs:

w̃i
k ∝ wi

k−1 · p
(
zk

∣∣xi
k

)
p

(
xi

k

∣∣xi
k−1

)
q

(
xi

k

∣∣xi
k−1, zk

) (1)

where p(zk |xi
k) is the likelihood and p(xi

k |xi
k−1) is the state

transition probability. The sampling efficiency is directly
determined by the proposal q(xk |xk−1, zk), which should
ideally be selected as close as possible to the posterior
distribution. As given in [7], the optimal PD is proven to
be p(xk |xk−1, zk), which is not computationally feasible in
most cases, while the most popular choice is the motion
model q(xk |xk−1, zk) = p(xk |xk−1), due to its simplicity.
With this substitution, (1) is reduced to w̃i

k ∝ wi
k−1 p(zk |xi

k).
To prevent PF from degenerating, a re-sampling technique
is usually added at the end of each iteration. Hence the
weight calculation is further simplified to w̃i

k = p(zk |xi
k).

Once all weights are obtained, they are normalized to {wi
k}N

i=1
according to wi

k = w̃i
k/(

∑N
i=1 w̃i

k). The estimated state vector
therefore is given by x̄k = ∑N

i=1 wi
k · xi

k . This is normally
referred to as the bootstrap filter [8] or the generic PF (GPF).

B. Motivation of the New Approach

As mentioned in [8], the underlying assumption for an
effective PF is that the system is evolving slowly and the
difference between the consecutive posterior distributions is
small, such that the PD is effectively used to explore the
state space. However, when the target shows a discontinuous
motion, this assumption will not hold. A large number of
particles, generated independent identically distributed (i.i.d.)
by the same PD, are likely to emerge in low likelihood regions,
such that applying GPF to track the target will not be effective.
We notice that the measurement model actually behaves like
a detector, but in this sense not all the observations made
are instantaneously used. Kreucher et al. [32] made a similar
observation and proposed a particle screening scheme after
generating a large number of particles. Unfortunately, the
improvement of sampling is at the cost of significantly higher
computational cost. Therefore, we propose to incorporate them
sequentially into the proposal for particle generation, where the
notions of sampling and detection are fused together to adjust
the searching space adaptively.

This sequential idea has its root in sampling theory. In [33],
Kong et al. proposed a method to impute missing data
by iteratively using most recent measurements. Chopin [34]
incorporated measurements sequentially into the parameter
estimation for a higher efficiency. For a PF, a better PD is
able to reduce its discrepancy with the posterior distribution, as
indicated in [8], [9]. A proposal with the most recent observed
information fused is normally preferred, especially when the
discrepancy is inevitably large. However, exploiting all the
most recent observations is not feasible in visual tracking. Our
sequential scheme provides a way to overcome this difficulty,
in which observations are incorporated one by one to improve
the proposal and reduce the discrepancy. In other words, it
bridges the GPF toward the filter with the optimal proposal.
The former exploits no measurements, while the latter takes
the full advantage of measurements.

C. Measurement Confidence

When a user analyzes a particular application, especially
for video surveillance, he/she has to select a measurement
model and have a confidence on how discriminative the
selected model is going to behave in this particular application
environment. Here we define this prior information as the
measurement confidence (MC). In a relatively simple tracking
scenario, where either the background is relatively plain or
the target is quite unique in a certain feature space, the model
based on that feature could possibly suffice this requirement
and the confidence will be high, while in a relatively complex
scenario, such as with clutter background, the confidence level
could be much lower. Once this prior information is provided
by the user, the system could determine how aggressively the
intermediate measurement results are utilized. The higher the
confidence, the more discriminative the model and the higher
the efficiency the tracker could achieve. On the other hand,
if the confidence is relatively low, it is more likely to have
a multimodal likelihood and the system tends to perform in
a conservative way. In this way, the proposed system could
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be adjusted to a different tradeoff between efficiency and
robustness for a wide range of applications.

D. Mathematical Formulation

This section presents the mathematical implementation of
the new idea. A framework based on Bayes’ Rule is introduced
first, and a paradigm is presented to describe how the most
recent observation and the user confidence are fused to update
the PD, followed by a verification on the 1-D scenario.

Following the convention in Section II-A, we use xk and zk

as the random variables for the state and measurement, and let
xi

k and zi
k be the i th (i = 1, 2, . . . , N ) particle and the realized

measurement (called likelihood as well) at time k, respectively.
The PD for i th particle is qi (xk). We denote the upper case
Xi

k to be the set of particles from first to i th, and similarly
we have Zi

k . We introduce a framework for the SPG, where
estimation results in previous frames are used to initialize the
motion model and generate the first particle x1

k , and the most
recent observation is fused into current proposal for the next
particle generation. Thus, we obtain

xi
k ∼

{
p

(
xk

∣∣X0
k

)
, if i = 1

p
(

xk
∣∣Zi−1

k , Xi−1
k , X0

k

)
, if i > 1

(2)

where X0
k = X̄k−1, and X̄k−1 denote the estimation results

in previous frames. The realization is determined by how the
motion is modeled, which will be discussed in Section III-A.
When i > 1, the conditional distribution can be decomposed
in an iterative way by applying the Bayes’ Rule

p
(

xk
∣∣Zi

k, Xi
k, X0

k

)
(3)

= p
(

xk
∣∣zi

k, xi
k, Zi−1

k , Xi−1
k , X0

k

)
(4)

=
p

(
xk

∣∣Zi−1
k , Xi−1

k , X0
k

)
p

(
zi

k, xi
k

∣∣xk, Zi−1
k , Xi−1

k , X0
k

)
p

(
zi

k, xi
k

∣∣Zi−1
k , Xi−1

k , X0
k

)
(5)

∝ p
(

xk
∣∣Zi−1

k , Xi−1
k , X0

k

)
p

(
zi

k, xi
k

∣∣xk

)
(6)

where xk is the only random variable here, and the denom-
inator in (5) is a constant and can then be neglected in (6).
p(zi

k, xi
k |xk) is the simplified from the corresponding term in

(5) by applying the property of conditional independence. This
provides a framework to iteratively update the PD by fusing
the most recent observation.

1) An Instantiation: We denote β ∈ [0, 1] as the confidence
index predefined by the user to reflect the contextual confi-
dence on the measurement model. Then we define an updating
distribution pu(zi

k, xi
k |xk) associated with the current particle

xi
k , to incorporate the most recent observation information.

In order to introduce adaptiveness to the searching range of
the proposal, a parameter λi is also defined to represent the
relationship between the particle and the current proposal.
Given the current proposal qi (xk), and analogous to (3) by
p(zi

k, xi
k |xk) ∝ pu(zi

k, xi
k |xk)

β and p(xk |Zi−1
k , Xi−1

k , X0
k ) ∝

qi (xk)
λi , we have the iterative PD updating equation as

qi+1(xk) ∝ qi (xk)
λi · pu

(
zi

k, xi
k

∣∣xk

)β
(7)

where qi+1(xk) is the updated PD to generate the next particle
xi+1

k , and pu(·) is generated by the observation result zi
k and

imposed on the current particle xi
k . The definition of λi will be

given shortly, and its physical meaning will become clearer in
Section II-E, where we verify the whole scheme using the
1-D scenario. Given the generated particle and the current
PD, two pieces of information, i.e., their relationship and the
likelihood, are fused with the MC to update the PD for the next
particle. As we can see in (7), the term pu(zi

k, xi
k |xk) represents

the new observation information, while the previous proposal,
qi (xk)

λi , behaves as a prior term of fusing up to the (i − 1)th

observation. The application of Bayes’ rule generates the new
proposal by integrating the most recent observation. Thus, each
intermediate PD is viewed as both an approximate posterior
for the current iteration and a prior for the next round. The
overall iteration can thus be considered as a series of posteriors
to approach the true underlying posterior distribution.

2) A Gaussian Realization: According to the current obser-
vation, there are various ways to generate the updating distri-
bution. To make the sequential scheme effective yet efficient,
we select the imposed updating distribution pu(zi

k, xi
k |xk) to

have a form of the multivariate Gaussian as follows:

p(x |μ,�) = (2π)−d/2

|�|1/2 exp

[
−1

2
(x − μ)T �−1(x − μ)

]
. (8)

It is important that this updating distribution should not be
confused with the observation distribution p(z|x) defined by
the measurement model. The utilization of the Gaussian form
for the updating distribution is only applied in the proposal
updating step, which does not affect its capability of handling
non-Gaussian and nonlinear models as the GPF. Specifically,
we have pu(zi

k, xi
k |xk) = N (xi

k, �u), where the covariance
matrix �u is determined by the observation result. First,
the likelihood value zi

k of particle xi
k is obtained by the

measurement model p(zk |xi
k), and then we endue the peak

value of a multivariate Gaussian with the likelihood value
according to (8), i.e.,

zi
k = (2π)−d/2|�u |−1/2exp(0) = (2π)−d/2|�u |−1/2. (9)

In the 2-D case for visual tracking, we solve zi
k = (2π)−1 ·

|�u |−1/2 for the covariance matrix �u and obtain |�u | =
(2π zi

k)
−2. We therefore select

�u =
(

(2π zi
k)

−1 0

0 (2π zi
k)

−1

)
. (10)

The advantage of having both the updating and PDs in the
form of multivariate Gaussian is to apply the product enclosure
property. More explicitly, the multiplication of two Gaussian
distributions is still an un-normalized Gaussian, which holds
even when there is an exponent in the distribution. Since the
Gaussian is uniquely determined by its mean and covariance,
the iteration of (7) could thus be quickly calculated. Let
qi (xk) = N (μi , �i ), plus pu(zi

k, xi
k |xk) = N (xi

k, �u). Then
the updated proposal after the normalization is given by
qi+1(xk) = N (μi+1, �i+1) according to (7), where⎧⎨

⎩�i+1 =
(
λi�

−1
i + β �−1

u

)−1

μi+1 = �i+1

(
λi�

−1
i μi + β �−1

u xi
k

)
.

(11)
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3) Selection of λi : Besides β, another key parameter in (7)
is the relation parameter λi . Since all the PDs are in the form
of Gaussian, we only have to consider the distance between
the particle xi

k and the proposal mean μi . The basic idea is
to utilize λi to adjust the dynamic searching range of the PD,
especially when the likelihood is low. The case that the particle
is close to the PD mean should be differentiated from the
case that it is far away. In the former one, it implies that the
possibility that the posterior mode exists around the center of
the current PD should be reduced, and therefore the searching
space should be enlarged to increase the chance of capturing
the posterior mode. The closer the particle is to the mean, the
less likely the posterior mode exists in that area and the larger
the searching space should be enlarged to. When the particle
xi

k is far away from the PD mean μi , it provides no extra infor-
mation, and the searching range should be kept approximately
the same as the previous one. Therefore, we select

λi = 1 + ε − exp
(
−α||xi

k − μi ||2
)

(12)

where ε ≥ 0 is a small positive quantity protecting λi from
being zero. α ≥ 0 is the parameter adjusting the convergence
speed of λi and determines the amplitude of variation of the
searching space. The smaller the α, the smaller the λi and the
larger the space the updated PD exploits. The key is when
xi

k is close to μi , λi → 0 since α ≥ 0; otherwise λi → 1. As
shown in the experiments, α ∼ 1 suffices most cases. How λi

affects the scheme will be further discussed in Section II-E.

E. Verification on 1-D Example

To verify the proposed method as well as to have a
visualized understanding, we simplify the proposed scheme
by reducing (11) into the 1-D case and obtain

1

σ 2
i+1

= λi
1

σ 2
i

+ β
1

σ 2
u

and
μi+1

σ 2
i+1

= λi
μi

σ 2
i

+ β
xi

k

σ 2
u

. (13)

Then we present six typical scenarios to verify the proposal
updating scheme in the 1-D case and show how the measure-
ment result and the user confidence are involved. As shown in
Fig. 1, the solid blue curve represents the underlying posterior
distribution, while the dashed red Gaussian denotes the current
PD, which generates the current particle (denoted as the x-axis
of the black circle). The updating distribution is represented
by the black dotted curve imposing onto this particle in terms
of its likelihood value. According to (13), the particle location
with respect to the current PD and the updating distribution
are integrated into the current PD to generate the updated PD
(plotted as the dash-dotted magenta curve).

First, let us consider the situation where the measurement
confidence is very high, β = 1. Corresponding to Fig. 1(a)
and (b), if the current particle yields a low likelihood zi

k (the
y-axis coordinate of the black circle), the variance of the
updating distribution σ 2

u is very large according to (10), and its
inverse 1/σ 2

u becomes very small. The case that the particle
is close to the PD mean should be differentiated from the
case that it is far away. For the former case in Fig. 1(a), the
particle, appearing in the high-probability area according to
the current PD, yields a low likelihood. Thus, the possibility
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and far from the PD mean

–20 –10 0 10 20
0

0.05

0.1

0.15

0.2
Posterior
Current Proposal
Updating
Updated Proposal

(e) Low conf.: high likelihood
and close to the PD mean

–20 –10 0 10 20
0

0.05

0.1

0.15

0.2
Posterior
Current Proposal
Updating
Updated Proposal

(f) Low conf.: high likelihood
and far from the PD mean

Fig. 1. Six typical scenarios for proposal updating: (a) the variance increases;
(b) the previous PD almost remains; (c) and (d) the updated proposal is
dragged toward the current particle when the confidence is high. (e) and (f)
the updated proposal stays back to the current PD due to the low confidence
even though the likelihood is high.

that the posterior mode exists around the current PD mean
should be reduced. A wise way is to enlarge the searching
space to increase the chance of capturing the posterior mode,
which is mathematically equivalent to amplifying the variance
of the updated PD (dash-dotted). At this moment, how far
the updated PD is dragged toward the updating distribution is
determined by the distance between xi

k and the mean μi . The
smaller the distance, the more λi approaches zero, and σ 2

i+1
is more determined by the term β/σ 2

u and becomes smaller.
Physically, the less likely the posterior mode exists in that area
and the more the variance should be enlarged to. In the latter
case shown in Fig. 1(b), since the particle is far away from
the PD mean, it provides no extra information, and the best
guess is still the current PD or its approximate. So the updated
PD almost coincides with the previous one. Mathematically,
λi → 1, and 1/σ 2

i+1 is dominated by the term λi/σ
2
i . Thus

σ 2
i+1 is close to or almost the same as σ 2

i .

On the other hand, when the likelihood is high, σ 2
u becomes

really small and is likely to dominate σ 2
i+1 with β = 1.

Especially, when the particle is close to the PD mean in
Fig. 1(c), λi → 0, and the dominance becomes more obvious.
In Fig. 1(d), when λi → 1, the updated PD still leans
toward the updating distribution due to the relatively large
variance of the current PD. Physically, in both cases, it implies
that the posterior mode is likely to be around the current
particle, especially when the measurement model is highly
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discriminative. Therefore, the updated PD is dragged toward
the current particle in both cases with a reduced variance. The
higher the likelihood, the smaller the variance.

Second, if the confidence is rather low (let β = 0.1), the
probability of a local maxima due to clutter background at the
position with a high likelihood is higher, and the term β/σ 2

u
will be less significant in (13). Therefore a safer choice would
be a less aggressive movement of the updated proposal from
the current PD, as shown in Fig. 1(e) and (f). Compared with
their counterparts in the second row of Fig. 1, the updated
PD tends to stay back to the current proposal somehow and is
less leaning toward the updating distribution. By preserving
more properties from the initial motion prior, the scheme
behaves in a more conservative way in a complex background.
One extreme case is that the updated and current PD almost
coincide if the confidence is extremely low, which basically
reduces the proposed scheme to GPF.

F. Summary of SPG

SPG has two significant parameters, the MC β and the
adjusting parameter α. Basically, β determines how aggres-
sively the measurement is used in the proposal updating, while
α adjusts the significance of the distance between the particle
and the proposal mean and controls how large the search
range should be enlarged to. An extreme case is when β = 0
and α = +∞, then λ = 1 and �2

i+1 = �2
i , μi+1 = μi ,

which is almost equivalent to the GPF. In summary, SPG
presents a new way to integrate the most recent observation
information into the particle generation by updating a series of
PDs, and a mechanism is provided for to equip the updating
scheme with the contextual confidence, which is an index
of the tradeoff between robustness and efficiency. For each
new frame, the first PD is initialized with the motion prior
q1(xk) = pm(xk |X̄k−1), which will be given in Section III-A.
The first particle is thus obtained by sampling x1

k ∼ q1(xk),
and its likelihood is used to generate the updating distribu-
tion pu(z1

k , x1
k |xk). With an exponent, q1(xk)

λ1 could still be
considered as an un-normalized prior probability, so is pu(·)β .
Thus, similar to (4)–(6), we have the updated PD as

q2(xk) ∝ q1(xk)
λ1 · pu

(
z1

k , x1
k

∣∣xk

)β

∝ p
(

xk
∣∣X0

k

)
· p

(
z1

k , x1
k

∣∣xk

)
∝ p

(
xk

∣∣z1
k , x1

k , X0
k

)
.

Similarly, we have the second particle x2
k ∼ q2(xk) and its

corresponding updating distribution pu(z2
k , x2

k |xk). In this way,
a series of PDs could be obtained iteratively by

qi (xk) ∝ qi−1(xk)
λi · pu

(
zi−1

k , xi−1
k

∣∣xk

)β

∝ p
(

xk
∣∣Zi−1

k , Xi−1
k , X0

k

)
.

In this way, particle generation could be summarized as in
(2). For each particle, we have the corresponding weight w̃i

k =
p(zk |xi

k), and its normalized version is obtained through wi
k =

w̃i
k/(

∑N
i=1 w̃i

k). Once we collect {xi
k, w

i
k}N

i=1, we can perform
the same estimation as the GPF, x̄k = ∑N

i=1 wi
k · xi

k .

( a ) ( b )

Fig. 2. Motion prior initialization.

III. PROPOSED TRACKING ALGORITHM

Besides the proposed SPG, several important components
are introduced in this section to complete the design of the
whole tracking system, including the motion prior initialization
and the fragment-based measurement model.

A. Motion Prior Initialization

Previously, the most frequently used motion models are
the ones with isotropic Gaussian distributions, which are not
efficient in many cases. As shown in Fig. 2(a), when the target
motion is relatively linear, a polarized Gaussian will greatly
enhance the sampling efficiency by constraining the particles
to spread along the moving direction. In the case of nonlinear
target motions in Fig. 2(b), a more isotropic one is preferred
to accommodate more flexibility. Therefore we propose an
adaptive anisotropic Gaussian based on the motion pattern of
the target, which is quite analogous to the inverse procedure
of the principal component analysis [35].

Similar to [5], a second-order auto-regressive model is
employed here: xk = x̄k−1 + v̄k−1 + uk , where x̄k−1 and v̄k−1
are the estimated state and speed at time k−1, respectively, and
uk is the motion transition noise, normally following a zero-
mean Gaussian N (0, �k). First, given the state estimations
from previous frames, we calculate the estimated speed v̄k−1 =
x̄k−1 − x̄k−2. To obtain an estimate of �k , we use v̄k−1
as the major eigenvector, and let its normalized version be
V1 = [τ1 τ2]T . Then the second eigenvector should satisfy
V T

1 V2 = 0, by which we obtain V2 = [τ2 − τ1]T . Based on
the average displacement of the previous few frames, we have
an estimate of the square magnitude of the target speed as
ρk = (|x̄k−1 − x̄k−2|2 + |x̄k−2 − x̄k−3|2)/2. Then along the
major axis, we have the first eigenvalue λ1 = ρk , while on
the minor axis we assign λ2 = γρk , where γ ∈ [0, 1] adjusts
the tradeoff between efficiency and nonlinearity. When γ → 1,
the method is the least efficient and accommodates most
nonlinearity. When γ is close to zero, it is more efficient while
considering less nonlinearity. Once we have D = diag(λ1, λ2)
and V = [V1 V2], the covariance is given by �k = V DV −1.
Thus we obtain the constant-speed model

pm(xk |X̄k−1) = N ((x̄k−1 + v̄k−1),�k). (14)

This adaptive covariance can also be considered as a form of
diffusion control like [12], [13], [15]. However, this is only an
initialization for the proposal distribution in each new frame,
and particles are not generated from this initial version all at
once but sequentially from the most recently updated PDs.
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Fig. 3. Fragment-based likelihood and Haar feature extraction.

B. Fragment-Based Likelihood Model

Similar to GPF, a key issue of the proposed algorithm is
to define the measurement model p(z|x) given the current
state x . Once a particle is proposed by the PD, it has to
be evaluated as to how it represents the real target. Among
the appearance-based models used in tracking, such as color,
edge, texture, contour, etc., color histogram is the simplest and
has been widely used in many previous works, such as [1],
[17], [36]. In simple scenarios, the color histogram suffices
the needs, and the user has a high confidence on it. As the
task becomes more difficult, the confidence will inevitably
drop. Especially for complex scenarios, such as in cluttered
background or with occlusions, it requires the model to provide
a stronger discriminative power against the background as well
as a better target representation. Without utilizing any spatial
information, color histogram has severe limitation in these
scenarios.

Following the decomposition idea in [37], we propose
a fragment-based measurement model, where the matching
template is divided into non-overlapping building blocks (BB)
according to its center location, as shown on the left of Fig. 3.
The template is initialized in the first frame by extracting a
feature vector with great discriminative ability for each block
and then updated in each successive frame after the state esti-
mation. It is represented by a set of template feature vectors,
gk, j ( j = 1, . . . , NBB), where NBB is the total number of the
foreground (target) building blocks. During the measurement,
each particle is also decomposed into corresponding blocks,
and a set of feature vectors f i

k, j ( j = 1, . . . , NBB) are extracted
to represent the i th particle xi

k . Each particle BB is compared
with the corresponding template one by norm-2, and all the
local measurements are fused together to give the overall
evaluation, which is given by a weighted summation as

Ei
k =

NBB∑
j=1

s jηk, j || f i
k, j − gk, j ||2 (15)

where the weight s j denotes the spatial factor and ηk, j is the
selection indicator. s j assigns larger weights to the central
blocks and smaller weights to the peripheral ones. A typical
choice is the Epanechnikov profile, as mentioned in [1]. ηk, j

is a binary indicator for each block and determined by the

template block selection in Section III-B.2 since only a certain
portion of building blocks is selected in the measurement
depending on the need of applications. Then the likelihood
function is given by a form of Gibbs distribution as

p
(

zk
∣∣xi

k

)
= exp

(
−Ei

k/σ
2
E

)
(16)

where σ 2
E is the evaluation variance. This region-based

decomposition provides an example of using a sparse tem-
plate to enhance its both discriminative and representative
power by exploiting the adaptation of the target, where a
feature-point-based template, such as [23] and [24], could
also be employed. Even in many difficult scenarios with
clutter background, the user could still have a fairly high
measurement confidence, which helps the proposed scheme
utilize the intermediate measurement in a more aggressive and
efficient way. The detailed method of feature extraction as
well as the template block selection and update are introduced
below.

1) Haar Feature Extraction: Since Viola and Jones [29]
demonstrated the surprising performance in face detection
by using the over-complete Haar wavelet-like features in a
boosted structure, the method has been used extensively in
object tracking and detection, such as [20], [22], [28], and [30],
[31] due to its computational efficiency and the ability to
capture local information. Similar to the scheme in [30], we
propose to use three kinds (up-down, left-right, and diagonal)
of typical Haar-like features in different resolutions for each
block, as shown on the right of Fig. 3. Pixels in the white
are associated with weight +1, while those in the dark are
assigned with −1. The gray pixels are associated with 0
and thus not used. Therefore, for the upper left feature, the
summation of all pixel values is calculated, while for the
rest features the difference between the summation in the
white and that in the dark is calculated. In this way, with
two-level decomposition, we obtain 16 feature values per
channel for each block, as shown in Fig. 3. Hence, we
have gk, j , f i

k, j ∈ R48 for chromatic (RGB) images and
gk, j , f i

k, j ∈ R16 for gray-scale images. As described in [38],
the advantage of Haar-like features is their great efficiency
once the integral image obtained from the original image by
i i(x, y) = ∑

x ′≤x,y′≤y i(x ′, y′), which could be done in an
iterative way. Based on the integral image, every summation
of pixels in a certain rectangle area could be obtained by three
simple additions or subtractions.

2) Template Block Selection: Due to target irregular shape
or partial occlusions, the power of the foreground blocks
representation varies, and their discriminative abilities against
the background are different as well. For example, some
peripheral foreground blocks may contain mostly background
information, while in the case of occlusion, only a certain
(even small) portion of blocks is capable of rendering useful
target information. Therefore, how to select both representative
and discriminative blocks plays a significant role in a robust
tracker. In Fig. 3, we denote peripheral blocks outside the
foreground as the background blocks, and the corresponding
feature vectors are bk,l(l = 1, . . . , NBK ) for the kth frame.
Then for a given template block with the feature vector gk, j ,
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Fig. 4. Selected blocks evolving over frames.

we traverse the background blocks, bk,l , and find the smallest
difference h j by norm-2, i.e.,

hk, j = min
l

||gk, j − bk,l ||2 (17)

where hk, j is a measure of the similarity between the tem-
plate block gk, j and the background. Afterwards, we sort
all the difference values hk, j ( j = 1, . . . , NBB), namely the
similarities to the background, in a descending order, and
the template blocks corresponding to the top P percentage
(i.e., the most discriminative-against-background blocks) are
therefore selected and assigned with ηk, j = 1 (otherwise
ηk, j = 0), as shown (the gray blocks) in Fig. 3. In this way,
only the most discriminative blocks account for the measure-
ment calculation in (15). Due to the appearance change or
background variations, selected blocks are expected to evolve
over frames, as shown in Fig. 4. For each new frame, the
track uses the selection template from the previous frame
for the measurement of each newly generated particle. After
an estimation is reached for the current target location, this
template block selection procedure is performed again on the
estimated state, and the newly selected blocks are used in
obtaining the measurements in the next frame.

The block size and the percentage P are the two key
parameters determining the computational complexity, which
increases as the block size decreases and/or P increases. The
number of foreground blocks NBB is determined by the target
size and the block size, and that number for the background
satisfies �4

√
NBB + 4
 ≤ NBK ≤ 2NBB + 6, where �·
 is the

ceiling of the input. Since the selection involves sorting of all
the background blocks for each foreground block and another
overall sorting for all the foreground blocks, the computational
cost is at the scale of O(NBB N 2

BK +N 2
BB) if we use the simplest

O(n2) sort algorithm, such as the bubble sort. In many typical
applications, where the frame size is 320×240, 20×60 pixels
for a median-size human target and a block size of 8×8 pixels
(used in all experiments), the computational cost is affordable
since we have NBB = 24 and NBK = 26, and it is performed
only once per frame. Besides, the user has the flexibility
to tune both the block size and the selection percentage. A
smaller P could significantly reduce the sorting cost in the
measurement calculation, and P is empirically selected as 0.7
in the experiments.

3) Adaptive Template Update: When the target has abrupt
motions, in-plane rotation, illumination change, etc., the same
target may have a poor appearance continuity. This requires

TABLE I

PSEUDO-CODE OF THE SPG TRACKING ALGORITHM

Algorithm I: SPG(k, N , X̄k−1)
1) Step 1: Initialize the motion prior by (14) and the PD: q1(xk ) =

pm (xk |X̄k−1)
2) Step 2: Sequential particle generation

for i = 1 to N
a) xi

k ∼ qi (·): Generate the current particle
b) zi

k : Complete the likelihood calculation (Section III-B)
c) pu(·): Generate the updating distribution by (9)
d) qi+1(·): Update the proposal distribution using (11)

end
3) Step 3: Estimate the current State: x̄k = ∑N

i=1 wi
k · xi

k
4) Step 4: Block selection for the next frame (Section III-B.2)
5) Step 5: Template update for the next frame (Section III-B.3)

return (x̄k )

the target template to be updated periodically and effectively,
which is another key issue. Block selection has helped the
update partially since different blocks could be selected for the
model. Here we take the advantage of a simple linear model
to modify the target template, similar to the one in [39], which
updates the color histogram. Once we obtain the location
estimation in every frame, besides the template block selection,
we extract feature vectors for the blocks around the estimated
state and obtain rk, j , ( j = 1, . . . , NBB). Thus, the target
template is updated for the next frame blockwise as

gk+1, j = ξ · gk, j + (1 − ξ) · rk, j (18)

where ξ ∈ (0, 1) is the adjusting parameter.

C. Summary of the Tracking Algorithm

The pseudocode of this algorithm is in Table I.

IV. NUMERICAL RESULTS

We carry out a series of experiments to test the proposed
tracking system in a step-by-step way. We manually define the
target by a rectangle in the first frame, where the reference
template is immediately obtained. To show how abruptly the
target is moving, solid and dashed rectangles are used to
mark the target locations in the current and previous frames,
respectively. Firstly, we focus on the novel sampling algorithm,
and adopt the color histogram (a joint RGB histogram with
8 bins per channel) as the appearance model. With a high MC
in the randomly generated synthetic and several real-world
applications, the system is able to demonstrate its capability
of either capturing abrupt motions or increasing sampling
efficiency. When the scenario becomes more complex, the
confidence drops until it is no longer suitable. Then we utilize
the new fragment-based model and show its discriminative
power and adaptability in handling partial or heavy occlu-
sions in several challenging sequences. An important note of
the implementation is that we actually select a small value
(0.0001) as the likelihood threshold for zi

k to avoid numerical
problems in the matrix inversion during the MATLAB simu-
lation. When the likelihood value zi

k in (9) is less than this
threshold, the step of updating the proposal, (11), is reduced
to �i+1 = �i/λi . In other words, when the likelihood is too
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Fig. 5. Tracking results on the Synthetic sequence for Frames 4, 20, 28, 36, 64, 76, and 98 (with color histogram). The blue sphere is the target of interest,
while the red and green spheres are interference. To show the target motion pattern, solid black and dashed red rectangle denote the estimation results in
the current and previous frames, respectively. First row: SPG; second row: GPF; third row: mean shift. Parameters for SPG and GPF: �0 = [100 0; 0 100],
σ 2

E = 1/30, α = 0.2, β = 1, and 60 particles.

small, we simply discard the effect of the likelihood and update
the covariance matrix by a scaler determined by the distance
between the particle and the proposal mean.

A. Synthetic Image Sequences

We first generate various synthetic sequences where a
spherical target (blue) imitates an unpredictable nonlinear
movement from the top-left to the bottom-right by imposing
an additive zero-mean Gaussian with a large variance onto a
random speed. We apply the proposed SPG, GPF, and mean
shift-based tracking algorithms to these sequences respectively,
and repeat the experiments with different initial conditions
over 100 times. In Fig. 5, several sequences of tracking results
are shown for comparison, where the proposal covariance is
initialized to be �0 = [100 0; 0 100] for both SPG and GPF,
where 100 is the axial variance for each direction and thus
10 is the axial standard deviation (STD). With a high MC
β = 1 and only 60 particles, SPG is able to locate the target
exactly in almost every frame, even when the target is partially
occluded around Frame 28 and moves so irregularly. Though
GPF keeps up with the target, it encounters obvious tracking
errors in the frames with abrupt movements, especially around
Frames 20 and 76. Mean shift, on the other hand, traces the
target in a perfect way as long as the target does not move
too far away from its previous location, i.e., the target needs
to have overlapping area in two consecutive frames. When it
jumps too fast around Frame 76, mean shift simply loses the
target and cannot recover it.

To further evaluate the effect of different initial conditions
and different MCs in a quantitative way, we calculate the
average tracking error between the estimation results and the
ground truth for each frame after repeating the simulation
over 50 times. In the Fig. 6(a), SPG achieves a much smaller
error for almost every frame than GPF. When we increase the
initial axial STD from 10 to 20 pixels for GPF, the tracking
error decreases significantly for those frames of abrupt target
motions and increases a little for others with predictable
motions. With the same number of particles, a larger searching
space will increase the probability of capturing the abruptly

moving target, but the sparser coverage of the particles will
inevitably decrease the estimation accuracy. Meanwhile, to
verify how the confidence will affect the performance, we
repeat the quantitative experiments with β = 0.1 and β =
0.01. As shown in Fig. 6(b), as we decrease the confidence,
the tracking error of SPG increases due to the less effect
from the updating distribution. Till the confidence is very
small β = 0.01, where the intermediate measurement have
negligible effect on the PD, SPG behaves more like a GPF,
and the tracking error, which is the squared line in Fig. 6(b),
has almost the same level as that of GPF, which is the squared
line in Fig. 6(a). Even then, SPG still shows some advantages
when the target moves abruptly around Frame 66 and Frame
76 due to its dynamic adjustment on the searching space. By
tuning the key parameter α = 0.2 for the proposal update, we
obtain an average tracking error of only 1.127 pixels/frame
for SPG with β = 1. We also vary the number of particles
with the same initial conditions, and the results are plotted
in Fig. 6(c). With only 30 particles, SPG is able to achieve
a similar performance as GPF with over 120 particles in this
simple application.

B. Real-World Applications

In the real-world, abrupt motions could result from three
scenarios, i.e., fast moving, in low-frame-rate videos, and by
an unstable camcorder. We select a sequence from each of
these three categories and compare SPG with GPF and mean
shift in the following subsection.

1) Fast Moving Targets: As shown in Fig. 7, the table-tennis
ball is moving very fast up and down, and changes directions
frequently. Since the white is quite unique in the color space,
we have a very high confidence and select β = 1. With 60
particles and �0 = [100 0; 0 100], GPF (the second row)
easily loses track due to the rapid movement though it could
recapture the target from time to time, while SPG (the first
row) successfully traces the target in every frame by capturing
the motion information and adapting the sampling. Especially
around Frames 10 and 25, when the previous location (the
dashed rectangle) has no overlapping area with the current
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Fig. 6. Quantitative comparison on the Synthetic sequence: average tracking
errors for Frames 1 ∼ 99. (a) SPG versus GPF, (b) SPG with different MCs,
and (c) SPG versus GPF: different number of particles.

position, it is expected that mean shift tracking is unable to
capture the motion.

2) Traffic Surveillance Videos: With limited storage, sur-
veillance video usually has a low-frame-rate. A typical
sequence for traffic monitoring is shown in Fig. 8 with frame
rate 2.5 frames/s. A white car is moving in the snow from
the far side toward the video camera, where the speed in the
view is increasing due to the perspective effect. In this case,
we have less confidence on the color histogram due to the
complex background, but we want to test the extreme of the
proposed method and still select β = 1. Amazingly, with 100
particles, SPG (the first row) can easily trace the car in every

frame despite a noticeable change in the target scale. With an
initial covariance, �0 = [100 0; 0 100], GPF is able to keep
track in the first half, but loses track when the target is moving
faster, where a large portion of particles are attracted by the
second car right behind it. Mean shift experiences difficulties
from the very beginning, due to the interference from the white
snow and the use of color histogram. We also increase the axial
STD from 10 to 20 pixels, and the average tracking errors for
both SPG and GPF are plotted in Fig. 9. Again, enlarging the
searching space does reduce the tracking error when the car is
moving fast, as shown in the late frames in Fig. 8, but leads to
larger tracking errors when the target moves slowly with the
same number of particles. Compared with both cases, SPG
still achieves lower errors in almost every frame.

3) The Handheld Camcorder: The third one is from a video
taken by a handheld camcorder, which is common for a lot of
outdoor activities nowadays. Hand shaking could easily cause
abrupt motions in the camera view. As shown in Fig. 10, due to
the instability of the camera holder, the target shows a random
and drastic movement in the view. Mean shift (the third row)
is not able to handle this situation any more, while SPG and
GPF still work. The results around Frame 2467 shows that
SPG is more capable of capturing unpredicted motions.

C. Fragment-Based Model versus Color Histogram

So far we have not embedded the proposed fragment-
based measurement model into the tracking system. That is
because in the sequences given above the targets themselves
are relatively small, and the color histogram suffices for the
tracking demands even with the highest confidence. However,
when the targets are relatively large and experience a complex
appearance change in a complex background, tuning the con-
fidence level with the simple model is no longer enough, and
a measurement model with a stronger discriminative power is
expected. As shown in the first two rows of Fig. 11, people
are walking along the shopping center hallway, where two
of them have similar color histograms but different textural
features. As expected, by decomposing the target into small
blocks and extracting spatial features for the measurement,
the SPG-1 (the first row) and β = 1 achieves a high tracking
accuracy in almost every frame, while SPG-2 with the color
histogram (the second row) yields an unsatisfactory result even
though the MC has been tuned down to β = 0.1. Specifically,
around Frame 3135 when target is partially occluded, SPG-2 is
somehow dragged downside, and switches to the wrong target
after the total occlusion on Frame 3185. In the bottom two
rows of Fig. 11, the target is frequently occluded by different
walking people. Again, SPG with the fragment-based model
(the third row) successfully traces the target, while mean
shift (the fourth row) has great difficulty to follow the target
due to the interference caused by occlusions and the clutter
background, as shown on Frames 2053 to 2103.

In summary, color histogram is efficient and has a high
MC in relatively simple scenarios. However, without spatial
information, it becomes insufficient for complex background,
even though the confidence level can be tuned down. In this
case, a more discriminative and representative model, such as
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Fig. 7. Tracking results on the Stennis sequence for Frames 2, 10, 14, 20, 25, 31, 39, and 47 (with color histogram). To show the target motion pattern, a
solid black and a dashed yellow rectangle denote the estimation results in the current and previous frames, respectively. First row: SPG; second row: GPF;
third row: mean shift. Parameters for SPG and GPF: �0 = [100 0; 0 100], σ 2

E = 1/30, α = 0.7, β = 1, and 60 particles.

Fig. 8. Tracking results on the Traffic sequence (from http://i21www.ira.uka.de/image_sequences/) for Frames 88, 128, 178, 198, 218, 238, 248, and 258 (with
color histogram) withe frame rate of 2.5 frames/s. To show the target motion pattern, solid black and dashed yellow rectangle denote the estimation results in
the current and previous frames, respectively. First row: SPG; second row: GPF; third row: mean shift. Parameters for SPG and GPF: �0 = [100 0; 0 100],
σ 2

E = 1/100, α = 1, β = 1, and 100 particles.
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Fig. 9. Quantitative comparison on the Traffic sequence: average tracking
errors for Frames 88–258.

the proposed fragment-based model, is able to embed more
spatial information to enhance the MC. Furthermore, it is
easy to switch between global and partial representations of a
target, which brings great performance advantages in the case
of occlusions. So ideally, for each specific application, the
user is expected to carry out some research before selecting
an appropriate measurement model. The more confident the
user is, the more efficiently the SPG could perform.

V. DISCUSSION

Several key issues are further discussed as follows.

A. Initialization Issue

With no prior on how fast the target is moving, the proposal
initialization is a key issue for any method based on PF.
With a small initial covariance, GPF is unable to capture abrupt
motions, while the tracking errors will inevitably increase with
a larger covariance given the same number of particles. The
only way to prevent performance degradation is to employ a
large number of particles. Even in some adaptive versions of
GPF, where this number is adjusted dynamically based on the
previous motion, the tracker is not guaranteed to work when
the target suddenly changes its motion pattern. However, the
adaptive SPG succeeds by combining temporal coherence and
sequential detections. By adapting its PD to the most recent
measurement, it maximizes the usage of all particles.

B. Updating Distribution

The updating distribution pu(·) is introduced to incorporate
the intermediate measurements into the proposal updating, and
it is totally different from the measurement model defined
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Fig. 10. Tracking results on the Snowboarding sequence for Frames 2417, 2431, 2453, 2461, 2467, 2473, 2481, and 2489 (with color histogram). To show
the target motion pattern, solid black and dashed yellow rectangles denote the estimation results in the current and previous frames, respectively. First row:
SPG; second row: GPF; third row: mean shift. Parameters for SPG and GPF: �0 = [100 0; 0 100], σ 2

E = 1/100, α = 1, β = 1, and 120 particles.

Fig. 11. Tracking results on the Hallway1 sequence (top two rows, Frames 3075, 3105, 3135, 3185, 3215, 3245, 3275, and 3355) and the Hallway2 sequence
(bottom two rows, Frames 1683, 1723, 1763, 1793, 1833, 1953, 2053, and 2103) (CAVIAR: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/). To show the target
motion pattern, solid black and dashed yellow rectangles denote the estimation results in the current and previous frames, respectively. First row: SPG-1 (with
the fragment-based measurement model, β = 1); second row: SPG-2 (with color histogram, β = 0.1); third row: SPG (with the fragment-based measurement
model, β = 1); fourth row: mean shift. Frame rate: 2.5 frames/s. Parameters: σ 2

E = 50, α = 0.8, P = 0.7, 120 particles, and 8 × 8 pixels for BB.

by p(z|x). The realization of the updating distribution in
Gaussian form greatly simplifies the computation, which will
neither affect the non-Gaussian property of the measurement
model nor sacrifice the PF-like ability to handle nonlinear
and multimodal problems. The updating covariance �u is
mathematically determined by the measurement result, where
σ 2

E is the measurement variance.

C. Fairness of Sampling

Two aspects are paid special consideration to preserve the
fairness of the sampling, i.e., prevent the tracker from being
trapped in a local optimum. First, an appropriate measure-
ment model should be carefully selected for each tracking
application. The more discriminative the model is, the less
likely SPG is going to be trapped. Second, the introduction
of the MC provides the user with another layer of protection
mechanism to prevent the likelihood information from being
utilized excessively, by which the tracker is less likely to
be trapped in the local optimum. The user could tune the
confidence index β to control how this scheme behaves like the
GPF. For applications with varying scenarios, users may tend
to be more conservative and select β toward 0. In a word, this
scheme is quite flexible in achieving a better tradeoff between
efficiency and robustness according to the user’s understanding
of the application scenario.

D. Computational Complexity

Complexity is always a major concern for online tracking
algorithms. First of all, all the experiments of SPG in Sec-
tion IV are running quasi or total real-time in MATLAB with
5–23 frames/s depending on the measurement complexity and
the number of particles. This gives us a prediction on how well
the algorithm performs if implemented in an executable file.
Secondly, due to the extra overhead to update the proposal,
SPG needs more computation than GPF given the same
number of particles. The extra overhead involves the variance
calculation of the updating distribution in (10) and the proposal
update in (11). For a general state vector xk ∈ �n , the extra
overhead of SPG is dominated by the matrix inversion, which
is O(n3 N ), where N is the number of particles. For the single
target tracking (n = 2), we have counted 44N scalar multi-
plications and 15N additions as the extra overhead for each
frame. We also repeat the SPG and GPF with color histogram
on the Synthetic sequence for over 200 times on a workstation
with an Intel Xeon CPU and 3G RAM. The average costs
of SPG and GPF in MATLAB without any optimization are
approximately 43.3 and 38.6 ms per frame for 60 particles,
respectively. Due to significantly fewer particles needed in
SPG, as shown in Fig. 6(c), the computational cost of SPG will
be lower to achieve a similar performance as GPF in relatively
simple applications or when the target shows abrupt motions.
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However, it should be noted that the parallelism property
of the GPF could be utilized to boost the computation in
an optimized way using multicore CPUs, which SPG is not
capable of. In applications where the motion can be well
predicted, SPG may have no significant advantage or is even
outperformed by the highly optimized GPF, but there are still
two primary reasons for us to believe that SPG will bring
significant benefits. Firstly, the main advantage of SPG is
its sampling adaptation to capture various kinds of abrupt
motions, where GPF could easily fail. Secondly, the module of
visual tracking has been installed in many embedded systems
in which multicore computing is not often employed and
computation ability is still limited. For such types of systems,
SPG is clearly more advantageous than GPF.

VI. CONCLUSION

We have introduced a novel probabilistic tracking system,
named sequential particle generation, in which a new adaptive
sampling algorithm and a fragment-based measurement model
have been proposed. Particles are generated sequentially
through dynamic adjustment of a series of proposal distributions,
which is achieved by employing the most recent likelihood
information and the measurement confidence. The likelihood
is generated by using a novel fragment-based measurement
model, where each hypothesized target is decomposed into
blocks, and local feature information is extracted and fused
together to improve the discriminative strength.

Through experiments, the effectiveness of the new sampling
algorithm has been verified. In particular, this algorithm is able
to automatically gather particles based on the confidence level
for a linearly moving target or to disperse particles to increase
search space for unpredictable target motions. Furthermore, by
embedding with a stronger discriminative model, SPG is able
to survive difficult tracking scenarios, either fast motions or
heavy occlusions. Comparison with several existing tracking
methods further demonstrates the superiority of SPG in terms
of efficiency and adaptability to nonlinear and abrupt motions.
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