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Abstract

Surface digitization is a method for obtaining three-
dimensional measurement of an wunknown surface.
The performance and quality of digitization are de-
pendent upon the choice of digitizing devices and ap-
proaches. An efficient digitizing method not only re-
duces the elapsed time of the digitizing process, but
also improves the precision of measurement. This pa-
per presents a new nonuniform technique for digitizing
of sculptured surfaces based on the short time Fourier
transform (STFT). The digitizing distances in the x
and y directions for each pre-divided block of the sur-
face are adjusted according to the highest spatial fre-
quencies contained in the block which is in contrast {o
the uniform technique in which the digitizing distance
s determined according to the highest spatial frequen-
cies of the entire surface. The speed of the digitizing
process is thus tmproved and meanwhile the accuracy
of the surface representation is maintained. Simula-
tions and experimental results are provided to verify
the proposed method.

1 Introduction

In the manufacturing industry, “reverse engineer-
ing” is becoming an indispensable process for man-
ufacturing of objects with sculptured surfaces. Dig-
itizing an unknown surface is an important step in
reverse engineering. Various digitizing techniques are
available to measure the depths of discrete points of
a surface. These points form a dense mesh which can
be used to reconstruct the surface.

The efficiency of the digitizing process is a very im-
portant issue and has drawn a great deal of atten-
tion in recent years. The fundamental question is that
what the digitizing distance should be such that the
surface can be accurately represented but the digitiz-
ing points are minimal. Much research has been done
on this problem. Lin, et al, used the spectral anal-
ysis to determine the surface proper sampling spac-
ing under the constraints of permitted aliasing error
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[1]. Sherrington and Smith used the Fourier analysis
method to obtain the frequency information of areal
surfaces in the measurement of roughness [2]. Tsukada
and Sasajima [3], and Yim and Kim [4] treated this
problem from the statistical point of view. Woo and
Liang [5] applied the Hammersley sequence for surface
measurement and the number of digitizing points can
be reduced. All of the above methods consider the
whole surface as a block and the digitizing intervals in
the 2 and y axes are determined globally. Once the
digitizing intervals are determined according to the
highest spatial frequency, they are applied uniformly
to the entire surface. This may result in too many dig-
itizing points because there are places on the surface
whose spatial frequencies are lower and need longer
digitizing distances.

The objective of this research is to reduce the dig-
itizing points by a nonuniform digitizing approach.
Most often a sculptured surface has different spatial
frequencies in different local areas. FEach local area
should have its own digitizing density according to its
local spatial frequencies.

In this paper, we propose a new approach which
divides the entire surface into small windows. The
digitizing points are determined for each window ac-
cording to the spatial frequencies of each window us-
ing the short time Fourier transform (STFT) method.
The advantages of this approach are evident. Be-
cause the digitizing intervals are adjusted according
to the highest frequency within each windowed block,
the method needs less digitizing points and therefore
reduces the processing time. Turthermore, the size
of the pre-divided block can be altered in order to
get the optimal reduction of digitizing points. On the
other hand, the accuracy of the surface representation
is preserved because the digitizing distance is sclected
according to the highest spatial frequency in the block.

The procedure of the proposed approach is in the
following order:
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1. Obtain a “rough picture” of the sculptured sur-
face by using computer vision. Computer vision
can measure the entire surface very quickly with
a relatively low precision. However, the mforma-
tion of the spatial frequency is preserved.

2. Perform the short time Fourier transform (STFT)
on the rough depth information integrated from
computer vision.

3. Find the energy spectrum of the STFT. The high-
est frequencies which enclose most of the energy
of the spectrum in the 2 and y directions can
be obtained. The desired digitizing distances in
the # and y directions should be at least twice
the highest frequencies according to the Shannon
sampling theory [6].

4. Use an accurate digitizing device such as a laser
displacement sensor to redigitize the selected
points. An accurate digitizing device needs longer
tune than computer vision to digitize the entire
surface. Because the digitizing points have been
reduced, the digitizing time is substantially re-
duced as well and the high precision of digitizing
1s obtained.

The structure of this paper is as follows. In Section
2, the STFT is presented. The motivation, definition,
and selection of the window function of the STFT are
described in detail. In Section 3, we illustrate how
to find the highest frequencies in the z and y direc-
tions and determine the new digitizing distances. An
experiment of a model and the error analysis are pre-
sented in Section 4. Finally, this paper is concluded
in Section 5.

2 Short Time Fourier Transform
2.1 Motivation of the STFT

The STFT was originated for the purpose of de-
tecting nonstationary signals and was widely used in
the research of speech and acoustics. For a better and
clearer understanding of the groundwork of the STFT,
a comparison between the STEF'T and the conventional
Fourier transform (FT) should be made.

The discrete Fourier transform and the correspond-
ing inverse Fourier transform have the following forms:
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where f(n) and F(w) are the transform pair in the

discrete time and frequency domains, respectively.
From (1), the spectrum F(w) is calculated from the

time —oo to oco. This means that it is necessary to

observe the signal f(n) for a very long time to get
the frequency spectrum distribution. In the speech
applications, this is often accomplished by analyzing
the recorded sound from the very far beginning to the
present time. Another observation from (1) is that the
spectrum only tells the total frequency distribution
over the entire time axis (or at least a long time dura-
tion). It is unable to distinguish what frequency com-
ponents have happened at a specific time, or when a
particular frequency component was happening. The
deficiency of the FT, for example in the acoustic re-
searcl, is that the FT is obviously uninformative when
the musical notes are analyzed because the time and
the frequency of the notes have to be considered si-
multaneously.

The intuitive solution to the mentioned shortcom-
ings of the FT is to split the entire time space into a
number of small durations and apply the FT on each
one. It seems to be quite helpful and straightforward,
but this gives rise to two problems thereafter:

1. How to divide the time axis? What is the length
of each time period? Note that the FT requires
long durations for the integration and hence the
periods should not be too short. It also implies
that some preliminary information about the sig-
nal f(n) has to be obtained a priori to prevent
any arbitrary division of the signal.

[N}

If a fixed length T is specified for the period, each
period amounts to a rectangular window with the
length 7 imposed on the original signal f(n). The
windowed signal f,, which is centered at 7 can he
expressed as

fw(n—1)= f(n)- rect(n — 1) (2)
where

. _ L =T/2 <n<T1/2,
rect(n) = { 0, otherwise.

The multiplication of f(n) and rect(n — 7) in the
time domain is equivalent to the convolution of
F{w) and FT{rect(n — 7)} in the {requency do-
main. The FT of rect(n — 7) is

sinfw(T"+ 1)/2]

sin{w/2)

where T is assumed to be an even number. This
convolution brings unwanted high frequency com-

(3)

FT{rect{n — 1)} = (4)

ponents into the spectrum since there are sharp
edges along the two sides of the rectangular win-
dow function. This disturbs the true frequency
distribution retained in f(n). As we will see in
the following section, the rectangular window is
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the extreme case of the uncertainty principle [7].
Hence such a window is not a good choice in most
applications. The question is: what is the most
suitable window function which can reduce the
time and frequency disturbance as much as pos-
sible? In other words, what kind of window func-
tion is optimal in both time and frequency do-
mains?

2.2 Definition of the STFT

Since the purpose of the STFT is to identify the fre-
quency of the sculptured surface locally instead of the
frequency globally, the formal definition of the STFT
in 1-D case can be expressed as

o0
F(m,w) = Z f(n) - w(n —m)e™Ivn (5)
=00

where w(n—m) is the translated version of the window
function w(n) located at m. Therefore, the window
function can be moved everywhere along the discrete
n-axis, and this amounts to seeing different durations
of windowed signal accordingly.

2.3 Gaussian Window

The properties of the STFT are sensitive to the
selection of the window function in (5). The win-
dow function can be generalized as w(n) which can
be moved everywhere in the n-axis, and it is multi-
plied to f(n) to get the windowed version fi,(n). The
width 7" of the window w(n) and the bandwidth B
of its FT, W(w), are related according to the “uncer-
tainty principle” (Heisenberg inequality) [8][9], i.e.,

7By~ (6)

47
where T" and B are defined as follows and they can be
considered as the standard deviations of the window
function with associated expectation values 7o and wy

[8]:

oo 1/2

T = ( Z (n—no)2|w(n)]2) , (7)
”—.-2100 1/2
B = </ (w — wo)* W (w)]? dw) (8)
B (9)
where oo

ng = Z nlw(n)|?, (10)
wo = /” W W (w)]? dw. (11)

In other words, when the width of the window is
smaller, its bandwidth in frequency becomes larger,
and their products are always greater than or equal

to the lowest bound 1/47. Hence the basic issue in
the choice of the window function is the tradeoff be-
tween the long window length for high frequency reso-
lution and the short window length for zooming in the
local variations of the signal at the time of interest.
We have already presented an example of rectangular
window function. Another extreme case is the Dirac
delta function é(n) with 7" = 1. This results in infinite
length of “1” in the frequency domain.

The Gaussian window g(n) is compact in both time
and frequency domains and meets the lowest bound of
the Heisenberg inequality. This transform using the
Gaussian window was introduced by Gabor [9] and is
known as Gabor transform:

g(n) = (20)"%e7m, (12)
G(w) ('2/(1.)1/46_”‘3/“, (13)

a (14)
4 7a’ 4 :

where a is a constant which can be used to adjust the
window width and the bandwidth. Since the Gaus-
sian window has the property of continuity in both
time and frequency domains, the interference resulted
from the unwanted high frequency can be avoided. In
reality, the spatial frequencies of sculptured surfaces
might have a large range. To reduce the number of
digitizing points, both the digitizing distances and the
spatial frequencies have to be taken into considera-
tion. The Gaussian window gives us a reasonable and
conservative compromise of time and frequency reso-
lutions. Therefore, the Gaussian window is chosen as
the window function of the STFT in our research.

2.4 2-Dimensional STFT

For simplicity, the deduction of the STIT in the
previous sub-section is based on 1-D signals. The dis-
crete 2-D STFT which is necessary in the surface dig-
itization can be considered as an expansion of the dis-
crete 1-D STFT:

oo oo
F(my, ma,wy,wa) = E E [(10y, )

=00 M= —
‘j(u'17!1+wzlbu)' (15)

Il

and

w(ng —my, s — ma e

The Gaussian window function g(an;,na) which is a
choice of w(ny,ns) can be expressed as

g(ny, ne) = V2a e~ (16)

A Gaussian window with size 15 x 15 is shown in Fig-
ure .
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Figure 1: A 15 x 15 Gaussian window

3 Finding the Highest Frequencies of
Bandlimited Signals

After applying the 2-D STFT with the Gaussian
window on the sculptured surface, the magnitude of
the spectrum of each block can be obtained. The
square of the magnitude of each component in the
spectrum represents the energy at the corresponding
spatial {frequencies. The center of the spectrum is the
d.c. term and when spreading out from the center the
frequency increases. Note that for a real signal, the
spectrum s synumnetric about the center. In practice,
there is rarely truly bandlimited signal and the high
frequency component is often existing more or less if
not impossible. But from the above induction, we can
use the ratio of energy as a reasonable bandlimited
criterion for all the frequencies components [10]. For
a N x N spectrum map where N is an odd number,
the bandwidths B, and By in the directions z and y
respectively can be calculated as the minimum argu-

ments which satisfy:
(N+1)/24B, (N+1)/2+4B,

2 | X (ky, k) J?

ky=(N+1)/2=B, ka=(N+1)/2— 8B,
N N
IBEDY

ki=1ko=1

<1-6

)\’(/\"1, /CQ)"‘Z

17
where the frequency spectrum X (%, ko) is the disc(retg
version of the FT using the FFT. The denominator is
the suin of the energy of all the frequency components
in the window, and é is a suitably small constant which
can be expressed as in decibel (db). For example, if
the sum of X(_k,l,kg)P 18 11 the order of 1.0, é can
be selected between 0.0001 (40 db down) and 0.01 (20
db down). As ¢é is smaller, the accuracy is improved
and meanwhile the number of digitizing points will
nevertheless increase. Therefore, the selection of & de-
pends on the requirement of efficiency and accuracy
of a specific digitization. Here we can use 20 db as a
criterion for the bandlimited signals, i.e., 99% of the
total energy is concentrated in the area surrounded by
the bandlimited frequencies in the 2 and y dircctions.

As an example, Figure 2 shows that the highest fre-
quencies of the discrete STFT of a signal in the 2 and

Figure 2: Spectrum of the STFT on a 15 x 15 block

y directions which enclose 99% of the total energy are
37/7 and 57 /7. The frequency €2 in the discrete-time
STFT is related to the frequency w by the following
equation:

Q=w/D (18)

where D denotes the sampling distance. Therefore,
the new digitizing distance can be obtained as

1 1 T
D= o= = 19
fs  2fy Qu (19)

where the subscript H represents the highest fre-
quency. Using (19) and if the original digitizing dis-
tance D is equal to 3 mm, the new digitizing distances
D in the z and y directions are 7 mm and 4.2 mmn,
respectively. They are both larger than the original
digitizing distance. This means that the number of
the digitizing points is reduced.

Once the new digitizing points are calculaled, the
surface can be reconstructed by a low-pass filter. Here,
the choice of the low-pass filter makes one lace the
same dilemma as encountering in the choice of sam-
pling windows. Since the distribution of the digitizing
points 1s rregular globally but uniform within each
window, two categories of reconstruction or interpola-
tion methods can be used:

1. Interpolate each window and concatenate all the
windows together. Fundamentally, one has to use
the 2-D interpolation functions to do the convolu-
tion in each window [11]. Between two neighbor-
ing windows, the boundary points are calculated

using some smoothing functions, e.g., averaging.

2. Irregularly interpolate the entire surface. For ex-
ample, biharmouic spline interpolation proposed
by Sandwell can be used for this purpose [12].
This method is used for minimum curvature in-
terpolation of irregularly distributed data points.
But unfortunately, it is inefliclent and very de-
manding of computing resources.
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4 Experiment
4.1 Equipment Setup

The following setup was used in the experiment to
verify the proposed approach:

1. A photometric stereo approach [13] was used in
computer vision to obtain the initial depth infor-
mation of the surface. A coordinate measuring
machine (CMM) was used to precisely position
the point light source which was used in the pho-
tometric stereo approach.

2. A high-intensity halogen bulb was used as the
point light source. In order to make the light uni-
formly distributed in all the directions which is a
requirement in the photometric stereo approach,
the bulb was wrapped by white-colored plastic
tapes.

3. A metal goose model coated with white paint was
used as a test model. The paint was used to avoid
the specular effect of the surface. The size of the
model is about 4” x3”.

4. Since the photometric stereo was determined by
the magnitude of illumination, many images un-
der the same illumination conditions were taken
and averaged to reduce the noise variance.

5. The images were stored in GIF (Graphics Inter-
change Format) with size 240x320 and 256 gray
levels.

4.2 Results

Three different illuminated images were taken when
the point light source was placed at the top, right, and
left sides of the model, respectively. One of the images
is shown in Figure 3.

Figure 3: Image of Goose

The photometric stereo approach calculated the
gradients of every element of the surface using these
three images. By integrating the gradients of the sur-
face, the depth information of the surface can be ob-
tained [14]. The needle diagram of the surface and
the integrated depth map are shown in Figures 4 and
5, respectively. It should be noted that the sampling

points were evenly distributed at this stage and the
distribution was based on the highest frequency of the
model. For the goose model, the digitizing distance
was 0.4 mm which was called the pre-selected digi-
tizing distance, and the total digitizing points were
240 x 320 = 76, 800.

Figure 4: Needle diagram of goose model (decimated
by 5)

Figure 5: Integrated 3-D depth map

The window size T was chosen to be 16 and this di-
vides the entire surface into 300 windows. The STFT
was applied to each window. When the bandlimit
criterion was chosen to be 90 db, the new digitizing
points were obtained for each window as shown in Fig-
ure 6.

In Figure 6, one may notice that there are darker
and lighter squares. The darkest square contains 16 x
16 digitizing points while the lighter squares contain
less digitizing points. The total digitizing points were
reduced to 24,301.

After measuring the selected digitizing points by
a laser displacement sensor (LDS) mounted on the
CMM and reconstructing the model using the 2-D bi-
linear interpolation, the goose model 1s illustrated in
Figure 7.

To evaluate the performance of the STFT approach,
we used the same LDS to evenly digitize the entire
surface with the pre-selected digitizing distance 0.4
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Figure 6: New digitizing points determined by the
STFT (90 db)

Figure 7: Bilinear reconstruction of the goose using
new digitizing points

mm. It took almost 32 hours to complete the digitizing
(240 x 320). In comparison, the STFT approach only
needed 10.12 hours to complete the task. Since every
point was digitized using the LDS which was highly
accurate, we were able to evaluate the precision of the
STFT approach. The reconstructed model was com-
pared with the measured data at every pre-selected
digitizing point. We found that the maximum error
was 4.958 x 1072 mm and the average mean square
error was 3.9396 x 107° mm. This indicates that the
STFT approach was both efficient and accurate.

The choice of the window length 7" is empirical in
the experiment. In fact, this is the compromise be-
tween the window length and the frequency resolution
as stated in Section 2. In the experiment, if the win-
dow length is chosen too small, the part of the signal
that is covered by the window behaves like an impulse
which generates a very wide frequency spectrum. This
means that we have to choose all the points within the
small window. On the other hand, if the window is
too large, the frequency spectrum spans a wide range
which defeats the purpose of the STFT.

5 Conclusions

In this paper, we have proposed an STFT based
approach to improve the efficiency of surface digitiz-
ing. The STFT is applied to sculptured surfaces for
the purpose of reducing the digitizing points. The re-
duced digitizing points are still able to represent the
original surface with a high accuracy. This creates
an efficient way to digitize and represent a sculptured
surface. In the experiment, a goose model was dig-
itized by a computer vision method first. Then the
STFT approach was applied to the model. By doing
s0, the number of digitizing points was reduced while
the accuracy was still maintained.
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