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Abstract

Synthetic aperture radar (SAR) is an imaging system which provides high resolu-
tion images of earth surface. The high resolution in the range direction is achieved
by using large bandwidth signals and that in the azimuth direction is achieved
by synthesizing a large aperture antenna using platform motion. The unique data
collection geometry of SAR system requires that huge amounts of raw data be pro-
cessed before obtaining a viewable image. Therefore, performing some form of
compression on SAR raw data provides an attractive option for SAR systems. In
this paper, we present a transform coding approach for SAR raw data compression.
Due to presence of large dynamic range of frequency content in SAR raw data we
propose the usage of wavelet packet transform. Furthermore, the transform coef-
ficients are quantized using universal trellis coded quantizers. The quantization is
performed independently on each subband in contrary to the current image coding
algorithms like JPEG2000, considering the nature of SAR raw data where depen-
dencies across scales are not evident. An adaptive rate allocation scheme is used
to efficiently allocate the fixed rate resources among different subbands. Experi-
mental results of the proposed method provides significant improvement in SNR
results over standard block adaptive quantization (BAQ) and JPEG2000 techniques.

AMS Subject Classification: 78A25 Electromagnetic theory, general.
Keywords: Synthetic aperture radar, wavelet packet transform, trellis coded quan-
tization, rate allocation.

1. Introduction

Synthetic aperture radar (SAR) is an imaging system which produces high resolution
images of earth surface by using large bandwidth signals. The high resolution in the
range direction is achieved by using large bandwidth signals while the high resolution
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in the azimuth direction is achieved by synthesizing a large aperture using platform
motion. SAR images are finding numerous applications in diverse areas like terrain
mapping, cellular radio network planning, and target identification etc. The SAR data
collection geometry requires that the received data has to be focussed before obtaining
an image comprehensible to the human eye [6,20]. A SAR system usually collects huge
amount of data, and focusing of the raw data requires complex range varying phase
compensation techniques which are generally performed off-board. The large amount
of data generated have to be stored on-board or be transmitted to a ground station via a
dedicated data link. Therefore, some form of compression on the raw data provides an
attractive option for SAR systems.

A typical SAR system operates by transmitting signals of large bandwidth, usually
linear frequency modulated (LFM) pulses, over a target area of interest and collects the
reflections from the target. The reflected signal from a single point target is a complex
weighted delayed version of the transmitted signal with delay being dependent on the
distance between the target and the SAR platform. Assuming that the scatterers are
distributed randomly over the target area then according to the central limit theorem, the
statistics of the received signal can be modeled as Gaussian distribution with zero mean
and slowly varying variance [11]. Because of this unique data acquisition SAR raw data
does not exhibit the characteristics of natural optical images, which predominantly have
low frequency spectrum and thus exhibiting strong correlation among adjacent samples.
The high frequency content of SAR raw data is not negligible and has small correla-
tion among adjacent samples. Due to these reasons, most optical image compression
mechanisms do not translate well for SAR raw data.

Several researchers have proposed different methods for compressing SAR raw data
[1,5,11,13,15,17]. The most popular method is the block adaptive quantization (BAQ)
[11]. BAQ is a simple non-uniform scalar quantizer whose quantizer levels are optimized
to the local power fluctuations of the raw data. The local power fluctuations are captured
by evaluating variance over the non-overlapping blocks of the raw data. The maximum
block size is constrained by the fact that the signal power should be constant over the
block and the minimum block size depends on the sufficient number of samples required
for a proper Gaussian fit to the data. A 32x32 block size is usually employed and is
found to be adequate [2, 11].

Quantizing the representation of a set of samples by a vector improves the compres-
sion performance and is the basic premise for vector quantization (VQ). VQ extensions
of BAQ have been studied and were shown to improve the compression performance at
the expense of computational complexity [13,18]. Trellis coded quantization (TCQ) and
its VQ counterpart techniques were studied in [17] to reduce the computational com-
plexity of VQ designs. The results indicated improvement in compression performance
with slight increase in computational complexities. The use of image transforms, fast
Fourier transform (FFT) [2], discrete cosine transform [2] and wavelet packet transform
(WPT) [19, 22] were also studied in the literature. In [4], a pre-processing technique,
which was termed as range-focusing, is applied prior to quantizing the raw data with
trellis coded vector quantization (TCVQ). The pre-processing operation was aimed to
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bring correlation among the source samples, which is noise like, so as to exploit the
advantages of TCVQ designs in the later stages of the compression algorithm. Even
though the performance results were superior to BAQ the computational complexity is
high for high bitrates.

Wavelet transform including WPT has been used to compress the SAR images by
many authors in recent years [7, 9, 24]. The compression is on the processed SAR im-
ages, which are conceivable natural images, not the noise-like SAR raw data. It was
pointed out that the SAR image contains speckle phenomena and using wavelet trans-
form can combine both speckle-noise reduction and data compression [24]. Furthermore
the SAR images have rich texture information; therefore, using WPT followed by TCQ
performs better than the regular wavelet transform [9]. In [7], a new wavelet image
coding technique called progressive space-frequency quantization is proposed to com-
press SAR images for the similar reasons as cited. We argue that SAR raw data have
different characteristics from the regular SAR images. These characteristics must be
carefully studied before proposing an effective compression algorithm. Unfortunately,
compression of SAR raw data based on a thorough understanding of the characteristics
of the data is under-represented in the literature.

In this paper we investigate the usage of wavelet transform and TCQ techniques for
the compression of SAR raw data. Discrete wavelet transform (DWT) has been proven to
be very successful for compressing optical images. SAR raw data possesses significant
high frequency spectrum in contrast to the power spectrum of natural optical images
which exhibits predominantly low frequency spectrum. Therefore, we use WPT, which
performs uniform division of frequency spectrum, independently on real and imaginary
parts of the complex SAR raw data. In [19], authors have used WPT along with scalar
quantization for compressing SAR raw data. However, as we argue in the next section
that energy compaction of wavelet packet transformation alone cannot provide good
compression performances for SAR raw data. Therefore, in this paper instead of scalar
quantization we propose to use trellis coded quantization techniques to quantize the
subband coefficients. In addition, an adaptive bit allocation scheme is used to allocate
the bits efficiently across the subbands. The performance of the proposed algorithm is
evaluated by studying SNR results over the focussed SAR images. The results have
indicated a significant improvement in performance over standard BAQ techniques with
slight increase in computational complexity.

The rest of this paper is organized in the following manner. SAR data collection
model is discussed first in Section 2. In Section 3, WPT is described and so is the main
motivation for its usage in the current compression scheme. In Section 4, the trellis
coded quantization (TCQ) is discussed followed by rate allocation strategy in Section
5. Finally the results of the proposed algorithm are presented in Section 6, which is
followed by the conclusions in Section 7 of this paper.

2. SAR Data Collection Model

A typical SAR data collection geometry consists of transmitting large bandwidth signals
over a target area of interest and recording the reflected returns. The high resolution
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in the range direction, x domain, is obtained by using high bandwidth signals and the
high resolution in the azimuth direction, y domain, is obtained by synthesizing a large
antenna aperture using platform motion. Owing to the resolution constraints of a SAR
system (bandwidth of the transmitted signal and length of the synthetic aperture), it is
reasonable to assume the presence of a large number of individual scatterers within a
resolution cell. Therefore, each scatterer contributes a phase and magnitude change to
the backscattered signal of the corresponding resolution cell:

χ(x, y) exp(jφ(x, y)) =
∑

k

χk(x, y) exp(jφk(x, y)) (2.1)

where χk(x, y) and φk(x, y) are the magnitude and phase response of the individual
scatterers in a single resolution cell corresponding to location (x, y). The phase returns
φ(x, y) can be modeled as uniformly distributed random variable in [−π, π], since the
phase due to different scatterers within a resolution cell differ considerably due to the
large range distances. Under the presence of a number of scatterers assumption, the
real and imaginary parts of the received signal can be modeled as zero-mean Gaussian
distributed random variables, by the central limit theorem, with slowly varying variance
due to changes in the antenna spectrum.

It can be seen from (2.1) that the target area function has a highly random phase
function, which indicates that the Fourier spectrum is very broad and extends in the
entire bandwidth of the SAR system. Because of this high frequency content of the
target image, the received data which is convolution of transmitted signal with the target
function exhibits much noise like characteristics (this noise like characteristics referred
as speckle is exploited efficiently in SAR interferometry) and due to which SAR raw
data exhibits very little spatial correlation than the natural optical images.

Several SAR raw data compression approaches perform SAR raw data compression
using adaptive scalar [1, 2, 11] and vector quantization [2, 13, 15] techniques. These
techniques provide reasonably good compression performances due to the fact that the
raw data exhibits very low spatial correlation among its pixels. In this paper, we use
transform coding approach to compress SAR raw data. Transform approaches have
been widely used for regular optical image compression and have achieved impressive
results [3, 8, 14]. It has been shown that transform approaches are particularly powerful
in exploring correlations among pixels in the frequency domain. The same approaches
may lead to improved results in compressing SAR raw data by effectively exploring any
possible correlation among the pixels of the SAR raw data. However, since the distri-
bution of the SAR raw data demonstrates its unique feature as just discussed, transform
approaches as used in optical image compression cannot be directly employed. Instead,
we propose the use of WPT which has a uniformly decimated filter bank structure as
opposed to dyadic wavelet transform. The advantages and applications of WPT will be
discussed in the next section.
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3. Wavelet Transform

In this section, we provide a brief description on wavelet transform and interested readers
are referred to [23] for more details. Using discrete wavelet transform (DWT) a signal
can be represented in an orthonormal basis,

{
ψk,n; k, n ∈ Z

}
, consisting of countably-

infinite set of wavelets. DWT representation of a zero-mean random vector X can be
written as

X =
∑
k,n

dk[n]ψk,n (3.1)

dk[n] = 〈ψk,n, X〉 (3.2)

where {dk[n] : k, n ∈ Z} are wavelet coefficients. The most significant feature of wavelet
transform is that the countably-infinite set of wavelets {ψk,n(t) = 2−k/2ψ

(
2−kt − n

) ; k, n ∈
Z} are produced by translations and dilations of a single mother wavelet, ψ(t). Scaling
functions

{
ϕk,n; k, n ∈ Z

}
, which are also produced by translations and dilations of a

single mother scaling function ϕ(t), can be used to approximate the signal upto a par-
ticular level of detail [23]. An L-level wavelet decomposition of a signal can be written
as

x(t) =
∑

n

aL[n]ϕL,n(t) +
L∑

l=1

∑
n

dl[n]ψl,n(t) (3.3)

where aL[·] and dl[·] represent the approximation and detail coefficients of the signal,
respectively. In practice, discrete wavelet transform of a signal is calculated by fast
algorithm using a set of filter coefficients h[·] and g[·] determined by scaling equations
[23]. Such a finite one-dimensional (1-D) DWT decomposition structure is shown in
Fig. 1, where H(z) and G(z) are scaling and wavelet filters, respectively. In the filter
bank terminology the structure in Fig. 1 is known as hierarchical filter bank with H(z)

and G(z) as low-pass filter and high-pass filter, respectively. Therefore, in the filter bank
view point each level of decomposition can be seen as information content in a particular
frequency band (subband) of the original signal spectrum. Due to the hierarchical division
of the frequency spectrum the bandwidth of successive subbands increase to the powers
of two. 1-D DWT structure can be extended to evaluate separable two-dimensional (2-D)
wavelet transform of a 2-D signal, e.g., image, by using 1-D wavelet filters along both
horizontal and vertical dimensions (see Fig. 2 for a two level DWT).

The discrete wavelet transform has been proven to be very successful for compress-
ing optical images. One of the several reasons for its success can be attributed to the
structure of power spectrum which falls off exponentially for optical images (see Fig.
3). This structure makes the use of dyadic wavelet transform structure very efficient for
compressing the optical images, since it provides good frequency selectivity for achiev-
ing substantial coding gain [21]. Following in the above lines of frequency spectrum
perspective, SAR raw data frequency spectrum has to be studied for better utilization of
wavelet properties.

Power spectral density (PSD) of SAR raw data can be derived from the power nor-
malized raw data using standard spectral estimation methods. The power normalization
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Figure 1: Filter-bank structure of discrete wavelet transform

Figure 2: A two level 2-D DWT of an image; L and H indicate low and high frequency
regions
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Figure 3: The image on left is a standard optical test image, and its power spectrum is
shown in rightside of the figure
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Figure 4: The left plot shows the normalized power spectrum of the real part of the SAR
raw data, used in our experiments, along the range direction and the right plot shows
the normalized power spectrum of the real part of the SAR raw data along the azimuth
direction

of the data is done so as to ensure the stationarity of the data. Fig. 4 shows PSD of
raw data using Welsh’s averaged periodogram method along both range and azimuth
directions.

The power spectrum of SAR raw data indicates a significant high frequency spec-
trum, which means that a lot of significant coefficients remain in high frequency regions
after DWT. In the case of optical images, the number of significant coefficients in high
frequency regions are much less and is translated in the small variance of high frequency
subbands. Because of this smaller variance of the high frequency bands high compres-
sion performances can be achieved by using less number of bits for those regions and
are completely ignored for very low bit rates. In contrast, as indicated in Fig. 4 power
spectrum of SAR raw data has shown a large dynamic range in the frequency spectrum.
Therefore, the use of DWT structure will not provide good frequency selectivity for
achieving optimal coding gain. Because of the high frequency content of SAR raw data,
WPT is used in this work. By WPT we refer to the scheme where all the high frequency
components in Fig. 1 are further decomposed into low and high frequency regions, which
can be pictorially represented by Fig. 5 and Fig. 6.

The WPT structure divides the power spectrum into regions of equal bandwidths.
This uniform division of frequency spectrum by WPT better facilitates the capturing of
the frequency content of the raw data. Therefore, in this paper we use wavelet packet
transform for compressing SAR raw data.

4. Trellis Coded Quantization

The amount of correlation present in the SAR raw data is limited and transformation of
the signal in the wavelet basis alone cannot provide good compression performances. An
efficient quantization procedure whose rate-distortion (R-D) characteristics are close to
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Figure 5: Block diagram representation of the wavelet packet transform

Figure 6: A 2-level WPT representation of an image; SB denotes subband and S denotes
the total number of subbands

the R-D curve of Gaussian distribution is needed. In this paper, trellis coded quantization
(TCQ) procedure is used for this purpose.

TCQ lies, in terms of advantages, somewhere in between scalar quantization (SQ)
and VQ. SQ is a simple comparison procedure with minimal computational complex-
ity and with reasonably good R-D performance. VQ, a straight forward extension of
SQ, quantizes a K-dimensional vector, representing a set of samples instead of a single
sample. VQ provides good R-D performance at the expense of increased computational
complexity. The advantage comes from optimal partitioning of the K-dimensional sam-
ple space. The codebook size and complexity increases exponentially with increase in
vector dimensions. TCQ on the other hand provides R-D performance close to that of
VQ design but with relatively low complexity. The computational complexity of TCQ
encoding operation is of the order O(PN), where P is the size of the trellis and N is
the number of source samples to be quantized. To keep the computational complexity of
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Figure 7: 4-state trellis diagram

Figure 8: UTCQ codebook configuration

the algorithm under check we chose to use a 4-state trellis diagram in the TCQ encoding
algorithm.

TCQ can be thought of as a scalar quantizer with memory, where the current source
sample is quantized by a codebook depending on the previously quantized source sample.
The choice of a particular codebook is determined by the previously quantized source
sample and is done with the help of a P -state trellis diagram (see Fig. 7) defined by a

rate-
1

2
convolutional encoder. In this section, we briefly discuss the operation of a TCQ

quantizer, in particular universal TCQ (UTCQ) configuration, and more details can be
found in [12, 16].

Assume that N samples, from a memoryless source X, {X1, X2, . . . , XN } are to be
encoded using a uniformly quantized codeset C with step size � and consisting of J + 1
elements. The codeset is divided into two codebooks S0 and S1 known as supersets each
consisting of subsets (D0, D2) and (D1, D3), respectively (see Fig. 8). Each state in the
trellis is assigned its own codebook to use and the choice of the subset determines the
next state correspondingly which codebook to use for the next sample. The quantized
source sample can be represented by codeword si(j), representing j th codeword from
superset Si :

si(j) =




2j + i − 1, j = 1, . . . ,
J

4
0, j = 0

2j + i, j = −J

4
, . . . ,−1

(4.1)

for i = 0, 1.
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4.1. Encoder

A source sample at state 0 can only use codewords from codebook S0 and the choice
of subset in S0 determines the next state in the trellis path and correspondingly which
codebook to use for the next source sample. To encode N samples of X, N such stages
are cascaded and the TCQ algorithm finds X̂ni

,which denotes a codeword from superset
Si closest to Xn, for 1 ≤ n ≤ N and 0 ≤ i ≤ 1:

X̂ni
∈ {si(j), −J

4
≤ j ≤ J

4
} (4.2)

where si(j) denotes the j th codeword from superset Si . The final quantized source, X̂,
which minimizes the mean square distortion D is found by Viterbi algorithm:

D =
M∑

n=1

(
X − X̂n

)2
(4.3)

where
X̂n ∈ {X̂ni

, 0 ≤ i ≤ 1}. (4.4)

If J + 1 = 2R, then R bits are necessary to represent a codeword in codeset C using a
standard uniform scalar quantization procedure. In TCQ, a particular source sample is
encoded using codewords from one of the supersets S0 and S1. Therefore, R − 1 bits are
sufficient to represent a codeword from one of the supersets. The selection of superset
can be unambiguously decoded by following the trellis path in the trellis diagram. Hence,
in total R − 1 bits are sufficient for encoding the source using a codebook consisting of
2R codewords. For a more detailed description of TCQ coding the readers are referred
to [12,16]. The TCQ output indices can be entropy coded to further compress the output
stream, and a scheme proposed in [10] is used in this paper.

4.2. Decoder

The R − 1 bit symbol is decoded into si(j) representing the j th codeword from the ith
superset. The usage of si(j) as reconstruction levels is not optimal in the mean square
distortion sense. For optimal MSE the centroid of source samples which are quantized to
si(j) should be used. In general, it is quite difficult to analytically formulate the optimal
reconstruction levels, and they are usually estimated from training data. In the present
case, the optimal reconstruction values can be evaluated for Gaussian distribution, as
raw data is modeled as Gaussian, and the same can be used at the decoder.

4.3. Significance Test and TCQ

In an attempt to reduce the computational cost of TCQ we investigated the use of sig-
nificance test in the TCQ operation. Since each subband is Gaussian the zero-bin in the
codeset C has the highest probability of selection, i.e., most of the samples are encoded to
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Table 1: Comparison of SNR performance (in dB) of various encoders for zero-mean
Gaussian source with unit variance for various bitrates.

Rate in bits/sample
Coding Technique 0.50 1.00 1.50 2.00 2.50 3.00

BAQ 4.40 8.70 14.00
dead-zone 2.13 4.61 7.17 10.16 13.38 16.47

Significance test + TCQ 2.18 4.70 7.41 10.45 13.72 16.89
TCQ 2.21 4.91 7.45 10.70 14.03 17.17

UTCQ 2.34 5.02 8.05 11.17 14.25 17.31

zero. Therefore, a significance map Is[.] is used to differentiate significant coefficients
from coefficients near the zero region:

Is[p] =
{

1, |ds[p]| > τ

0, o.w
(4.5)

where ds[.] are coefficients of subband s and τ is some threshold.
The significant coefficients are then quantized using UTCQ encoding scheme with

an offset ±τ for the codewords. The SNR results for encoding a Matlab generated
independent and identically distributed unit variance Gaussian source using this encoder
are shown in Table 1.

One of the main reasons for Significance test + TCQ schemes underperformance
is because of the large offset τ in the new codebook. In the UTCQ configuration, the
codewords in supersets S0 and S1 are asymmetric with respect to zero codeword and
this facilitates optimal sign reversal for some of the source samples, and since majority
of the source samples are around this region it brings in substantial decrease in mean
square error. Similar sign reversal is catastrophic, in terms of mean square error, for the
modified codebook configuration and hence is the major reason for its under performance
compared to the UTCQ coding scheme.

5. Rate Allocation

The WPT operation on SAR raw data produces in general subbands of different variances.
For optimal compression it is necessary to optimally allocate the fixed rate resource
among different subbands. In general, it is very difficult to express UTCQ R-D per-
formance analytically. Therefore, we adopt high rate approximations to model UTCQ
distortion performance for efficient allocation of rates to the subbands. Under high
rate approximation the distortion versus rates assigned to the subbands can be modeled
as [21]:

D(R) =
S−1∑
s=0

βsγsσ
2
s Ds(Rs) (5.1)
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with
Ds(Rs) = ε2

s 2−2Rs (5.2)

where Ds(Rs) is the high rate approximation of UTCQ rate-distortion curve for unit
variance Gaussian source, S is the total number of subbands, σ 2

s is the variance of
subband s, and the parameters βs and γs represent the fraction of coefficients in subband
s and filter energies. An appropriate value for ε2

s was chosen by fitting the distortion
model curve of (5.1) to the actual UTCQ R-D curve. It is worthwhile to point that the
above mentioned model is not accurate for low bit rates, but is adequate for SAR raw
data compression since good distortion performances are only observed for high bit rates;
interested readers are pointed to [12] for modeling at low bit rates.

The objective of the rate allocation is to minimize the overall distortion in the image
subject to the rate constraint, R ≤ R0:

R =
S−1∑
s=0

βsRs. (5.3)

This problem can be solved by minimizing the following Lagrangian functional [21]:

J =
S−1∑
s=0

βsγsσ
2
s Ds(Rs) + λ

S−1∑
s=0

βsRs. (5.4)

For orthonormal full wavelet packet decomposition γs and βs can be replaced by 1 and
1

S
, respectively. Differentiating (5.4) with respect to Rs , we obtain

D′
s(Rs) = − λ

σ 2
s

. (5.5)

After a series of algebraic manipulations, it can be proved that the individual rates are
given by

Rs = R + 1

2
log2

ε2
s σ

2
s∏S−1

j=0(ε
2
jσ

2
j )1/S

. (5.6)

The above rate allocation ensures that all Dis are equal and the average distortion is
given by

D =
(

S−1∏
s=0

ε2
s σ

2
s

) 1
S

2−2R. (5.7)

The rate allocation in (5.6) is used in our algorithm. In some cases, some of the Rss turn
out to be negative in which case the corresponding subbands are given zero rate and the
rate allocation is recomputed on the remaining subbands.
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6. Experimental Results

The proposed algorithm is evaluated on a set of simulated SAR raw data of dimensions
412x412. The performance is evaluated using SNR criteria on the final focussed SAR
image (see Fig. 9) since this is of major interest in most applications and is defined as

SNR = 10 log10
‖x‖2∥∥∥x − ‖x‖

‖x̂‖ x̂
∥∥∥2 (6.1)

where x represents the focused image obtained from uncompressed raw data and x̂ rep-
resents the focused image obtained from compressed raw data. The power normalization
is performed on the compressed image to ensure same power as in the original image
since quantization operation in general is not a power conserving operation. The re-
quired wavelet coefficients are generated by 3-level wavelet packet decomposition using
orthonormal Daubechies-4 wavelet basis [23]. As in the block size choice of BAQ, the
number of levels of WPT is restricted such that an individual subband has sufficient num-
ber of samples for obtaining a proper estimate of the variance of subband. We observed
that usually a 3-level WPT is sufficient and further increase in levels will increase the
overhead information required to store the variance information of subbands without sig-
nificant increase in compression performance. TCQ encoder using 4-state trellis diagram
is used to quantize the wavelet coefficients. The quantization is performed independently
on the subband coefficients with step sizes as determined by adaptive rate allocation al-
gorithm. The computational complexity of the proposed algorithm is moderate. The
main sources of computational complexities are WPT, TCQ and arithmetic coding fol-
lowing the TCQ and they are of order O(N2 log(N)), O(4N2), and O(max(N2, RN2)),
respectively for NxN SAR raw data dimensions.

The results of the proposed algorithm for the test data set are tabulated in Table 2
along with performances of standard BAQ, JPEG2000 and scheme presented in [19].
The results indicate that for all bit rates the proposed technique resulted in significant
improvement over the other techniques. The results for BAQ algorithm are obtained by
using Lloyd- Max quantizer on non-overlapping blocks of size 32x32. The superiority
over BAQ can be attributed to the coding gain of WPT and efficient rate allocation.
The results for WPT+dead-zone method were generated as described in [19] with some
minor modifications. In [19] the reconstruction levels in decoder are obtained by scaling
the decoded index by a fixed amount and adding some fixed offset. The scaling and
offset values are fixed for all the decoded indices. In general it is sub-optimal to use
same reconstruction levels at encoder as well as decoder. Here, we present the results
using optimal reconstruction levels which were generated in decoder by using Gaussian
training samples. The major reason for improvement over [19] is due to the use of the
UTCQ encoding procedure which offers better performances for Gaussian sources than
dead-zone quantizer.

The results for JPEG2000 were obtained by using the JPEG2000 software provided
at www. kakadusoftware.com. For comparison purposes we considered the options of
single tile and single quality layer for JPEG2000 algorithm. The focussed images for
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Table 2: SNR performance (in dB) for all the techniques considered at different bit rates.
Proposed technique, BAQ, JPEG2000 and technique in [19]

Bit rate BAQ WPT+UTCQ JPEG2000 WPT+dead-zone [19]
0.50 – 5.62 4.13 5.37
1.00 7.11 8.56 7.08 8.04
1.50 – 11.81 9.12 11.12
2.00 12.31 15.02 12.05 13.87

Figure 9: Uncompressed focused SAR image

the proposed technique and JPEG2000 are shown in Fig. 10 and Fig. 11, respectively. It
is evident in the images that there is an increase in the overall noise floor in the focussed
images obtained by JPEG2000 and this may affect any post-processing methods that
might be applied on the focussed SAR images. We believe that the use of DWT structure
instead of WPT is one of the main reason for lower performance of JPEG2000. The
other significant reason is due to the fact that the efficiency of EBCOT encoding engine
in JPEG2000 depends on the effective probability models of pixels which are highly
influenced by adjacent pixel dependencies in subbands which are often very rare in SAR
raw data. The results prove that WPT is more suitable for compressing SAR raw data
than DWT because of the high frequency contents in the power spectrum of the SAR
raw data.

7. Conclusions

We have described a new approach for compressing SAR raw data. The goal is to
deliver better performance than that of existing methods. We explored the use of wavelet
transform based methods, particularly WPT for the purpose. We analyzed the feature
of the SAR signals and revealed the large dynamic range of the frequency content of
the SAR raw data in contrast to that of regular optical images. Based on the analysis,
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Figure 10: Compressed SAR images using proposed method at the following rates: (a)
1.0 bits/sample; (b) 1.5 bits/sample; (c) 2.0 bits/sample

we argued that a uniformly decimated wavelet transform structure is better suited for
SAR raw data compression, thus the WPT method. To further push the performance
to the limit, we have proposed that the subband coefficients be quantized using rate
controlled UTCQ encoder since the latter has a close rate-distortion characteristics to
that of Gaussian distribution. A 4-state trellis coded approach is used in UTCQ encoder
design to keep computational complexity under check. We have also explored the use
of significance test in UTCQ encoding operation and found that if sign information of
wavelet coefficients can be encoded efficiently, then it can substantially decrease the
computational complexity of UTCQ for low bit rates. The computational complexity of
the proposed algorithm is moderate and is independent of the target bit rate. Again for
pushing the performance even further, we presented an adaptive rate allocation method
for allocating the fixed bit rate resource among different subbands based on Lagrangian
optimization to minimize distortion. The experimental results of the proposed algorithm
were shown to provide significant improvement of about 1.3–3.0 dB over standard BAQ
and JPEG2000 techniques.
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Figure 11: Compressed SAR images using JPEG2000 at the following rates: (a) 1.0
bits/sample; (b) 1.5 bits/sample; (c) 2.0 bits/sample
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