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Abstract

A quality constrained compression algorithm based on Discrete Wavelet Transform (DWT) is proposed. The

spatial-frequency decomposition property of DWT provides possibility for not only the new compression algorithm,

but also a frequency-domain quality assessment method that can be executed in real-time. For this propose, a new

quality metric in the wavelet domain called WNMSE is suggested, which assesses the quality of an image with

the weighted sum of normalized mean square errors of the wavelet coefficients. The metric is consistent with the

human judgment of visual quality as well as estimates the post-compression quality of an image efficiently. Based

on the relationship among the statistic features, quantization step-sizes, and WNMSE value of a compressed image,

we develop a Quality Constrained Quantization algorithm which can determine the quantization step-sizes for all the

wavelet subbands for compressing the image to a desired visual quality accurately.

Index Terms

Discrete Wavelet Transform (DWT), Human Visual System (HVS), Image Quality Metric (IQM), Quality Con-

strained Quantization

I. INTRODUCTION

To compare the performances of any two image compression methods, both the compression ratios and the

qualities of the compressed images have to be considered. An ideal compression system should represent the

original image with as small amount of bits as possible while maintaining a good visual quality. In reality, it is

always objective in measuring the compression ratio, but highly subjective to judge the quality. Since humans are

the end user of most images, the natural way to compare the quality of two images is to have them evaluated

by human observers. Typically, a group of observers examine a set of images under a controlled environment and

assign a numerical score to each of them. Each image’s scores are recorded and averaged later as its Mean Opinion

Score (MOS) [1] that is by far the most accurate and reliable objective Image Quality Metric (IQM). Unfortunately,

MOS is inconvenient and expensive to use.
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In [2], ten quality metrics were evaluated against subjective human evaluation. The evaluation was conducted

on five different distortion types with variant degrees of impairments. It is claimed that there still exists difference

between machine and human evaluations of image quality, and it is difficult to invent a quality assessment algorithm

that is superior in every distortion type. This work is motivated by the need for simple IQMs that are consistent

with MOS and suitable for computer implementation. By ”consistent”, we mean that a metric should perform the

same regardless of the distortion types or patterns of the images and be linearly correlated to MOS. That is, it

is accurate (giving the same IQM score to images that have the same MOS scores), and increases or decreases

monotonically with MOS.

According to its dependence on the original image, an IQM can be classified into three categories [4]:

1) Full-Reference (FR). A Full-Reference metric requires that the original image is available and therefore be

used to evaluate the quality of the distorted image. This is the most common category.

2) Reduced-Reference (RR). A Reduced-Reference metric evaluates the quality of the distorted image with only

partial knowledge of the original one.

3) No-Reference (NR). A No-Reference metric evaluates the quality of a distorted image without the knowledge

of the original one.

This work will focus on Full-Reference IQMs. The most common IQMs are the Mean Squared Error (MSE)

family, including MSE, root MSE (RMSE), and Peak Signal to Noise Ratio (PSNR), which are simple pixel error

based and their performances are far from satisfactory [3]. Some more sophisticated pixel error based IQMs are

also available, such as the method of Damera-Venkata et al. in [5], whose performance, however, is not generally

better than the others [6]. The limitation of simple pixel error based metrics is also experienced in applications

of medical images such as in [7], where the compressed diagnostic breast images with lower PSNR values are

preferred by doctors over those with higher PSNR values. That is, the images favored by PSNR do not agree with

the judgment of human eyes.

Wang and Bovik proposed a Structural SIMilarity index (SSIM) that models the total distortion of an image block

as the combination of three factors: loss of correlation, luminance distortion, and contrast distortion [8]. SSIMs are

measured for blocks of an image using a sliding window, and the mean value of the SSIMs (MSSIM) of all the

blocks is taken as the overall quality metric of the image. In [9], Shnayderman et al. explored the feasibility of

Singular Value Decomposition (SVD) in developing a new IQM that can express the quality of distorted images. An

image is first divided into small blocks. The distance between the singular values of the original image block and the

singular values of the distorted image block is used to indicate its quality. The overall quality of the distorted image

is measured by the absolute value average of differences between these singular value distances and their median.

The author claimed that better performance was achieved with smaller block size, which suggested that single pixel

based measurement will have the best result. This, in fact, undermined the foundation of their work since singular

value decomposition makes no sense for single pixel based measurement. In spite of the differences, these metrics

have the same drawback in which they are determined in the spatial domain while compression is performed in the
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frequency domain, which makes it very difficult to control the visual quality during the compression.

A great deal of effort has been made to develop IQMs that fit the Human Visual System (HVS). While some

metrics yield decent results, most are not always consistent with HVS and are sometimes limited to very specific

applications. Furthermore, these metrics tend to be complex for implementation. Watson et al. developed a Discrete

Cosine Transform (DCT) based video quality metric that incorporates quite a few aspects of human visual sensitivity

in [10], and a simple IQM was proposed by Sendashonga and Labeau for both DCT and DWT in [11].

In general, compression technologies can be classified into two categories: lossless and lossy.

• Lossless compression achieves compression by reducing the entropy of the original data, while avoiding

introducing distortions into it. As a result, the original data can be perfectly recovered from the compressed bits.

Examples of lossless compression technologies include Run-length coding, Huffman coding and Arithmetic

coding, etc. But avoiding distortion limits its compression efficiency. So when used in multimedia compression

where distortion is acceptable, lossless compression is more often applied on the output coefficients of lossy

compression.

• Lossy compression technologies usually first transform an image into the frequency domain, and then quantize

its coefficients. Two most common options of transformation are DCT and DWT. Compared with DCT,

coefficients of DWT are localized in both spatial and frequency domains, which is desirable because HVS

functions as a bandpass filter with the localization property [12]. Quantization is a process that has coefficients

divided by a numeric value called the quantization step and rounds them to integers to reduce their bits. The

original coefficients can not be perfectly recovered from the quantized ones because of the rounding error,

i.e., distortions are introduced by quantization. As a result, an image after quantization can not be perfectly

reconstructed either. Distortions can also be introduced by the transformation because of the limited precision

of digital computers or the rounding of integer operations, which, however, can be ignored comparing to that

caused by quantization.

Quantization, including Scalar Quantization (SQ) and Vector Quantization (VQ) [13]-[19], plays a very important

role in lossy image compression. It is the primary contributor to high compression ratio, and likewise the major source

of distortion. In [20], Watson et al. analyzed the DWT quantization errors and developed a quantization algorithm

that is aimed to achieve visually lossless compression, but does not have the flexibility to achieve arbitrary visual

quality. In [21], Liu et al. developed a quality constrained compression method for JPEG2000 that is optimized

for the local profile of so called just-noticeable distortion (JND), which is similar to the distortion model in [20].

In [22], Nadenau et al. came up with a wavelet based color image compression that improved the precision of the

contrast sensitive function (CSF), which is complicated though.

This work is based on our previous work in 2003 [23]. We propose a new quality metric called Weighted

Normalized Mean Square Error of wavelet subbands (WNMSE), which is defined in terms of the wavelet coefficients

and uses the sum of the weighted normalized mean square error of the coefficients in each wavelet subband to assess

the quality of a compressed image. This metric is consistent with HVS as well as measures the post-compression

quality of an image in real-time because of the simplicity of WNMSE. Taking advantage of WNMSE, we have
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developed a novel compression algorithm called Quality Constrained Scalar Quantization (QCSQ) that is based

on the relationship among the statistic features, quantization steps, and WNMSE value of the image. QCSQ can

find the quantization steps for all the subbands efficiently for compressing the image to a desired visual quality

measured by WNMSE.

The work is organized as follows. In Section 3.2, we briefly describe the DWT and define the notations that are

used in the work. In Section 3.3, our new quality metric WNMSE is presented, and in Section 3.4, the innovative

quality constrained quantization algorithm QCSQ is introduced. Experimental results are given in Section 3.5 to

demonstrate the advantages of the new metric and compression methods. The work is concluded by Section 3.6.

The detailed algorithm of QCSQ is given in Appendix A.

II. 2-D WAVELET TRANSFORM

Subband coding, which includes wavelet coding, was first introduced by Croisier et al. for speech coding in 1976

[24]. Ten years later, 2-D subband decomposition was applied to image coding by Woods and O’Neal [26]. With

the advent of the wavelet theory, wavelet coding became the dominant subband coding. Figure 1 is the diagram

of a single-level 2-D wavelet decomposition system, in which four wavelet subbands are generated from the input

image and labeled as LL, LH, HL and HH, respectively, where L means low pass filtering and H means high pass.

From Figure 1, one can see that subband LL is the result of two low pass filtering operations in both the horizontal

and vertical directions, while subband LH is the result of a low pass filtering operation in the horizontal direction

and a high pass filtering operation in the vertical, respectively; so forth and so on. A balanced multilevel subband

decomposition system can be constructed by applying single-level decomposition systems to all the subbands of

the previous level. The wavelet transform is the extreme form of an unbalanced subband decomposition because

only the subband LL of the previous level is further decomposed.

For convenience, we label subband LL as subband a (average), HL as h (horizontally high pass and vertically

low pass), LH as v (vertically high pass and horizontally low pass) and HH as d (both horizontally and vertically

high pass). Figure 2 is a decomposed image after three levels of 2-D Haar wavelet transform. There are totally ten

subbands which can be put into 3 groups according to the levels of transformation: level-1, level-2, and level-3,

respectively. After the first transformation, we get four subbands of level-1: a1, h1, v1 and d1; after applying the

second wavelet transformation to a1, we get four subbands of level-2: a2, h2, v2 and d2; finally, we get four

subbands of level-3: a3, h3, v3 and d3 by applying the last wavelet transformation to a2. The same operation

can continue by applying the 2-D wavelet transform to an, n = 1, 2, 3, ..., until an becomes a single coefficient.

However, too many levels of transformation will not contribute to the efficiency of image compression, but only

increase the cost of computation.

Besides its level of transformation l, another property of subband bl is its frequency index fbl
, where b is one

of {a, h, v, d}. A wavelet subband is formed by letting the coefficients passing through a series of filters which

includes high pass HH and low pass HL, each selectively picking appropriate frequency components. If we let
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Fig. 1. The structure of a single-level 2-D subband decomposition system, where HL represents a low pass filter and HH represents a high

pass filter.

Fig. 2. The decomposed image of Lenna after three 2-D Haar wavelet transformations

the number of high pass filters that subband bl passed through be NHbl
and low pass filters NLbl

, we define its

frequency index as fbl
= NLbl

−NHbl
. In the case above with n = 3, the frequency indexes of the ten subbands

{d1, v1, h1, d2, v2, h2, d3, v3, h3, a3} are {−2, 0, 0, 0, 2, 2, 2, 4, 4, 6}.

The main advantages of using DWT for image coding are:

1) Compared with DCT, the coefficients of DWT are well localized in not only the frequency, but also the spatial

domains. This frequency-spatial localization property is highly desired for image compression [27].
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2) DWT decomposes an image into spatially correlated subbands that hold different frequency components of

the image. Each subband can be thought as a subset of the image with a different spatial resolution such

that the visual quality and the compression ratio of the compressed image can be controlled by adjusting the

distortions of different subbands [28].

3) Images coded by DWT do not have the problem of block artifacts which the DCT approach may suffer [29].

4) Compared with DCT, DWT has lower computation complexity, O(N) instead of O(NlogN) [30].

Xiong et al. claimed that, for still image compression, wavelet transform based coding systems outperform DCT

by an order of 1 dB in PSNR [31]. One example of DWT’s success is JPEG2000 where 2-D DWT is used instead

of DCT.

III. THE NEW QUALITY ASSESSMENT METHOD

Human visual system takes in both frequency and spatial information following a filtering process, and different

frequency portions of an image have different contributions to the visual quality. Distortions at different frequencies,

even with the same magnitude, do not have the same impacts to the quality of the compressed image. We define the

distortion in the spatial domain as the distance between the pixels of the original image and those of the distorted

image, and the distortion in the frequency domain as the distance between the coefficients of the original image

after transformation and those of the distorted image after transformation. For distortions in the spatial domain with

the same magnitude, their corresponding distortions in the frequency domain are combinations of distortions of all

the subbands. Although the distortion in the frequency domain is related to that in the spatial domain, given the

spatial distortion, it is impossible to differentiate the contribution of each subband. An identical distortion index in

the spatial domain may attribute to two compressed images which have radically different qualities. Figure 3 shows

two reconstructed images with the same PSNR, among which the distortion of 3(a) is only from the a1 subband

while that of 3(b) is from the h1, v1 and d1 subbands. We can see that, the quality of 3(a) is worse than that of

3(b) even though they have the same amount of distortion in the spatial domain. Since the spatial distortion is not a

good indicator of the true quality for human eyes, an image quality metric which is consistent has to be developed

in the frequency domain.

The 2-D wavelet transform decomposes an image into subbands that represent different frequency components of

the image. Let xbl,i,j denote a wavelet coefficient before compression and ybl,i,j the coefficient after compression

at position (i, j) in subband bl. The distortion on this coefficient is D = |xbl,i,j − ybl,i,j |. In the remaining part

of this section, we will analyze how the distortions from different subbands affect the quality of the reconstructed

image. For convenience, our analysis is based on the example using Haar wavelet, but the conclusion is applicable

to all types of wavelets.

Before we introduce the new quality metric, the following observations are in order.

1) The subbands with higher transformation levels hold more structural or global information, such as shape

and luminance, than those with lower transformation levels. So the distortions from the subbands of higher

transformation levels degrade the quality of an image more significantly. For example, each coefficient in a
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(a) With distortion in only a1 subband (b) With distortion in h1, v1 and d1 sub-

bands

Fig. 3. Two reconstructed images with the same amount of spatial distortions: (a) only has distortion in a1 subband while (b) has distortions

in h1, v1 and d1 subbands. The visual quality of (a) is much worse.

level-1 subband comes from four image pixels. If one coefficient has a distortion, it is very likely that those

four pixels will all have distortion after reconstructing. Similarly, each coefficient in a level-2 subband comes

from sixteen pixels and its distortion will affect those sixteen pixels in the reconstructed image. In a word,

any distortion on a coefficient in a level-l subband will generate distortion on each of the 4l pixels in the

reconstructed image, and smaller distortions in a higher level subband may have more negative impact on the

quality of an image than the larger ones in a lower level subband.

2) The subbands of lower frequency (larger frequency indexes) hold more structural or global information than

those of higher frequency (smaller frequency index). Since the structural information plays a more important

role in maintaining the fidelity of an image, a subband with larger frequency index has more visual impact

than that with smaller frequency index. Figure 4 shows that the same amount, Normalized Mean Square Error

(NMSE) = 10%, of distortion produced by subbands with nonidentical frequency indexes has different impact

on image quality. Figure 4(a) only has distortion in subband a3 (fa3 = 6) while 4(b), 4(c) and 4(d) in h3

(fh3 = 4), v3 (fv3 = 4) and d3 (fd3 = 2), respectively. The quality of Figure 4(a) is the worst, 4(b) and 4(c)

next, and 4(d) the best.

In light of the above discussion, we believe that a good IQM should be defined in the frequency domain in order

to utilize this subband dependent feature. Our new quality metric chooses to use the weighted sum of normalized

mean square errors of the coefficients in all the wavelet subbands as the quality metric of an image, which is called

the Weighted Normalized Mean Square Error of wavelet subbands (WNMSE):

WNMSE1 =
√

4(L−1) × 2faL
/2 ×NMSEaL

+
∑

b∈{h,v,d}

L∑

l=1

√
4l−1 × 2fbl

/2 ×NMSEbl
(1)

where
√

4l−1 × 2fbl
/2 is the weight factor for subband bl whose transformation level is l and frequency index fbl

,
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(a) Distortion only in a3 subband, fa3 = 6 (b) Distortion only in h3 subband, fh3 = 4

(c) Distortion only in v3 subband, fv3 = 4 (d) Distortion only in d3 subband, fd3 = 2

Fig. 4. Four reconstructed images with the same amount of frequency distortions (NMSE equal to 10%): Figure (a) only has distortion in

subband a3, (b) in h3, (c) in v3, and (d) in d3, respectively. The quality of (a) is the worst, (b) and (c) next, and (d) the best.

L is the highest transformation level, NMSEbl
is the NMSE of subband bl, and

NMSEbl
=

∑n
i=1

∑m
j=1(xbl,i,j − ybl,i,j)

2

∑n
i=1

∑m
j=1(xbl,i,j)2

(2)

where m is the number of pixels in the horizontal direction and n vertical. In the case that
∑n

i=1

∑m
j=1(xbl,i,j)

2 = 0,

let NMSEbl
= 0 if

∑n
i=1

∑m
j=1(xbl,i,j − ybl,i,j)

2 = 0, and NMSEbl
= 1 otherwise. For convenience, we define

WNMSE as:

WNMSE = 20× log 10
100

WNMSE1
. (3)

In this way, a better quality image will have a higher value of WNMSE which is similar to PSNR and MSSIM.

In this equation, each NMSEbl
is calculated and weighted individually and separately, which reflects the
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contribution of each subband to the total distortion. NMSE, instead of MSE, is used because the absolute amount of

the distortion is not a good indicator of the contribution of a subband towards the overall quality loss. As discussed

above, with the transformation level going up, the number of supporting pixels of a coefficient and its impact to the

global structure both increase. By putting 4l−1 in the weight factor for subband bl, its weight goes along with its

level. Similarly, by putting 2fbl
/2 in the weight factor, the impact of frequency is considered accordingly. A subband

with higher transformation level and lower frequency will have larger weight. These weights loyally represent the

contribution of each wavelet subband to the overall visual quality.

Unlike the conventional quality metrics, WNMSE evaluates the quality of an image in the wavelet domain, which

possesses the following two advantages:

1) WNMSE is HVS optimized. Using the weighted contributions of different subbands in the wavelet domain,

WNMSE does not simply evaluate the quality of an image by its total distortion, but treats subbands

discriminatingly because different subbands have non-uniform impacts to visual quality. By using different

weights, the contribution of each wavelet subband to the overall quality is considered accordingly. In this

way, the impacts of distortions to both global structure and local details are more likely to be balanced, which

leads to a more objective quality assessment.

2) WNMSE is real-time suitable. By defining WNMSE in the wavelet domain, the quality can be easily assessed

during the process of compression. In contrast to those quality metrics in the spatial domain, WNMSE can

measure the quality of an image right after quantization without a new computation in the spatial domain.

Computation is thus more efficient, especially when iteration is necessary to adjust the quality of the image.

Our research shows that WNMSE is much more consistent with the results of MOS, compared with PSNR and

MSSIM. WNMSE is thus a better quality indicator of an image by HVS. In addition, it enables us to link the two

operations, quality assessment and quantization during compression, because both of them operate in the frequency

domain. With the linkage established, accurate quality constrained compression becomes possible. The experimental

results which compare the performance of WNMSE with that of PSNR and MSSIM are provided in Section 3.5.1.

IV. QUALITY CONSTRAINED COMPRESSION

Image compression is usually treated as a bit-rate constrained problem, i.e., compression ratio is on the top of

consideration while quality is secondary. Since the features of images may vary significantly, image qualities can

be different for the same bit-rate. Consequently, bit-rate constant compression is not always desired.

We call a compression method which prioritizes the quality quality constrained compression. Unfortunately,

quality constrained compression has been difficult because of the following two reasons:

1) Quality assessment, such as PSNR and MSSIM, and image compression, such as DCT or DWT based, are

pursued in the spatial and frequency domains, respectively, and there is no direct and simple link between

them.

2) The reliability of current IQMs still have to be improved to satisfy the need of the quality assessment.
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These two problems can be solved by using the new index WNMSE. From Equation (1), the WNMSE of a

compressed image can be controlled if the distortion of each wavelet subband can be manipulated. This could

be done through a brutal-force searching method, but an applicable solution has to be more efficient. Ideally, we

want to be able to predict the distortion caused by a given quantization step. This appears to be a challenging

task because it requires a highly accurate statistical description of the subband. Many efforts have been made to

develop statistic models of wavelet coefficients and employ them in image compression. Unfortunately, they are

often inaccurate in the modeling, and not easy to use [32]-[35]. From the discussion of the previous section, one can

see that choosing of the step for a particular subband must be related to its contribution to the quality of the image.

Large contributors should have less distortions, i.e., smaller steps. The question is who are the large contributors?

We propose to predict the contribution of a subband by a set of features, and use these features to select the initial

step and subsequently tune it to reach the desired quality. These features are transformation level, frequency index,

energy level, standard deviation, and complexity, respectively. While the definitions of the transformation level

and frequency characteristic have been described earlier and that of the standard deviation is trivial, the other two

features are defined below.

1) Since the energy of a subband is calculated as the sum of the squares of each coefficient, it depends only on

the absolute magnitude of each coefficient. So we use the absolute mean value mbl
to represent the energy

level of subband bl.

mbl
=

∑n
i=1

∑m
j=1 |xbl,i,j |

n×m
(4)

where xbl,i,j is a coefficient of subband bl at position (i, j), and m and n is the dimensions of subband bl.

2) At the first glance, the standard deviation σbl
of the wavelet coefficients in subband bl is the only parameter

needed to represent the complexity of the subband.

σbl
=

√∑n
i=1

∑m
j=1(xbl,i,j − xbl

)2

n×m− 1
(5)

where

xbl
=

∑n
i=1

∑m
j=1 xbl,i,j

n×m
. (6)

It is not enough because the energy levels of subbands could be different. For example, two subbands with

identical standard deviations of 10, may have absolute means of 50 and 5, respectively. In this situation, the two

subbands do not have the same complexity level. So we use the ”relative” standard deviation vmbl
= σbl

/mbl

(std/mean) to represent the complexity of subband bl.

It is well known that the subbands of the wavelet transformation are projections of the original image to various

resolutions, and their energy levels and complexities are related to each other. We can simply use the energy level

and complexity of subband a1, i.e., ma1 and vma1 , to uniformly represent those of all the subbands.

The impact to the image quality by a particular step is affected by the five features just mentioned. It is not

possible to deduct a quantitative relationship between the step and the features for a desired image quality, but it is
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not difficult to understand the qualitative relationship between the two. Based on these observations, we introduce

the following equation for defining the quantization step of subband bl:

sbl
= Cl · Vbl

(7)

where Cl is a variable that is only dependent on the transformation level l, and Vbl
is a variable whose value is

derived from a function of σbl
while the function itself is determined by the other four features of subband bl.

Accordingly, to get a high compression ratio while satisfying a quality constrain, Cl and Vbl
can be determined

using the following rules:

1) Vbl
should increase as ma1 increases.

2) Vbl
should increase as vma1 increases.

3) Vbl
should decrease as fbl

increases.

4) Cl should decrease as the transformation level increases.

5) Vbl
should be proportional to σbl

.

6) The quality and compression ratio of a compressed image can be tuned by adjusting its quantization

steps to achieve an optimal result.

Using the rules just defined, a process has been found to search for quantization steps for compressing an image.

This process is called Quality Constrained Scalar Quantization (QCSQ) which takes two steps: first, find the initial

set of steps which is nearly optimal in the compression ratio with a uniform quality metric WNMSE ≈ 28, where

28 was empirically selected as the lower bound of an acceptable visual quality based on our observations. Secondly,

tune the initial steps to increase the quality of an image to a desired value.

A. Find the Initial Set of steps

When calculating the WNMSE indexes, we multiply the NMSE of a subband bl by
√

4l−1 × 2fbl
/2, where 4l−1

is dependent on its transformation level and 2fbl
/2 is dependent on its frequency. Here the dependence of step on

the transformation level is reflected by defining the variable Cl = 4(L−l). The impact of the frequency index is

reflected by multiplying a factor 2−fbl
/2 when calculating Vbl

. The detailed implementation of this algorithm is in

Appendix VII-A.

B. Tune the Initial Set of steps

An image quantized by its initial set of steps only achieves the lower bound of visual quality. By further tuning

its steps, one can improve the quality of the image to a desired level. Figure 5 shows how the variations of the steps

of different subbands alternate the quality of images. We use two empirical parameters to evaluate the efficiency

of the step tuning of a subband: quality gain and optimality. The quality gain of subband bl is reduced from the

quality improvements of images with different features by reducing the step of subband bl by half. By optimality,

we mean the ratio between the quality increment (∆Q) and the compression ratio decrement (∆R): (∆Q) / (∆R).
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quantization steps by half to improve the quality of the image.
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Fig. 5. When reducing their quantization steps, each subband has different quality gains and different optimality levels. Some of them have

higher optimality levels and lower invariance of quality gains, which can be used to adjust the quality of the compressed image.

Tuning Order 1 2 3 4 5 6 7 8

Subband h1 d3 v1 d2 h3 v3 v2 h2

Quality Gain (Haar) 0.58 0.47 0.58 0.50 0.14 0.13 0.18 0.18

Quality Gain (5/3) 0.57 0.49 0.58 0.52 0.13 0.13 0.18 0.18

Quality Gain (9/7) 0.57 0.49 0.56 0.53 0.13 0.13 0.18 0.18

Quality Gain (DB4) 0.51 0.49 0.54 0.55 0.13 0.13 0.17 0.18

Quality Gain (4/4) 0.50 0.49 0.53 0.54 0.13 0.13 0.19 0.18

Quality Gain (6/2) 0.58 0.47 0.59 0.50 0.13 0.13 0.18 0.19

TABLE I

ORDER OF THE SUBBANDS FOR FINE-TUNING (STARTING FROM THE LEFT SIDE FIRST) AND THEIR PREDICTED QUALITY GAINS BY

REDUCING THEIR QUANTIZATION STEPS BY HALF.

Since we want to maintain as high a compression ratio as possible when increasing the quality, ∆R should be as

small as possible; therefore, the higher the ratio (∆Q) / (∆R) is, the higher the optimality level is.

Figure 5(a) shows the normalized optimality of each subband, which is sorted in the ascending order, and Figure

5(b) shows the magnitude and variance of the quality gain of each subband. To achieve accuracy, efficiency, and

high compression ratio, only those subbands that have low quality gain variances, high quality gains, and high

optimality values are used for quality tuning. Since the initial steps give the lower bound of the visual quality of

an image, only the tuning for quality increase is considered. Combining the results of Figure 5(a) and Figure 5(b),

the following rules of fine-tuning are obtained:
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1) If there is more than one choice satisfying the quality requirement, choose the one which has the maximum

compression ratio.

2) Tune the steps of the subbands with higher optimality first.

3) Tune only subbands whose quality gains are more than 0.1.

4) Tune only subbands whose variance of quality gains is less than 0.66.

5) Reduce the step by half when tuning it (because of the binary property of digital data).

The resulting order of tuning and the expected quality gain for each fine-tuning are listed in Table I, where the

values shown are the average of 31 different images. We can see that the tuning orders are identical for all the

wavelets and the quality gains show little difference. For a specific image, the quality gain may be slightly different,

but the order of tuning is universally true.

Since WNMSE is defined in the wavelet domain, we can easily measure it after quantizing an image with the

initial steps. Let the initial WNMSE be Q0 and the objective WNMSE be Q, the difference is ∆Q = Q - Q0. To

increase the quality metric by ∆Q, we should tune the steps following the rules above. The detailed implementation

of this algorithm is in Appendix VII-B.

V. EXPERIMENTAL RESULTS

In this section, we first compare the quality assessment performance of WNMSE with that of PSNR and MSSIM,

and then use an example to show how to achieve quality constrained compression using QCSQ. The Haar, DB4,

5/3 and 9/7 wavelets are used in our experiments to show the generalization of the algorithm.

A. Compare the Performance of WNMSE with PSNR and MSSIM

We used two experiments in this paper to compare the performance of WNMSE with that of PSNR and MSSIM.

In each experiment, the objective quality indexes of the impaired images were measured in WNMSE, PSNR and

MSSIM first. Then these objective IQMs were evaluated with regard to the subjective quality scores of those images.

The subjective scores of the first experiment were obtained from the subjective image quality test we designed and

executed, which will be described in details; the subjective scores of the second experiment were from the LIVE

Image Quality Assessment Database Release 2 [39].

The first subjective image quality test was done under controlled lab environment that complied with ITU-R

BT.500-11 [36].

• Laboratory environment. The test was done in our lab that has normal indoor luminance. The lab only has

windows on the east side of the walls. The monitors displaying images was put against the west wall, where

the luminance is stable and low compared to the monitor.

• Monitors. We used two 19” CRT computer monitor to present the images. Their resolutions were set to

1024× 768, with fairly high brightness and contrast ratio compared to the white wall behind it.
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Score Description

5.0 Perfect. The distortion is imperceptible

4.0 Good. The distortion is perceptible, but not annoying

3.0 Fair. The distortion is slightly annoying

2.0 Bad. The distortion is annoying

1.0 Very bad. The distortion is very annoying

0.0 Unidentifiable. The image is totally ruined

TABLE II

THE REFERENCE TABLE OF RANKING SCORES IN THE MOS TEST.

• Test materials. we used two sets of images, which includes twenty four and twenty five degraded images each.

The impairments of the degraded images are either from compression with JPEG or JPEG2000, or various

amounts of additive noise, including Gaussian, Speckle and Salt-pepper.

• Observers. These images are independently evaluated by 18 persons who come from different backgrounds.

Two of them are considered as experts since they work in the image processing field, and the others are

non-experts. All of the observers have normal visual acuity and normal color vision.

• Test procedure. The observer sits right in front of the monitor, with a view angle less than 30 degree. The

distances from the eyes of observers to the screens were between two to three feet. Images are stored in a html

file. The first page of the file is instructions that introduces the method of assessment, the types of impairment

and the grading scale (Table II). From the second page, each page has four images, including the original

image and three degraded images with different types of impairment. So the observer can compare the images

under exactly same conditions. The order of the degraded images are random, i.e., not ordered or grouped by

their impairment.

• Scoring. To evaluate the quality of a degraded image, a person compared it with the original one and gave it

a score using Table II as a reference. Each score is from 0.0 to 5.0 including a decimal fraction of one digit.

The average score of an image is taken as the Mean Opinion Score (MOS) of it.

We used four popular criteria to evaluate the accuracy of the quality metrics. Among them, the first three are the

standard criteria used by the Video Quality Expert Group (VQEG) [37], and the fourth is straight ”Sum of Squared

Errors”. In the following definitions, ”X” can be ”PSNR”, ”MSSIM” or ”WNMSE”, Xi is the normalized ”X” and

MOSi the normalized MOS of the ith image, and n is the number of images.

1) Pearson Linear Correlation Coefficient (PLCC) is used to evaluate the accuracy of an IQM. The PLCC of

”X” with regard to MOS is

PLCCX =
∑n

i=1(Xi −X)(MOSi −MOS)√∑n
i=1(Xi −X)2

√∑n
i=1(MOSi −MOS)2

. (8)

The larger the PLCCX is, the more accurate X will be with regard to MOS.
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Evaluation WNMSE WNMSE WNMSE WNMSE PSNR MSSIM

Metrics (Haar) (DB4) (5/3) (9/7)

Image SSE 0.606 0.750 0.873 0.791 1.347 1.453

series PLCC 0.7604 0.7548 0.7095 7380 0.6044 0.5558

A SROCC 0.7457 0.7439 0.6896 0.7300 0.5809 0.5326

n=24 OR 0.0420 0.1250 0.1250 0.1250 0.1250 0.1250

Image SSE 0.549 0.589 0.693 0.615 0.842 1.089

series PLCC 0.8008 0.7888 0.7584 0.7835 0.7040 0.6078

B SROCC 0.8485 0.8354 0.7632 0.8285 0.7573 0.6562

n = 25 OR 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800

TABLE III

COMPARING THE OVERALL PERFORMANCES OF WNMSE (IMPLEMENTED WITH FOUR DIFFERENT WAVELET TRANSFORMS), PSNR AND

MSSIM MEASURED BY FOUR EVALUATION METRICS WITH REGARD TO MOS ON IMAGE ”LENNA” AND ”PEPPERS”. FOR PLCC AND

SROCC METRICS, THE LARGER VALUES MEAN BETTER PERFORMANCE. FOR SSE AND OR METRICS, THE SMALLER VALUES MEAN

BETTER PERFORMANCE.

2) Spearman Rank Order Correlation Coefficient (SROCC) is used to evaluate the monotonicity of an IQM.

The SROCC of ”X” with regard to MOS is

SROCCX = 1− 6
∑n

i=1(di)2

n3 − n
(9)

where di is the difference between each rank of corresponding values of X and MOS. The larger the

SROCCX is, the better monotonicity X will have with regard to MOS.

3) Outlier Ratio (OR) is used to evaluate the consistence of an IQM. The OR of ”X” ORX with regard to MOS

is defined as the number of outliers divided by n, where twice of the standard error of MOS was used as

the threshold for defining outliers. From the definition we can see that the smaller the ORX is, the more

consistent X will be with regard to MOS.

4) Sum of Squared Errors (SSE). We also use SSE of an index with regard to MOS to measure the overall

performance of it. The values of every index are normalized so that they all have the same range between

[0, 1].

SSEX =
n∑

i=1

(Xi −MOSi)2. (10)

The smaller the SSEX is, the better X will perform with regard to MOS.

The evaluation results of the quality metrics are listed in Table III. WNMSE implemented with four DWTs are

compared with PSNR and MSSIM. Looking at the table, we can see that all the WNMSEs outperform PSNR and

MSSIM in every aspect while the Haar WNMSE is the best.

To test the generality of WNMSE’s superiority over other IQMs, we conducted the second experiment. It measured

the WNMSE, PSNR and MSSIM values of the images in the LIVE Image Quality Assessment Database Release 2

and used the subjective quality scores the authors provided. The evaluation is the same as that in the first experiment
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Evaluation Metrics WNMSE PSNR MSSIM

SSE 4.47 7.01 15.72

PLCC 0.862 0.803 0.757

SROCC 0.887 0.812 0.879

OR 0 0 0.0155

TABLE IV

COMPARING THE OVERALL PERFORMANCES OF WNMSE, PSNR AND MSSIM MEASURED BY FOUR EVALUATION METRICS WITH REGARD

TO DMOS SCORES ON IMAGES IN [39]. FOR PLCC AND SROCC METRICS, THE LARGER VALUES MEAN BETTER PERFORMANCE. FOR SSE

AND OR METRICS, THE SMALLER VALUES MEAN BETTER PERFORMANCE.

Image WNMSE WNMSE WNMSE WNMSE PSNR MSSIM MOS

Haar DB4 5/3 9/7

b) 19.16 16.99 14.48 15.87 23.06 0.496 3.26

c) 17.28 15.07 12.54 13.93 23.10 0.498 3.07

d) 13.08 10.80 10.03 10.34 24.37 0.605 0.85

TABLE V

QUALITY INDEXES OF THE DISTORTED IMAGES OF LENNA IN FIGURE 6

except that the subjective scores here are in DMOS (Difference of Mean Opinion Score) [2] that needs to be treated

differently than MOS. The evaluation results are listed in Table IV. WNMSE implemented with Haar wavelet was

compared with PSNR and MSSIM. Looking at the table, we can see that WNMSE still outperformed PSNR and

MSSIM in every aspect.

Figures 6 and 7 show how WNMSE outperforms both PSNR and MSSIM. Image (a) is the original image and

the other three are degraded by Gaussian noise, Salt-Pepper noise, and JPEG2000 compression, respectively, which

are listed in the descending order of their MOS values. The measured quality metrics are listed in Table V and

Table VI. From the measured quality metrics, we can see that the WNMSE indexes are in the same order as those

of MOS, while PSNR and MSSIM give the reverse results. This proves that WNMSE functions more like human

Image WNMSE WNMSE WNMSE WNMSE PSNR MSSIM MOS

Haar DB4 5/3 9/7

b) 18.90 16.45 13.76 15.24 23.04 0.542 3.25

c) 18.60 16.18 13.16 14.80 24.01 0.601 3.24

d) 17.64 15.16 12.60 14.20 24.35 0.691 1.02

TABLE VI

QUALITY INDEXES OF THE DISTORTED IMAGES OF PEPPERS IN FIGURE 7
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(a) The original ”Lenna” image. (b) Gaussian noise added.

(c) Salt-Pepper noise added. (d) Compressed by JPEG2000.

Fig. 6. WNMSE outperforms both PSNR and MSSIM for Lenna images. Image qualities measured by MOS indexes are in the order as from

(b) to (d), while (b) is the best. WNMSE gives the same order as MOS, but PSNR and MSSIM give the reverse order (Table V).

eyes.

B. QCSQ Examples

In this example, we use 9/7 wavelet which has been used in the JPEG2000 standard for lossy compression. We

first apply three levels of 2-D 9/7 wavelet transform to an image, and then use QCSQ to determine the quantization

steps for all its wavelet subbands. After quantization, we use Zig-zag sorting followed by Stack-run [38] and

Arithmetic coding to code quantized bits.

Six images are used in the experiment, where the target quality index is chosen as Q = 30 in WNMSE with an

acceptable error of 0.3. So the final quality metrics of the six images should be between 29.7 and 30.3 in WNMSE.

0.3 was chosen as the acceptable error because it is small enough (1% of the target index 30) in value, and makes

little visual difference.

1) Find the initial steps and compute the initial quality metrics. According to our algorithm, an image quantized

by its initial steps should have an initial quality index Q0 = 28 measured in WNMSE. The results are listed
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(a) The original ”Peppers” image. (b) Gaussian noise added.

(c) Salt-Pepper noise added. (d) Compressed by JPEG2000.

Fig. 7. WNMSE outperforms both PSNR and MSSIM for Peppers images. Image qualities measured by MOS indexes are in the order as from

(b) to (d), while (b) is the best. WNMSE gives the same order as MOS, but PSNR and MSSIM give the reverse order (Table VI).

in Table VII, from which we can see that the initial quality indexes of all the other five images are distributed

closely around 28.0 except Mige171 which has a WNMSE value of 28.31.

2) Tune the steps. We know that ∆Q = Q − Q0 ≈ 30 − 28 = 2 for the other five images and the sum of the

quality gains of the first four most optimal subbands: h1, d3, v1 and d2 (Table I), are 0.57 + 0.49 + 0.56 +

0.53 = 2.15. So we first reduce the steps of these four subbands by half for the five images. As for Mige171

whose ∆Q = 1.69, we only need to reduce the steps of the first three subbands: h1, d3 and v1 which will

give a quality gain of 1.62. The resulting quality metrics and compression ratio are listed in Table VIII. We

can see that the WNMSEs of the five images (Lenna, Lethal, Tree, Mige171 and Building) already fall into

the desired range. For the Peppers image, the WNMSE is a little too high, which will cause unnecessary loss

in compression ratio. If we recover the steps of subband d2 to the initial setting, its predicted quality metric

is 30.70− 0.53 = 30.17 that is in the desired range. The measured quality metric after tuning is 30.14 that

is only slightly different from the predicted value. Table IX lists the final results, along with the compression
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Image sa3 sh3 sv3 sd3 sh2 sv2 sd2 sh1 sv1 sd1 WNMSE bpp

Lenna 42 8 15 16 13 22 22 80 128 128 28.05 0.56

Lethal 45 16 20 21 24 32 30 176 144 128 27.97 0.53

Peppers 46 16 21 21 27 31 30 176 192 224 28.03 0.67

Tree 48 13 10 14 22 18 28 160 112 128 28.08 0.57

Mige171 63 24 18 19 35 30 32 192 176 128 28.31 0.47

Building 46 22 14 17 39 29 32 256 192 160 27.86 0.62

TABLE VII

INITIAL QUANTIZATION STEPS AND COMPRESSION RESULTS BEFORE FINE-TUNING

Image sa3 sh3 sv3 sd3 sh2 sv2 sd2 sh1 sv1 sd1 WNMSE bpp

Lenna 42 8 15 8 13 22 11 40 64 128 29.97 0.66

Lethal 45 16 20 11 24 32 15 88 72 128 30.17 0.62

Peppers 46 16 21 11 27 31 15 88 96 224 30.70 0.78

Tree 48 13 10 7 22 18 14 80 56 128 30.21 0.65

Mige171 63 24 18 10 35 30 32 96 88 128 30.24 0.52

Building 46 22 14 9 39 29 16 128 96 160 29.83 0.76

TABLE VIII

INTERMEDIATE QUANTIZATION STEPS AND COMPRESSION RESULTS OF FINE-TUNING

results of JPEG2000, which also compressed the images to WNMSE≈30. Figure 8 shows the compressed

images.

The experimental results have shown that the desired quality metric is achieved with no or only one iteration.

QCSQ was designed to demonstrate the application of WNMSE in quality constrained compression. Compared

with JPEG2000, QCSQ is very simple and not compression ratio optimized. Subjective evaluation showed that the

Image sa3 sh3 sv3 sd3 sh2 sv2 sd2 sh1 sv1 sd1 WNMSE bpp J2K WNMSE J2K bpp

Lenna 42 8 15 8 13 22 11 40 64 128 29.97 0.66 29.98 0.43

Lethal 45 16 20 11 24 32 15 88 72 128 30.17 0.62 30.22 0.55

Peppers 46 16 21 11 27 31 30 88 96 224 30.14 75 29.91 0.71

Tree 48 13 10 7 22 18 14 80 56 128 30.21 0.65 30.01 0.58

Mige171 63 24 18 10 35 30 32 96 88 128 30.24 0.52 29.97 0.42

Building 46 22 14 9 39 29 16 128 96 160 29.83 0.76 30.01 0.79

TABLE IX

FINAL QUANTIZATION STEPS AND COMPRESSION RESULTS OF FINE-TUNING. THE LAST TWO COLUMNS LIST THE COMPRESSION RESULTS

OF JPEG2000 (J2K), WHICH ALSO COMPRESSED THE IMAGES TO WNMSE≈30.
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(a) Lenna: WNMSE = 29.97. (b) Tree: WNMSE = 30.17.

(c) Mige171: WNMSE = 30.14. (d) Building: WNMSE = 30.21.

(e) Peppers: WNMSE = 30.24. (f) Lethalweapon: WNMSE = 29.83.

Fig. 8. Images compressed by QCSQ to the target quality: WNMSE ≈ 30.00.

images compressed by QCSQ and JPEG2000 had the same visual qualities when their WNMSE values were the

same.
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VI. CONCLUSIONS

In this work, we have proposed a new quality metric WNMSE and an innovative quantization algorithm QCSQ.

WNMSE uses the weighted sum of the normalized mean square errors of wavelet coefficients to assess the quality

of an image. According to the concepts of HVS, the weight for each subband is chosen to reflect its perceptual

impact on the image, which measures the distortions in the global structure and local details of an image in a more

balanced way automatically. Because WNMSE is defined in the wavelet domain, it can be calculated in the middle

of compression without reconstructing the image. Furthermore, it facilitates the link between the quantization steps

and the quality metric. Our experiments show that WNMSE has better performance than both the legacy PSNR

and the well referenced new IQM SSIM.

The features of a subband can be represented by its transformation level, frequency, energy, standard deviation,

and complexity, which alternate the effect of the quantization step to the WNMSE of a compressed image. Based

on the analysis of the relationship among the subband features, steps, and WNMSE values, we have invented a

quality constrained compression algorithm QCSQ which can identify the quantization step for every subband of an

image. With these steps, the image can be compressed to a desired visual quality measured by WNMSE.

This work shows that, by developing the quality metric and the quantization algorithm in the same wavelet

domain, we have made the quality constrained image compression possible, while pushing the compression ratio

as high as possible.

VII. APPENDIX: QCSQ ALGORITHM IMPLEMENTATION DETAILS

A. Find the Initial Set of Step-Sizes

sbl
= Cl · Vbl

1) Find the initial step-size for subband bl in the level-l, x ∈ {h, v, d} and l ∈ {1, 2, ..., L}:

Cl = 4(L−l);

if vma1 > (0.7 + 0.1× l)

Vbl
= ceil(σbl

) × 2−fbl
/2;

else if vma1 < 0.2

Vbl
= floor(σbl

) × 2−fbl
/2;

else if vma1 > 0.6

if (ma1 > 96)

Vbl
= ceil(σbl

) × 2−fbl
/2;

else

Vbl
= round(σbl

) × 2−fbl
/2;

end

else if (ma1 > 96)

Vbl
= round(σbl

) × 2−fbl
/2;
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else

Vbl
= floor(σbl

) × 2−fbl
/2;

end.

sbl
= Cl × Vbl

;

if sbl
< 1

sbl
= 1;

else if sbl
> 256

sbl
= 256;

end.

2) Find the initial step-size for subband aL:

CL = 4(L−L) = 1;

if ma1 < (160− 32× L)

VaL
= floor(σaL

) × 2(NHaL
−NLaL

)/2;

else if vma1 > (0.7 + 0.1× l)

VaL
= ceil(σaL

) × 2(NHaL
−NLaL

)/2;

else if vma1 < 0.2

VaL
= floor(σaL

) × 2(NHaL
−NLaL

)/2;

else if vma1 > 0.6

if (ma1 > 96)

VaL
= ceil(σaL

) × 2(NHaL
−NLaL

)/2;

else

VaL = round(σaL ) × 2(NHaL
−NLaL

)/2;

end

else if (ma1 > 96)

VaL
= round(σaL

) × 2(NHaL
−NLaL

)/2;

else

VaL = floor(σaL ) × 2(NHaL
−NLaL

)/2;

end.

saL
= CL × VaL

;

if saL
< 1

saL = 1;

else if saL > 256

saL
= 256;

end.
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The specific values used in this algorithm are first chosen according to the rules described above, and finally

determined after adjustments using experiments. Our experimental results show that these values are independent

of wavelets used and suitable for all kinds of natural images.

B. Tune the Initial Quantization Steps

The initial set of quantization steps has quantized the image to a WNMSE equal to Q0, and the objective WNMSE

is Q. The difference is ∆Q = Q - Q0. Assuming that subband α has the highest optimality optα and subband β has

the second highest optimality optβ , and their quantization steps, the averages of the quality gains, and the standard

deviations of the quality gains are (sα, mα, stdα) and (sβ , mβ , stdβ), respectively. The error threshold is δ, that

is, we call it a successful tuning if the difference between the achieved and the target quality indexes is less then δ.

The process includes three iterative steps:

1) Adjust quantization steps to improve image quality.

if ∆Q > mα

reduce sα by half;

∆Q = ∆Q - mα;

else if mβ / optβ > mα / optα

reduce sα by half;

∆Q = ∆Q - mα;

else

reduce sβ by half;

∆Q = ∆Q - mβ ;

end.

2) Check whether the target quality is achieved. If not, go back to step 1); if yes, go to step 3).

if ∆Q < 0

done;

else

α ← the subband (α or β) whose quantization step was not modified;

β ← the subband whose optimality level is next to β;

repeat 1;

end.

3) Calculate the current predicted quality metric Q′. If it is too big compared with Q, tune it down; if it is too

small, go back to step 1).

while Q′ −Q > δ

recover the quantization step of the subband x that was the last being modified;

Q′ = Q′ −mx, where mx is the average quality gain of the subband x;
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end.

if Q−Q′ < δ

α ← the most optimal subband among those whose quantization step was never modified;

β ← the second most optimal subband among those whose quantization step was never modified;

repeat 1;

end.
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