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Video Object Segmentation and Tracking Using
 -Learning Classification
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Abstract—As a requisite of the emerging content-based multi-
media technologies, video object (VO) extraction is of great im-
portance. This paper presents a novel semiautomatic segmenta-
tion and tracking method for single VO extraction. Unlike tradi-
tional approaches, the proposed method formulates the separa-
tion of the VO from the background as a classification problem.
Each frame is divided into small blocks of uniform size, which
are called object blocks if the centering pixels belong to the ob-
ject, or background blocks otherwise. After a manual segmenta-
tion of the first frame, the blocks of this frame are used as the
training samples for the object-background classifier. A newly de-
veloped learning tool called -learning is employed to train the
classifier which outperforms the conventional Support Vector Ma-
chines in linearly nonseparable cases. To deal with large and com-
plex objects, a multilayer approach constructing a so-called hy-
perplane tree is proposed. Each node of the tree represents a hy-
perplane, responsible for classifying only a subset of the training
samples. Multiple hyperplanes are thus needed to classify the en-
tire set. Through the combination of the multilayer scheme and

-learning, one can avoid the complexity of nonlinear mapping as
well as achieve high classification accuracy. During the tracking
phase, the pixel in the center of every block in a successive frame
is classified by a sequence of hyperplanes from the root to a leaf
node of the hyperplane tree, and the class of the block is identified
accordingly. All the object blocks thus form the object of interest,
whose boundary unfortunately is stair-like due to the block effect.
In order to obtain the pixel-wise boundary in a cost efficient way,
a pyramid boundary refining algorithm is designed, which itera-
tively selects a few informative pixels for class label checking, and
reduces uncertainty about the actual boundary of the object. The
proposed method has been applied on video sequences with var-
ious spatial and temporal characteristics, and experimental results
demonstrate it to be effective, efficient, and robust.

Index Terms— -learning, support vector machines (SVM),
video object (VO) extraction, VO segmentation and tracking.

I. INTRODUCTION

I N THE PAST several years, there has been rapidly growing
interest in content-based functionalities of video data, such

as video editing, content-based image retrieval, video indexing,
video event analysis, and etc. To facilitate these functionali-
ties, MPEG-4, the new video compression standard, introduces
the concept of video objects (VOs) that correspond to semantic
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entities [1], [2]. In addition to natural interpretations, the ob-
ject-based representation also offers flexible content manipula-
tions. However, how to obtain VOs from the raw data is still a
very challenging problem.

Many automatic video segmentation approaches can be
found in the literature [3]–[10], and according to the primary
criterion for segmentation they can be roughly categorized
into two classes: spatial-based methods and temporal-based
methods. The spatial-based segmentation method partitions
each frame into homogeneous regions with respect to color or
intensities. Then every region is tracked through time using the
motion information. Typical partitioning algorithms include
morphological watershed [3], -means clustering [4], region
growing [5], and the recursive shortest spanning tree [6]. A
major advantage of the spatial-based segmentation approach is
that it can yield relatively accurate object boundary. However
the computational complexity is quite high and thus limits their
usage in real-time applications since the segmentation has to be
done on the whole image for every frame.

The temporal-based segmentation approach [7]–[9], on the
other hand, utilizes the motion rather than spatial information
to obtain the initial position and boundary of VOs. Because
the objects of interest are usually moving, change detection is
the major scheme for segmentation that can be done on the
inter-frame or background-frame basis. Due to the image noise,
objects’ boundaries are often irregular and require to be refined
using the spatial information of the image. As the boundary
fine-tuning procedure involves only the segmented moving re-
gion instead of the whole frame, higher efficiency is achieved.
Unfortunately smooth motion, which is the essential assump-
tion of the temporal-based method, may not always hold. For
instance, when the frame loss occurs during the transmission of
video or the object exhibits abrupt variation of motion, the per-
formance degrades. Another innovative approach is to fuse the
intermediate results obtained by using different methods of seg-
mentation [10].

Because of the semantic meaning a VO may carry, it may
actually consists of arbitrary collections of image regions which
may undergo noncoherent motions. For example, a person who
is waving is not homogeneous as a VO in terms of color or
motion. For this reason semiautomatic video segmentation,
which defines the objects through users’ supervision and tracks
them in an unsupervised manner, has received a lot of atten-
tion [11]–[14]. In the semiautomatic framework, the objects
of interest are initially extracted with user’s assistance and
then a model representing the object is created. A variety of
models have been proposed including two-dimensional (2-D)
mesh [15], [16], binary model [17], deformable templates [18],
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Fig. 1. Overview of the proposed approach. (a) Training phase. (b) Tracking phase.

corners and lines [19], etc. Then in the subsequent frames the
object is tracked and located where the best match of the model
is found.

We consider the object segmentation and tracking problem
to be a classification problem. Single object tracking, for ex-
ample, requires identifying each pixel as either foreground or
background. Similarly, multiple object tracking can be formu-
lated as a multiclass classification problem. From this perspec-
tive, we propose a novel semiautomatic approach for single VO
extraction which is significantly different from aforementioned
approaches yet overcomes many of their shortcomings.

The basic idea of our approach is to decompose each frame
into small blocks, classify them as foreground or background,
and form the object of interest by all the foreground blocks.
Evidently in our approach the classification accuracy is a
very crucial issue since higher classification accuracy leads to
better tracking performance. So we employ -learning [20], a
newly proposed learning machine, as the classifier due to its
outstanding generalization ability. Meanwhile in order to obtain
high classification accuracy at an affordable computational
cost, we also develop four innovative mechanisms including
local and neighboring feature representation, multilayer clas-
sification, block-level classification, and pyramid boundary
refining, which will be discussed in detail later in this paper.

Fig. 1 presents an overview of the proposed scheme. As one
can see, it consists of two phases: 1) the training phase and 2) the
tracking phase. The training phase begins with dividing the first
frame, chosen as the training frame, into blocks that are defined
as object blocks or background blocks depending on which class
the pixels in the block center belong to. Every centering pixel
as well as every block is represented by the local and neigh-
boring features. Then through the multilayer -learning, a set
of linear decision functions that are stored in a tree structure
are obtained. In the tracking phase, each subsequent frame is
also divided into blocks, and for each block the set of decision
functions are evaluated to decide whether the pixel at its center
belongs to the object or not, which consequently determines the
class label of the block. Finally, the tracking mask is formed by
all the identified object blocks. At this point the resolution of
object’s boundary is as large as the size of the block. To obtain
pixel-wise accuracy, we design a so-called pyramid boundary
refining algorithm which is able to refine the object boundary in
an efficient and scalable manner.

Comparing with previous works, our method has following
advantages.

1) Low computational complexity. In the proposed clas-
sification framework, the time-consuming processes of
object modeling, extracting, and searching are avoided.
Moreover, the tracking is achieved through the testing
phase of the learning machine, which only requires eval-
uation of a small number of linear functions. As a result,
our approach has lower computational complexity than
many spatial-based approaches while providing compa-
rably accurate object boundaries;

2) Robust to motion fluctuation. Because object tracking
is conceived as a classification problem, temporal cor-
respondence of the object between frames is automati-
cally maintained through the classification and therefore
free of any motion assumption. As a result, our approach
can perform well even when the object stays still for ar-
bitrarily long period of time or when its different parts
exhibit different motion characteristics.

3) Robust to occlusion. Occlusion is a very challenging
scenario for both automatic and semiautomatic ap-
proaches, such as the template-and-matching method.
The proposed semiautomatic approach, in contrast, by
decomposing object into blocks, is able to recognize
un-occluded object portions as long as they still exhibit
the object features.

There are only a few approaches that handle VO tracking
as a classification problem, and the most similar work is done
by Doulamis et al. [21]. Our work, however, is different from
[21] in three major aspects. First, the classifiers employed are
different. Second, in the classification step we introduce the
block-level classification and a pyramid refining scheme to re-
fine the boundary so as to save computational cost while in [21]
the classification is carried out pixel by pixel. Third, [21] uses
an automatic approach, yet ours is semiautomatic because the
user’s involvement is needed to define the object of interest in
the training phase. It should also be emphasized that only ob-
ject/background separation is addressed in this paper. Never-
theless, the extension of the current approach to multiple object
tracking is possible and some discussions for that purpose are
presented in Section VII.

The rest of the paper is organized as follows. Section II briefly
introduces -learning and support vector machines (SVMs).
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Section III explains the multilayer classification scheme in de-
tail as well as the local and neighboring feature representations.
Then the block-level classification and the pyramid boundary re-
fining algorithm are represented in Section IV and Section V, re-
spectively. Experimental results are shown in Section VI which
is followed by conclusions in Section VII.

II. -LEARNING

-learning is a newly developed classification approach that
constructs the decision function by directly minimizing the
generalization error [20]. Although motivated by the same con-
cept of margin-maximization as in SVM and can be considered
as a variation of it, -learning demonstrates its advantage over
SVM in linearly nonseparable cases both theoretically and ex-
perimentally [20]. In this section, we will introduce this new
learning tool and compare it with SVM.

Assume a binary linear classification scenario for a set of
input vectors denoted as and the class index of the vectors
denoted as . Instances of and are denoted as and , re-
spectively. -learning seeks a linear optimal decision function

based on a training set, where is a vector
that is of the same dimension as , and is a scalar.

Suppose that the training set has elements
, where represents the training

sample and is the desired output corresponding
to . Once trained, a machine will classify an input vector
according to the sign of , that is

.

how to derive differentiates -learning from SVM.

A. Derivation of -Learning

The generalization error of classification is defined as
[20]. It is easy to see that

(1)

which gives us

(2)

The training error, which is the empirical version of (2), is equal
to

(3)

where is the size of the training set. Minimizing (3) complies
with empirical risk minimization induction principle. However,
observing that is the “average” over the ensemble while
the training error is just the average error over some realizations,

Fig. 2.  function for  -learning and (�) function for SVM.

there may not be quite small discrepancy between those two
quantities, especially when is small [22].

In order to bound the difference between (2) and (3), a term
, which is inversely proportional to the separating

margin of classification in SVM, is added to (3). Then the fol-
lowing objective function is to be minimized:

(4)

where is the tuning parameter used to balance the separating
margin and the training error. A large value of indicates the
importance of the empirical error.

However, the cost function represented by (4) has a numer-
ical problem. If we scale and by a same positive factor ,
the new function would yield the
same classification result for the same and in turn give the
same training error. Meanwhile decreases by .
In this way and continue to decrease until both reach the ma-
chine precision, and as expected the final solution to (4) turns out
to be a meaningless function . To overcome this draw-
back, the function is replaced by the function, which
as shown in Fig. 2(a), penalizes the points that enter the strip

.
With the function, the cost function becomes

(5)

Equation (5) needs to be minimized with respect to and
without constraints. Furthermore, it can not be solved directly
by quadratic programming as SVM does, which makes opti-
mization even more complex. An algorithm for implementation
is addressed in [20].

B. Comparing -Learning With SVM

As a powerful learning machine, SVM has been success-
fully applied in a variety of areas including object recognition
[23]–[25], communications [26], [27], and recently image/video
analysis [28]–[30]. Based on the structural risk minimization
induction principle, SVM provides a guaranteed bounded risk
value even when the number of the training set is small. De-
tailed description of SVM can be found in [31]–[33].
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Fig. 3. (a) Linearly separable case. (b) Linearly nonseparable case.

For a linearly nonseparable case, SVM is the solution to the
following optimization problem:

Minimize

Subject to (6)

where , , are called slack variables and are related
to the soft margin. It is easy to see that every satisfies:

.
(7)

With (7), the cost function for SVM can be rewritten as

Minimize (8)

The plot of function is displayed in Fig. 2(b). Comparing
(5) with (8), one can see that -learning and SVM have similar
objective functions but with difference in the second term.

In the linearly separable case as shown in Fig. 3(a), the in-
equalities are forced true in both -learning and
SVM. In this regard, the two approaches are essentially the
same. In the linearly nonseparable case as shown in Fig. 3(b), the
second term of the two approaches behaves differently toward
the wrongly classified samples. In SVM, the samples will affect
the location of the hyperplane depending on their distances to
the decision boundary. In other words, they force the estimated
boundary to move toward them. The farther the distance of a
sample, the stronger the moving force toward the sample, re-
flecting the fact that the function is linearly proportional
to its variable in the positive side. In contrast to SVM, the
function keeps constant when its variable is larger than 1, which
forces -learning to treat the wrongly classified samples in the
same way regardless of how far they are. Consequently, the hy-
perplane is robust against those samples. This major difference
leads to -learning outperforming SVM in linearly nonsepa-
rable cases.

Since the blocks of object and background are not all sep-
arable in our block-based approach, we choose -learning in-
stead of SVM for block classification which should result in a
better performance than using SVM. The details of this applica-
tion are discussed in the next section.

Fig. 4. Eight-connected neighboring blocks of block B .

III. MULTILAYER -LEARNING FOR OBJECT TRACKING

A. Local and Neighboring Features

For object tracking, the ideal result is to extract the object at
the pixel level resolution. If we represent individual pixels uti-
lizing pixel-wise color or intensity information as most spacial-
based approaches do, a lot of misclassifications would occur due
to the negligence of the support of the spatial relationship among
pixels. Take the silent sequence as an example, assuming that the
human body is the object of interest. The background contains a
large amount of small areas whose chrominance characteristics
are very close to those of the face or hair regions. As a result,
many background pixels will be tracked as those of the human
body. To confront this problem we extract features from block
regions centering at the pixel of interest, which describes a pixel
not only by its chrominance or luminance values, but also some
of the spatial structures among them. In this way more reliable
classifications is able to be rendered.

Associated with each pixel there are two types of blocks
defined for the feature extraction purpose: unit blocks and
neighboring blocks. A unit block is the smallest block we are
dealing with in our algorithm. More specifically, it has the size
of 9 9 pixels and its centering pixel is what we want to rep-
resent and classify. Neighboring blocks, as the name suggests,
are the 8-connected neighbors of the unit block as shown in
Fig. 4. Two types of features are constructed accordingly: local
features, denoted as , and neighboring features ,
which are defined as follows.

1) Local Features: Local features extraction procedure col-
lects theinformationfromaunitblockbyapplyingthediscreteco-
sinetransform(DCT)andconstructingafeaturevectorasfollows:

(9)

where are the DCT coefficients, is the average inten-
sity, and and represent the horizontal and vertical edges,
respectively. All the other high-frequency information is con-
tained in the last component . Because of the unbalanced en-
ergy distribution among coefficients, many high frequency com-
ponents are close to zero. For this reason, we set
in (9) and use only the first nine DCT coefficients when calcu-
lating .
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2) Neighboring Features: In contrast to unit blocks, neigh-
boring blocks contribute to the extraction of neighboring fea-
tures. For a 9 9 unit block , its neighbors are eight 9
9 blocks that are adjacent in the vertical, horizontal and diag-
onal directions. With denoted as the average intensity
of block we compute the neighboring features as

(10)

The calculations given above only consider the grayscale in-
formation. When the video sequence is chromatic, we compute
(9) and (10) for each color component and then concatenate the
vectors respectively to form the chromatically local and neigh-
boring features.

The purpose of introducing both local and neighboring
features is to make classification efficient and effective. The
four-dimensional (or twelve-dimensional for chromatic se-
quences) local feature, rather than all DCT coefficients, reduces
the data amount for representation while the neighboring fea-
tures help separate the pixels that are similar when only local
features are considered. Those two features will be used in the
multilayer classification process.

B. The MultiLayer Scheme of Classification

Linear classification yields good performance when the ob-
ject can be easily separated from the background. When the
object and the background become complex and share some
common features, the classification boundary tends to be non-
linear. Fig. 6(a) gives such an example, in which one linear de-
cision function does not completely separate the object samples
from the background. Consequently, a significant portion of the
object is identified as background or vice versa. Some nonlinear
decision functions have been investigated to solve this problem
which unfortunately impose a high computational cost and re-
main to be an open topic of study technically [22].

We propose a hierarchical partition scheme which breaks the
initial training set into many subsets, each of which contains
samples that are more likely separated by a linear boundary. In
other words, piecewise linear hyperplanes are used to approx-
imate the nonlinear boundaries. Previously, [34] and [35] used
this idea to yield better classification performance and to reduce
the computation time.

We further propose a multilayer method that partitions the
training set sequentially according to the results of the previous
classification step. Instead of only one classifier, this method
yields a hyperplane decision tree consisting of all the hyper-
planes that are used to divide the training set. Each node of the
tree represents one hyperplane, denoted as where the su-
perscript represents the level of the node while the subscript
denotes the path from the root to the current node, as shown in
Fig. 5(a). After the first separation, each subset may still contain
both object and background samples. Two hyperplanes are then
generated to separate the two subsets, respectively. In Fig. 5(a),
we use and to represent the two hyperplanes.

The hyperplanes along a path from the root to any one leaf
node will eventually separate the object from the background.

Fig. 5. Examples of a hyperplane tree. (a) General two-level hyperplane tree.
(b) Hyperplane tree associated with the data shown in Fig. 6.

Fig. 6(c) displays two linear boundaries which are obtained
when our approach is applied to the same samples in Fig. 6(a),
while the constructed hyperplane tree is depicted in Fig. 5(b).
For this particular case, the hyperplane tree is unbalanced
because one subset after the first separation by has only
the object samples so that no more separation is needed. On the
other side of the subset has both object and background
samples, which are further separated by .

It is important to note that -learning is more suitable than
SVM for this multilayer approach. As mentioned in Section II,
due to the shape of the cost function, -learning is more robust
against the misclassified samples while SVM is more sensitive.
Thus the hyperplane is aligned more closely to the local bound-
aries of the two classes of samples by -learning than by SVM.
The hyperplanes generated by SVM are strongly influenced by
the global distribution of the training samples which is contrary
to the objective of the multilayer approach. For example, the hy-
perplane obtained by SVM for the cluster of Fig. 6(a) is
shown in Fig. 6(d). Evidently, the SVM approach generates a
compromise for all the samples and thus not suitable for further
separation of misclassified blocks.

Technically, the multilayer scheme takes the following two
steps. The first step is to generate the hyperplane tree. It begins
with the initial training set , where and repre-
sent the set of the background and the object, respectively. By
training the learning machine using all the samples in , the
first hyperplane representing the root of the tree is ob-
tained. Depending on which side of they are on, the sam-
ples in is partitioned into two subsets denoted as and .
Usually, and because there always exist some
background samples that are wrongly classified as the object by

and vice versa. If so, and are trained independently to
obtain two additional hyperplanes, denoted as and ,
respectively, and the tree size grows to two levels. At this point,
the training set is divided into four subsets. If necessary the four
subsets will be partitioned again, so forth and so on. In general,
the more levels the tree has, the smaller the subsets which is
broken into. This process continues until the percentage of the
misclassified samples in all the new subsets is no greater than a
predetermined threshold , which is set to be 0.05 through out
our experiments.

Once the hyperplane is obtained using the approach just de-
scribed, it can be used to classify the pixels in the subse-
quent video frames. It follows a sequential classification proce-
dure starting from the root of the tree and ending at a leaf node.
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Fig. 6. Illustration of the multilayer method. (a) 100 training samples S with coordinates (x ; x ) = (� cos � ; � sin � ) are randomly generated in the
left-hand side circle of the unit disk. The sample S is labeled as “background” if � 2 [(2�=3) (4�=3)]. Otherwise, it is labeled as “object”. (b) Hyperplane
(w = [28:1 32:2] , b = �4:3) is obtained by training the first layer. (c) One additional hyperplane HP (w = [29:2 � 22:8] , b = �1:5) is obtained by
training the second layer. (d) A different hyperplane (w = [5:4 0:27] , b = 0:9) is obtained when the first layer is trained using SVM.

Every time a node is encountered, the corresponding decision
function is evaluated. For an intermediate node, the sign of the
result determines which branch of the tree to go: positive sign
directs to the left and negative the right, for example. Finally, at
a leaf node the sign indicates the class: object or background,
and the class label of the pixel which is denoted as is
accordingly obtained: 1 or 1.

Now with the local features, the neighboring features, and
the multilayer -learning tool, we are ready to do the tracking
job. The most straightforward method is to calculate
for every pixel and then conform the object by all the pixels
whose class labels are 1. For the video sequences we experiment
with, the maximum number of layers yielded by the multilayer
method is three when we choose . So in order to de-
termine the class label of one pixel we just have to evaluate no
more than 3 linear functions, which evidently requires low com-
putational complexity. Two examples of the tracking mask after
different layers are given in Figs. 7 and 8, respectively.

IV. CLASSIFICATION AT THE BLOCK LEVEL

It has been shown at the end of the previous section, we
can achieve object tracking through pixel-by-pixel classifica-
tion. Yet in most video frames there is abundant spatial redun-
dancy that we can take advantage of to make the tracking step
more efficient. Let denote a pixel and the set of pixels

within a small distance from . Due to the spatial redundancy
of images, the class labels of and tend to be consis-
tent with each other. In other words, if belongs to the object
then it is very likely that belong to the object too, ex-
cept for the pixels lying around the object boundary. Based on
this observation, we introduce the concepts of object blocks and
background blocks, and suggest the classification be done at the
block level.

Defining an object block as a block whose centering pixel be-
longs to the object and an background block otherwise, we pro-
pose a block-level classification method which is summarized
as follows:

1) divide current frame into blocks of size
with one pixel overlapping in both vertical and hori-

zontal directions;
2) calculate and of the centering pixel;
3) evaluate the set of decision functions that have been

trained through multilayer -learning to determine the
class labels of the centering pixels as well as the labels
of blocks;

4) classify all the pixels within the block as object if the
block is an object block; otherwise as background.

It would be more common if we have had used the block size
. However, an odd number of pixels is preferred in our

approach because of the necessity of “centering pixel.” For this
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Fig. 7. Tracking results of Mom & Daughter sequence after different layers. (a) Original frame where mom and daughter are the object of interest. (b) Tracking
result after the first layer. (c) Tracking result after the second layer.

Fig. 8. Tracking results of Flower Garden sequences after different layers. (a) Original frame where the houses are the object of interest. (b) Tracking result after
the first layer. (c) Tracking result after the second layer. (d) Tracking result after the third layer.

Fig. 9. Tracking results of Mom sequence using block-level classification when block size is 9 � 9. (a) Frame 1. (b) Frame 118. (c) Frame 138.

reason, the block size is chosen to be pixels in width
and height. As for the introduction of one pixel overlapping, we
will give the reason in the next section.

Significant saving in the computational cost is one of the ben-
efits of this block-level representation and classification method.
By using the block level classification as explained above, an
image of size is decomposed into exact blocks.
In other words, we have and
for some integers and . For that decomposition, the DCT
and multilayer classification is computed by times in-
stead of times because we only have to compute
for the centering pixel of each block. Therefore the computation
is theoretically reduced by

(11)

in comparison with pixel-by-pixel classification, which con-
verges to 1 quickly with the increase of .

The image size is an important factor to consider when we
choose the value of , and usually large images can have rel-
atively large . In the meantime, the size of the object should

also be taken into consideration. If the object we intend to track
is quite small, a big block size will not be appropriate. Through
the experiments, we find (the block size is 9 9) is
a good choice for the video sequences we are working with,
and in that case the computation reduction would be around

according to (11).
As shown in Fig. 9, the block-level classification scheme is

quite effective even when the object undergoes considerable
deformation. The drawback, however, is the stair-like object
boundary due to the block effect. Although this coarseness is
tolerable in some applications such as target positioning, many
others do require pixel-wise accuracy. To address this problem,
we propose a pyramid boundary refining algorithm which re-
fines the object boundary in an efficient and scalable way and
will be explained in the next section.

V. PYRAMID BOUNDARY REFINING ALGORITHM

Fundamentally the pyramid boundary refining algorithm is an
iterative process that keeps refining the object boundary until the
pixel-wise resolution is reached. During the refining process, a
class map is maintained as a binary image that stores the
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Fig. 10. Considering “+” and “o” as symmetric and also ignoring the orientation, the tiles only exhibit 3 different transition patterns. The points surrounded by
are the centering pixels of the blocks. (a) Pattern #1. (b) Pattern #2. (c) Pattern #3.

segmentation result obtained after iterations. The pixel value
of is defined as:

if pixel is identified as
background after iterations;

otherwise.
(12)

Some regions in the class map are identified as the
boundary zone ( ) in which the boundary is possibly located
and therefore the pixels’ class assignments present ambiguity.
Initially is a quite large area. In order to reduce the uncer-
tainty about the boundary’s actual location, a special group of
pixels in the boundary zone, which are named as boundary seeds
(BSs) and denoted as , are selected for class label checking.
In other words, their are computed. According to the
newly obtained class labels, the class map is updated such that
the block size around the boundary is decreased. Also is
reduced to which is only half as large. The similar process
continues to increase the boundary resolution until no refine-
ment is needed.

In the following two subsections, we will explain the initial-
ization and iteration steps of the pyramid boundary refining al-
gorithm in detail.

A. Initialization Step

The algorithm starts with the block-level classification dis-
cussed in Section IV. By dividing the frame into blocks of size

, we obtain the initial segmentation result
as follows:

(13)
for all , where is the collection of the centering
pixels of all blocks.

The next step in initialization is to determine the boundary
zone . Based on the assumption that the boundary is within
the regions that exhibit transitions between object and back-
ground blocks, we first identify the transition areas in
that are defined as the union of the transition blocks which have
at least one eight-connected neighboring block belonging to a
different class. Then the transition areas are decomposed into
so-called transition tiles (TTs), which are rectangular regions

containing 2 2 transition blocks. Suppose at this initialization
step the block size is 9 9 , and so the transition tiles
are of size 17 17. Some transition tiles in are shown in
Fig. 10, in which the pixel is portrayed as “o” if it takes value 1,
and “+” otherwise. An interesting phenomenon about the tran-
sition tiles is that if we consider “+” and “o” as symmetric and
further ignore the tiles’ orientation there are actually only three
distinct transition patterns. As shown in Fig. 10, these three pat-
terns convey different boundary information and thus need to be
handled differently. The occurrence of pattern #1 implies a steep
or nearly vertically located boundary in the tile, and therefore a
rectangular boundary zone is designed as depicted in Fig. 11(a).
If the slope of the boundary is relatively moderate, we get pat-
tern #2 and accordingly the boundary zone is conceived as a “L”
shape [Fig. 11(b)]. As for pattern #3, the boundary is assumed
to be in the middle and form a cross shape [Fig. 11(c)]. By com-
bining the boundary zone in all transition tiles of , is
obtained.

B. Iteration Step

Fig. 12 gives a diagram of the core operations of the iteration
step of the proposed refining algorithm. To explain the iteration
step more clearly, we use as an example to show how
the algorithm works during the first iteration before giving the
general updating equations for and .

After the determination of and , we have roughly
known where the object boundary is. Its actual location, how-
ever, is still uncertain. In order to reduce the uncertainty, the
pixels that lie in the middle of the 2-D boundary zone, which
are depicted as in Fig. 11, are selected as boundary seeds
for class label checking. More specifically, is constructed
as the following:

and pixel falls inside (14)

where and are positive integers.
Then for each element , we apply the mul-

tilayer classification and determine its class label ,
with which and can be generated.

1)
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Fig. 11. Boundary zones (the blank areas) and boundary seeds (4) determined for different patterns. (a) Pattern #1. (b) Pattern #2. (c) Pattern #3.

Fig. 12. Diagram of the iteration step of the pyramid boundary refining
algorithm.

The class map is updated from as the fol-
lowing:

if such that

otherwise.
(15)

The updating operation of the class map has two impor-
tant properties. First, it does not affect the pixels falling
outside of the boundary zone. As a result the segmen-
tation results only experience small changes around the
object boundary area. Secondly, the class labels of the
pixels within the boundary zone are updated again at the
block level as indicated in (15), hence the extracted ob-
ject would still has the stair-like boundary at this point.
However the block size, which is 5 5 now, is smaller
than that of the initialization step. As a result, the block
effect shown near the boundary has been reduced as one
can see from the tracking mask shown in Fig. 15(c).

2)
Fig. 13 provides an example which considers a transi-

tion tiles of that shows the pattern #1 to illustrate
how the boundary zone can be further reduced according
to the newly updated class map . Suppose the class
labels of its boundary seeds are identified as shown in
Fig. 13(a) and the class map is updated accordingly
[Fig. 13(b)]. Although the boundary searching strategy
remains the same, which is to focus on the areas showing
the transition between the object and background, the
size of the transition tiles becomes smaller. Three new
transition tiles, each of which contains only 9 9 pixels
now, are highlighted in Fig. 14. In spite of the smaller
range, these transition tiles fortunately manifest very
similar patterns as discussed in Fig. 11, and therefore
their boundary zones and boundary seeds can be deter-
mined in a similar way. The union of the boundary zones
in all transition tiles of constitute the , which
are shown in Fig. 13(c). As one can see, the area of
is nearly half as large as and with it the uncertainty
about the actual boundary location is reduced.

Now, with the new class map and new boundary zone
available, we are ready for the next iteration which will

go through the same steps as explained above. In general, the
updating equations for each iteration can be summarized as the
following.

• Updating

and pixel falls inside (16)

where and are positive integers, and for 9 9
initial block size.

• Updating

if such that
;

otherwise
(17)

where .
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Fig. 13. Example of BZ updating (N = 3). (a) Transition area with theBZ and classified boundary seeds. (b) Updated class mapCM . (c) Updated boundary
zone BZ with boundary seeds (4) shown in the middle.

Fig. 14. Three transition tiles in CM (N = 3). (a) Transition tile of pattern #1. (b) Transition tile of pattern #2. (c) Transition tile of pattern #3.

• Updating

(18)

where is the tran-
sition tiles determined in , and denotes the
boundary zone in the tile .

As one can see from the updating equations, the larger the
, the smaller the boundary zone . When the

boundary zone is only one pixel width and the of the
boundary seeds does not effect other pixels any more, which
means the pixel-wise resolution is reached and therefore the it-
eration process stops. Fig. 15 shows the segmentation results
of the same frame but of different boundary resolutions. The
pyramid boundary refining algorithm works so effectively that
almost the same tracking results are observed in Fig. 15(e) and
Fig. 15(f), which are obtained by the proposed refining algo-
rithm and pixel-by-pixel classification respectively.

It is self-evident that the block effect around the object
boundary is eliminated at the expense of the increased compu-
tational complexity. As a result the processing speed is surely
not as fast as the block-level classification. However because
the multilayer classification is carried out only on the pixels
selected as the boundary seeds, the run time is reduced to about
1/10 of that of the pixel-by-pixel classification method. Another
important property of the proposed refining algorithm is its
flexibility. Depending on different applications, the iteration
process can stop whenever the desired boundary resolution is

reached. Hence by our approach the object boundary is able to
be refined in an efficient and scalable manner.

It is worthy pointing out that because of the important role
played by the boundary seeds in the proposed refining algo-
rithm, we need to guarantee the integer coordinates for them
such that they are available as image pixels. This is the reason
why we introduce the one pixel overlapping between the classi-
fication blocks in Section IV.

VI. EXPERIMENTAL RESULTS

To test the effectiveness and robustness of the proposed ap-
proach, we apply it to five standard MPEG-4 test video se-
quences, which exhibit certain varieties of temporal and spa-
tial characteristics. These sequences are Akiyo, Mom, Mom &
Daughter, Silent, and Flower Garden. The segmentation and
tracking performance is evaluated on both subjective and ob-
jective basis. Also the average processing speed per frame is
presented to demonstrate the efficiency of our approach.

A. Average Run Time

During the training phase, the unconstrained optimization al-
gorithm proposed in [20] is adopted to minimize the cost func-
tion of (5). The parameter in (5) is empirically chosen as

for the first layer, and for the second or
higher layers. All experiments are carried out on a Pentium IV
2.5-GHz PC and the average execution time is shown in Table I.
Comparing with the pixel-by-pixel classification method whose
run time is around 4.65 s for a 176 144 frame and 3.969 s
for a 180 120 frame, the proposed method is about ten times
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Fig. 15. Tracking results of different boundary resolutions whenN = 3 (the block size is 9� 9). (a) Training frame (frame #1). (b) Tracking result after initial
block-level classification. (c) Tracking result after the first iteration of the pyramid boundary refining algorithm. (d) Tracking result after the second iteration of
the pyramid boundary refining algorithm. (e) Tracking result after the third iteration (pixel-wise) of the pyramid boundary refining algorithm. (f) Tracking result
obtained by pixel-by-pixel classification.

TABLE I
AVERAGE AND STANDARD DEVIATION OF RUN TIME PER FRAME

Fig. 16. Tracking results of Akiyo. (a) Tracking result of frame 12. (b) Tracking result of frame 134. (c) Tracking result of frame 220.

faster. Run time analysis shows that the feature extraction oper-
ation takes nearly 99.7% of the whole run time, and DCT is the
major contributor. While the implementation of the algorithm
can be further optimized, it should be mentioned that so far we
have only considered the intra-frame information for segmenta-
tion. The run time is expected to be reduced significantly when
the temporal redundancy is utilized, by which one can reduce the
number of pixels whose class labels have to be obtained through
feature extraction and the multilayer procedures. The potential
of that reduction will be discussed later in the Section VII.

B. Subjective Evaluation

Akiyo and Mom belong to the typical head-and-should type
of sequences. The objects which are the anchored-women in the
scene exhibit slow and smooth motion against a stationary back-
ground. The performance of our approach is satisfactory even
when the objects undergo considerable deformation, as shown
in Figs. 16 and 17.

Mom & Daughter is another typical head-and-should type
of sequence. However, it exhibits much more complex motion
characteristics than Akiyo and Mom. If mom and daughter are
considered as a single object, we have to deal with its nonco-
herent motions: the mom’s head and shoulder move slowly, the
daughter stays nearly still for most of the time, and the mom’s
left hand even disappears in the middle of the sequence. Nev-
ertheless the proposed approach performs well too, as shown in
Fig. 18.

The third test sequence is Silent, in which a woman makes
a number of different gestures. If Mom & Daughter is char-
acterized as the combination of “slow motion (mom) along
with still motion (daughter) over a simple background,” the
Silent can be considered as the combination of “rapid motion
(woman’s hands) and slow motion (woman’s body) over a
textured background.” Several tracking results are provided in
Fig. 19, showing the effectiveness of our approach.

Among the four sequences tested in the experiments, Flower
Garden is perhaps the most challenging one. Unlike the previous
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Fig. 17. Tracking results of Mom. (a) Tracking result of frame 1. (b) Ttracking result of frame 118. (c) Tracking result of frame 138.

Fig. 18. Tracking results of Mom & Daughter. (a) Tracking result of frame 2. (b) Tracking result of frame 11. (c) Tracking result of frame 16. (d) Tracking result
of frame 24. (e) Tracking result of frame 43. (f) Tracking result of frame 103.

Fig. 19. Tracking results of Silent. (a) Tracking result of frame 33. (b) Tracking result of frame 64. (c) Tracking result of frame 123. (d) Tracking result of frame
145. (e) Tracking result of frame 171. (f) Tracking result of frame 220.

video-conference kind of sequences, it displays a natural scene
that is rich of colors and textures with a nonstationary camera.
In addition, the houses as the selected object to track are only
partially viewable for quite a few frames. The presence of occlu-
sion adds another difficulty to this sequence. Other approaches
such as template matching and motion tracking may fail in this
case. In contrast, our approach can survive this problem because
the un-occluded portion that exhibits the features of the object

is still recognizable by our approach. The tracking results of
the Flower Garden sequence, shown in Fig. 20, demonstrate
this advantage. As we can see from Fig. 20, some portions of
the houses are uncovered and extracted correctly as the camera
moves along. At the same time, the newly occluded area is iden-
tified as background and does not appear in the tracking mask.
When the occlusion finally disappears, the entire houses emerge
as a complete object.
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Fig. 20. Tracking results of Flower Garden. (a) Tracking result of frame 2. (b) Tracking result of frame 12. (c) Tracking mask of frame 65. (d) Tracking result of
frame 86. (e) Tracking result of frame 126. (f) Tracking result of frame 149.

It can also be observed that even when the camera is in
motion and the training is only done once, the tracking results
are still of good quality. We believe this is because there is no
significant change of the video content in the Flower Garden
so that the information captured by the first frame is rich
enough to generate a classifier that is robust for the rest of
the sequence. Otherwise, a retraining may be necessary. To
do so, a scene change module should be incorporated into the
system to detect the change of the video content, which can be
measured by the difference of the color or texture histogram
between frames, and signal the necessity of the retraining when
the difference is significant.

C. Objective Evaluation

In the previous subsection, the proposed segmenta-
tion/tracking approach is evaluated on a subjective basis.
In this subsection, we introduce an objective criterion to assess
the performance quantitatively. Among the criteria available
in the literature [36], the one proposed by Wollborn and Mech
[37] has been widely adopted. Let and denote
the estimated and the reference binary object mask of frame

. Then according to [37], the spatial distortion of is
defined as

(19)

where the is the binary XOR operation [8].
Note that the numerator is equal to the number of wrongly

classified pixels while the denominator is the number of pixels
per frame. Fundamentally (19) is a measurement of the classi-
fication error which makes it very suitable to evaluate our ap-
proach.

Fig. 21. Segmentation error with respect to frame numbers. (a) Mom &
Daughter sequence. (b) Akiyo sequence. (c) Flower Garden sequence.

Fig. 21 shows the segmentation error of the Mom & Daughter,
Akiyo, and Flower Garden sequences. Also the error rates using
SVM as the classifier are provided for the comparison purpose.
Evidently -learning outperforms SVM for the proposed seg-
mentation and tracking approach.
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VII. CONCLUSION

VO extraction, as a prerequisite of the emerging con-
tent-based video technologies, is a very important yet very
challenging task. In this paper, we present a novel semiauto-
matic approach that handles single VO extraction as a binary
classification problem. By this approach, we are able to over-
come some limitations of the conventional tracking methods
and deliver an improved performance for various video se-
quences. The proposed method has following features.

1) A multilayer -learning mechanism is proposed to
achieve high classification accuracy even when the se-
quences contain complicated content.

2) Block-level classification is introduced to deal with the
inefficiency of pixel-by-pixel classification.

3) A pyramid boundary refining method is incorporated to
obtain the pixel-wise object boundary in a fast and scal-
able manner.

Experimental results demonstrate that the proposed method
can successfully extract the object of interest from video se-
quences that exhibit various spatial and temporal characteristics.
Nevertheless, the object boundaries are not always perfectly lo-
cated due to the classification error. One possible solution is to
extract the edges points that exist within a small distance from
the contour of the extracted object and connect them as the re-
fined boundary. More computational cost, of course, has to be
paid for this purpose.

The proposed approach only relies on the spatial information.
Video sequences, however, provide temporal information which
should be useful for object and background separation. There-
fore, one of the future research directions is to take advantage
of the temporal redundancy between frames to further improve
the efficiency of our algorithm. For example, we do not have to
go through the operations of DCT and multilayer classification
to determine the class label whenever a boundary seed
is encountered. Instead, we can first check the difference of the
chrominance (or the intensity for grayscale videos) between two
consecutive frames and average them in the block centering at

. If the difference is small which implies little motion
around the pixel, the new class label (of the current frame) can
be the same as the old one (obtained in the previous frame). By
doing so, the number of DCT operation which is the major con-
tributor to the computational complexity of our algorithm will
be reduced and so will be the run time.

Another research topic in the future is to extend the proposed
approach to multiple object tracking. In analogy to binary clas-
sification, an object tracking problem can be formulated as an

-category classification problem. That is, one class for
the background and classes for the objects of interest. Most of
the mechanisms presented in the paper, such as the block classi-
fication and the boundary refining algorithm, are still applicable
although additional methods will have to be developed.
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