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Abstract

Video object (VO) extraction is of great importance in multimedia processing. In recent years approaches have been proposed to deal with
VO extraction as a classification problem. This type of methods calls for state-of-the-art classifiers because the performance is directly related
to the accuracy of classification. Promising results have been reported for single object extraction using support vector machines (SVM) and its
extensions. Multiple object extraction, on the other hand, still imposes great difficulty as multi-category classification is an ongoing research
topic in machine learning. This paper introduces a new scheme of multi-category learning for multiple VO extraction, and demonstrates its
effectiveness and advantages by experiments.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Video object (VO) extraction, the process of segmenting and
tracking semantic entities with pixel-wise accuracy [1], is an
important yet challenging task for content-based video pro-
cessing. For this purpose a great deal of approaches have been
proposed [2–10], which provide satisfactory results for extract-
ing VOs of homogeneous motion characteristics. Unfortunately,
dealing with VOs with abrupt motions or occlusions remains a
challenge. In recent years classification-based approaches have
been proposed to meet the challenge by handling object track-
ing as a classification problem [11–13]. Each VO is consid-
ered as a class, and VO extraction is achieved by classifying
every pixel to one of the available classes. By doing so, tem-
poral associations of objects between frames are automatically
maintained through correct classifications which is therefore
motion-assumption free. As a result, the approaches are more
robust to complicated motion fluctuations.

What learning algorithm to use is key to the success of the
classification-based approaches. By using powerful classifiers
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high classification accuracy can be achieved which leads to bet-
ter performance for VO extraction. However, most of the results
reported are limited to single object scenarios. In other words,
only binary classification between the object and the back-
ground has been tackled. At the first glance, the extension from
single object to multiple object extraction is straightforward
since conceptually one only needs to replace the binary classi-
fier with a multi-class classifier. Unfortunately, the implemen-
tation of such an extension is far more difficult than it appears
because multi-category classification is still an ongoing and im-
mature research topic itself in machine learning. Only recently
have works emerged to offer new tools that can help tackle the
multi-object problem. This work presents an attempt of such.

Over the last decade, margin-based classification technolo-
gies for which the best known example is support vector ma-
chines (SVM) [14] have drawn tremendous attention due to
their theoretical merits and practical success. Instead of directly
estimating the conditional probabilities, the margin-based clas-
sifiers focus on the decision boundary which; however, makes
it difficult to generalize their applications from binary to multi-
class scenarios.

“Single machine” and “error correcting” are two main-
streams for multi-class margin-based classification. As its name
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suggests, the “single machine” type of approaches attempts
to construct a multi-class classifier by solving just a single
optimization problem [15–19]. On the contrary, the “error
correcting” type of approaches [20,21] works with a collec-
tion of binary classifiers, for which the primary goal is to
determine what binary classifiers should be chosen to train
and how to combine their classification results to make the
final decision. Among all the methods published in the litera-
ture, “one-against-all”, “one-against-one” and directed acyclic
graph (DAG) [22] are most popular choices in solving real-
world problems. A good overview of multi-class classification
can be found in Refs. [23,24].

As a natural extension of binary large margin classification,
the “single machine” type of approaches is intuitively appeal-
ing. It has drawn even more attention when certain formu-
lations are reported to yield classifiers with consistency ap-
proaching the optimal Bayes error rate in the large sample
limit [25]. Multi-class �-learning is such a learning algorithm
[26]. Moreover, �-learning aims directly at minimizing the
generalization error (GE), which is the reason why its binary
version has shown significant advantage over SVM in terms
of generalization both theoretically and experimentally [27].
The extended multi-class �-learning retains the desirable prop-
erties of its binary counterpart. In addition, a computational
tool based on the recent advance in global optimization has
been developed to reduce the time of training for the “single
machine” [28].

The purpose of this paper is twofold. First, it introduces
multi-category �-learning [26] to tackle the multiple VO ex-
traction problem. Secondly, it reports the performance of the
new learning algorithm on several MPEG-4 standard video se-
quences instead of synthetic data on which many multi-class
learning algorithms are tested.

The rest of the paper is organized as follows. Section 2 gives
an introduction of multi-class �-learning. Then a multiple VO
extraction method using this new learning methodology is ex-
plained in Section 3. Section 4 provides the experimental re-
sults which are followed by conclusions in Section 5.

2. Multi-category �-learning

We first introduce the notations that will be used for the rest
of the paper. In the framework of multi-category �-learning,
the class label is coded as y ∈ {1, 2, . . . , M}, and for a sample
x ∈ Rd the decision rule is

y = arg max
i=1,...,M

fi(x), (1)

where M is the number of classes and fi is the decision function
of class i for i = 1, . . . , M . For the linear classifier, we have
fi(x) = wT

i xi + bi with wi ∈ Rd and bi ∈ R. Conventionally,
the classifier is represented as f = (f1, f2, . . . , fM).

As a characteristic of multi-class problems, multiple com-
parisons between classes need to be performed. In order to
simplify the notations an (M − 1)-dimensional vector-valued
function g(x, y) and a multivariate sign function sign(u) where

u = (u1, . . . , uM−1) are defined as follows:

g(x, y) = (fy(x) − f1(x), . . . , fy(x) − fy−1(x),

fy(x) − fy+1(x), . . . , fy(x) − fM(x)),

sign(u) =
{

1 if umin = min(u1, u2, . . . , uM−1)�0,

−1 if umin < 0.

(2)

As mentioned before, the most prominent feature of �-learning
is the direct consideration of GE. Defined as the probability of
misclassification, GE yielded by an M-class classifier is

Err(f) = P

[
Y �= arg max

i=1,...,M

fi(X)

]
.

It can be shown that with the notations of g(x, y) and sign(u)
GE can be rewritten as

Err(f) = 1
2E[1 − sign(g(X, Y ))].

2.1. Multi-category �-learning

Seeking a vector f to minimize GE is the ultimate goal for any
learning algorithm. For example, in the coding system described
above,1 the cost function of the well-known linear SVM can
be rewritten as [26]

minimize
1

2

2∑
j=1

‖wj‖2 + C

N∑
i=1

FSVM(fyi
(xi) − f3−yi

(xi)),

subject to
2∑

j=1

fj (x) = 0 for ∀x, (3)

where N is the number of training samples and the sum-to-zero
constraint is invoked to eliminate the redundancy in (f1, f2).
The parameter C is a regularizer that controls the relative
importance between the separating margin and the train-
ing error which are reflected in the quantities 1

2

∑2
j=1‖wj‖2

and
∑N

i=1FSVM, respectively. Here the so-called hinge loss
FSVM(u) = 0 if u�1, and 2(1 − u) if u�1 is a convex up-
per envelope of FGE = (1 − sign(u)). However, as shown in
Fig. 1(a) and (b) there is significant difference between this
convex envelope and (1 − sign(u)) itself especially when
u < 0, which corresponds to the inevitable misclassifications
in non-separable cases. Motivated by this consideration, Shen
et al. [26,27] proposes to replace FSVM with a non-convex �
function as

minimize
1

2

2∑
j=1

‖wj‖2 + C

N∑
i=1

�b(fyi
(xi) − f3−yi

(xi)),

subject to
2∑

j=1

fj (x) = 0 for ∀x. (4)

1 Conventionally, the formulation of SVM is expressed in the coding
system where the class label y ∈ {−1, 1}.
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Fig. 1. FGE function for GE, FSVM function for SVM and �b function for binary �-learning: (a) FGE = 1 − sign(u); (b) FSVM function and (c) �b function.

Fig. 2. Illustration of the robustness of multi-class �-learning in non-separable cases. (a) Shows a simple non-separable three-class training set. The classification
boundaries are depicted as the solid lines. In (b) a misclassified sample, represented by the blue square, is moved much farther away from the boundaries and
becomes an outlier. For learning algorithms that penalize the misclassification using the hinge loss function such as SVM, this change will affect the resulted
classification boundaries a great deal because the penalty is proportional to the distance from the sample to the hyperplanes. �-learning, on the other hand,
still counts it as a single misclassification as before, and consequently the boundaries are not much affected.

Here �b can be any function satisfying R��b(u)�0 if u ∈
[0 �] and �b(u) = 1 − sign(u) otherwise, where �b(u) is non-
increasing in u and � ∈ (0 1]. An example of such a function is
shown in Fig. 1(c). Evidently because of the constant penalty for
misclassification, �b is much closer to (1−sign(u)) than FSVM,
which explains why �-learning is expected to deliver higher
accuracy performance for the non-separable case. A graphical
illustration is given in Fig. 2.

In analogy to Eq. (4) which is for binary classification, the
multi-category �-learning is formulated as

minimize
1

2

M∑
j=1

‖wj‖2 + C

N∑
i=1

�(g(xi, yi)),

subject to
M∑

j=1

fj (xi) =
M∑

j=1

(wT
i xi + bi) = 0. (5)

Here again C is the regularizer while the � function is a
multivariate version of �b with (M − 1) arguments which is
defined as{

R��(u) > 0 if u ∈ (0 �1] × · · · × (0 �M−1],
�(u) = 1 − sign(u) otherwise,

(6)

where 0 < �1, . . . , �M−1 �1, and �(u) is restricted to be non-
increasing in each uj for u ∈ (0 �1] × · · · × (0 �M−1]. The
multi-category �-learning preserves the desired properties of
its binary counterpart. More specifically speaking, for any x
satisfying sign(g(x, y))=−1, � assigns a constant penalty for
the misclassification which is in the same spirit as GE. As a
result, it is less sensitive to outliers and offers better learning
ability. The cost, however, is the computational advantage since
� is not a convex function any more. Fortunately the selection
of the � function is relatively flexible. To utilize the difference
convex (d.c.) decomposition which is a global optimization
strategy, a specific � function

�(u) =
{0 if umin �1,

2 if umin < 0,

2(1 − umin) if 0�umin < 1
(7)

is chosen for implementations [26].

2.2. Theoretical advantage of multi-category �-learning

GE is the ultimate measure for any classifier, and the optimal
performance of classification is achieved by the Bayes classifier
f̄ = (P1(x), P2(x), . . . , PM(x)) with Pj (x)=P(y =j |x) in the



2780 Y. Liu et al. / Pattern Recognition 41 (2008) 2777–2788

sense that GE is minimized by f̄ . In other words, we have

Err(f)�Err(f̄) = min 1
2E[1 − sign(g(X, Y ))]. (8)

For a learning algorithm, how to construct the function f in
the absence of the knowledge of P(X, Y ) and how the resulted f
statistically approaches the optimal performance Err(f̄) are two
equally important issues. The lack of statistical learning theo-
ries for multi-category classification manifests the immaturity
of this area. Only recently theoretical analysis of margin-based
classification has been investigated, most of which is focused
on the asymptotical scenario. Therefore practical performances
of multi-category approaches in general remain empirical and
theoretically unclear. Fortunately a statistical learning theory
has been developed for multi-category �-learning which pro-
vides insight of �-learning’s performance with respect to the
choice of tuning parameter C, the training size N as well as the
number of classes M [26], and we summarize it as follows:

(1) �-Learning estimates the Bayes classifier f̄ as opposed to
the conditional probability. However, the optimal classifi-
cation performance of f̄ is realized via the �(u) function
which differs from 1−sign(u). In other words, as the num-
ber of training samples N goes to infinity, Err(f) approaches
Err(f̄) asymptotically.

(2) The non-asymptotic rate of convergence of e(f, f̄) =
Err(f) − Err(f̄) is investigated. For example, it is shown
that the convergence rate decreases as the number of
classes M increases although the order remains the same
for finite M. It provides insight of the performance differ-
ence between �-learning and the optimal Bayes classifier
under practical circumstances.

(3) Unlike the binary case, the optimal performance of linear
learning may not be achieved at large C for multi-category
problems.

For details of the theory, the readers are referred to Ref. [26].

3. Multi-object extraction using multi-category �-learning

3.1. Related work

Filtering and association and representation and localization
are two major techniques for object tracking [29]. Rooted in the
control theory, the former technique deals with the dynamics of
the objects while the latter heavily relies on image processing
technologies. The way these two techniques are combined and
weighted is application dependent. For example, the filtering
and association method prevails in the application of aerial
video surveillance because the motion of the objects is the
major concern. For content-based video processing, on the other
hand, objects of interest are usually heterogeneous in spatial
features, non-rigid in the temporal domain, yet rich of visual
information. For this reason representation and localization is
the technique used most in VO extraction, and therefore the
emphasis of this paper.

For VO extraction using the representation and localization
technique, a reference model representing the object must first

be created which can be done either in an automatic [2–7] or
semiautomatic fashion [8–10]. A variety of models has been
proposed including: 2D mesh [30,31], binary model [32], color
histogram [29], deformable templates [33], corners and lines
[34], active contour [9], 2D regions [35], etc. To localize the
object in subsequent frames, a typical approach is to place the
model to its possible positions and locate it where the best
match is found. To measure the quality of the match between
the model and the object candidates, a similarity function is
defined, which traditionally considers only the information of
the object such as spatial similarity and temporal consistency.

The importance of integrating the background information
in the matching process is demonstrated in Ref. [29]. More
specifically it takes into account the dissimilarity between the
object and the background by down-weighting the colors that
appear in both classes in the similarity function such that the
object is represented only by the salient parts. Avidan [13] ex-
tends this idea by explicitly treating tracking as a classification
problem. Single object tracking, for example, requires identi-
fying each pixel as object or background, and therefore can be
formulated as a binary classification problem. In the meantime,
the same spirit appears in Refs. [11,12] for the task of VO ex-
traction where the tracking results are required to be pixel-wise
accurate.

In spite of the differences in detailed algorithms, these
classification-based approaches are encompassed in a generic
four-step model: (1) construction of feature vectors, (2) train-
ing of classifiers, (3) classifications applied to the new frame,
and (4) object generation. The first step is to design a feature
representation for every pixel. It may be the raw chromatic
values such as RBG [11], the histogram of colors [13], or the
coefficients of the DCT transform of the block centering at
the pixel [12]. Then in the second step a classifier is trained
and the classification function is obtained to discriminate the
pixels that belong to the object from those that belong to the
background. Different classifiers have been attempted such as
neural networks [11], �-learning [12] or even an ensemble of
linear classifiers [13]. The third step is to evaluate the classifi-
cation function at every pixel in the subsequent frames, and the
final step is to generate the tracked object based on the clas-
sification results for which the way of implementation varies.
For example, in Ref. [13] a so-called confidence map is first
produced according to the classification results, and tracking
is then realized by locating the object where the peak of the
confidence map occurs. The output of the tracker, however,
is a rectangle that tightly encloses the object of interest. For
the task of VO extraction the fourth step can even be skipped
[11] since after the classification step we already know for
every pixel if it belongs to the object. However, for efficiency
purpose it is not necessary to do the classification pixel-by-
pixel. By exploiting the spatial redundancy, we introduce the
block-level classification instead and design a pyramid refin-
ing scheme to refine the boundary in an efficient and scalable
manner [12].

Accuracy and complexity are two critical issues for VO ex-
traction which have to be traded off in practice, and the major
advantage of the classification-based methods is the potential to
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Fig. 3. An overview of the proposed approach for multiple VO extraction. (a) The training phase and (b) the tracking phase.

achieve both. The methods are accurate because powerful clas-
sifiers are designed for the purpose of object/background sepa-
ration. Low complexity, on the other hand, is achieved through
evaluating the classification function at each pixel which in-
volves only simple calculations, e.g., wTx + b for linear SVM
while the time-consuming processes of object modeling, ex-
tracting and searching are circumvented.

3.2. The approach

As mentioned before, the choice of the learning algorithm
is key to the success of the current approach because the per-
formance of the algorithm is directly related to the classifica-
tion accuracy. Considering the single VO extraction as an ex-
ample, the background and the object are often not separable.
As pointed out in Section 2, �-learning aims at the minimiza-
tion of GE and therefore has the advantages in non-separable
cases. For this reason, a method for single VO extraction that
employs binary �-learning as the classifier is proposed in Ref.
[12]. To tackle the challenging task of multi-object extraction,
multi-category �-learning has to be employed.

As shown in Fig. 3, our approach is semiautomatic and con-
sists of two phases: the training phase and the tracking phase.
At the training phase the user manually outlined the objects of
interest in the first frame, and at the tracking phase the proposed
approach tracks and extracts the objects automatically for the
rest of the video sequence. For classification at the pixel level,
individual pixels are represented by pixel-wise color or inten-
sity information, which; however, would result in misclassifi-
cations due to the negligence of the spatial relationship among
pixels. Another concern is the size of the training set. If ev-
ery pixel is included, it would contain too many training sam-
ples to yield a quick training especially when the frame size is
large. The same efficiency issue exists if we do the pixel-by-
pixel classification in the tracking phase. Fortunately, in most
video sequences there is abundant spatial correlation that we
can take advantage of to make the approach more efficient. Let
p denote a pixel and N(p, d) the set of pixels within a small

distance d from p. Due to the spatial correlation of images, the
class labels as well as the feature vectors of p and N(p, d) tend
to be similar to each other. Based on this observation, we in-
troduce the concepts of object blocks and background blocks,
and suggest the representation and classification to be done at
the block level as follows.

Suppose we have M VOs of interest. The training phase
begins with dividing the first frame, chosen as the training
frame, into (M+1) types of blocks (the number of different VOs
plus background) depending on which object or background
the pixel at the center of the block belongs to. In the standard
video processing algorithms such as MPEG, 8 × 8 has been
a common choice for the block size. In our approach, an odd
number of pixels is preferred. That is because the intended
classification is at the pixel level and the classification of each
pixel is performed by classifying the block in which the pixel
is at the center, i.e., the pixel to be classified is the centering
pixel of the block. Consequently, the block size is chosen as
9 × 9 which is closest to 8 × 8, and evidently the number of
blocks determines the size of the training set.

We use the same method as in Ref. [12] to represent each
block as well as the centering pixels. Namely, discrete cosine
transform (DCT) is first applied to each block and then based on
the DCT coefficients c(i, j) the local and neighboring features
are constructed for each block:

�flocal = (f0, f1, f2, f3)
T

=

⎛
⎜⎜⎜⎜⎜⎝

c(0, 0)√∑8
j=1c(0, j)2√∑8
i=1c(i, 0)2√∑8

i=1
∑8

j=1c(i, j)2

⎞
⎟⎟⎟⎟⎟⎠ . (9)

Here f0 is the average intensity, and f1 and f2 represent the
horizontal and vertical edges, respectively. All the other high
frequency information is contained in the last component f3.

The neighboring features �fneighbor are extracted from
neighbors which are eight 9 × 9 blocks that are adjacent to the
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Fig. 4. Eight-connected neighboring blocks of block B0.

block under study in the vertical, horizontal and diagonal direc-
tions as shown in Fig. 4. With avg(Bi) denoted as the average
intensity of block Bi we compute the neighboring features as

�fneighbor =
⎛
⎜⎝

avg(B1 + B2 + B3)

avg(B3 + B4 + B5)

avg(B5 + B6 + B7)

avg(B7 + B8 + B1)

⎞
⎟⎠ . (10)

The calculations given above only consider the grayscale in-
formation. When the video sequence is chromatic, we compute
Eqs. (9) and (10) for each color component and then concate-
nate the vectors, respectively, to form the chromatically local
and neighboring features. As a result, if the video sequence is
chromatic, the dimensions of the feature vectors increase. That
will prolong the training time of the classifier, but the trained
classifier will become more effective as more information is
included in the feature vectors.

Now with the training data in place, the next step is to train
the machine by solving the optimization problem Eq. (5), which
yields (M + 1) decision functions that separate the M objects
as well as the background.

In the tracking phase each subsequent frame is also divided
into 9 × 9 blocks, and for each block the M + 1 decision
functions are evaluated to decide what object the centering pixel
belongs to, which consequently determines the class label of
the block. Then the tracking mask of every object is formed by
the blocks that have been classified in the corresponding class.
At this point the resolution of object’s boundary is as large
as the size of the block, but by applying a pyramid boundary
refining algorithm [12] the object boundary can be refined and
the pixel-wise accuracy can be achieved. The details of the
latter algorithm can be found in Ref. [12].

4. Experimental results

In this section we apply the proposed multiple VO extrac-
tion method to three standard MPEG-4 test video sequences,
which exhibit varieties of temporal and spatial characteristics.
These sequences are Students, Trevor and Sun Flower Garden,
respectively. The performance comparisons are made between
multi-category �-learning and three popular multi-class algo-
rithms, namely one-vs-all, one-vs-one and DAG [22]. The per-
formance of one non-classification based-method is also pre-
sented to show the robustness of the proposed method.

Table 1
The average run time

Student Trevor Sun Flower Garden

# of classes 3 4 3
Frame size 144 × 176 72 × 176 120 × 176
Average (s) 1.27 1.01 0.62

4.1. Computational complexity

During the training phase, the unconstrained optimization
algorithm proposed in Ref. [26] is adopted to minimize the cost
function of Eq. (5). The parameter C in Eq. (5) is empirically
chosen as C=0.25. All experiments are carried out on a Pentium
IV 2.5 GHz PC and the average execution time per frame is
shown in Table 1.

The number of VOs and the frame size are two critical fac-
tors that determine the execution time of the algorithm. As-
sume there are M VOs classes, L blocks in each frame, and
each block is represented by a d-dimensional feature vector x.
In the tracking phase we need to evaluate M + 1 functions (M
functions for VOs and one for background) fi = wT

i x + bi ,
each of which performs d multiplications to determine the class
label of a block. As a result, the computational complexity is
L(M + 1)d = O(M), which is a linear function of the num-
ber of objects M and gives the approach low complexity and
good scalability. After the block-level classification, boundary
refining is executed to generate the VOs with pixel-level accu-
racy. So the total complexity is LMd + Tr, where Tr denotes
the computations consumed by the boundary refining algorithm
that is proportional to the size of the VOs.

4.2. Subjective evaluations

The first one to test is Students. As the major content of this
sequence, the two students are chosen as two objects of interest,
and along with the background this is a three-class classification
problem. As one can see from the original frames shown in
columns (a) and (d) of Fig. 5, Students is a typical sequence of
slow but heterogeneous motion. For example the male student
turns the head and moves his hands while his body stays still
most of the time. The extracted objects are shown in columns
(b), (c), (e) and (f), respectively. One can see that the proposed
method works well, which discriminates the body parts of the
students as well as their faces. The latter is not an easy task
since the skin color is very similar between the two students.

Another sequence containing three people is also tested, and
the three people are considered as three objects which makes
it a four-class classification problem. The original frames and
the extracted objects are shown in Fig. 6. Unlike the Students
sequence, the objects in this sequence change the appearance
a great deal. Taking the lady who sits at the farthest right as
an example, her face changes from frontal to left-side view.
Besides, the man in the middle is originally seated but finally
standing. As seen in Fig. 6, the main body of the objects are
successfully extracted although the boundaries of the objects
are not perfectly separated due to classification errors.
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Fig. 5. The extraction performance of Students. Columns (a) and (d) display the original frames. Columns (b) and (e) display the extracted VO #1. Columns
(c) and (f) display the extracted VO #2.

Fig. 6. The extraction performance of Trevor. Columns (a) and (e) are the original frames. Columns (b) and (f) are the extracted VO #1. Columns (c) and (g)
are the extracted VO #2. Columns (d) and (h) are the extracted VO #3.

Fig. 7. The extraction performance of Sun Flower Garden. Columns (a) and (d) are original frames. Columns (b) and (e) are the extracted VO #1. Column
(c) is the extracted VO #2.

Among the sequences tested in the experiments, Sun Flower
Garden is most challenging. Different from the previous video-
conference kind of sequences, it displays a natural scene that

is rich of colors and textures with a non-stationary camera.
There are two objects of interest: the house and the tree. For
the first few frames, the house is occluded by the tree. Two
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Fig. 8. The comparison of classification errors between multi-category �-learning, one-vs-all, one-vs-one and DAG. SVM is the underlying binary classifier
employed by one-vs-all, one-vs-one and DAG. (a) Students, (b) Trevor and (c) Sun Flower Garden.
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Fig. 9. The comparison of classification errors between multi-category �-learning, one-vs-all, one-vs-one and DAG. Binary �-learning is the underlying binary
classifier employed by one-vs-all, one-vs-one and DAG. (a) Students, (b) Trevor and (c) Sun Flower Garden.

of such frames are shown in column (a) of Fig. 7, and the
two extracted objects (house and tree) by using �-learning are
shown in columns (b) and (c), respectively. With the camera
moving, the tree shifts toward the left side of the frame and
finally disappears as in column (d). From that point on, only
the house can be extracted by the proposed method as shown
in the last column of Fig. 7.

4.3. Performance comparison

For their simplicity and effectiveness, one-vs-all, one-vs-one
and DAG are three widely used multi-category algorithms. Sup-
pose we have M classes. One-vs-all constructs M binary classi-
fiers f OVA

i (x) with the ith one separating class i from all the re-
maining classes. One-vs-one and DAG, on the other hand, con-
struct M(M −1)/2 decision functions fi,j (x), each of which is
responsible for the binary classification task between class i and
j. At the classification step, one-vs-all classifies a sample x to
the class for which f OVA

i (x) produces the highest value while
one-vs-one follows a voting strategy. As for DAG, it builds a
DAG using the M(M − 1)/2 binary classifiers as the internal
nodes. The classification is achieved by going through a path
from the root of the graph to a leaf node which indicates the
predicted class [22].

The classification error is the metric employed to compare
the performances of different learning schemes. So now we
compute the classification errors to see how multi-category �-

learning performs against these three popular methods. To do
so, we first manually outlined the objects of interest in each
frame, which serves as the ground truth to compare with the
objects extracted by the proposed approach. The classification
errors are then computed as the number of wrongly classified
pixels divided by the number of pixels per frame.

In Fig. 8, the classification errors yielded by all the four
methods are displayed every five frames where SVM is the un-
derlying binary classifiers. For the training of each SVM, the
classification accuracy is estimated by testing different values
of C ∈ [212, 211, . . . , 2−2], and the best one is chosen for the
performance comparison. As one can see, for all the three se-
quences multi-category �-learning achieves the lowest classifi-
cation errors almost for every test frame. Although the training
is conducted only once by using the first frame, the superior
generalization ability of multi-category �-learning enables it to
survive nearly the whole sequence.

Multi-category �-learning as one sees in its formulation (Eq.
(5)) has two methodological features: (1) direct consideration
of GE by using the � function and (2) collective consideration
of all the classes at once. In order to further show the advan-
tage of the second feature, we conduct another series of ex-
periments which replaces SVM with binary �-learning in the
one-vs-all, one-vs-one and DAG methods. The errors are com-
pared in Fig. 9. As mentioned before, one-vs-one and DAG
are based on pairwise classification, for which smaller sample
sets are used to train each classifier [18]. One-vs-all, similar
to multi-category �-learning, does utilize all the training sam-



Y. Liu et al. / Pattern Recognition 41 (2008) 2777–2788 2785

Fig. 10. The extracted performance using 2D binary model. (a) The original frame. (b) The binary model of VO #1. (c) The binary model of VO #2. (d) The
extracted VO #1. (e) The extracted VO #2.

Fig. 11. The extracted performance using 2D binary model. (a) The original frame. (b) The binary model of VO #1. (c) The binary model of VO #2. (d) The
binary model of VO #3. (e) The extracted VO #1. (f) The extracted VO #2. (g) The extracted VO #3.

ples to train, but the class mutual exclusiveness is overlooked.
Thus the performance of one-vs-all degrades when there does
not exist a dominating class in the sense that the conditional

probability of each class is less than 0.5 [12,18]. In contrast,
all the mutual information among classes is considered at once
in multi-category �-learning, which is the main reason that it
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Fig. 12. The extracted performance by using block size 5 × 5. (a) Frame 2, (b) VO #1, (c) VO #2 and (d) VO #3.

Fig. 13. The extracted performance by using block size 17 × 17. (a) Frame 3, (b) VO #1 and (c) VO #2.

beats the other three methods by large margin even when bi-
nary �-learning has been employed as the base classifier in this
series of experiments.

It can be observed in Fig. 8(c) and 9(c) that after frame 50,
the classification errors yielded by all the four methods drop
significantly in Sun Flower Garden. This is because as the tree
shifts toward the left side of the frame and finally disappears in
around frame 50, the original three-class problem reduces to a
binary-class problem. With one fewer class to differentiate, the
learning approach is able to yield higher classification accuracy.

So far the performance comparison is done within the group
of classification-based approaches by employing different
multi-class classifiers. To further understand the strength of
the proposed method, we now present the performance of a
non-classification-based approach developed by Meier et al.
[32]. This approach is selected for the following reasons:

(1) It belongs to the “representation and localization” category,
which is the same technique as we use here.

(2) Meier’s approach is illustrated using the single object
model, but its extension to the scenarios of multiple objects
is straightforward.

(3) It has few parameters to tune which makes it easy to im-
plement and fair to compare.

Assuming a stationary background, the core algorithm of
Meier’s approach is to represent each VO by a 2D binary
model and localize the VO by matching the model against

subsequent frames using the Hausdorff distance. After the best
match is found in every frame, the model is updated to ac-
commodate for the change in shape. The initial model, which
is derived automatically in the paper, is provided manually in
our implementation for the first frame as it is done in our ap-
proach. Fig. 10 shows the extracted VO of sequence Students
when Meier’s approach is applied.

Because the binary model consists of the edge pixels of the
object, it has difficulty locating the boundary of the object
where the edge information is not strong enough or the tex-
tured background is present such as the two regions circled in
the first row of Fig. 10(a). As a result, the lower left part of the
male student’s body is missing from the object while part of the
background (the leave area around his head) is included in the
extracted results. For the same reason, this approach performs
well for sequence Trevor, of which the background is very sim-
ple and flat as shown in Fig. 11. We cannot obtain the results
of sequence Sun Flower Garden because, unlike Students and
Trevor, Sun Flower Garden is a sequence with non-stationary
background due to the motion of camera which breaks the
assumption of stationary background. In order to handle this
type of video sequences, Meier et al. [32] states that a differ-
ent method for moving background filtering other than the one
presented in the paper is necessary.

How to extract the corresponding VO based on the bi-
nary model of the current frame is another critical step for
this approach, or more generally the approaches using edge-
represented models. One possible way is to find the first and
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last edge pixels of each row and assign all the pixels in be-
tween as to VO. Then the same procedure is repeated for each
column [32]. It works well when the contour of the VO is
convex. Otherwise, part of the background will be assigned
as the VO. Such an example is shown in the second row of
Fig. 11(f) and (g).

As demonstrated before, our approach works effectively on
all the three video sequences and all the VOs of different shapes,
which shows its advantage in terms of robustness.

It is worth pointing out that the original approach by Meier
is for single VO extraction, and we simply extend it to deal
with multiple VOs by matching the corresponding models in-
dividually. Therefore, due to the errors introduced in the pro-
cess of model updating it is possible for some areas to appear
in multiple VOs, especially when they overlap. For instance,
the left hand of the male student is included in the extracted
male as well as female students. This problem evidently demon-
strates that multiple VO extraction is not just a straightforward
extension from its binary counterpart and special handling is
necessary.

4.4. Effect of the block size

The objects are represented and classified at the block-level,
and for the reason stated in 3.2 the block size has been fixed
as 9 × 9 during the experiments. Evidently the choice of block
size affects the performance. As the block size goes smaller,
the features extracted from the block contain less distinguishing
information of the blocks, which will degrade the performance
of the classification. This effect can easily be perceived in the
extreme when the block is sized down to a single pixel, which
is not discriminating enough to represent different classes.

We performed an experiment on smaller blocks to test the
effect of the reduced size. Some results obtained by using 5×5
on Trevor is shown in Fig. 12, where the hair of VO #3 is
misclassified as part of VO #1, and parts of VO #1 and #3 are
misclassified as VO #2, all due to the reduction of the block size.
To the contrary, the blocks can be as big as the whole object,
which will defeat the purpose of the current approach since
the training of classifiers needs multiple samples of the same
classes. Generally speaking, by incorporating more information
of the spatial structures around the pixels, large blocks are more
distinguished from object to object. The downside is the higher
computation load and the lack of robustness to occlusions. For
example, when we test the block size of 17×17 on the sequence
Sun Flower Garden on frame 3, which is only 2 frames later
than the training frame, we see in Fig. 13 that a significant
portion of the house has already been misextracted. According
to our experience, the size 9 × 9 works well for the three video
sequences we experiment with, but it would not be a universal
choice.

5. Conclusions

VO extraction is of great importance for content-based video
analysis, and a great deal of research has been performed for
single object extraction. Unfortunately, multi-object scenario

which is more realistic and imposes a much greater challenge.
Following the idea that handles VO extraction as a classifica-
tion problem, this paper aims to tackle multiple object extrac-
tion by solving a multi-class classification problem using multi-
category �-learning which is a newly developed learning algo-
rithm for classification. The performances of other three popu-
lar multi-category classifiers as well a non-classification-based
approach are compared against �-learning, which shows the
advantage of this new learning machine. The proposed method
is of low computational complexity which scales well when the
number of objects increases.

It can be observed that even when the camera is in motion
and the training is only done once, the tracking results are still
of good quality. We believe that this is because there is no
significant change of the video content so that the information
captured by the first frame is rich enough to generate a classifier
that is robust for the rest of the sequence.

It is also worth pointing out that the proposed approach re-
lies only on the spatial information. Video sequences, how-
ever, provide temporal information which is useful for objects
and background separation. Therefore one interesting research
topic is to take advantage of the temporal redundancy between
frames to further improve the efficiency and accuracy of the
proposed algorithm.
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