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Abstract

In many pattern recognition applications, high-dimensional feature vectors impose a high computational cost as well as the risk of
“overfitting”. Feature Selection addresses the dimensionality reduction problem by determining a subset of available features which is
most essential for classification. This paper presents a novel feature selection method named filtered and supported sequential forward
search (FS_SFS) in the context of support vector machines (SVM). In comparison with conventional wrapper methods that employ the
SFES strategy, FS_SFS has two important properties to reduce the time of computation. First, it dynamically maintains a subset of samples
for the training of SVM. Because not all the available samples participate in the training process, the computational cost to obtain a
single SVM classifier is decreased. Secondly, a new criterion, which takes into consideration both the discriminant ability of individual
features and the correlation between them, is proposed to effectively filter out nonessential features. As a result, the total number of
training is significantly reduced and the overfitting problem is alleviated. The proposed approach is tested on both synthetic and real data

to demonstrate its effectiveness and efficiency.

© 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Reduction of feature dimensionality is of considerable
importance in machine learning. The reason for being so is
twofold: to reduce the computational complexity and to im-
prove the classifier’s generalization ability. The first moti-
vation is quite evident, since fewer features require less run
time to train and to apply the classifier. The second motiva-
tion is low-dimensional representation reducing the risk of
“overfitting”. As a rule of thumb, a minimum of 10-d - C
training samples is required for a d-dimensional classifica-
tion problem of C classes [1]. When it is impractical and
even impossible to obtain the required number of training
samples, the reduction of feature dimensionality helps de-
crease the size of the training samples and consequently im-
proves the generalization performance of the classification
algorithm.
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Feature extraction and feature selection are two different
approaches for the reduction of dimensionality. Feature ex-
traction involves linear or nonlinear transformation from the
original feature space to a new one of lower dimensionality.
Although it does reduce the dimensionality of the vectors
fed to the classifier, the number of features that must be mea-
sured remains the same. Feature selection, on the other hand,
directly reduces the number of original features by select-
ing a subset of them that still retains sufficient information
for classification. Feature selection techniques have been ap-
plied successfully in many applications, such as automated
text categorization [2] and data visualization [3]. In gen-
eral, feature selection approaches can be grouped into two
categories: filter methods and wrapper methods [4]. Acquir-
ing no feedback from classifiers, the filter methods estimate
the classification performance by some indirect assessments,
such as distance measures which reflect how well the classes
separate from each other. The wrapper methods, on the con-
trary, are classifier-dependent. Based on the classification ac-
curacy, the methods evaluate the “goodness” of the selected
feature subset directly, which should intuitively yield better
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performance. As a matter of fact, many experimental results
reported so far are in favor of the wrapper methods [4-6].

In spite of the good performance, the wrapper methods
have limited applications due to the high computational com-
plexity involved. This is true especially when the wrapper
methods are applied to support vector machines (SVM), a
state-of-art classifier that has found success in a variety of
areas [7-11]. Given the fact that training SVM even only
once needs a great deal of computation when the number of
training samples is large, the integration of SVM and wrap-
per methods, which requires multiple times of SVM train-
ing, will be computationally infeasible. Even when some
well-known suboptimal search strategies such as the sequen-
tial forward search (SFS) are used, the selection process is
still quite costly. That calls for feature selection methods
designed especially for SVM. Unfortunately there are just a
few algorithms in the literature that have been proposed for
feature selection in the context of SVM [12-16]. One pos-
sibility is to embed feature selection into the optimization
process [12,13]. For example, Ref. [12] adds an extra term
that penalizes the size of the selected feature subset to the
standard cost function of SVM, and optimizes the new ob-
jective function to achieve feature selection. A similar idea
is also employed in Ref. [13]. The major difference is that
Ref. [13] introduces a binary vector whose elements indi-
cate the presence and absence of the corresponding feature
component, and then approximates the binary vector with
a nonnegative real-valued vector ¢ so that the optimization
can be performed efficiently via gradient descent. Then the
features corresponding to the m largest valued elements of
o are selected. The benefit is that the optimization has to be
done only once. Unfortunately the two methods evaluate the
features on a individual basis and the correlation between
them is ignored [15].

In the meantime, many researchers suggest to evaluate the
importance of features by measuring the change of the cost
function when a feature is removed, or equivalently when
its weight is set to zero. In the case of SVM which has a
quadratic cost function, the magnitude of weights w; is the
justified feature ranking criterion, and based on this criterion
a SVM recursive feature elimination (SVM RFE) method is
proposed in Ref. [14]. Unfortunately, this approach is lim-
ited to linear kernels. Some researchers propose to utilize
the change of the discriminant function rather than the cost
function itself for feature ranking [15,16]. Since for most
kernels the SVM discriminant function is differentiable with
respect to individual features, the algorithms become appli-
cable to nonlinear kernels.

In this paper, we present a more efficient version of the
wrapper/SES method for SVM which is named filtered and
supported SFS (FS_SFS). FS_SFS is designed especially
for SVM and has the following properties to improve its
efficiency over the conventional wrapper/SFS method:

(1) FS_SFS combines the advantages of the filter and the
wrapper methods. By introducing a filtering process

for each SFS iteration, FS_SFS reduces the number
of features that has to be tested through the training
of SVM. Then the pre-selected features are considered
“informative”, and are evaluated by the accuracy of clas-
sification as in the conventional wrapper method. In this
way, we are able to reduce the unnecessary computa-
tion time spent on the testing of the “noninformative”
features while maintaining the good performance deliv-
ered by the wrapper method.

(2) FS_SFS introduces a new criterion that assesses fea-
tures in a collective manner. An effective filtering cri-
terion is needed in FS_SFS since it is undesirable to
discard many informative features through the filtering
process. To address this problem, we develop a new cri-
terion, which is computationally efficient and considers
the discriminant ability of individual features as well as
the correlation between them.

(3) FS_SFS is specially designed for SVM classifier to im-
prove the efficiency of the feature selection process.
During the feature search process, FS_SFS dynamically
maintains an active set for training, which is a subset
of the original training samples, as the candidates of
the support vectors. Whenever the training of SVM is
needed, only the samples in the subset are utilized. In
this way, the efficiency of training a single SVM clas-
sifier is improved.

The rest of the paper is organized as follows. Section 2
gives a brief introduction of SVM and Section 3 explains
FS_SFS in detail. Experimental results are given in Section
4 followed by conclusions and discussions in Section 5.

2. Support vector machines

SVM is a state-of-the-art learning machine which has
been extensively used as a classification tool and has found
a great deal of success in many applications. To facilitate
the discussion, we give a very brief review of SVM in this
section and refer the details to Refs. [17-19].

Consider N pairs of training samples:

{X(D,Y(DEL{X®2), Y2}, ..., {X(N), Y(N)},
where

X (i) = [x1()x2 (i) o xe (D]T

is a k-dimensional feature vector representing the ith training
sample, and Y (i) € {—1, 1} is the class label of X (7).

A hyperplane in the feature space can be described as the
equation W - X +b=0, where W =[wjw> ... wk]T and b is
a scalar. The signed distance d (i) from a point X (i) in the
feature space to the hyperplane is

a0 = W-X@D+b
Wl
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When the training samples are linearly separable, SVM
yields the optimal hyperplane that separates two classes with
no training error, and maximizes the minimum value of
|[d(@)]. It is easy to find that the parameter pair (W, b) cor-
responding to the optimal hyperplane is the solution to the
following optimization problem:

1
Minimize L(W)=§||W||2
Subject to Y)W -X(@)+b)=1, i=1,....,N. (1)

For linearly nonseparable cases, there is no such a hyper-
plane that is able to classify every training point correctly.
However the optimization idea can be generalized by intro-
ducing the concept of soft margin. The new optimization
problem thus becomes:

o 1 N

Minimize L(W,¢) = §||W||2 +C ; E@)

Subject to  Y(@)(W - X (i) +b)>1— £(@),
i=1,...N, 2)

where ¢&; are called slack variables which are related to the
soft margin, and C is the tuning parameter used to balance
the margin and the training error. Both optimization prob-
lems (1) and (2) can be solved by introducing the Lagrange
multipliers o(i) that transform them to quadratic program-
ming problems.

In the classification phase, a point X in the feature space
is assigned a label ¥ according to the following equation:

f:sgn[W-f(+b]

N
= sgn [Z ()Y () (X () - X) +b] A3)

i=1

For the applications where linear SVM dose not produce
satisfactory performance, nonlinear SVM is suggested. The
basic idea of nonlinear SVM is to map X by a nonlin-
early mapping @(X) to a much higher dimensional space,
in which the optimal hyperplane is found. Based on the
observation that only the inner product of two vectors
is needed to solve the quadratic programming problem,
one can define the nonlinear mapping implicitly by intro-
ducing the so-called kernel function, which computes the
inner product of vectors @(X(i)) and ®(X(j)). Among
a variety of kernel functions available, the radial basis
and the polynomial function are often chosen for many
applications:

e Radial basis function (RBF)

_IIXl—lel)

K(X1,X2)=exp< )

where ¢ is the parameter controlling the width of the
kernel.

e Polynomial function
K (X1, X2) = (X1 - X2+ DY,
where d is the degree of the polynomial.
Accordingly, the class label of an unseen point X is given by

)?:sgn[W-f(—}—b]

N
=sgn [Z a()Y () K (X (@), X) +b:|. )

i=1

A noteworthy feature of SVM is that it is based on the
structural risk minimization induction principle, which pro-
vides a guaranteed bounded risk value even when the num-
ber of the training set is small. Nevertheless, as shown in
Ref. [13], SVM may perform poorly when there are many
irrelevant features and for such a situation, feature selection
is a remedy.

3. FS_SFS: filtered and supported sequential forward
search

3.1. Problem statement of feature selection

Consider the binary classification scenario, which has in-
put vectors denoted as X € R¥ and their corresponding class
labels denoted as Y € {1, —1}. Let

F={f1, f2, .-, fi} ()
be the set of all features under examination, and let

S={XW0),YI)|l=1,2,...,N}
={x1() x2() ... xx(DIY, YD |I=1,...,N} (6)

denotes the training set containing N training pairs, where
x; (1) is the numerical value of feature f; for the /th training
sample.

The goal of feature selection is to find a minimal set of
features Fy={f§,, fs,, ..., fs,} to represent the input vector
X in a lower dimensional feature space as

Xy = [xsl Xsy o xsd]a (7)

where d <k, while the classifier obtained in the low-
dimensional representation still yields the acceptable clas-
sification accuracy.

3.2. Review of FS_SFS

As mentioned earlier, feature selection approaches can
be categorized into two classes: the filter and the wrapper
methods [4], whose pipelines are shown in Fig. 1(a) and
(b), respectively. Guided by the feedback from the classi-
fier, the wrapper method selects features in a more consis-
tent way than the filter methods. The better performance
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Fig. 1. The comparison among (a) filter methods, (b) wrapper methods, and (c) the proposed methods for feature selection.

of the former is achieved, however, at the cost of much
more computation. Fig. 1(c) gives the outline of the pro-
posed method which combines the advantage of both the
filter and the wrapper methods. The filtering part, acting in
the generic way similar to a filter method, ranks features
without involving the classifier. The features with relatively
high ranks are considered as “informative” feature candi-
dates and then are re-studied by the wrapper part that further
investigates their contributions to a specific classifier. This
combinational framework delivers as good a performance
as the conventional wrapper method, but is computationally
simpler.

With the framework determined, feature selection is re-
duced to a problem of searching for the optimal subset
[20]. Many search strategies have been proposed [21-23],
from which we adopt a suboptimal search method called
SES [23] for its simplicity and effectiveness. Starting with
an empty set, SFS iteratively selects one feature at a time
and adds it to the current feature set. The feature added is
the one which gives the smallest value according to a cer-
tain criterion comparing to adding the other remaining fea-
tures. Different approaches have different criteria, such as
class separability [24], classification errors [25], change of
the boundary [26], and etc. The criterion employed in our
algorithm is the objective function of SVM formulated in
Eq. (2).

The FS_SFS method will be presented in detail in the fol-
lowing three subsections. The isolated filter and the wrap-
per parts, which are named Filtered_SFS (F_SFS) and Sup-
ported_SFS (S_SFS), respectively, are presented in Sections
3.3 and 3.4. Then they are then integrated as FS_SFS in
Section 3.5.

3.3. F_SFS: filtered_SFS using a new criterion

Recall that the goal of the filter part is to discard some
“noninformative” features to reduce the computational bur-
den of the wrapper part. To serve this purpose, the filter part
needs to meet two major requirements:

e the criterion for filtering must be simple so as not to
introduce much computation;

e the process of filtering should lose as few informative
features as possible.

Class separability is a classical criterion of filtering available
in the literature. It involves calculating the normalized dis-
tance between classes and then eliminating the features that
yield low separability values. The criterion is computation-
ally simple and thus satisfies the first requirement. However,
it has a major drawback, i.e., the criterion implicitly assumes
the features to be orthogonal and overlooks the correlation
between them. Consequently, those correlated features that
individually separate the classes well but collectively pro-
vided redundant information might be retained, which vio-
lates the second requirement.

Here we propose a new criterion which is able to yield
a more compact feature subset. In this new criterion, the
correlation between features as well as the class separability
of the individual features are taken into consideration. Also
it retains the advantage of simple computation.

Suppose we have a feature combination Fs = {f,,, fn,.
..., fs;}, and we can calculate a score for each individual
feature f;. This score, which is denoted as R; r,, is the
measure of the importance of that particular feature f; such
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that, the higher the score the more important the feature is.
The evaluation of the score for a given feature subset Fj
takes the following steps:

(1) Determining the discriminant ability of the feature:
The discriminant ability of feature f; is described by
the class separability as

_ m =)

D; i i
stdy + std,

®)

where m’1 and sta’il (mé and stdé) are the mean and stan-
dard deviation of the samples belonging to class 1 (—1),
when only feature f; is considered. It can be seen from
Eq. (8) that the further the two classes are separated
from each other using f;, the larger D; would be, and
therefore the better discriminant ability that feature f;
has.
(2) Determining the correlation between f; and Fj:

First we define the correlation coefficient p; ; between
two features f; and f; as

2
— (c)
Pij = l_[ Pij
=1
2

C

l_[ cov(Sc(fi)s Sc(f]))
U G vars. gy’

C))

where S.(fi) ={xz,(I) | Y (I) =c} is the training vectors
that are represented by feature f; and labeled as class c.
Based on Pi,j» We further define the correlation coeffi-
cient between a single feature f; and a feature set Fy as

PiF, = ;}13; lpi il (10)
A high value of p; j indicates that f; is highly cor-
related with certain feature fj € Fy, and therefore it
carries redundant information.

(3) Calculating the score of the feature:

It is desirable to select the features that can individually
separate the classes well and has small correlation with
the features in the subset which has been obtained so
far. Thus the final score assigned to f; is defined as

Ri F, = 1oi F, 1, (11)

i
"~ max{D;}

where D; is normalized such that it is in the same range
as |p; r, -

It is worth noting that R; r, is dependent not only on
/i but also on Fs. As a result, the score of f; usually
changes during the SFS process.

3.4. S_SFS: supported_SFS in the context of SVM

Supported SES is basically a variation of the SFS al-
gorithm that is specially tailored to SVM to expedite the

feature searching process. Recall that in SVM, there is a
special group of training samples named “support vectors”,
whose corresponding coefficients o(i) in Eq. (3) are nonze-
ros. In other words, training samples other than support vec-
tors have no contribution to determine the decision bound-
ary. Since the number of support vectors is relatively small,
we could train SVM just by using the support vectors. Fol-
lowing this idea, we propose the supported SFS algorithm,
which dynamically maintains an active subset as the candi-
dates of the support vectors, and trains SVM using this re-
duced subset rather than the entire training set. In this way,
we are able to find the boundary with less computational
cost.

The procedure of S_SFS is described as follows. The first
step is to choose the best single features among the k possible
choices. To do so, we train SVM k times, each of which
uses all the training samples available but with only one
feature f;. Mathematically the initial feature combination
set is

Fl=fi fi€eF, (12)

and the active training set V/, which is the entire training
set, 1S

Vi={1,2,...,N}. (13)

Although, every training sample in S is involved in this
initial training task, the computational complexity is not high
because the input vector is just one-dimensional (1-D). After
the training, each single-feature combination F 1’ is associ-
ated with a value M {, which is the minimum of the objective
function, and a group of support vectors v;. The feature that
yields the smallest M|

Jj = arg min M{ (14)
i€{1,2,...,.N}

is chosen as the best one. Thus we obtain the initial feature
combination F; = { f;} and its active training set V1 = {v;}.

At step n, we have already obtained the feature combina-
tion F,, that contains n features, and the active training set
V... To add one more feature into the feature combination
set, we test each remaining feature f; one by one and con-
struct the corresponding active training set for every new
feature combination as follows:

F,;‘H:F,,U{ﬁ} for f; € FY,

Vo1 =VaUlui}, (15)

where F" ={f,| f, € F and f, ¢ F,} is the collection of
the available features to be selected from.

For each Frl: 41> We train SVM just by using the samples in

Vrf 41~ The resulting minimum of the objective functions and

the collection of the support vectors are denoted as M,il

and SV;1+1’

+1
respectively. Then the feature that yields the
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combination with the least M,i 11

Jj = arg min Mle (16)
fieFgv

is selected, and accordingly the new feature combination
F,4+1, and new active training set V4| are obtained as
follows:

J
Fn+1 = Fl’l-‘rl’
Vag1 =SV . (17)

The SFS process continues until no significant reduction of
M;] is found or the desired number of features has been
obtained.

3.5. FS_SFS: the integration of F_SFS and S_SFS

The integration of F_SFS and S_SFS is quite straightfor-
ward for which the basic idea is to discard the features with
low scores according to the criterion discussed in Section
3.3, so as to reduce the number of features which S_SFS
has to evaluate.

Assuming we are at step n of SFS with F,, and V), avail-
able, FS_SFS works as follows:

(1) calculate the score R; f, for each remaining feature f;;

(2) select K, highest scored features to construct F)'";

(3) determine the next feature to be added using Eqgs. (15)
and (16);

(4) update the active training set using Eq. (17).

K, determines how many features we want to keep after the
filtering at step n. One extreme case is that K, is equal to
the number of all remaining features. In this scenario, the
filter part does not contribute at all and evidently FS_SFS is
reduced to S_SFS. Similarly, if K,, is equal to 1, the wrapper
method is unnecessary and FS_SFS becomes F_SFS. K, is
usually chosen between the two extremes and thus works as
a tuning parameter to balance between the performance and
the complexity of the algorithm.

4. Experimental results

In the experiments, we apply the proposed feature selec-
tion method to both synthetic and real-world data. First, we
design a synthetic data set to test whether the support vectors
are effectively chosen by the active training set. Then we
adopt the data set in Ref. [13] to compare the performance
of FS_SFS and other three algorithms, which demonstrates
that FS_SFS is more capable of selecting a small number of
features, when most of the available features are irrelevant.
Finally, we employ 10 data sets which are from the widely
used University of California, Irvine (UCI) repository of ma-
chine learning [27] to test the capability of FS_SFS on real-
world problems. For all the experiments, the optimization
of SVM is achieved by SVMTorch [28].

4.1. Results on synthetic data 1

Three experiments are carried out on a synthetic data set.
For each experiment we use N vectors X = (x1, x2, ..., Xx)
from two classes (class 1 or class —1) in a k-dimensional
data space. The components x; are independent Gaussian
variables whose distributions are designed as follows:

p(xi)

1 X — 1
ex if X belongs to class 1,
271o; P ( 20,-2 ) £

! %+ 1) i ¥ belongs to class — 1
€X 1 clongs to class —1,
27 P 202 g

i

(18)

where g; = 0.5 x 20=D and i =1,2,... k.

The three experiments deal with the 2-D, 3-D and 10-D
data, respectively. The values of N and k in each experiment
are

(1) 2-D case: N =100 and k =2;
(2) 3-D case: N =100 and k = 3;
(3) 10-D case: N =250 and k = 10.

Fig. 2 shows the effectiveness of the FS_SFS algorithm in
estimating the support vectors in the 2-D scenario. By train-
ing SVM, using only x|, we obtain the support vectors as-
sociated with xq, which are denoted as v and circled in
Fig. 2(a). Similarly, we obtain v, (Fig. 2b). Then as dis-
cussed in Section 3, FS_SFS trains SVM by using only sam-
ples V. =wv; U vy. As one can see from Figs. 2(c) and (d),
FS_SFS yields exactly the same support vectors as the stan-
dard SVM training method, which involves all the original
training samples.

We also test FS_SFS for the 3-D case, and Fig. 3 shows
how the active training set changes when more and more
features are added to the candidate feature set F. Again,
FS_SFS and the standard SVM methods generate the same
support vectors.

The third experiment is carried out on the 10-D feature
space, and K, is set to

P 1)
n 2 s

where |F;| denotes the number of features in the feature
set F,. In other words, half of the available features are
discarded at every SFS iteration step. According to Eq. (18),
the samples are generated in such a way that if i < j, the
variance of feature x; is larger than that of x;, and therefore
x; has more discriminant ability than x ;. For that reason, we
expect x; to be selected before x;. For the convenience of
display, we assign a feature x; a point as the following:

Point(x;) = 11 — pos(x;), (20)

where pos(x;) is the order of x; selected. For example, if x;
is the number one feature selected, its point would be 10.
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Fig. 2. The active training set of the 2-D case, which are circled, maintained by S_SFS. (a) vy, which is the support vectors obtained by considering
only feature xj. (b) vy, which is the support vectors obtained by considering only feature x,. (c) The support vectors obtained by training SVM on
V =wv1 Uwvy. (d) The support vectors obtained by using all the training samples.

Fig. 4(a) gives the ideal point of x;. Figs. 4(b) and (c) show
the actual points of the features, which are averaged over
100 trials, when SFS and FS_SFS are applied, respectively.
Here by notation SFS, we mean the wrapper methods using
the SFS strategy. As one can see, FS_SFS is able to achieve
similar results as SFS but with a lower computational cost.

Different values of the parameter K,, are tried for the 10-
D case, and the classification accuracy and the run time ob-
tained for the case are listed in Table 1. Not to our surprise,
with the increasing of K, the accuracy of the classification
increases but the selection process takes longer time, which
confirms that the performance and complexity of the algo-
rithm can be balanced by tuning K,,.

4.2. Results on synthetic data 2

In the experiment described above, all the features to be
selected from, are more or less relevant. In order to test the
performance in the presence of a large number of irrelevant
features, we adopt the artificial data designed in Ref. [13],
in which only six out of total 202 available features are
useful for the classification. The data set is constructed such

that the class labels are evenly distributed as P{y = 1} =
P{y=—1}=0.5. The feature vectors X are 202-D which are
sampled according to the probability distribution function
(pdf) shown in the following equation such that only the first
six are relevant, while the rest of them is just noise.

Plx;i |y}

0.7-y-N(i, 1)+0.3- N, 1) if 1<i<3,
={03-y-NG—3,140.7-N(©,1) if 4<i<6,
N, 1) if 7<i<202.
(21)

FS_SFS is applied to this data set to select the best two fea-
tures, and Fig. 5 gives the average classification errors on
500 testing samples versus various training set sizes. The
performance of the standard SVM as well as three other fea-
ture selection algorithms, which are DFPA [15], SVM BFE
[14], and the classical filter method using class separability
as the filtering criterion, respectively, are also presented for
the purpose of comparison.

As one can see, the presence of a large number of ir-
relevant features does hurt the performance, which again
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(© ()

Fig. 3. The active training set of the 3-D case, which are circled, maintained by S_SFS. (a) The support vectors obtained when F ={x;}. (b) The support
vectors obtained when F' = {x1, x2}. (¢c) The support vectors obtained when F = {x1, xo, x3}. (d) The support vectors obtained by using all the training
samples.
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Fig. 4. The points of feature components x;. (a) The ideal points. (b) The points obtained by using SFS. (c) The points obtained by using FS_SFS.
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Table 1
Comparison of the classification accuracy and the run time with different
values of K,

Classification accuracy Run time (s)

Training (%) Testing (%)

Kn =l 99.3 94.0 111
Ko=) 99.6 9.1 14.6
Ky =21 99.4 96.9 16.5
Ku=|Fyl 99.8 97.2 27
80 R —
—* — standard SVM
A ~--a-- DFPA
70 — e - RBE
—=2— Class Separability
e0r FS_SFS
= R
B0d———8= =g =+ T e e ]

classification error %

the number of training samples

Fig. 5. A comparison of feature selection methods on a synthetic linear
problem.

demonstrates the importance of feature selection. FS_SFS
outperforms the other algorithms, especially when the train-
ing size is small. As more and more training samples are
used, SFS_SFS performs marginally better than the method
of DFPA [15].

4.3. Results on real-world data

The proposed algorithm is applied to ten real-world data
sets [27] which are

(1) the BUPA Liver Disorders data set (BUPA Liver) which
contains 354 instances with six features;

(2) the Wisconsin Breast Cancer data set (BCW) which
contains 683 instances with nine features;

(3) the data of letters ‘A’ and ‘B’ from Letter Image Recog-
nition data set (A-B-letter) which contains 1555 in-
stances with 16 features;

(4) the Johns Hopkins University Ionosphere data set (Iono-
sphere) which contains 351 instances with 34 features;

(5) the Glass Identification data set (Glass) which contains
214 instances with nine features;

(6) the Heart Disease data set collected from Cleveland
Clinic Foundation (Heart Disease) which contains 303
instances with 13 features;

2500
o 2000
[}
=
g
S 1500 | -- standard SVM training
5 — FS_SFS
C
=]
2 1000
©
Q2
Qo
© 500
0 ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 1
5 10 15
(a) the number of retained featurs
10
8 L
§ -+- FS_SFS (training)
S 6} O FS_SFS (testing)
'5 —6— SFS (training)
_ES al - 4= - SFS (testing)
:‘5
(%]
«©
[$]
2 L
O = 1. zh b E @ @ 2. £ £ b
0 5 10 15
(b) the number of retained features

Fig. 6. The results of letter recognition (A and B). (a) The change of the
value of the objective function versus the number of retained features.
(b) The comparison of classification errors between FS_SFS and SFS.

(7) Pima Indians Diabetes data set (PI Diabetes) which con-
tains 768 instances with eight features;

(8) Japanese Credit Screening data set (Credit Screening)
which contains 690 instances with 15 features;

(9) Postoperative Patients data set (PO Patients) which con-
tains 90 instances with eight features;

(10) Wisconsin Diagnostic Breast Cancer data set (WDBC)

which contains 569 instances with 30 features.

For each data set we randomly set aside 20% instances as
the testing samples and the rest as the training samples.
Again we let K,, = | |F,|/2]. Fig. 6 shows the performance
of FS_SFS on the A-B-letter data set. The solid line in
Fig. 6(a) represents the value of the objective function ob-
tained by FS_SFS. As one can see, it monotonically de-
creases with more features added and gradually converges
to the dash—dot line, which depicts the value of the objective
function when SVM is trained utilizing all the training sam-
ples and all the available features. Fig. 6(b) plots the clas-
sification errors yielded by FS_SFS and SFS, respectively,
where they yield comparable errors over both the training
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5 -+ FS_SFS (training)
N o FS_SFS (testing)
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classification error %
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(a) the number of retained features
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Fig. 7. The comparison of classification errors between FS_SFS and SFS. (a) The Wisconsin Breast Cancer data set. (b) The Johns Hopkins University

Tonosphere data set. (c) The Glass Identification data set.

Table 2

Comparison of the average classification accuracy and the run time between FS_SFS and SFS over 20 trials

Number of features

Classification accuracy

Run time (s)

FS_SFS

Available  Selected Training Testing FS_SFS SEFS St (%)
(min, max)  FS_SFS (%)  SFS (%) FS_SFS (%) SFS (%)
BUPA Liver 6 46 (4,5) 78.7 78.5 70.2 71.7 431 6.08 70.9
BCW 9 5.4 (5, 6) 97.4 97.4 96.3 95.4 10.6 13.3 79.7
A-B Letter 16 6.2 (6, 7) 99.95 100 99.7 99.8 27.2 37.7 72.1
Tonosphere 34 10 (10, 10)  98.9 99.3 92.0 90.6 81.5 118.9 68.5
Glass 9 4 (4, 4) 94.1 94.2 93.8 93.3 21.6 27.6 78.1
Heart Disease 13 8.6 (7, 9) 933 93.3 84.8 84.8 19.7 33.9 58.1
PI Diabetes 8 42 (4,5) 81.0 79.4 74.9 74.9 15.5 242 64.0
Credit Screening 15 6.6 (5, 7) 90.4 914 85.6 84.8 28.8 49.6 58.1
PO Patients 8 5 (4, 6) 73.1 73.1 71.8 71.8 9.1 12.0 75.8
WDBC 30 15 (15, 15)  99.3 99.9 92.9 924 7.9 x 103 13 x10% 621

The range of the number of features selected are given in the parentheses as (min, max). For BCW, Glass and Post-operative Patients data set, the linear
SVM is employed. For the rest, nonlinear SVM is utilized and the radial basis function is adopted as the kernel function.

and the testing sets. The similar results are observed for the
other nine data sets, and Fig. 7 shows the performance com-
parison on three data sets.

When the value of the objective function does not decrease
significantly, the feature selection process stops and the fea-
tures that have not been selected at that point are deemed
irrelevant to the classification problem. Throughout the ex-

periments, FS_SFS and SFS always select the same number
of features when the stop condition is satisfied. More de-
tailed results are listed in Table 2, which evidentally shows
that FS_SFS improves the efficiency of SFS without sacrific-
ing the accuracy of either the selection or the classification.

FS_SFS also shows stability in the selection of features.
An example is shown in Fig. 8(a). X and Y axes are the
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index of features
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(a) trials
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(b) index of features

Fig. 8. The stability of FS_SES on the BCW data set. (a) The selected
features (squared) during trials. (b) Each bar shows how many times the
corresponding features are selected over 20 trials.

indices of features and trials, respectively, and the selected
features are highlighted by squares. For example, in the first
trial five features (feature #1, #4, #6, #7 and #8) are selected,
and in the fifth trial six features (feature #1, #3, #4, #6, #7
and #8) are selected. Over the 20 trails conducted, the results
are stable: feature #1, #4, #6, #7 and #8 are always selected
while feature #5 and #9 are not. The stability can be seen
more clearly in Fig. 8(b) which displays the total times each
feature has been selected over the 20 trials.

As discussed before, one novelty of FS_SFS is that the
repeated training of SVM is conducted on the subsets of
the original training sets. In order to concretely show how
this strategy helps to reduce the computational cost, in Fig.
9 against the number of the selected features we plot the
change of R,, which is defined as

# of the samples in the subsets

(22)

~ # of the samples in the original training sets’

As one can see, although the value of R, varies from data
set to data set, it does not grow quickly during the selection
process. Actually, it stays much less than 1 except for the
first iteration, when the active training set Vli is the entire
set (Eq. (13)) and therefore R, = 1. It is also observed that
R, hardly decreases significantly as the iteration process
continues and here we offer an explanation. According to

Eqg. (15), we know that
Vi = Vol + lvil = Ve Nvi| > vl (23)

where |-| denote the number of elements in the corresponding
set. More specifically, the average size of the active training

0.9 0.95
0.8 0.9 0.95
o 8'2 . 085 -
. 7]
Q % 08 % 09
w 08 ® 075 @
0.4 ’
0.3 0.7 0.85
0.2 0.65
0.1 0.6 0.8
0 1 2 3 4 5 6 0 2 4 6 8 10 0 1 2 3 4
(a) the number of retained features (b) the number of retained features (c) the number of retained features
1 1 1
0.95 0.9 0.9
0.9 0.8 0.8
g“’ 0.8 & o7 2 o7
) )
0.8 0.6 0.6
0.75 0.5 0.5
0.7 0.4 0.4
0 2 4 6 8 0 1 2 3 4 5 0 5 10 15
(d) the number of retained features (e) the number of retained features f) the number of retained features

Fig. 9. The change of R,, which is defined as the ratio of the size of the subset (used for training) to the size of the total training set, during the feature
selection process for six data sets. (a) BCW, (b) Ionosphere, (c) PI Diabetes, (d) Heart Disease, (e) Glass, (f) WDBC.
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Table 3

Comparison of the classification accuracy between FS_SFS, DFPA [15], SVM BFE (Ref. [14] for linear and Ref.

Y. Liu, Y.F. Zheng / Pattern Recognition 111 (1111) IN1—-111

[16] for nonlinear problems) and the

filter method using class separability as the filtering criterion (boldface indicates the best performance)

# of selected features  Classification accuracy

Training Testing
FS_SFS (%) DFPA (%) RFE (%) Filter (%) FS_SFS (%) DFPA (%) RFE (%) Filter (%)
BUPA Liver 5 78.7 712 713 68.6 70.2 67.1 69.7 61.7
BCW 5 97.4 97.1 97.1 96.7 96.3 96.3 95.9 96.2
A-B Letter 6 99.95 99.08 99.8 99.6 99.7 98.9 99.4 99.3
Ionosphere 10 98.9 96.1 98.0 94.1 92.0 92.6 92.7 92.0
Glass 5 949 91.3 94.7 94.1 92.9 91.9 87.1 90.5
Heart Disease 9 91.9 91.2 91.9 80.8 78.3 69.7 76.8 71.3
PI Diabetes 4 79.3 712 73.0 714 74.5 73.1 74.4 75.7
Credit Screening 7 90.4 68.2 68.0 67.1 85.6 70.0 68.8 69.7
PO Patients 5 73.7 70.4 65.1 61.4 71.8 67.1 54.1 61.2
WDBC 15 99.3 97.1 97.5 95.1 93.0 95.4 95.4 929
set is lower bounded by of individual features as well as the correlation between
features. Furthermore, during the SFS searching process,
ZiGFr‘f" il (24) an active training set is maintained as the candidates of the

|Fl

which prevents the decrease of R, .

Table 3 gives the performance comparison of FS_SFS,
DFPA [15], SVM BFE (Ref. [14] for linear and Ref. [16]
for nonlinear problems) and the filter method using class
separability as the filtering criterion, respectively. Similar to
what we have observed on the synthetic data 2, when the
number of training samples is insufficient with respect to the
number of features, which is the case for the Post-operative
Patient data set (90 instances with eight features), FS_SFS
achieves significantly higher classification accuracy than the
other three approaches. Another special data set is the Credit
Screening data set. The instances in this set exhibit a good
mix of attributes—continuous, nominal with small numbers
of values, and nominal with larger numbers of values, and
in this case FS_SFS again shows major advantage. For the
rest of the adopted data set where most of the features are
relevant and the training samples are relatively ample, the
performances of FS_SFS, DFPA and SVM BEE are close.
Nevertheless, FS_FSF still yields the best results most of
the time.

5. Conclusions

In this paper, we present a novel feature selection
method in the context of SVM. Fundamentally the pro-
posed method, which is named FS_SFS, is a more efficient
version of a wrapper/SFS approach. FS_SFS introduces a
feature pruning process into the wrapper part such that some
“noninformative” features are filtered out and consequently
the number of SVM training is reduced. To make the
pruning process more effective, we develop a new feature
ranking criterion to take into account the class separability

support vectors. SVM training is thus performed over the
reduced training set. In this way, the number of samples
participating in a single optimization procedure decreases,
and the training process is expedited. As SVM is becoming
a popular learning machine for object classification, the
contribution of this paper is important as it significantly
reduces the time of training, which has been a bottleneck
of many applications using SVM. Yet, the efficiency is
achieved without sacrificing the effectiveness. The experi-
mental results show that the proposed method delivers as
good a performance, when the features are more or less rel-
evant, and produces a more effective classifier when many
irrelevant features are present.
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