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Multi-category classification is an on going research topic in image acquisition and pro-
cessing for numerous applications. In this paper, a novel approach called margin and
domain integrated classifier (MDIC) is addressed. It merges the conventional support
vector machine (SVM) and support vector domain description (SVDD) classifiers, and
handles multi-class problems as a combination of several target classes plus outliers. The
basic idea behind the proposed approach is that target classes possess structured charac-
teristics while outliers scatter around in the feature space. In our approach the domain
description and large-margin discrimination are adjustable and therefore yield higher clas-
sification accuracy which leads to better performance than conventional classifiers. The
properties of MDIC are analyzed and the performance comparisons using synthetic and
real data are presented.

Keywords: Margin and domain integrated classification (MDIC), pattern classification, multi-
category classification, support vector machine (SVM), support vector domain description
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1. Introduction

Pattern classification [Duda et al., 2001] has
been an essential subject in machine learning,
computer vision, image and video processing
for a long time. It is widely used in numerous
applications including handwritten digit recog-
nition, 3-D object recognition [Pontil & Verri,

1998], object detection [Kim & Jo, 2009], human
face detection [Osuna et al., 1997], and image
annotation [Goh et al., 2005]. In recent years,
emerging applications such as video object ex-
traction, content-based image retrieval, biomet-
ric data verification, and medical image diagno-
sis, etc., demand even more powerful tools. For
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example of detecting a small and particular set
of targets in a surveillance video around urban
area, the appearance of targets could vary sig-
nificantly which are surrounded by various kinds
of ordinary objects such as buildings of schools
and hospitals and civilian vehicles. Automatic
detection of targets of interests in such an envi-
ronment is extremely difficult and challenging.

Many approaches have been proposed for ob-
ject recognition, which in most cases is achieved
by making use of multiple samples of the ob-
ject in establishing the model. Among all the
approaches, statistical model training [Hastie
et al., 2001] has attracted a great deal of at-
tention in recent years. More recently, large
margin approaches, particularly support vec-
tor machine (SVM), have become a popular
tool for object classification [Cortes & Vap-
nik, 1995][Lin & Wang, 2002][Platt, 1999][Vap-
nik, 1999]. SVM stresses maximal margin-
discrimination between two or multiple classes,
while another model training approach called
support vector domain description (SVDD) em-
phasizes domain-description [Tax & Duin, 1999]
[Scholkopf et al., 2001]. When each approach is
applied in reality, either the discrimination or
the description approach has inherited disadvan-
tages which cannot meet the needs of emerging
applications as mentioned earlier.

Domain-description methods such as SVDD
focus on estimating the distribution of the reg-
ular (or non-outlier) portion of the data. The
problem of domain-description is a special type
of classification problem. For example in one-
class classification, we are always dealing with a
two-class classification problem, where the two
classes are called the target and the outlier class
respectively. The concept was developed under
the assumption that only samples for the tar-
get classes are available, and no non-target class
samples are used for training. In reality, outlier
class can be sampled very sparsely, or can be
totally absent for the reason that it might be
very expensive or difficult to do the measure-
ments on these types of objects. Another ex-
treme case is when the outliers are so abundant
that a good sampling of the outliers is not pos-
sible [Tax, 2009]. On the other hand, margin-
discrimination approaches such as SVM focus on

the optimal separation between different classes
from the knowledge of training samples. The ap-
proach was developed under the assumption of
large amount of training samples (including suf-
ficient outliers) available for learning the model
parameters. However, the intrinsic nature of out-
liers is that they are scarce, unpredictable, and
distant from others, so no training data set can
possibly contain all forms of outliers [Goh et al.,
2005]. As a result, the situation of object classi-
fication in reality is usually to minimize a pre-
diction risk based on limited training samples.

To be more specific, description-based ap-
proach describes a closed subspace to accom-
modate the samples. The domain of the sub-
space is minimized through training samples,
which is therefore tight and no separation oc-
curs. As a result, any sample that is nearby
the domain but falls out is not identified as
a member of the class. In other words, train-
ing results of the description-based approach are
over-fitting to an object class. The over-fitting
problem causes an elevated miss rate in many
emerging applications such as face recognition
for terrorist identification. Discrimination-based
approaches on the other hand are optimized for
a large margin between different classes, but do
not evaluate the “description” of the sample for
its fitness to a particular class. In other words,
training results of the discrimination-based ap-
proach are under-fitting to an object class. Using
the discrimination-based approach, one sample
is classified to one particular class, which, how-
ever, may belong to neither of the classes. The
problem of unable to reject an uncharacteris-
tic sample causes an elevated false-alarm rate in
several practical applications [Yuan & Casasent,
2003].

The above two problems are further illus-
trated in Fig. 1, where the vertical and the hori-
zontal axes represent two different features of an
object. In (a), the description-based approach
generates the tightest hyperspheres for describ-
ing each class, and in (b), the discrimination-
based approach generates hyperplanes with
large margins to separate the classes. When each
approach is applied alone, (c) shows that either
outliers are classified to the target class as false
alarms by the discrimination-based approach or
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(a) (b) (c)

Fig. 1. Description- or discrimination-based approach generates large classification errors in application: (a) the
description-based approach creates a domain for each class, (b) the discrimination-based approach separates the space
into multiple classes, and (c) both approaches generate errors where target samples (triangles, circles, or squares)
are missed by the description-based approach or non-target samples (shown as stars) are classified as target by the
discrimination-based approach.

target samples are missed by the description-
based approach.

As in the foregoing discussion, existing ap-
proaches rely on either discrimination or de-
scription through training samples. By far, SVM
has been the major tool for discrimination clas-
sification and received a great deal of attention
in recent years. SVM was originally developed to
differentiate two as opposed to multiple classes
of objects [Cortes & Vapnik, 1995]. In reality,
many applications require a machine to discrim-
inate multiple classes of objects. To treat multi-
object classification, approaches have been de-
veloped using a generalized approach of two-
class SVM by [Liu & Zheng, 2005] and [Liu &
Zheng, 2008]. In the literature, more relevant
works can be found in the field of SVM for both
theory and applications. There the emphasis has
always been in discrimination, that is, maximiz-
ing the separation margin between two or mul-
tiple classes which is the primary goal of the
generalized SVM. In the context, however, the
margin based approach has its limitation that is
to misclassify non-target samples. To overcome
this practical problem, the description-based ap-
proach was invented in 1999 extending the con-
cept of support vectors from SVM for one-class
data or domain description [Tax & Duin, 1999]
[Scholkopf et al., 2001]. Just as SVM, SVDD
continues to identify applications in object clas-
sification such as facial expression analysis [Zeng
et al., 2006], image classification and retrieval
[Lai et al., 2004], hyperspectral anomaly detec-
tion [Banerjee et al., 2007], and many others [Li
& Hao, 2008]. SVDD has along with SVM be-

come a popular tool for object classification. In
reality, the one-sample approach can be consid-
ered as an exception of SVDD in which a single
sample serves as the center of a domain, and the
radius of the domain is determined by a thresh-
old selected according to the nature of applica-
tion. In SVDD, however, both are determined
by the support vectors through an optimization
process for achieving better performance statis-
tically due to the use of training samples. Again,
SVDD is limited to applications in which sam-
ples are closely clustered in a space. Even minor
variation of the object may result in misclassifi-
cation.

To our knowledge, there does not exist any
work that systematically integrates the two ad-
vantages of margin for discrimination and do-
main for description together. So far only several
works have mentioned the idea of margins in the
framework of one-class classification or descrip-
tion. Yuan and Casasent developed an approach
constructing multiple one-class SVMs with one
for each class [Yuan & Casasent, 2003]. If all
the classifiers reject an input, the sample is not
classified to any target class; otherwise, it is ac-
cepted as the class with the highest level of con-
fidence. More recently, Liu and Zheng developed
a binary classifier called minimum enclosing and
maximum excluding machine (MEMEM) which
takes outliers into consideration [Liu & Zheng,
2006]. Similar to SVDD, MEMEM models the
support of a target class by a hypersphere, but
unlike SVDD it seeks an additional hypersphere
that excludes the negative samples by a wide
shell. To integrate margin and domain in a sin-
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gle model for multiple classification, we extend
the capabilities of MEMEM to a much powerful
tool, which is called margin and domain inte-
grated classification (MDIC) in the reminder of
this paper. MDIC integrates the notion of mar-
gin into the description-based approach for fur-
ther enhancing its performance. It makes both
the domain and the separation margin flexible
so that the optimal performance can be real-
ized to adapt various purposes and conditions
of applications. By doing so, the discriminating
ability of the classifier is enhanced while its de-
scriptive ability is preserved. The most impor-
tant difference between MDIC and MEMEM is
that the formulation of MEMEM is for the bi-
nary case, while MDIC is for multiple classes.
That is, the formulation of MDIC is a general-
ization from MEMEM, which represents a signif-
icant improvement from MEMEM. As a result,
the applications of MDIC is greatly expanded
from two classes to generally-multiple classes,
while MEMEM is limited to one target class and
one outlier class.

It is still an ongoing research topic to ex-
tend a classifier from binary to multiple cat-
egories [Weston & Watkins, 1999][Hsu & Lin,
2002][Lee et al., 2004][Rifkin & Klautau, 2004]
[Liu et al., 2005][Joshi et al., 2010]. Conven-
tionally, a single multi-class problem is consid-
ered as a collection of multiple binary prob-
lems. In one-versus-all (OVA) method, k clas-
sifiers are constructed for each class to separate
it from the rest of the classes. In one-versus-
one (OVO) method, k(k − 1)/2 pairs of classi-
fiers are constructed to separate each class from
another one, and the decision function is deter-
mined by combining the results. OVA approach
has been widely used in the literature to solve
multi-class problems. However, as pointed out
in [Lee et al., 2004], OVA approach performs
poorly when there does not exist a dominat-
ing class with conditional probability greater
than 0.5. Therefore, a true extension from bi-
nary to multi-category classification which con-
siders all classes simultaneously is desirable. We
consider a multi-class classification problem in
the framework of both discrimination and de-
scription. From this perspective, margin and do-
main integrated classification (MDIC) enables a

classifier to possess both margin-discrimination
and domain-description capabilities such that it
can be more powerful and robust than existing
classifiers in many emerging applications. Fur-
thermore, it treats multi-class classification in
parallel, rather than sequentially, to achieve an
optimal performance. Ultimately it is superior
to any method which is based on either discrim-
ination or description only.

The rest of this paper is organized as fol-
lows. In Section 2, we begin with a review of
the related work on binary learning machines.
Then we present the mathematical formulation
of MDIC method to illustrate the mechanism
for integrating discrimination and description in
Section 3. Experimental results are provided in
Section 4 which is followed by conclusions in Sec-
tion 5.

2. Binary Learning Machines

Before presenting detailed formulations of
MDIC in the next section, we first summa-
rize the mathematical formulations of binary
classifiers: support vector domain description
(SVDD) and support vector machine (SVM) in
this section. The goal of binary classification is
to find a boundary in vector space Rd to sep-
arate two different classes labeled as {+1,−1},
from the knowledge of a training set which con-
tains n samples x1,x2, . . . ,xn, where xi ∈ Rd. In
the field of optimization, this problem is math-
ematically modeled as a constrained minimiza-
tion, which can be transformed from primal to
dual by the Lagrange method, and then solved
via quadratic programming. At the end of this
section, comparisons between SVDD and SVM
are summarized in Table 1.
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Fig. 2. Binary-class learning machines: (a) support vec-
tor domain description, (b) support vector machine.
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2.1. SVDD

Support vector domain description (SVDD),
proposed by Tax and Duin, seeks the minimum
hypersphere that encloses all of the training
samples labeled as class +1 [Tax & Duin, 1999].
As illustrated in Fig. 2(a), SVDD defines a hy-
persphere B(a, R), described by center a and
radius R, with minimum volume to contain all
(or most of) the data objects {x1,x2, . . . ,xm}
as the domain of a class. Mathematically, the
problem is written as

min : R2 + C
∑

i

ξi,

subject to :
{ ||xi − a||2 ≤ R2 + ξi,

ξi ≥ 0,
(1)

where slack variables ξi are introduced in the
minimization to accommodate potential train-
ing errors and C is a parameter to adjust the
weight of training errors.

Using Lagrange multipliers αi, the above pri-
mal problem (1) is transformed to the following
dual problem,

min :
∑

i

∑

j

αiαjxi · xj −
∑

i

αixi · xi,

subject to :
{ ∑

i αi = 1,
0 ≤ αi ≤ C.

(2)

The optimization of (2) is a quadratic program-
ming problem, by solving which we obtain the
center of hypersphere to be a linear combination
of data objects: a =

∑
i αixi. Those training

samples with non-zero coefficient αi are called
support vectors, for the reason that they are es-
sential to the solution of hypersphere B(a, R).
The radius R is determined from the Karush-
Kuhn-Tucker (KKT) conditions and can be ob-
tained by calculating the distance from the cen-
ter a to any support vector with 0 < αi < C.
The training samples with coefficient hitting the
upper bound (αi = C) are considered as out-
liers. Finally, the class decision function φ(x) is
equivalent to a function of the separating hyper-
sphere and can be written as φ(x) = sign(R2 −
||x− a||2).

2.2. Support Vector Machine

Suppose that we are given n training samples
(xi, yi), where xi ∈ Rd and yi ∈ {+1,−1}.
For example in Fig. 2(b), training samples are
denoted as circle or square for two different
classes. Based on the training set, a hyperplane
w · x + b = 0 could be obtained to separate the
samples of different classes on the two sides of
hyperplane, where w is the norm vector and b is
the bias of the hyperplane. When training sam-
ples are linearly separable, support vector ma-
chine (SVM) yields the optimal hyperplane that
separates two classes without training error,
where optimization is in the sense of maximizing
the minimum distance (1/||w||) from training
samples to the hyperplane [Gunn, 1998][Burges,
1998][Chang & Lin, 2001]. In other words, the
parameter pair (w, b) corresponding to the op-
timal hyperplane is a solution to the following
optimization problem,

min :
1
2
||w||2,

subject to : yi(w · xi + b) ≥ 1. (3)

For linearly non-separable cases, the concept of a
separating hyperplane is generalized by employ-
ing the slack variable ξi with potential training
errors. Mathematically it can be written as

min :
1
2
||w||2 + C

∑

i

ξi,

subject to :
{

yi(w · xi + b) ≥ 1− ξi,
ξi ≥ 0,

(4)

where C is a parameter to adjust the weight of
training errors in the minimization.

By introducing Lagrangian multipliers αi,
the above primal problem (4) is transformed to
its dual form,

min :
1
2

∑

i

∑

j

αiαjyiyjxi · xj −
∑

i

αi,

subject to :
{∑

i yiαi = 0,
0 ≤ αi ≤ C.

(5)

The dual problem (5) can be solved via
quadratic programming. After solutions of αi

are obtained from (5), the norm vector w is cal-
culated as w =

∑
i αiyixi, and the bias of the
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Table 1. Comparison between SVDD and SVM.
Support Vector Support Vector

Domain Description Machine

Objective Description Discrimination

Boundary Hypersphere B(a, R) Hyperplane (w, b)

Training x1, . . . ,xm (x1, y1), . . . , (xn, yn)

samples where xi ∈ Rd yi ∈ {+1,−1}

Primal min : R2, min : 1
2 ||w||2,

problem subject : ||xi − a||2 ≤ R2. subject : yi(w · xi + b) ≥ 1.

Dual
∑

i,j αiαjx
T
i xj −

∑
i αix

T
i xi,

1
2

∑
i,j αiαjyiyjx

T
i xj −

∑
i αi,

problem subject to :

{ ∑
i αi = 1,
0 ≤ αi.

subject to :

{ ∑
i yiαi = 0,
0 ≤ αi.

Solution a =
∑

i αixi w =
∑

i αiyixi

R2 = ||xi − a||2 b = yi −w · xi

i ∈ {Bounded Support Vector} i ∈ {Bounded Support Vector}

Decision sign(R2 − ||x− a||2) sign(w · x + b)

hyperplane b is determined from the KKT con-
ditions. The class decision function can be ex-
pressed as φ(x) = sign(w · x + b).

3. Margin Domain Integrated
Classification (MDIC)

In this section, we will first introduce the con-
cept of margin-domain integrated approach by
using simple and illustrative examples for the
purpose of revealing the principle. Then more
general cases will be followed by the theory and
applications.

3.1. The Concept of MDIC

We now introduce the margin and domain in-
tegrated concept. Before generalizing to multi-
category cases, we change the class label from
{+1,−1} to {1, 2} and reformulate the binary
case to extend its capability. First let us con-
sider the case of one-class with outliers as shown
in Fig. 3(a). Given n training samples (xi, yi)n

i=1
with xi∈Rd and yi∈{1, 2}, the target class and

outlier class are defined as yi = 1 and yi = 2,
respectively. For simplicity the training samples
are assumed to be spherically separable by a hy-
persphere B(a, R). If only the samples of the tar-
get class are used, one can find an optimal do-
main to describe the class through SVDD, which
generates a hypersphere B(a,Ro) with center a
and radius Ro =

√
R2 −∆R2 . Now consider

that outliers are involved in training the classi-
fier as shown in Fig. 3(b). The goal is to generate
a new hypersphere B(a,Rx) with a greater ra-
dius Rx =

√
R2 + ∆R2 that pushes away the

outliers. Between the two radiuses is the margin
defined as ∆R2. Heuristically, this idea can be
explained as follows. When no outliers are in-
volved, the hypersphere has to be as small as
possible to avoid any misclassification of out-
liers as a target. When outliers become available
in training, a more optimal hypersphere can be
generated which should be between Ro and Rx.
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Fig. 3. (a) A domain for optimal description of the tar-
get class when no outliers are used for training, (b) the
integration of domain and margin when both target and
non-target class samples are used in training.

Our goal is to have the smallest hypersphere
describing the target class and the largest hy-
persphere discriminating the outliers so that the
margin is maximum. The boundary ultimately
used for classification is between Ro and Rx, de-
fined as R =

√
(R2x + R2o)/2 in Fig. 3(b) where

discrimination is incorporated into description.
Let R2

x − R2
o = 2∆R2. To minimize the cost of

description, the radius R should be minimized.
On the contrary, to minimize the cost of discrim-
ination, the margin ∆R2 should be maximized.
The integration of the two capabilities can be
achieved by minimizing the objective function
(γR2 −∆R2), where the emphasis between the
margin and description can be regulated by ad-
justing the importance between description or
discrimination. When γ becomes larger, the pur-
pose of optimization is shifted to description,
closer to SVDD. When smaller, it is shifted to
discrimination, closer to SVM. In addition, the
above optimization is under the constraints of

{
R2 −∆R2 ≥ ||xi − a||2, for i ∈ S1,
||xi − a||2 ≥ R2 + ∆R2, for i ∈ S2,

(6)

where Sj = {i : yi = j}. Constraints (6)
simply imply that the samples of S1 are en-
closed in the inner hypersphere and those of
S2 are excluded outside of the outer hyper-
sphere. The decision function can be written as
φ(x) = I(R2 − ||x− a||2 ≥ 0) + 1, where I(·) is
the indicator function.

Let f(x) = R2 − ||x − a||2, interpreted in
Fig. 4(a) as contour lines which have the largest
value R2 at the center, value ∆R2 at the in-

ner hypersphere, value 0 at the decision hyper-
sphere, and value −∆R2 at the outer hyper-
sphere. Constraints (6) can be written as

{
f(xi) ≥ ∆R2, for i ∈ S1,

f(xi) ≤ −∆R2, for i ∈ S2.
(7)

Based on the descriptive and discrimina-
tive nature of the binary MDIC, we extend
its integration concept from binary to multi-
ple classes. Mathematically, we want to find
decision boundaries in vector space Rd based
on the information from n training samples
xi to separate k different classes including
k − 1 target classes and one outlier class. We
present multi-category MDIC in the forms of
multiple-optimization and single-optimization,
where multi-optimization MDIC constructs sev-
eral binary classifiers and single-optimization
MDIC solves the larger optimization problem in
one step.

3.2. Multi-Optimization MDIC

Given (x1, y1), . . . , (xn, yn), where xi ∈ Rd is
a training sample and yi ∈ {1, 2, . . . , k} is the
corresponding class label. For a k-category clas-
sification problem which contains k − 1 tar-
get classes and one outlier class, we can find
k − 1 separating hyperspheres B(aj , Rj) where
all the samples of class j are enclosed by the
inner hypersphere B(aj , Ro,j) and the other
samples are excluded by the outer hypersphere
B(aj , Rx,j). The radius Rj =

√
(R2

x,j + R2
o,j)/2

and the margin ∆Rj =
√

(R2
x,j −R2

o,j)/2, for
j = 1, . . . , k − 1. To reduce the multiclass prob-
lem to a set of binary problems, perhaps the sim-
plest approach is to create one binary problem
for each of the (k−1) target classes. That is, for
j ∈ {1, 2, . . . , k − 1}, we apply the given learn-
ing algorithm to a binary problem in which all
examples labeled yi = j are considered positive
examples and all other examples are considered
negative examples. We then end up with (k−1)
hypotheses that somehow must be combined.
We call this the one-versus-all (OVA) approach.
Let fj(x) = R2

j −||x−aj ||2, for j = 1, . . . , k−1.
In the OVA fashion, the k − 1 optimizations
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(a) (b)

Fig. 4. Margin and domain integrated classification: (a) binary case, (b) multi-category case.

could be formulated as

min : γjR
2
j −∆R2

j + C

n∑

i=1

ξi,

subject :





fj(xi) ≥ ∆R2
j − ξi, for i ∈ Sj ,

fj(xi) ≤ −∆R2
j + ξi, for i 6∈ Sj ,

∆R2
j ≥ 0, and ξi ≥ 0, for i = 1, . . . , n.

(8)

Slack variables ξi ≥ 0 are introduced and addi-
tional constraints ∆R2

j ≥ 0 are added in (8) to
force the enclosing ball to be inside the excluding
ball, which is not assured in the non-separable
case.

After Lagrange transformation, (8) can be
written and solved in the dual form of Lagrange
multipliers αij . The center of hyperspheres aj =
1
γj

∑n
i=1 αijyixi, and the radius Rj can be de-

termined from the KKT conditions. If we set
fk(x) = 0, then the decision function φ(x) =
arg max{1,...,k} fj(x).

3.3. Single-Optimization MDIC

Alternatively, to extend MDIC from binary
to multiple-category in the single optimization
fashion, constraints (6) can be written as

{
f1(xi)− f2(xi) ≥ ∆R2, for i ∈ S1,
f2(xi)− f1(xi) ≥ ∆R2, for i ∈ S2,

(9)

where f2(x) = 0. The decision function
for the binary case is expressed as φ(x) =
arg max(f1, f2).

For a k-category classification problem, (k−
1) separating hyperspheres B(aj , Rj) could be
found and the single optimization problem can

be written as

min :
k−1∑

u=1

(γuR2
u −∆R2

u) + C
n∑

i=1

ξi

subject :





fyi(xi)− fj(xi) ≥ ∆R2
yi

+ ∆R2
j − ξi,

for i = 1, . . . , n,
for j = {1, . . . , k} \ yi,

ξi ≥ 0, for i = 1, . . . , n,
∆R2

j ≥ 0, for j = 1, . . . , k − 1,

(10)

where fj(xi) = R2
j−||xi−aj ||2, for j = 1, . . . , k−

1, and fj(xi) = 0, for j = k. The primal problem
(10) is transformed to its dual form by employ-
ing Lagrange multipliers αij , and then the dual
problem is solved by quadratic programming.
After some calculations, we derive the dual prob-
lem in the following form.

min
β

: βTQβ + pβ

subject to :





1T
nFjβ − ϕj = 1,

1T
nGjβ = γj ,

Aβ ≤ C1n,
(11)

where





Q =
∑k−1

u=1
1
γu

GT
uXXTGu,

p = 1T
ndiag(XXT )Gk,

A = U−∑k
u=1 VuUu,

Fj = VjU + Uj − 2VjUj ,
Gj = VjU−Uj ,

for j = 1, . . . , k − 1. In (11), β is a vector con-
taining the nk Lagrange multipliers. Vj is an
n×n diagonal matrix with its diagonal element
being 1 or 0 depending on i ∈ Sj or not. Uj is
an n × nk matrix defined by Uj = (1j

k)
T ⊗ In,

where ⊗ is the Kronecker product and 1j
k is a

k-dimensional vector with a 1 in its j-th element
and 0 otherwise. U =

∑k
j=1 Uj = 1T

k ⊗In, where
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1k is a k-dimensional vector of 1 and In is the
n× n identity matrix. After the solution of (11)
is obtained, the center of the hypersphere is de-
termined by aj = XTGjβ/γj and the radius Rj

is determined by the KKT complementary con-
ditions.

4. Experimental Results

To illustrate the concept and application of
the MDIC approach, we first apply it to syn-
thetic data in the first subsection. To evaluate
the effectiveness, we then make comparisons be-
tween multi-category SVDD, SVM, and MDIC
on three data sets from UCI machine learn-
ing repository in the second subsection. Finally,
classification results on three standard MPEG-
4 test video sequences are shown in the third
subsection.

4.1. Synthetic Data

We conducted experiments on synthetic data of
the two-dimensional space shown in Fig. 5. The
training samples are distributed in a [−1, 1] ×
[−1, 1] square in which there are two target
classes and one non-target class. Using the for-
mulation of MDIC, we obtain the domain de-
scription shown in Fig. 5. The first row of Fig. 5
shows the results of using the linear kernel func-
tion K(s, t) = sT t and the second row shows
the results of using the Gaussian kernel function
K(s, t) = exp(− 1

2σ2 ||s − t||2) , where σ = 0.5.
As can be seen, Gaussian kernel function fits the
shape or distribution of training samples better
than linear kernel function.

In the first column of Fig. 5, where γ1 and
γ2 are both 1, the purpose of optimization is
on the tight description for target classes, closer
to SVDD. Therefore, the separating hypersphere
coincides with the inner hypersphere and also
with the outer hypersphere. In other words, no
margin is allowed and miss rates would be large
when generalizing to test samples. On the other
hand, when γ1 and γ2 are close to 0, the pur-
pose of optimization is shifted to discrimination,
closer to SVM. In that case, false alarm rates
would be large when generalization. The middle
two columns of Fig. 5 illustrate how the two ca-
pabilities are alternated as the parameter varies.

4.2. UCI Repository

We investigated the performance of multi-
category classifications on three data sets from
UCI machine learning repository: vowel, Se-
meion handwritten digit, and letter recognition
data sets [Asuncion & Newman, 2007]. Use of
UCI machine learning repository is a common
practice for comparison of different methods in
the field of classification, which we follow such
that a fair comparison between methods can be
made. The statistics of data sets are listed in
Table 2.

Table 2. Three data sets from the UCI repository.

Data set # attributes # classes # samples

vowel 10 11 528
semeion 256 10 1593
letter 16 26 20000

(i) Vowel Recognition
This data set contains 528 samples from
speaker independent recognition of the 11
steady state vowels of British English. For
each utterance, 10 floating-point numbers
are provided as the attributes.

(ii) Semeion Digit Recognition
This data set consists of 1593 samples and
256 attributes. Each sample represents a
handwritten digit, originally scanned with
a resolution of one-byte (28) gray scale. Af-
ter the scan, each pixel was transformed to 0
or 1 by threshold 127. Finally, each binary
image was scaled into a 16x16 square box
(the final 256 binary attributes).

(iii) Letter Image Recognition
This data set contains 20000 samples, each
corresponds to one of the 26 capital letters
in the English alphabet. 16 integer-valued
features such as statistical moments and
edge counts are provided to represent each
letter.

4.2.1. Classification Accuracy

Experiments were conducted on three cases of
different target-to-outlier sample ratio: η =
2/1, 1/1, and 1/2. In the first case, we randomly
pick 33 training samples from class one, another
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Fig. 5. The effect of parameters γ on the resulted hyperspheres of MDIC. As γ increases, the classifier is closer to
pure description which becomes discrimination as γ decreases. (a)-(d) linear kernel, (e)-(h) Gaussian kernel.

Table 3. Comparison of SVDD, SVM, and MDIC with regard to the total error rate, miss rate,
and false alarm rate on data randomly extracted from UCI machine learning repository.

(i) Total Error Rate PT (%) Miss Rate Pm (%) False Alarm Rate Pf (%)
Vowel SVDD SVM MDIC SVDD SVM MDIC SVDD SVM MDIC

η = 2/1 22.5 5.5 5.0 18.2 1.5 5.3 20.6 7.4 4.4
η = 1/1 25.0 7.5 3.0 29.0 6.0 5.0 19.0 1.0 1.0
η = 1/2 18.5 5.5 5.0 30.6 6.9 6.9 11.7 2.3 1.6

(ii) Total Error Rate PT (%) Miss Rate Pm (%) False Alarm Rate Pf (%)
Semeion SVDD SVM MDIC SVDD SVM MDIC SVDD SVM MDIC

η = 2/1 13.0 4.0 3.0 19.7 1.5 1.5 0.0 7.4 4.4
η = 1/1 17.0 7.0 6.0 33.0 7.0 7.0 1.0 7.0 5.0
η = 1/2 14.5 5.5 5.0 40.3 11.1 11.1 0.0 2.3 1.6

(iii) Total Error Rate PT (%) Miss Rate Pm (%) False Alarm Rate Pf (%)
Letter SVDD SVM MDIC SVDD SVM MDIC SVDD SVM MDIC

η = 2/1 13.5 5.5 4.5 15.9 0.0 1.5 8.8 13.2 7.4
η = 1/1 18.5 8.0 6.0 33.0 4.0 5.0 4.0 9.0 6.0
η = 1/2 13.5 5.0 3.5 37.5 8.3 8.3 0.0 3.1 0.8

33 samples from class two, and the other 34
samples from the other classes. So the target-to-
outlier sample ratio is nearly 2/1. In the second
case, we randomly collect 25 samples from class
one, 25 from class two, and 50 from the outlier
class. For the 1/2 case, 18 samples from class
one, 18 from class two, and 64 from outliers are
contained in the training set.

In Table 3, we compare SVDD, SVM, and
MDIC on the total error rate, miss rate and false
alarm rate. The miss rate Pm is the percentage of
target samples misclassified in the outlier class.
The false alarm rate Pf is the rate of outlier sam-
ples misclassified as any one of the target classes.
And the total error rate PT is the percentage of
any sample misclassified to other class.
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The performance of MDIC is much better
than SVDD since there is separating margin be-
tween boundaries of the target class and outliers
in MDIC. The performance gap between the two
is extremely large in miss rates. Since SVDD
seeks the minimal domain of target classes for
the tightest description, a target sample is easily
misclassified as outliers when it falls outside of
the boundary. Therefore, generalization perfor-
mance of SVDD is not optimal especially when
training samples do not contain all the variation
of target samples. On the other hand, SVM has
larger false alarm rates than MDIC. Since not all
the variation of outlier samples could be possi-
bly captured in the training, an outlier sample is
easily misclassified as targets when it falls inside
of the domain. Therefore, classification results of
MDIC are better than those of SVM in the false
alarm rates. Overall, MDIC has lower total error
rates than SVDD and SVM.

4.2.2. Time of Computation

The computational cost of MDIC depends on
the number of classes, and is in the same order
as multi-SVM, for both training and classifica-
tion. The formulation to solve multi-class prob-
lems in one step has variables proportional to
the number of classes. Therefore, for multi-class
methods, either several binary classifiers have to
be constructed or a larger optimization problem
is needed. Hence in general it is computationally
more expensive to solve a multi-class problem
than a binary problem with the same number of
data.

To illustrate how the computation is related
to the number of classes for solving multi-class
problems in single optimization, 160 samples
were randomly picked from the UCI letter image
repository for training. The computer configu-
ration for simulation in the laboratory is AMD
Phenom(tm) Q9600B 2.30GHz Linux PC with
4GB RAM; the software adopted is IMSL C Li-
brary. As can be seen in Fig. 6, the training time
increases rapidly as the number of classes in-
creases. Using the polyfit function in MATLAB,
the training-time curve could be described by
0.23k3 − 2.82k2 + 23.37k − 64.01. In this case,
the computation has O(n3) time complexity.
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Fig. 6. Training time relates to the number of classes
for solving multi-class problems in single optimization.

4.3. Video Object Extraction

Classification methods are used to extract video
objects in this subsection. The purpose is to clas-
sify video objects such that video object based
comparison can be made. Experiments were con-
ducted on three standard MPEG-4 sequences:
Students, Trevor, and Sun Flower Garden [Liu &
Zheng, 2005][Liu & Zheng, 2008]. For each video
sequence, the first frame was used in training,
and another frame was used in validation and
choosing the parameters C ∈ {0.1, 0.2, . . . , 1.0}
and γ ∈ {0.05, 0.1, 0.2, . . . , 1.0}. A third frame
was used in testing which was totally unknown
when training. 1/30 of the pixels in the train-
ing frame were randomly selected as the training
samples and the block intensity information was
used as the feature to represent each centering
pixel.

In Figs. 7-9, performance comparisons were
made between SVDD (row 1), SVM (row 2), and
MDIC (row 3) in the order of three columns:
column 1 for the training frame, column 2 for
the validation frame, and column 3 for the test
frame. On each row, the extracted objects could
be differentiated by colors. The computational
cost of MDIC depends on the size of the image
for both training and classification.
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(a)Frame 1 (b)Frame 58 (c)Frame 90

Fig. 7. The extraction performance of Students. First row: SVDD, second row: SVM, and third row: MDIC.

4.3.1. Students

As the major content of this sequence, the two
students are chosen as two objects of interest,
and along with the background this is a three-
class classification problem. Students is a typi-
cal sequence of slow but heterogeneous motion.
For example the male student turns the head
and moves his hands while his body stays still
most of the time. One can see that the pro-
posed method works well, which discriminates
the body parts of the students as well as their
faces. The latter is not an easy task since the
skin color is very similar between the two stu-
dents. As can be seen, SVDD generates more
misclassified pixels than those of MDIC and
SVM.

4.3.2. Trevor

The three people in this video sequence are con-
sidered as three objects which makes it a four-
class classification problem with the background
as the fourth class. The original frames and the
extracted objects are shown in Fig. 8. Unlike the
Students sequence, the objects in this sequence
change the appearance by a great deal. Taking
the lady who sits at the farthest right as an ex-
ample, her face changes from frontal to left-side
view. Besides, the man in the middle is origi-
nally seated but finally standing. In Fig. 8, the
performance of MDIC is better than those of
SVDD and SVM as one can see that there are
less classification errors on the third row.
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(a)Frame 0 (b)Frame 20 (c)Frame 40

Fig. 8. The extraction performance of Trevor. First row: SVDD, second row: SVM, and third row: MDIC.

4.3.3. Sun Flower Garden

Different from the previous video conference
kind of sequences, Sun Flower Garden displays a
natural scene that is rich of colors and textures
with a non-stationary camera. Each pixel is clas-
sified into one of the three categories: house,
tree, and background. For the first few frames,
the house is occluded by the tree. With the cam-
era moving, the tree shifts toward the left side
of the frame and finally disappears. As can be
seen in Fig. 9, several pixels of the house were
misclassified as background by SVDD on the
first row. It is especially noticeable in Frame
150 when the house spreads out in the whole
frame due to the motion of the camera. On the
other hand, many background pixels were mis-
classified as objects by SVM on the second row,
which implies higher false alarm rates than those
of the previous rows. Overall, MDIC has lower
error rates on the test frame.

5. Conclusion

This paper presents a multi-category classifica-
tion approach which is based on the classical
SVM and SVDD concepts but represents a sig-

nificant departure from the two methods. Al-
though SVM is optimized for a large margin be-
tween different classes, it does not evaluate the
fitness of a sample to a particular class. There-
fore, the problem results in potentially high
false-alarm rates. On the other hand, SVDD
is optimized for describing a minimum domain
based on the training samples. However, the do-
main is tight and no separation occurs. As a re-
sult, it causes elevated miss rates in many emerg-
ing application. Inspired by the binary learn-
ing machine MEMEM, a multi-category classi-
fier which integrates description and discrimina-
tion is proposed in this paper to overcome the
deficiency of SVM and SVDD but to retain the
advantages associated with each method.

In this paper, a novel multi-category classi-
fier called margin and domain integrated clas-
sifier (MDIC) is developed for its capability of
both discrimination and description. The pro-
posed approach has the following features:

• The notions of domain description and sepa-
ration margin are integrated in a single model
for enhancing classification accuracy in multi-
ple classes.
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(a)Frame 1 (b)Frame 25 (c)Frame 150

Fig. 9. The extraction performance of Sun Flower Garden. First row: SVDD, second row: SVM, and third row: MDIC.

• A domain measure γ is provided for each tar-
get class to adjust the regulation between the
class description and the discrimination from
other target class or outliers.

• MDIC treats multi-class classification jointly
rather than sequentially to achieve an optimal
performance globally.

The ratio between description and discrimina-
tion is flexible so that an optimal performance
is achieved to adapt various purposes and con-
ditions of each application. Experiments were
conducted and promising results have been ob-
tained. Future work will encompass research ef-
forts on lowering computational complexity of
MDIC when the number of class is huge.
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