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1. INTRODUCTION In this article, we present a neural mechanism
to control the biped robot. The neural mechanism

Legged robots have better mobility on rough terrain generates a new gait gradually and automatically
than wheeled robots since they can use isolated foot- based on the forces measured by the force sensors
holds that optimize support and traction. Moreover, installed underneath the feet. Because the force sen-
the payload can be moved smoothly, despite pro- sors serve as an indicator of the stability of the biped
nounced variations of the terrain, by using an active robot, it is not necessary to calculate the degree of
suspension that decouples the path of the body from inclination and re-program the gait accordingly. The
the paths of the feet. Because of these reasons, legged joint positions of the robot are adjusted until the force
robots are very useful in replacing human beings in sensors indicate that the robot has a stable gait. The
extreme environments such as in nuclear power relationship between the force and the adjustment
plants and on ocean floors. Of all the legged robots, of the joint positions is highly nonlinear. A neural
biped robots most closely resemble the build of hu- network is naturally a good choice to map the rela-
man beings. This makes biped robots suitable for tionship between the two.
environments that were originally created for human In reviewing the existing literature, we found
beings to access. A great deal of research has been very few papers that report the use of neural networks
conducted to make biped robots useful.1–8 However, for controlling biped locomotion. Kun and Miller12

it is difficult to maintain stable locomotion while the used a CMAC neural network for the adaptive control
robot is walking on different surfaces. of side-to-side and front-to-front balance, as well as

Recently, many researchers have studied biped for maintaining good foot contact of a biped robot.
robots walking on different terrains.9–11 When a biped The CMAC neural network generates required mo-
robot walks on a surface other than level floors, the tion of the robot including the position of the hips,
robot must use different gaits to maintain stability. and the amplitude and velocity of the side-to-side
Previous works used sensors to detect terrain condi- lean, etc., from the desired step parameters such as
tions, and modified the gait accordingly. These ap- step length and step rate. By using the CMAC net-
proaches must deal with many problems such as sens- work, complex computation of robot kinematics and
ing the terrain, planning a path, selecting a foothold, dynamics in real-time becomes unnecessary. For
and adjusting step length, etc. training the CMAC neural network a supervised

In our previous work,9 we enabled a biped robot learning process is used.
to climb a sloping surface with unknown degree of In our work, we use unsupervised reinforcement
inclination by using on-and-off sensors installed un- learning as opposed to supervised learning. The rea-
derneath the feet. The sensors were used to make son for using unsupervised learning is that the neural
sure that the feet were completely in contact with the network receives no direct instruction on which joint
ground. By examing the orientation and position of position needs to be modified. Moreover, the network
the feet with respect to the rest of the biped robot, is not sure in which direction the selected joint should
the degrees of inclination of the sloping surface can change its position. Every joint of the robot is associ-
be calculated. For the calculated slope, a stable gait ated with a neuron called a joint neuron. Every joint
can be designed, based on the robot kinematics and neuron is further attached with two pairs of neurons
dynamics, for walking on the slope. Because the ap- called direction neurons. All the neurons possess cer-
proach involves substantial computation in real-time, tain values called neuron values. During the learning
the robot must walk slowly when the degree of incli- process, a joint neuron with the maximum neuron
nation varies. Alternatively, expensive computing value is selected to modify the position of its corre-

sponding joint, and likewise a direction neuron isequipment must be involved.
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2.1. The Structure of the SD-2 Biped Robot

The SD-2 robot has nine links and eight joints as
depicted in Figure 2. Four joints control the motion
in the sagittal (fore-and-aft) plane, and the other four
control the motion in the frontal (left-and-right)
plane. Each leg has four degrees of freedom (DOF).
The top two joints of each leg emulate the hip joint,
while the bottom two are for the ankle joints. Note
that the robot has no knee joints. The structure of
the biped robot is symmetrical. That is, there is no
structural difference between the front and back sides
of the robot. The front side of the robot is arbitrarily
selected, and once selected, it is marked with a
‘‘CURBI’’ sign (see Fig. 2). Likewise, the foot is sym-
metrical and there is no structural difference between
the toe and heel of the foot, so called because they
are on the front or back side of the robot, respectively.

Figure 3 shows the foot which has three contact
points to the ground. To implement the neural control

Figure 1. The SD-2 robot. mechanism, a pair of force sensors, TK-13-T092P-10C
transducer class strain gauges from the Micro-Mea-selected to determine the direction of modification. surements Division of Measurements Group Inc.,15

If the selected joint and direction neurons result in are mounted on two of the contact points, toe anda correct modification of the motion, i.e., the robot heel, respectively.becomes more stable, we reinforce the selection by
increasing the neuron values. Otherwise, the neuron
values are reduced. By using this rewarding and pen-

2.2. The Gait of the SD-2 Biped Robotalizing mechanism, the neural network converges
quickly to a correct set of neuron values that will A gait that is statically stable for the SD-2 robot is

shown in Figure 4. In the figure, the dotted squaresgenerate a stable gait for the sloping surface. The
unsupervised reinforcement learning method is at- represent the swining foot, and the big dots represent

the projection of the center of gravity (COG). Theretractive because the method does not require explicit
feedback signal. The learning process proceeds on- are eight static configurations within a complete step,

which are called primitive points (PP). The joint mo-line, and the computation involved in the process
is simple.13 Furthermore, noise characteristics of the tions of the robot are linear between two consecutive

PPs. For convenience, each piece of the linear motionsensors are taken into account in the learning
process.14 is called a phase. Each phase is again decomposed

into a large number of setpoints. A setpoint is a setIn the following section we introduce the struc-
ture of the biped robot and its gait. In the third section of joint positions. The controller moves the joints to

a new setpoint every 28 ms. When the biped robota reinforcement learning mechanism for the biped
robot to walk on the sloping surface will be devel- completes a step, it goes through eight phases or 2,000

setpoints (see Fig. 5).oped. The fourth section will be devoted to the discus-
sion of the experiments including static learning and At the beginning of walking (home position), the

projection of the COG is at the center of the two-footpseudo dynamic learning. The article is summarized
in the fifth section. supporting area. In phase 1, the joints in the frontal

plane are moved to shift the projection to the left foot.
The joints in the sagittal plane are rotated to transfer
the projection forward. In phase 2, the right leg2. THE SD-2 BIPED ROBOT
swings forward using the hip joint in the sagittal
plane, and the ankle joint of the left leg and the hipThe target of this study is a biped robot called SD-2

(Fig. 1).4 In this section we will describe the structure joint in the sagittal plane are moved to transfer the
COG forward. At the same time the hip joints in theof the SD-2 robot and the static gait that the robot

uses to walk. frontal plane are rotated to lift the leg; this is required
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Figure 2. The structure of the SD-2 robot.

because the robot has no knee, and lifting the leg COG remains over the left foot. In phase 4, all the
joints are rotated to shift the projection of the COGeliminates the possible collision between the foot and

the floor. At the end of this phase the swinging foot to the center of the two-foot supporting area again.
These four phases are the first half of the step. Theis parallel with the floor. In phase 3, joints in both

the sagittal and frontal planes are moved simultane- same procedure are repeated for the next half of the
step, phase 5 through phase 8, which has the rightously to make the right foot touch the floor while the
foot support the robot.

The position of the projection of the COG (dots in
Fig. 4) can be obtained using the following equations:

Acog 5 L
Flt p 1.5 1 Flh p 0.5 1 Frt

Ftot
, (1)

Bcog 5 L
Flt p 1.5 1 Flh p 0.5 1 Frt p 2 1 Frh

Ftot
, (2)

Ftot 5 Flt 1 Flh 1 Frt 1 Frh. (3)

where Acog is for phases 8 through 3, and Bcog for phases
4 through 7. F is the force, and the subscripts of F, l,Figure 3. The foot and force sensor.
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Figure 4. The gait on a level surface.

r, h and t represent ‘‘left’’, ‘‘right’’, ‘‘heel’’, and ‘‘toe’’, (158: solid line), respectively. Note that X/L in the
figure means the length in the frontal plane normal-respectively. L is the length of the foot. The origin of

the coordinates is defined at the heel of the right foot. ized by the foot length L of the robot. The offset
between the two lines indicates that the robot is notThe above equations are suitable when the robot uses

a static gait, and the balanced forces are evenly dis- so stable when it walks on the sloping surface because
the projection of the COG is close to the edge of thetributed underneath the surface of the foot.

The actual position of the projection of the COG supporting area, or the stability margin is reduced.
It is necessary to adjust the gait so that the robot cancan be obtained by adding up the counts of steps,

which should be increased at the end of phase 8. be as stable as it walks on a level floor. This process
is called the stabilizing process in the rest of this article,Figure 5 shows the projection measured when the

biped walking on a level floor and a sloping floor which is the goal of our research.

Figure 5. The projection of the COG for a level floor (–.–) and a 58 slope (——).
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Figure 6. Configuration of the control system.

3. NEURAL CONTROLLER or excitatory synaptic contact between them (Fig. 7).
The circles in Figure 7 represent the neurons, the

3.1. Control System Configuration white squares at the end of the line connecting neu-
rons represent excitatory contacts, and the blackTo control the SD-2 biped robot, we designed a con-
squares represent inhibitory contacts.trol system. The configuration of the control system

The numbered circles are called the joint neurons.is shown in Figure 6. In the figure, the PI controller
Each joint neuron corresponds to one joint to be modi-uses conventional proportional and integral control
fied for each PP. Because the motions of the joints into drive the eight joint motors. The neutral controller
the frontal plane of the robot are the same for walkingconsists of a memory, which stores programmed or
on a level surface or on a sloping surface, the neuralpreviously learned gaits, and an adaptive unit (AU).
network is only responsible for modifying the jointThe AU is responsible for modifying joint trajectories
motions in the sagittal plane. Recall that there aresuch that the robot can walk on a new surface. Both
four joints in the sagittal plane and eight PPs in eachthe neural controller and the AU are implemented in
step. It appears that 4 3 8 5 32 joint neurons area personal computer (PC). To interface the signals

between the PC and the amplifier/sensor, a DDA-08
Metrabyte digital-to-analog converter and a DAS-8
Metrabyte analog-to-digital converter are installed in-
side the PC. The amplifier is built with a single com-
ponent power operational amplifier, Apex Microtech-
nology PA02, for each joint. This amplifier can drive
up to 12 volts and 2 amperes in each direction of
motion for every joint. The potentiometer is used to
measure the joint angle, and the power sources for
sensors are isolated from the amplifier to avoid inter-
ference.

3.2. Neural Mechanism

The main part of the neural controller is the AU,
which is responsible for modifying the joint motions. Figure 7. Excitation/inhibition model of the neural

network.The AU consists of multiple neurons with inhibitory
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necessary, but we use only one neuron to modify the Suppose the neuron ‘‘1’’ is activated first; this selec-
tion is similar to that of the joint neuron. The ‘‘2’’motions of the two hip joints. That is, the modifica-

tions to the two hip joints will always be the same. neuron enters the inactive mode. In consequence, the
angle of the joint 3 will be increased. This processThis is because the two hip joints are aligned on a

single axis (see Fig. 2). Only when they rotate simulta- continues until no excitatory signal is sent from the
SU, indicating that the biped has reached desiredneously and by the same amount can the torso of the

robot rotate without alternating the position of the stability. Now, the AU becomes inactive and the joint
trajectories for the next phase are obtained from theswinging leg. As a result, the motions of the torso

and the legs are decoupled. This decoupling is im- memory of the learned trajectory.
For every joint j, the associated joint neuron hasportant for the generation of a new gait, which repre-

sents a minimal modification to the original gait. Con- a neuron value of w( j, pp) at primitive point pp( j 5
1, 2, 3 and pp 5 0, 1, 2, . . . , 7). w( j, pp) is updatedsequently, we use only 3 3 8 5 24 joint neurons.

The neuron that is active during a certain period by a neuron learning algorithm that will be discussed
in detail in the next subsection. The goal of this learn-of time will allow the position of the corresponding

joint to be modified. Every time, only one neuron ing algorithm is to reward the neuron by increasing
w( j, pp) if the modification to its corresponding jointis active. This is why the contact between the joint

neurons is inhibitory. The reason for modifying only improves the stability of the robot. Otherwise, w( j,
pp) is reduced. As a result, the joint neuron that isone joint is due to the unsupervised learning. Because

the network does not have a teacher, we can test only effective in stabilizing the robot will have better
chance to be selected in the next step of training. Asone joint at a time to see if the selected joint is effective

in stabilizing the robot. If it is, the selection is rein- the learning process continues and converges, the
network will always choose the right joint to modifyforced; otherwise, the selection is penalized. If more

than one joint is modified, the judgement for rein- such that the stability of the robot is improved quickly
when the robot climbs a slope from a level surface.forcement will be impossible to make.

There are two pairs of smaller circles attached to The same principle is used to train the direction
neurons. The direction neurons at a primitive pointeach joint neuron (only one pair is shown in Fig. 7)

which are the direction neurons (24 pairs of neurons (pp) have a neuron value of v(ud, jn, h, pp) where
the undefined parameters are ud 5 0, 1 indicatingin total). The first pair is active when the biped climbs

up a slope, and the second pair becomes active when whether the robot is climbing up (1) or down (0) the
slope, jn being the joint number, and h 5 0, 1 denotingthe biped climbs down. Only the pair designated for

climbing up is shown in the figure. One of the two the direction of the joint angle modification with 0
for negative and 1 for positive directions.direction neurons is denoted with a ‘‘1’’ sign and

the other is with a ‘‘2’’ sign. They determine the The neural learning mechanism as discussed
above is called reinforcement learning, so called be-direction in which the corresponding joint should

modify its motion. When the ‘‘1’’ neuron is active, cause the selection of an effective neuron in the learn-
ing process is reinforced. The principle of reinforce-the modification is to increase the joint angle, and

vice versa. The direction neurons are activated by the ment learning has been well studied by Barto and
other researchers.13,14,16 The details of the principle willjoint neuron but deactivate each other. This is the

reason why the contacts between the two direction not be addressed any further here. In the next subsec-
tion, the details of the algorithm that we use to trainneurons are inhibitory.

The network works in the following way: Sup- the neural network are presented.
pose that the biped is climbing up a slope. At the end
of each phase the Sensor Unit (SU) reads the signal

3.3. The Reinforcement Learning Algorithmfrom the force sensors, and calculates the projection
of the COG using (1), (2), and (3). If the result indicates We use the difference between the forces exerted at

the toe and exerted at the heel as the reinforcementthat the robot is not so stable in comparison with the
desired projection of the COG. The SU sends excit- signal, i.e.:
atory signals to the three joint neurons in the AU.
One of the three neurons is activated, and the other D f 5 fheel 2 ftoe , (4)
neurons enter the inactive mode; this selection is
based on the neuron value of each neuron. Once ex- where fheel represents the forces sensed from heels and

ftoe from toes. It is easy to see that this signal has thecited, the neuron, assumed 3 here, sends an excitatory
signal to the two direction neurons attached to it. same characteristics as the projection of the COG, but
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the computation is simpler. For a new sloping surface, STEP 9: Compute the new force difference and the
reinforcement signal z.the robot is as stable as desired if D f 5 D fbal where

D fbal is the idea force difference. D fbal can be obtained
by recording it when the robot walks on a level sur- D f 8old 5 D f 8new , (9)
face provided that the gait is optimal. Designing an
optimal gait for walking on a level surface is relatively D f 8new 5 D fbal 2 D f , (10)
simple. The training algorithm is listed below.

z 5 D f 8old 2 D f 8new . (11)
STEP 0: Determine the current primitive point num-
ber pp, where pp 5 0, 1, . . . , 7. STEP 10: The neurons are trained using following

equation:STEP 1: Set all the neuron values to zero if this partic-
ular pp had no previous learning (1st round of

v(ud, jn, dir, pp) 5 v(ud, jn, dir, pp)training).

STEP 2: If uD f 2 D fbalu , «, no further training is 1 c1 p sign(s1 p D f 8new) p z , (12)
required. Otherwise, the learning process as de-

w( jn, pp) 5 w( jn, pp) 1 c2 p sign(s2 p D f 8new) p zscribed in the following steps becomes necessary.
Note that «, a small positive constant, can be deter-

(13)mined in accordance with the level of the sensor noise.

STEP 3: Set ud using the following equations: where c1 and c2 are positive constants servings as the
learning rates, and s1 and s2 are the saturation indices.

ud 5 0 if D f . 0 (5) The index will be set to 1 if the neuron value of
the corresponding neuron is less than the predefinedud 5 1 if D f , 0 (6)
threshold, S1 or S2 ; otherwise it is set to 0.

STEP 4: Define yw( j ) as STEP 11: Goto Step 2.

The above training continues until it is automati-
yw( j ) 5 w( j, pp) 1 noise, j 5 1, 2, 3. (7) cally stopped, that is, uD f 2 D fbalu , « becomes true.

The whole training process is then called one roundwhere the noise is an artificially introduced random of training. In Step 10, the value of each neuron willvariable distributed uniformly on an interval [21, 1]. be increased if the second term of the right-hand sideThe value of yw( j, pp) will be used to choose the joint is positive. This means that the neuron is rewardedwhose position is to be modified. From (7), it can be because the modification is right, i.e., D f 8new 5 D fbal 2seen that a neuron whose w( j, pp) is high tends to
D f is positive and decreasing, and the reinforcementhave a high yw( j, pp). For two neurons whose w( j, signal z . 0. The neuron value can be reduced as a

pp) values are close, the neuron with a smaller w( j, punishment if the above two conditions are not true.
pp) may still be picked by the addition of a random Saturation indices limit the upper bound of thenoise as in (7). This gives the smaller neuron a fair neuron value, i.e., no further reward is given to theopportunity of being selected because it might be neuron when it has a relatively large neuron valuemore effective in stabilizing the robot. in Step 5 and Step 7. This limit gives no undesirable

effect to the learning mechanism. In other words, ifSTEP 5: Set the joint number jn to j that is associated
with the largest yw( j ). jn defines the joint angle that one neuron has reached the threshold value, no other

neuron will be selected. However if more than oneis chosen by the network to be modified.
neuron has reached the threshold value, one of those

STEP 6: Define yv(h) as neurons can still be selected by using (7) and (8).
That is, the random value of the noise will determine

yv(h) 5 v(ud, jn, h, pp) 1 noise, h 5 0, 1 (8) the selection.
Once all the above steps are completed, D f is

STEP 7: Set the direction dir to h that is associated close to the desired one, and all the neurons willwith the largest yv(.). have acquired some neuron values. When the trained
network is used for stabilizing the robot again, itSTEP 8: Define Dq ( jn) according to the two decisions

made above. For example if jn 5 3, and dir 5 1, then should take less time to reach the goal than the pre-
viously untrained network. After training the neuralDq(3) 5 1dq8, where dq is the small positive angle.
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network for a necessary number of rounds for each the robot is in phase 2, this gives the best stability.
The training coefficients used were c1 5 0.025, andPP, the AU permanently stores the new set of primi-

tive points along with the degrees of inclination of c2 5 0.008, which were decided experimentally. Small
training coefficients require longer training time, andthe slope in the memory (if the degree of inclination

can be measured). The next time the robot runs into large values cause undesirable oscillation. The coeffi-
cients for STEPs 2 and 8 were dq 5 0.015 and « 5 10a slope with the same degree of inclination (if it is

given to the robot), the controller will take this (note that the unit for « is 0.1 newton). Saturation
indices were limited by S1 5 10 and S2 5 10, respec-learned set of PPs and generate an appropriate gait.

Consequently, the robot can perform walking with- tively.
In Figure 8 the projection of the COG and theout the involvement of the AU.

reinforcement signal for the first round of training
are depicted. One can see the changes for both. Figure
9 shows the joint position changes and the neuron4. EXPERIMENTS
values of the joint neurons for the first round of train-
ing. Note that the training takes 1850 steps. As eachWe performed two experiments, static learning and

pseudo dynamic learning, to show the validity of the step lasts 28 ms, the training takes about 5.18 s. Since
two hip joints, 2 and 3, are linked and controlled byproposed mechanism. In static learning, the neural

network is trained for a single primitive point until one neuron, the changes for joint 3 are omitted. Note
that the joint position changes stay near zero at thethe robot reaches the desired stability for that primi-

tive point. Before the training is completed, the robot very beginning (the first 1000 steps). This indicates
that the network is not sure what modification is thedoes not move to another primitive point. In pseudo

dynamic learning, the neurons are trained while the best for the current sloping surface. One may also
notice that every joint is adjusted until 1500 steps ofrobot is walking. The neuron values are trained for

every setpoint and the modification is made to the training are done, after which joint 1 is selected as
the most efficient joint to regain a stable gait (joint 1current PP. Because the training is conducted while

the robot is in motion, the term ‘‘dynamic’’ is used. neuron is rewarded big).
Figure 10 shows the joint position changes andTo avoid being confused with dynamic walking of the

robot, the learning is called pseudo dynamic learning. the neuron values of the joint neurons for the first
round of training when the biped was on the 78 slope.In the two experiments, we employed only one

joint neuron for two hip joints, for the reason pre- Figure 11 shows the case that was experimented on
the 58 slope. Once again the robot is at the second PPsented in the previous section. In pseudo dynamic

learning, there is a possible joint motion discontinuity of the trajectory but has been trained on 38 and 78
slopes. One may see that only joint 1 (top graph onwhen the neural network is switched to new neurons

for the next PP because the new neurons were not the left side of Fig. 11) has joint position changes.
This means that only joint 1 is selected for regainingtrained during the current phase. To prevent this mo-

tion discontinuity, we enable the learning mechanism the stability. In Figure 11, the initial neuron values
of the joint neurons are started with those acquiredonly during the first half of the phase, and the motion

adjustment accumulated in the training will be made during the training for the 78 slope. Note that in the
figure the neuron value of the joint 1 neuron is limitedto the current PP. In the second half of the current

phase, the displacement made by the neural mecha- by the saturation index, which is 10. Other neuron
values are not changed because they are smaller thannism is linearly reduced to zero such that the robot

reaches the next PP smoothly. that of the joint 1 neuron. As a consequence, only
joint 1 is adjusted, and the stable gait is regained very
quickly (the total step count is reduced from 1850 to

4.1. Static Learning 550, i.e., the adaption time is reduced from 5.18 s to
just 1.54 s).The biped walks on a 38 slope using the gait designed

for level surface. For simplicity, we concentrate on To investigate the characteristics of the neural
network, we repeated the training five times. Everythe second PP of the trajectory. According to Figure

5, the vertical projection of the COG at the second time the robot was put on the slope with a gait only
suitable for a level floor, but the neuron values werePP is at 0.85. Apparently, the robot is not very stable.

We should adjust the gait using the mechanism pro- set based on the previous training.
Figure 12 shows the result of the fifth round ofposed until the projection of the COG becomes above

X/L 5 1.1. The reason for X/L 5 1.1 is because when training. While it might not be very clear in the first
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Figure 8. The vertical projection of COG and the reinforcement signal for the first round
of training (38).

few rounds of training how the projection of the COG (the fifth round needs only 0.42 s). One strange thing
is that we had two modified stable gaits for this PP.is going to change, it clearly goes toward 1.1 at the

end of the fifth round of training. As mentioned in One gait adjusted the ankle, and the other bent the
torso. The result was unpredictable, but once the joint,the previous experiment, the AU needs less time to

stabilize the robot when we use the trained neurons hip or ankle, was selected at the beginning, the gait

Figure 9. The adjustment of the joint positions and the neuron values of the joint neurons
in the first round of training (38).
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Figure 10. The adjustment of the joint positions and the neuron values of the joint neurons
in the first round of training (78).

was determined. This means that joint selection de- beings also use both ways to stabilize a gait. Figure
13 shows the stable postures of the robot after onepends on the initial condition of the biped, but once

a joint is selected and rewarded as a consequence of round (top of Fig. 13) and five rounds (bottom of Fig.
13) of training, respectively, for both cases. Note thatadjusting, this joint has a greater chance of being

selected. This phenomena is natural because human after five rounds of training the biped has less modi-

Figure 11. The adjustment of the joint positions and the neuron values of the joint neurons
in the first round of training with a priori training (58).
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Figure 12. The projection of the COG and the reinforcement signal for the fifth round
of training.

(a) (b)

Figure 13. The balanced postures of the robot. (a) The adjusted ankle. (b) The bent torso.
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Figure 14. The projection of the COG for different rounds (the solid lines are results of
a low-pass filtering to the actual data).

fication than after one round of training. This indi- with the floor if the ankle joint is allowed to be ad-
cates that the modification of the joint becomes more justed.
efficient as the neural network has experienced more We performed two experiments with previously
training. We also put the trained robot on a 208 slope. trained and non-trained neurons, respectively. In the
Again, the robot stabilized its gait quickly and effec- first experiment, a biped walked on the 58 slope with
tively. no previous training. The coefficients used were c1 5

0.025, c2 5 0.008, dq 5 0.02, S1 5 10, S2 5 10, and «
5 10.

4.2. Pseudo Dynamic Learning In the first round the biped was walking on a
level floor (line 1 in Fig. 14). Then we let the bipedThe experimental condition was the same as in the
walk on a 58 slope without adjusting the gait (line 4static learning experiment except that the neurons
in Fig. 14). Starting from the third round we enabledwere trained while the biped was walking. In the
the AU, i.e., the training process was engaged. Noteexperiment, the joint neuron corresponding to the
that as the training goes on, the lines of the COGankle of the swinging leg was disabled to avoid any

motion modification to the ankle. The foot may collide become closer to the desired line (line 1 in Fig. 14).

Figure 15. The gait on a 58 floor after 20 rounds of learning (thin line: gait for a level floor).
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