
Approximate Message Passing Algorithms for Generalized

Bilinear Inference

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy in the Graduate School of The Ohio State

University

By

Jason T. Parker, B.S., M.S.

Graduate Program in Department of Electrical

and Computer Engineering

The Ohio State University

2014

Dissertation Committee:

Phil Schniter, Advisor

Lee Potter

Emre Ertin





Abstract

Recent developments in compressive sensing (CS) combined with increasing de-

mands for effective high-dimensional inference techniques across a variety of disci-

plines have motivated extensive research into algorithms exploiting various notions

of parsimony, including sparsity and low-rank constraints. In this dissertation, we

extend the generalized approximate message passing (GAMP) approach, originally

proposed for high-dimensional generalized-linear regression in the context of CS, to

handle several classes of bilinear inference problems. First, we consider a general form

of noisy CS where there is uncertainty in the measurement matrix as well as in the

measurements. Matrix uncertainty is motivated by practical cases in which there are

imperfections or unknown calibration parameters in the signal acquisition hardware.

While previous work has focused on analyzing and extending classical CS algorithms

like the LASSO and Dantzig selector for this problem setting, we propose a new al-

gorithm called Matrix Uncertain GAMP (MU-GAMP) whose goal is minimization of

mean-squared error of the signal estimates in the presence of these uncertainties, with-

out attempting to estimate the uncertain measurement matrix itself. Next, we extend

GAMP to the generalized-bilinear case, in which the measurement matrix is estimated

jointly with the signals of interest, enabling its application to matrix completion, ro-

bust PCA, dictionary learning, and related matrix-factorization problems. We derive

this Bilinear GAMP (BiG-AMP) algorithm as an approximation of the sum-product

ii



belief propagation algorithm in the high-dimensional limit, where central limit theo-

rem arguments and Taylor-series approximations apply, and under the assumption of

statistically independent matrix entries with known priors. In addition, we propose

an adaptive damping mechanism that aids convergence under finite problem sizes, an

expectation-maximization (EM)-based method to automatically tune the parameters

of the assumed priors, and two rank-selection strategies. We then discuss the special-

izations of EM-BiG-AMP to the problems of matrix completion, robust PCA, and

dictionary learning, and present the results of an extensive empirical study comparing

EM-BiG-AMP to state-of-the-art algorithms on each problem. Our numerical results,

using both synthetic and real-world datasets, demonstrate that EM-BiG-AMP yields

excellent reconstruction accuracy (often best in class) while maintaining competitive

runtimes and avoiding the need to tune algorithmic parameters. Finally, we propose

a parametric extension known as P-BiG-AMP, which recovers BiG-AMP as a spe-

cial case, that relaxes the assumption of statistically independent matrix entries by

introducing parametric models for the two matrix factors. The resulting algorithm

is rigorously justified for random affine parameterizations and constructed to allow

its use with an even wider class of non-linear parameterizations, enabling numerous

potential applications.

iii



For my mother, who has given so much and asked so little

iv



Acknowledgments

I would like to thank my advisor Professor Phil Schniter for his patience, wisdom,

technical acumen, and support over the last several years. His incredible insight

and creative approaches to problem solving made this work possible. I have also

benefited tremendously as a programmer, writer, and researcher from his guidance.

Professor Lee Potter introduced me to compressed sensing and provided invaluable

support as I applied these techniques to problems in radar signal processing. He

has been a great friend and mentor throughout this experience. I would also like

to thank Emre Ertin for serving on my committee and providing code and data

to support my investigations. Andrea Serrani graciously served on my candidacy

committee and advised me during the completion of my M.S. degree. I am also

grateful to the numerous students in the department who enriched my studies and

freely provided their time and talents to advance my research. Subhojit Som, Julie

Jackson, Christian Austin, and numerous other members of the compressed sensing

reading group provided useful discussions and keen insights. I would also like to

specifically thank Justin Ziniel and Jeremy Vila for their generosity with both their

time and code.

Beyond OSU, Professor Volkan Cevher at EPFL has been a great collaborator

on BiG-AMP. I would also like to thank Professor Sundeep Rangan and the other

contributors to the GAMPmatlab project for providing invaluable software tools in

v



support of this research. I’ve had the opportunity to work for two excellent supervisors

at AFRL during my graduate studies, Bill Baldygo and Jeff Sanders. I am grateful to

both for their support of my continued research and patience with the required time

commitment. Numerous other colleagues at AFRL, indeed too many to list, have

provided friendship, mentorship, and support. I do want to specifically thank Murali

Rangaswamy, Braham Himed, and Mike Wicks for their technical leadership. John

Scanlan, Ken Schafer, and Shaun Frost have also been dear friends and invaluable

teammates. Several colleagues in industry and academia have also provided good

advice and technical insights over the years, including Matt Ferrara, Bill Melvin,

Margaret Cheney, and many others. This research would not have been possible

without the generous support of AFRL, Dr. Arje Nachman at AFOSR, and the

National Science Foundation Graduate Research Fellowship.

My family has been incredibly supportive throughout my studies. I’m grateful to

my late father for the reverence of learning that he instilled in me at an early age.

My mother has provided financial and emotional support throughout. I have never

known a more giving or selfless person, and I have no doubt that I owe much of who I

am to her. My brother Brian has also been an invaluable companion throughout the

years. The monday night crew has kept me sane and made me smile. Finally, I want

to thank my wife and dearest friend, Laura Humphrey. She has been there for me

from the beginning, and this degree is as much hers as mine. You make it all worth

it, and I love you.

vi



Vita

February 18, 1982 . . . . . . . . . . . . . . . . . . . . . . . . . . Born - Kettering, OH, USA

2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Summer Intern, AFRL/PRSF

2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Summer Intern, AFRL/PRTC

2002-2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Special Consultant to the Pulsed Det-
onation Engine Research Facility at
AFRL/PRTC, ISSI

2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B.S. Electrical Engineering,
The Oho State University

2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Invited Scholar, AFRL/VACA

2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .M.S. Electrical Engineering,
The Ohio State University

2004-2006, 2008-2009 . . . . . . . . . . . . . . . . . . . . . . . National Science Foundation
Graduate Research Fellow

2006-present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Research Engineer,
Air Force Research Laboratory,
Sensors Directorate.

Publications

Research Publications

M. Ferrara, J. T. Parker, and M. Cheney, “Resolution Optimization with Irregularly

Sampled Fourier Data,” Inverse Problems, vol. 29, no. 5, 2013.

J. T. Parker, M. Ferrara, L. C. Potter, “Radar Applications of Sparse Reconstruc-

tion and Compressed Sensing,” Chapter 5 in Principles of Modern Radar: Advanced

vii



Techniques, Edited by W. L. Melvin and J. A. Scheer, SciTech Publishing, September
2012.

J. T. Parker and P. Schniter, Bilinear generalized approximate message passing (BiG-

AMP) for matrix completion, presented at Asilomar Conference on Signals, Systems,
and Computers, Nov. 2012.

P. Schniter, J. T. Parker, and V. Cevher, Bilinear generalized approximate message

passing (BiG-AMP) for matrix recovery problems, presented at Information Theory
and Applications Workshop, Feb. 2012.

J. T. Parker, V. Cevher, and P. Schniter, “Compressive Sensing under Matrix Un-

certainties: An Approximate Message Passing Approach,” Proceedings of Asilomar

Conference on Signals, Systems, and Computers, November 2011.

J. T. Parker, L. J. Moore, and L. C. Potter, “Resolution and Sidelobe Structure
Analysis for RF Tomography,” Proceedings of IEEE Radarcon, 2011.

L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin, “Sparsity and Compressed Sensing

in Radar Imaging,” Proceedings of the IEEE, vol. 98, pp. 1006-1020, June 2010.

J. T. Parker and L. C. Potter, “A Bayesian Perspective on Sparse Regularization for
STAP Post-Processing,” Proceedings of IEEE Radarcon, 2010.

Fields of Study

Major Field: Electrical and Computer Engineering

viii



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Generalized Approximate Message Passing . . . . . . . . . . . . . . . . . 5

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Review of the Sum-Product Algorithm . . . . . . . . . . . . . . . . 7

2.4 GAMP for the MMSE Case . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1 Messages emitted by the function (or “output”) nodes . . . 11

2.4.2 Messages emitted by the variable (or “input”) nodes . . . . 16
2.4.3 Summary of MMSE GAMP . . . . . . . . . . . . . . . . . . 19

2.5 Example Channel Models for MMSE GAMP . . . . . . . . . . . . . 20
2.6 Damping for Numerical Robustness . . . . . . . . . . . . . . . . . . 21

2.7 Additional Modifications for Numerical Robustness . . . . . . . . . 23
2.8 Cost Function for MMSE-GAMP . . . . . . . . . . . . . . . . . . . 24

2.8.1 Expected Log-likelihood of the measured data . . . . . . . . 31
2.8.2 KL divergence from the prior . . . . . . . . . . . . . . . . . 32

2.9 Connection to Donoho/Bayati/Montanari AMP . . . . . . . . . . . 36

ix



3. Matrix Uncertain Generalized Approximate Message Passing . . . . . . . 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 A Large-System Blessing? . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Matrix-Uncertain GAMP . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Background on GAMP . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Matrix-Uncertain GAMP . . . . . . . . . . . . . . . . . . . 45
3.3.3 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Alternating MU-GAMP . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1 Alternating MU-GAMP . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4. Bilinear Generalized Approximate Message Passing . . . . . . . . . . . . 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Bilinear Generalized AMP . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Loopy Belief Propagation . . . . . . . . . . . . . . . . . . . 63
4.2.3 Sum-product Algorithm . . . . . . . . . . . . . . . . . . . . 64

4.2.4 Approximated Factor-to-Variable Messages . . . . . . . . . 66
4.2.5 Approximated Variable-to-Factor Messages . . . . . . . . . 73

4.2.6 Closing the Loop . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.7 Approximated Posteriors . . . . . . . . . . . . . . . . . . . . 79

4.2.8 Algorithm Summary . . . . . . . . . . . . . . . . . . . . . . 80
4.3 BiG-AMP Simplifications . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Scalar Variances . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.2 Possibly Incomplete AWGN Observations . . . . . . . . . . 84
4.3.3 Zero-mean iid Gaussian Priors on A and X . . . . . . . . . 87

4.4 Adaptive Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.1 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.2 Adaptive Damping . . . . . . . . . . . . . . . . . . . . . . . 90
4.5 Parameter Tuning and Rank Selection . . . . . . . . . . . . . . . . 93

4.5.1 Parameter Tuning via Expectation Maximization . . . . . . 93
4.5.2 Rank Selection . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Matrix Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.6.1 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.6.3 Adaptive damping . . . . . . . . . . . . . . . . . . . . . . . 100

4.6.4 EM-BiG-AMP . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.6.5 Rank selection . . . . . . . . . . . . . . . . . . . . . . . . . 101

x



4.6.6 Matrix Completion Experiments . . . . . . . . . . . . . . . 102
4.7 Robust PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.7.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.7.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.7.3 EM-BiG-AMP . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.7.4 Rank Selection . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.7.5 Avoiding Local Minima . . . . . . . . . . . . . . . . . . . . 116
4.7.6 Robust PCA Experiments . . . . . . . . . . . . . . . . . . . 116

4.8 Dictionary Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.8.1 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.8.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.8.3 EM-BiG-AMP . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.8.4 Avoiding Local Minima . . . . . . . . . . . . . . . . . . . . 125

4.8.5 Dictionary Learning Experiments . . . . . . . . . . . . . . . 125
4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5. Parametric Bilinear Generalized Approximate Message Passing . . . . . . 134

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2 The Parameterizations . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2.1 Random Affine Parameterizations . . . . . . . . . . . . . . . 136
5.2.2 Large-System Limit Scalings . . . . . . . . . . . . . . . . . 137

5.3 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.4 Application of the Sum Product Algorithm . . . . . . . . . . . . . 139

5.5 MMSE P-BiG-AMP Derivation . . . . . . . . . . . . . . . . . . . . 141
5.5.1 SPA message from node pyml|zml

to node bi . . . . . . . . . . 142

5.5.2 SPA message from node pyml|zml
to node cj . . . . . . . . . . 155

5.5.3 SPA message from node cj to pyml|zml
. . . . . . . . . . . . . 158

5.5.4 SPA message from node bi to pyml|zml
. . . . . . . . . . . . . 161

5.5.5 Closing the loop . . . . . . . . . . . . . . . . . . . . . . . . 163
5.5.6 Algorithm Summary . . . . . . . . . . . . . . . . . . . . . . 168

5.6 Special Parameterizations . . . . . . . . . . . . . . . . . . . . . . . 171
5.6.1 Affine Parameterizations . . . . . . . . . . . . . . . . . . . . 171

5.6.2 Trivial Parameterizations . . . . . . . . . . . . . . . . . . . 173
5.7 Implicit Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.7.1 Sandwich A(·) and Trivial X(·) . . . . . . . . . . . . . . . . 179
5.8 Adaptive Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.8.1 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.8.2 Adaptive Damping . . . . . . . . . . . . . . . . . . . . . . . 184

5.9 Tuning of the Prior and Likelihood . . . . . . . . . . . . . . . . . . 185
5.9.1 Expectation Maximization . . . . . . . . . . . . . . . . . . . 185

5.9.2 Initialization of θ . . . . . . . . . . . . . . . . . . . . . . . . 187

xi



5.10 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.10.1 Random Affine A(·) with Trivial X(·) . . . . . . . . . . . . 189

5.10.2 Noisy Partial 2D Fourier Measurements of a Sparse Image
with Row-wise Phase Errors . . . . . . . . . . . . . . . . . . 191

5.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 195

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

xii



List of Tables

Table Page

2.1 GAMP variable scalings in the large system limit. . . . . . . . . . . . 11

3.1 The MU-GAMP Algorithm . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 SPA message definitions at iteration t ∈ Z for BiG-AMP. . . . . . . . 65

4.2 BiG-AMP variable scalings in the large-system limit. . . . . . . . . . 67

4.3 The BiG-AMP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Scalar-variance BiG-AMP with PIAWGN py|z . . . . . . . . . . . . . 87

4.5 BiG-AMP-Lite: Scalar-variance, PIAWGN, Gaussian px and pa . . . . 88

5.1 SPA message definitions at iteration t ∈ Z. . . . . . . . . . . . . . . . 140

5.2 P-BiG-AMP variable scalings in the large-system limit. . . . . . . . . 142

5.3 The P-BiG-AMP Algorithm . . . . . . . . . . . . . . . . . . . . . . . 169

5.4 Multiplies consumed by each step of P-BiG-AMP from Table 5.3. . . 171

xiii



List of Figures

Figure Page

2.1 The factor graph for generalized linear inference. . . . . . . . . . . . . 7

2.2 A graphical depiction of the portion of the factor graph used to com-

pute ∆i→j(xj). The red arrows represent the incoming messages used
in the calculation, while the blue arrow marks the resulting message. 9

2.3 A graphical depiction of the portion of the factor graph used to com-

pute ∆i←j(xj). The red and green arrows represent the incoming mes-

sages used in the calculation, while the blue arrow marks the resulting
message. The message from the prior node pX|Q(xN |qN ) is shown in

green to emphasize that this message is known and does not need to
be recomputed for each iteration. . . . . . . . . . . . . . . . . . . . . 10

3.1 10-trial median NMSE under uniform matrix error variance νE . . . . 48

3.2 10-trial median NMSE under non-uniform error variance {νE
mn}. . . . 50

3.3 10-trial median NMSE for estimation of x versus the parametric matrix-

uncertainty dimension P . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 100-trial median NMSE of A-MU-GAMP when iteratively estimating
x and θ in the channel calibration example. . . . . . . . . . . . . . . 54

3.5 100-trial median NMSE of A-MU-GAMP when iteratively estimating
x and θ in the compressive blind deconvolution example. . . . . . . . 55

4.1 The factor graph for generalized bilinear inference for (toy-sized) prob-

lem dimensions M = 4, L = 3, and N = 2. . . . . . . . . . . . . . . . 62

xiv



4.2 Empirical success rates for noiseless completion of an M × L matrix
sampled uniformly at random, as a function of sampling ratio δ = |Ω|

ML

and rank N . Here, “success” is defined as NMSE < −100 dB, success
rates were computed from 10 random realizations, and M = L = 1000.

Points above the red curve are infeasible, as described in the text. . . 104

4.3 Runtime to NMSE= −100 dB for noiseless completion of an M × L
matrix sampled uniformly at random, versus rank N , atM = L = 1000

and several sampling ratios δ = |Ω|
ML

. All results represent median
performance over 10 trials. Missing values indicate that the algorithm

did not achieve the required NMSE before termination and correspond
to the black regions in Fig. 4.2. . . . . . . . . . . . . . . . . . . . . . 106

4.4 NMSE (top) and estimated rank (bottom) in noiseless completion of
an M ×L matrix sampled uniformly at random, versus sampling ratio

δ = |Ω|
ML

. The complete matrices were approximately low-rank, with
power-law (left) and exponential (right) singular-value decays andM =

L = 500. All results represent median performance over 10 random trials.107

4.5 NMSE (top) and estimated rank (bottom), versus SNR, in noisy com-
pletion of an 500 × 500 matrix sampled uniformly at random at rate

δ = 0.2. The complete matrices were approximately low-rank, with
power-law (left) and exponential (right) singular-value decays. . . . . 108

4.6 For the image completion experiment, the complete image is shown

on the top left, its best rank-40 approximation is shown on the top
middle, and the observed image with 35% of the pixels observed is

shown on the top right. The other panes show various algorithms’

image reconstructions from 35% of the complete-image pixels (selected
uniformly at random) as well as the mean NMSE over 10 trials. . . . 109

4.7 Median NMAE (top) and estimated rank (bottom) for movie-rating

prediction versus fraction of training data |Ω|/|R| over 10 trials for the
100k MovieLens data set. . . . . . . . . . . . . . . . . . . . . . . . . 112

4.8 Empirical success rates for RPCA with a 200× 200 matrix of rank N

corrupted by a fraction δ of outliers with amplitudes uniformly dis-
tributed on [−10, 10]. Here, “success” is defined as NMSE < −80 dB,

and success rates were averaged over 10 problem realizations. Points
above the red curve are infeasible, as described in the text. . . . . . . 118

xv



4.9 Runtime to NMSE= −80 dB for RPCA with a 200 × 200 matrix of
rank N corrupted by a fraction δ ∈ {0.05, 0.2, 0.3} of outliers with

amplitudes uniformly distributed on [−10, 10]. All results represent
median performance over 10 trials. Missing values indicate that the

algorithm did not achieve the required NMSE before termination and
correspond to the black regions in Fig. 4.8. . . . . . . . . . . . . . . . 119

4.10 NMSE (top) and estimated rank N̂ (bottom) versus true rank N for

several algorithms performing RPCA on a 200 × 200 matrix in the
presence of additive N (0, 10−3) noise and a fraction δ = 0.1 of out-

liers with amplitudes uniformly distributed on [−10, 10]. All results
represent the median over 10 trials. . . . . . . . . . . . . . . . . . . . 121

4.11 Three example frames from the “mall” video sequence. The left col-
umn shows original frames, the middle column EM-BiG-AMP-2 esti-

mated background, and the right column EM-BiG-AMP-2 estimated
foreground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.12 Mean NMSE (over 10 trials) for recovery of an N ×N dictionary from

L = 5N logN training samples, each of sparsityK, in the noiseless case
(left) and under AWGN of 40 dB SNR (right), for several algorithms. 131

4.13 Median runtime until termination (over 10 trials) versus dictionary size

N , for noiseless recovery of a square dictionary from L = 5N logN K-
sparse samples, for several values of training sparsityK. Missing values

indicate that the algorithm did not achieve the required NMSE before
termination and correspond to the black regions in the panes on the

left of Fig. 4.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.14 Mean NMSE (over 10 trials) for recovery of an M × (2M) dictionary

from L = 10M log(2M) training samples, each of sparsity K, in the
noiseless case (left) and under AWGN of 40 dB SNR (right), for several

algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.1 The factor graph for parametric generalized bilinear inference under
Nb = 2, Nc = 3, and ML = 4. . . . . . . . . . . . . . . . . . . . . . . 139

5.2 The results of a Monte-Carlo simulation used to double-check the de-

rived mean and variance expressions in (5.36) and (5.48). A close
agreement between simulated and analytical values is expected given

that 104 number of Monte-Carlo averages were used. . . . . . . . . . 148

xvi



5.3 NMSE for estimation of the trivially-parameterized sparse signalX(c) ∈
RN (right) with ‖c‖0 = 10 and the parameter b ∈ R10 (left) of the ran-
dom affine measurement operator A(b) ∈ RM×N as a function of the

ratio between the number of measurements M and the signal length
N = 256. The measurements were corrupted with AWGN at a SNR of

40 dB. All results represent mean performance over 10 random trials. 192

5.4 Recovery of a 128×128 complex-valued image with 300 non-zero pixels
from partial noisy 2D Fourier measurements with row-wise phase errors

uniformly distributed on [−90◦, 90◦] and AWGN at SNR = 40 dB. The
magnitude of the original image on a normalized dB scale is shown on

the top left, and the reconstruction using GAMP, which ignores the

phase errors, is shown on the top right. The P-BiG-AMP estimates of
the image and the required phase corrections are shown on the bottom

left and right, respectively. The NMSE in the recovery of the image
using P-BiG-AMP is −49.62 dB. . . . . . . . . . . . . . . . . . . . . 194

xvii



Chapter 1: Introduction

The origin of the name Compressive Sensing (CS) [1, 2] lies in a particular inter-

pretation of CS algorithms as an approach to signal compression. Many practical

systems sample a signal of interest at a rate above the Nyquist rate dictated by its

bandwidth, transform the signal to a basis which concentrates the signal’s energy

into a few large entries, and achieve compression by storing the values and locations

of only these dominant coefficients. JPEG2000 is an excellent example of processing

in this vein, relying on a wavelet transformation to sparsify natural images. Since

the signal is eventually encoded with only a few coefficients, it seems natural to

ask if fewer measurements could have been taken in the first place. Under various

technical conditions, CS accomplishes this goal by combining a reduced number of,

typically randomized, measurements with nonlinear reconstruction algorithms and

known sparsifying transformations. In particular, CS algorithms typically consider

linear regression problems of the form y = Ax+w, with noise w, a sparse or com-

pressible signal x ∈ RN , and an under-determined linear operator A ∈ RM×N with

M < N .

Over the past several years, work on CS has spurred research into several classes of

algorithms for under-determined linear regression, including methods in convex opti-

mization, greedy techniques, and various Bayesian approaches. Of particular interest

1



here is Approximate Message Passing (AMP) [3–5] and the subsequent Generalized

AMP (GAMP) [6], which offers state-of-the-art performance for linear CS problems,

significant flexibility in the assumed prior models for the signal of interest x, a gen-

eralized measurement model that supports non-Gaussian noise and even non-linear

measurements, and low implementation complexity. These methods, like the vast ma-

jority of other CS techniques, treat the measurement matrix A as fixed and known.

In this dissertation, motivated by the success of AMP methods for solving linear

problems in CS, we consider extensions of the AMP framework to handle various

bilinear inference problems in which A is partially or even completely unknown.

This dissertation is organized as follows. Chapter 2 reviews prior work on GAMP

and includes a detailed derivation of the algorithm. Various modifications required

for its practical implementation are also described, along with the simplifications

required to reduce GAMP to the original AMP. While GAMP itself does not represent

a contribution of this dissertation, we have made notable contributions to its publicly

available implementation, which we have also extended to include the novel algorithms

presented in subsequent chapters. Next, Chapter 3 summarizes our first contribution,

an extension of GAMP which models the entries ofA as independent random variables

with known means and variances in an effort to recover x more accurately in the

presence of an uncertain measurement matrix. Empirically, we show that this Matrix

Uncertain GAMP (MU-GAMP) [7] approach performs near oracle bounds. We also

present a simple analysis showing that, for suitably large systems, it suffices to treat

uniform matrix uncertainty as additive white Gaussian noise. While MU-GAMP does

not estimate A directly, we show that it can be applied in an alternating fashion,

2



referred to as A-MU-GAMP, to learn both the signal vector and the measurement

matrix when A can be written as an affine combination of known matrices.

In Chapter 4, we pursue a more flexible approach which jointly estimates A and

matrix-valued X by placing separable priors on the elements of both matrix factors.

This bilinear inference algorithm is referred to as Bilinear GAMP (BiG-AMP) [8, 9].

We present several special-case simplifications of the algorithm that offer reduced

computational complexity. In addition, an adaptive damping mechanism, expecta-

tion maximization (EM) based tuning of the prior parameters, and two methods for

selecting the rank N of the product AX are presented. The resulting algorithm is

then specialized for matrix completion, robust principal components anlaysis, and

dictionary learning. A detailed empirical study shows that BiG-AMP yields an ex-

cellent combination of estimation accuracy and runtime when compared to existing

state-of-the-art algorithms for each application.

Our final contribution is described in Chapter 5, where we develop a parametric

extension of BiG-AMP. This P-BiG-AMP algorithm [10] handles the case where A

and X are described by known parametric models and seeks to jointly estimate the

parameters of these models, rather than the matrices themselves. This approach re-

duces to BiG-AMP for “trivial” deterministic parameterizations, but can also handle

much more general settings where the effective priors on A and X are non-separable,

e.g., a measurement system with a small number of calibration parameters. In the

interest of generality, we carry out the derivation for possibly non-linear parameteriza-

tions, although certain steps in the derivation are rigorously justified only in the case

of random affine parameterizations. Practical implementation issues for P-BiG-AMP

are also addressed, along with numerical examples to demonstrate the technique’s

3



effectiveness. Finally, we offer conclusions and a summary of possible future work in

Chapter 6.

4



Chapter 2: Generalized Approximate Message Passing

2.1 Overview

In this chapter, we provide a detailed derivation of the Generalized Ap-

proximate Message Passing (GAMP) algorithm from [6] and describe several is-

sues surrounding its practical implementation. GAMP is a generalization of

Donoho/Maleki/Montanari’s AMP [3–5], where the latter handled only Gaussian

output channels. The GAMP analysis closely follows the AMP analysis of Bay-

ati/Montanari [11]. GAMP is also closely related to Guo/Wang’s relaxed BP [12,13],

but admits a rigorous analysis with dense matrices A, as well as a somewhat simpler

implementation. Rangan’s work [6] provides asymptotic analysis that shows that, for

i.i.d Gaussian A, as limN→∞
N

M(N)
= β, the empirical distributions of GAMP esti-

mates converge (at all iterations) to distributions predicted by a state evolution (SE)

formalism. Moreover, the SE equations are shown to coincide with those derived using

the non-rigorous replica method from statistical physics, as well as with those derived

using sparse-matrix assumptions. Mismatched statistics are also considered. We refer

the reader to [6] for the details of these analyses, as our focus here will be on the

derivation and implementation of the algorithm. The derivation is based primarily

on Taylor Series and Central Limit Theorem (CLT) arguments and introduces several

5



techniques used in the novel derivations carried out in subsequent chapters. While

Rangan provides versions of GAMP for both minimum mean squared error (MMSE)

and maximum a posteriori (MAP) estimation, here we restrict our attention to the

MMSE case.

The chapter is organized as follows: in Section 2.2, we set up the problem of inter-

est for GAMP. We then introduce the sum product algorithm in Section 2.3 and apply

it to derive MMSE GAMP in Section 2.4. Next, example channel models along with

some practical convergence issues are addressed in Section 2.5 to Section 2.7. Finally,

we describe the cost function used for step acceptance in practical implementations

of GAMP in Section 2.8 and describe the connection between GAMP and AMP in

Section 2.9.

2.2 Problem Setup

We denote the signal vector of interest as x ∈ RN , drawn from the arbitrary

separable pdf

p(x | q) =
∏

j

pX|Q(xj | qj), (2.1)

where {qj} are known parameters. Given the known measurement matrix A ∈ RM×N

with entries aij = [A]i,j, sometimes with M < N , we define the noiseless measure-

ments (in practice unknown) as z = Ax ∈ RM . The vector of known noisy measure-

ments y ∈ RM is related to z via the arbitrary separable “output channel”

p(y | z) =
∏

i

pY |Z(yi | zi). (2.2)

Our goal is to estimate x from y using the MMSE criterion.

6



2.3 Review of the Sum-Product Algorithm

The sum-product algorithm [14, 15] is a form of belief propagation (BP) that

attempts to iteratively estimate the marginals of the posterior p(x |y, q):

p(x |y, q) = p(y |x)p(x | q)
p(y | q) ∝ p(y |x)p(x | q)

=

M∏

i=1

pY |Z(yi | [Ax]i)

N∏

j=1

pX|Q(xj | qj). (2.3)

In BP, messages are passed between nodes of the factor graph of p(x |y, q), illustrated

in Fig. 2.1. There, the factors of p(x |y, q) are represented by “function nodes” de-

picted as black squares and random variables in p(x |y, q) are represented by “variable

nodes,” depicted as white circles. Each variable (node) is connected to every factor

(node) in which it appears. Note that since {yi}Mi=1 and {qj}Nj=1 are known, they are

treated as pdf parameters and not as random variables.

pX|Q(x1 | q1)

pX|Q(x2 | q2)

pX|Q(xN | qN)

x1

x2

xn

∆1→1(x1)

∆i←j(xj)

pY |Z(y1 | [Ax]1)

pY |Z(y2 | [Ax]2)

pY |Z(yM | [Ax]M)

...
...

...

Figure 2.1: The factor graph for generalized linear inference.

7



In our formulation of the sum product algorithm [14, 15], messages take the form

of log-pdfs, with arbitrary constant offsets. For example, the message ∆i→j(xj) cor-

responds to the pdf 1
Z
exp(∆i→j(xj)), where Z ,

∫
xj
exp(∆i→j(xj)) is a necessary

scaling factor. The sum-product algorithm estimates the posterior pdf of a given

variable as the product of exponentiated messages entering that variable node (after

appropriate scaling). For example, on the graph in Fig. 2.1, the estimate of p(xj |y, q)

takes the form of 1
Z
exp

(
∆j(xj)

)
, where

∆j(xj) = const + log pX|Q(xj |qj) +
m∑

i=1

∆i→j(xj), (2.4)

and where ∆i→j(xj) denotes the message from the ith function node (on the left) to

the jth variable node (on the right). We use const to denote an arbitrary constant

offset. Without loops in the graph, BP yields exact posteriors with one round of

message passing. With loops, exact inference is generally NP hard, but approximate

inference via BP can perform very well, such as in the case described here. We now

apply the sum product algorithm to the graph in Fig. 2.1 to arrive at update rules

for the messages ∆i→j(xj) and ∆i←j(xj).

First, the outgoing message from a factor node on a given branch is the log of

the integrated product of the local function and all exponentiated incoming messages

on other branches. Applying this procedure to the function-to-variable messages

∆i→j(xj), we obtain

∆i→j(xj) = const+ log

∫

{xr}r 6=j

pY |Z(yi | [Ax]i)
∏

r 6=j

exp
(
∆i←r(xr)

)
. (2.5)

The calculation of this message is depicted graphically in Fig. 2.2. For variable nodes,

the outgoing message on a given branch is the sum of all incoming messages on other

8



branches, which allows us to compute the variable-to-function messages ∆i←j(xj) as

∆i←j(xj) = const + log pX|Q(xj | qj) +
∑

l 6=i

∆l→j(xj). (2.6)

A graphical depiction of this message calculation is provided in Fig. 2.3. For the factor

graph in Fig. 2.1, exact implementation of the sum-product algorithm has complexity

exponential in N , motivating the simpler scheme described in the sequel.

pX|Q(x1|q1)

pX|Q(x2|q2)

pX|Q(xN |qN)

x1

x2

xN

∆1→1(x1)

∆i←j(xj)

pY |Z(y1 | [Ax]1)

pY |Z(y2 | [Ax]2)

pY |Z(yM | [Ax]M)

...
...

...

Figure 2.2: A graphical depiction of the portion of the factor graph used to compute
∆i→j(xj). The red arrows represent the incoming messages used in the calculation,
while the blue arrow marks the resulting message.

2.4 GAMP for the MMSE Case

The sum-product algorithm is now approximated using central limit theorem

(CLT) and Taylor-series ideas, yielding the MMSE version of the GAMP algorithm.

9



pX|Q(x1|q1)

pX|Q(x2|q2)

pX|Q(xN |qN)

x1

x2

xN

∆1→1(x1)

∆m←N(xN )

pY |Z(y1 | [Ax]1)

pY |Z(y2 | [Ax]2)

pY |Z(yM | [Ax]M)

...
...

...

Figure 2.3: A graphical depiction of the portion of the factor graph used to compute
∆i←j(xj). The red and green arrows represent the incoming messages used in the
calculation, while the blue arrow marks the resulting message. The message from the
prior node pX|Q(xN |qN) is shown in green to emphasize that this message is known
and does not need to be recomputed for each iteration.

The following means and variances are used in the sequel:

x̂j(t) , E{xj |∆j(t, .)} (2.7)

µx
j (t) , var{xj |∆j(t, .)} (2.8)

x̂ij(t) , E{xj |∆i←j(t, .)} (2.9)

µx
ij(t) , var{xj |∆i←j(t, .)}, (2.10)

where in (2.7)-(2.10) it is assumed that xj ∼ 1
Z
exp(∆(t, .)) for Z ,

∫
xj
exp(∆(t, xj)).

In the sequel, we approximate the updates (2.4)-(2.6) using the AMP framework.

Our approximations will be guided by analyzing the algorithm in the large system

limit, where δ , M/N is held constant as N → ∞. Similar to the derivations in [6,

16,17], we shall assume that xj is O(1) and aij is O(1/
√
N) and drawn randomly from

a zero mean distribution, which implies that zi is O(1). Based on these assumptions

and our subsequent derivation, Table 2.1 summarizes how several variables used by

10



x̂ij(t) O(1) µx
ij(t) O(1)

x̂j(t) O(1) µx
j (t) O(1)

r̂ij(t) O(1) µr
ij(t) O(1)

r̂j(t) O(1) µr
j(t) O(1)

ẑi(t) O(1) µz
i (t) O(1)

p̂i(t) O(1) µp
i (t) O(1)

ŝi(t) O(1) µs
i (t) O(1)

x̂ij(t)− x̂j(t) O(1/
√
N)

µr
ij(t)− µr

j(t) O(1/N)

p̂ij(t)− p̂i(t) O(1/
√
N)

µp
ij(t)− µp

i (t) O(1/N)

Table 2.1: GAMP variable scalings in the large system limit.

GAMP, most of which will be defined in the sequel, are assumed to scale relative to

N in the large system limit.

2.4.1 Messages emitted by the function (or “output”) nodes

Rule (2.5) of the sum-product algorithm yields the time-t message

∆i→j(t, xj)

= const + log

∫

{xr}r 6=j

pY |Z
(
yi

∣∣∣ aijxj +
∑

r 6=j

airxr

︸ ︷︷ ︸
, zi

) ∏

r 6=j

e∆i←r(t,xr). (2.11)

For large N , the CLT motivates the treatment of zi as conditionally Gaussian, i.e.,

zi|xj ∼ N
(
aijxj + p̂ij(t), µ

p
ij(t)

)
, (2.12)

where

p̂ij(t) ,
∑

r 6=j

airx̂ir(t) (2.13)

µp
ij(t) ,

∑

r 6=j

a2irµ
x
ir(t). (2.14)

11



Using this CLT approximation,

∆i→j(t, xj) ≈ const + log

∫

zi

pY |Z(yi | zi) N
(
zi; aijxj + p̂ij(t), µ

p
ij(t)

)

︸ ︷︷ ︸
, H

(
aijxj + p̂ij(t), yi, µ

p
ij(t)

)
(2.15)

The related quantities

p̂i(t) ,
∑

j

aijx̂ij(t) (2.16)

µp
i (t) ,

∑

j

a2ijµ
x
ij(t) (2.17)

can be plugged into (2.15) to get

∆i→j(t, xj) ≈ const +H
(
aij(xj − x̂ij(t)) + p̂i(t), yi, µ

p
ij(t)

)
(2.18)

= const +H
(
aij(xj − x̂j(t)) + p̂i(t) +O(1/N), . . .

yi, µ
p
i (t) +O(1/N)

)
, (2.19)

where in (2.19) we have recognized, recalling Table 2.1, that aij [x̂j(t) − x̂ij(t)] is

O(1/N). The difference between µp
ij(t) and µp

i (t) is also O(1/N), since they differ by

a single term that is scaled by a2ij . Notice that the remaining terms in both function

arguments are O(1). Applying a Taylor-series approximation to (2.19), one finds

∆i→j(t, xj) ≈ const +H
(
p̂i(t), yi, µ

p
i (t)
)

+ aij(xj − x̂j(t))H
′(p̂i(t), yi, µp

i (t)
)

+ 1
2
a2ij(xj − x̂j(t))

2H ′′
(
p̂i(t), yi, µ

p
i (t)
)
, (2.20)

where H ′(·, ·, ·) denotes the derivative of H(·, ·, ·) with respect to the first argument,

and H ′′(·, ·, ·) the second derivative. A sum containing O(N) of the ∆i→j(t, xj) mes-

sages is used to compute ∆i←j(xj). Thus, we have only retained terms in the ex-

pansion that are O(1/N) or larger. In particular, we have dropped the O(1/N)

12



perturbations of the H ′(·, ·, ·) and H ′′(·, ·, ·) function arguments1 and the cubic2 and

higher order terms in the Taylor series. Defining

ŝi(t) , H ′
(
p̂i(t), yi, µ

p
i (t)
)

(2.21)

µs
i (t) , −H ′′

(
p̂i(t), yi, µ

p
i (t)
)
, (2.22)

and noting that H
(
p̂i(t), yi, µ

p
i (t)
)
is constant w.r.t xj , (2.20) becomes

∆i→j(t, xj) ≈ const + aij(xj − x̂j(t))ŝi(t)− 1
2
a2ij
(
xj − x̂j(t)

)2
µs
i (t) (2.23)

= const +
[
ŝi(t)aij + µs

i (t)a
2
ij x̂j(t)

]
xj − 1

2
µs
i (t)a

2
ijx

2
j . (2.24)

In essence, the pdf 1
Z
exp(∆i→j(t, xj)) has been approximated as Gaussian, even

though pY |Z(.|.) in (2.15) may be non-Gaussian.

As shown below, the quantities in (2.21) and (2.22) can be simplified. From

H(p̂, y, µp) , log

∫
pY |Z(y | z)N (z; p̂, µp)dz, (2.25)

it can be seen that

H ′(p̂, y, µp)

=
∂

∂p̂
log

∫
pY |Z(y | z)

1√
2πµp

exp
(
− 1

2µp
(z − p̂)2

)
dz (2.26)

=
∂

∂p̂

{
log

1√
2πµp

+ log

∫

z

exp
(
log pY |Z(y | z)−

1

2µp
(z − p̂)2

)
dz
}

(2.27)

=
∂

∂p̂

{
− p̂2

2µp
+ log

∫
exp

(
log pY |Z(y | z)−

z2

2µp
+

p̂z

µp

)
dz
}

(2.28)

= − p̂

µp
+

∂

∂p̂
log
[
µp

∫
exp

(
φ(u) + p̂u

)
du
]

via u ,
z

µp
(2.29)

= − p̂

µp
+

∂

∂p̂
log

∫
exp

(
φ(u) + p̂u

)
du (2.30)

1A further Taylor series expansion of these terms reveals that these perturbations can be ne-
glected, since the coefficients premultiplying them are O(1/

√
N) or smaller.

2Notice that the cubic term is scaled by a3ij , which is O(1/N3/2).

13



for appropriate φ(·). Now, for Z(p̂) ,
∫
exp

(
φ(u) + p̂u

)
du, simple calculus yields

∂

∂p̂
logZ(p̂) = E{u | p̂} with pU |P (u | p̂) = exp(φ(u)+p̂u)

Z(p̂)
(2.31)

∂2

∂p̂2
logZ(p̂) = var{u | p̂} with pU |P (u | p̂) = exp(φ(u)+p̂u)

Z(p̂)
. (2.32)

Thus, from (2.30) and (2.31), it follows that

H ′(p̂, y, µp) = − p̂

µp
+

∫
u
exp

(
φ(u) + p̂u

)

Z(p̂)
du (2.33)

= − p̂

µp
+

∫
z

µp

exp
(
log pY |Z(y|z)− z2

2µp + zp̂
µp

)

Z(p̂)

dz

µp
via u ,

z

µp
(2.34)

= − p̂

µp
+

1

µp

∫
z
exp

(
log pY |Z(y|z)− 1

2µp (z − p̂)2
)

µpZ(p̂) exp(− p̂2

2µp )
dz (2.35)

= − p̂

µp
+

1

µp

∫
z

pY |Z(y|z)N (z; p̂, µp)∫
pY |Z(y|z)N (z; p̂, µp)dz

dz (2.36)

=
1

µp

(
E{z | y, p̂;µp} − p̂

)
, (2.37)

where pZ|Y,P (z | y, p̂;µp) ∝ pY |Z(y|z)N (z; p̂, µp). This notation invokes the in-

terpretation that GAMP calculates the approximate prior pZ|P (zi|p̂i(t);µp
i (t)) =

N (zi; p̂i(t), µ
p
i (t)) and combines it with the likelihood pY |Z(yi | zi) to form the result-

ing posterior pZ|Y,P (zi | yi, p̂i(t);µp
i (t)), which is an approximation to the true marginal

posterior pZ|Y (zi | yi).

14



Similarly, from (2.30) and (2.32),

−H ′′(p̂, y, µp)

=
∂

∂p̂

{
−H ′(p̂, y, µp)

}
=

∂

∂p̂

{ p̂

µp
− ∂

∂p̂
logZ(p̂)

}
(2.38)

=
1

µp
− var{u | p̂} (2.39)

=
1

µp
−
∫ (

u− E{u | p}
)2 exp

(
φ(u) + p̂u

)

Z(p̂)
du (2.40)

=
1

µp
−
∫ ( z

µp
− E{z | y, p̂;µp}

µp

)2 exp
(
log pY |Z(y|z)− z2

2µp + zp̂
µp

)

Z(p̂)

dz

µp
(2.41)

=
1

µp
− 1

(µp)2

∫ (
z − E{z | y, p̂;µp}

)2 pY |Z(y|z)N (z; p̂, µp)∫
pY |Z(y|z)N (z; p̂, µp)dz

dz (2.42)

=
1

µp

(
1− var{z | y, p̂;µp}

µp

)
. (2.43)

We define the moments of the time-t approximated marginal posterior as

ẑi(t) = E{zi | yi, p̂i(t);µp
i (t)} (2.44)

µz
i (t) = var{zi | yi, p̂i(t);µp

i (t)}, (2.45)

which can be exported for use elsewhere as needed, e.g., in EM learning of likelihood

parameters.

15



2.4.2 Messages emitted by the variable (or “input”) nodes

Rule (2.6) of the sum-product algorithm yields

∆i←j(t+1, xj)

= const + log pX|Q(xj | qj) +
∑

l 6=i

∆l→j(t, xj) (2.46)

≈ const + log pX|Q(xj | qj) +
∑

l 6=i

([
ŝl(t)alj + µs

l (t)a
2
lj x̂j(t)

]
xj − 1

2
µs
l (t)a

2
ljx

2
j

)
(2.47)

= const + log pX|Q(xj | qj)

− 1

2
(∑

l 6=i a
2
ljµ

s
l (t)
)−1
(
xj −

∑
l 6=i

(
alj ŝl(t) + a2ljµ

s
l (t)x̂j(t)

)
∑

l 6=i a
2
ljµ

s
l (t)

)2

(2.48)

= const + log pX|Q(xj | qj)−
1

2µr
ij(t)

(
xj − r̂ij(t)

)2
(2.49)

for

µr
ij(t) ,

(∑

l 6=i

a2ljµ
s
l (t)
)−1

(2.50)

r̂ij(t) , x̂j(t) + µr
ij(t)

∑

l 6=i

alj ŝl(t), (2.51)

where both quantities are O(1). The quantities x̂ij(t) and µx
ij from (2.9) and (2.10)

can now be updated using the message approximation (2.49). In particular, (2.49)

implies

x̂ij(t+1) , E{xj |∆i←j(t+1)} ≈
∫
x
x pX|Q(x|qj)N

(
x; r̂ij(t), µ

r
ij(t)

)
∫
x
pX|Q(x|qj)N

(
x; r̂ij(t), µr

ij(t)
)

︸ ︷︷ ︸
, gin

(
r̂ij(t), qj , µ

r
ij(t)

)

. (2.52)

Furthermore, as shown below, (2.52) implies that

µx
ij(t+1) , var{xj |∆i←j(t+1)} ≈ g′in

(
r̂ij(t), qj , µ

r
ij(t)

)
µr
ij(t), (2.53)

where g′in(·, ·, ·) denotes the derivative of gin(·, ·, ·) w.r.t the first argument. As justi-

fication for (2.53), we define

G(r̂, q, µr) , log

∫
pX|Q(x | q)N (x; r̂, µr)dx, (2.54)

16



which has a very similar form to H(p̂, y, µp) in (2.25). In fact, following the same

steps as before, one finds that

G′(r̂, q, µr) =
1

µr

(
E{x | q, r̂;µr} − r̂

)
(2.55)

G′′(r̂, q, µr) =
1

µr

(var{x | q, r̂;µr}
µr

− 1
)
, (2.56)

where mean and variance are computed using pX|Q,R(x|q, r̂;µr) ∝

pX|Q(x | q)N (x; r̂, µr). This notation invokes the interpretation that GAMP

calculates the approximate likelihood pR|X(r̂j(t) | xj;µ
r
j(t)), which is then com-

bined with the (assumed) prior pX|Q(xj | qj) to form the resulting posterior

pX|Q,R(xj | qj, r̂j(t);µr
j(t)), which is GAMP’s iteration-t approximation to the true

marginal posterior pX|Y (xj |y). Then, from (2.52) and (2.55), it follows that

gin(r̂, q, µ
r) = r̂ + µrG′(r̂, q, µr), (2.57)

after which differentiating (2.57) w.r.t r̂ and plugging in (2.56) yields

g′in(r̂, q, µ
r) = 1 + µrG′′(r̂, q, µr) =

var{x | q, r̂;µr}
µr

, (2.58)

which establishes (2.53).

The mean x̂ij(t+1) is now further approximated using the O(1) quantities

µr
j(t) ,

(∑

i

a2ijµ
s
i (t)
)−1

(2.59)

r̂j(t) , x̂j(t) + µr
j(t)

∑

i

aij ŝi(t). (2.60)

Comparison with (2.50) reveals that µr
ij(t)−µr

j(t) is O(1/N), as indicated in Table 2.1.

From (2.52), the approximation µr
ij(t) ≈ µr

j(t) yields

x̂ij(t+1) ≈ gin
(
r̂j(t)− aij ŝi(t)µ

r
j(t), qj, µ

r
j(t)
)

(2.61)

≈ gin
(
r̂j(t), qj , µ

r
j(t)
)

︸ ︷︷ ︸
, x̂j(t+1)

−aij ŝi(t)µ
r
j(t)g

′
in

(
r̂j(t), qj, µ

r
j(t)
)

︸ ︷︷ ︸
, µx

j (t+1)

, (2.62)

17



where a first-order Taylor-series approximation was used in (2.62). We have neglected

O(1/N) terms and note that the remaining correction to x̂j(t + 1) is O(1/
√
N), as

expected from comparison to the derivations in [6,16,17]. It should be noted that the

definitions of x̂j(t+1) and µx
j (t+1) below (2.62) are consistent with those of x̂ij(t+1)

and µx
ij(t+1) in (2.52) and (2.53), respectively.

Finally, the updates to p̂i(t) and µp
i (t) (recall (2.16) and (2.17)) can be approxi-

mated as follows:

p̂i(t+1) ,
∑

j

aijx̂ij(t+1) ≈
∑

j

aij x̂j(t+1)− ŝi(t)
∑

j

a2ijµ
x
j (t+1)

︸ ︷︷ ︸
≈ µp

i (t+1)

. (2.63)

18



2.4.3 Summary of MMSE GAMP

Definitions:

pZ|Y,P (zi | yi, p̂i;µp
i ) ∝ pY |Z(yi|zi)N (zi; p̂i, µ

p
i ) (2.64)

pX|Q,R(xj |qj, r̂j;µr
j) ∝ pX|Q(xj |qj)N (xj; r̂j, µ

r
j) (2.65)

Initialization (t = 1):

∀j : x̂j(1) =
∫
x pX|Q(x|qj)dx (2.66)

∀j : µx
j (1) =

∫
|x− x̂j(1)|2 pX|Q(x|qj)dx (2.67)

∀i : ŝi(0) = 0 (2.68)

Output nodes (t ≥ 1):

∀i : µp
i (t) =

∑n
j=1 |aij |2µx

j (t) (2.69)

∀i : p̂i(t) =
n∑

j=1

aij x̂j(t)− µp
i (t)ŝi(t− 1) (2.70)

∀i : ẑi(t) = E{zi | yi, p̂i(t);µp
i (t)} (2.71)

∀i : µz
i (t) = var{zi | yi, p̂i(t);µp

i (t)} (2.72)

∀i : ŝi(t) =
(
ẑi(t)− p̂i(t)

)
/µp

i (t) (2.73)

∀i : µs
i (t) =

(
1− µz

i (t)/µ
p
i (t)
)
/µp

i (t) (2.74)

Input nodes (t ≥ 1):

∀j : µr
j(t) =

(∑m
i=1 |aij|2µs

i (t)
)−1

(2.75)

∀j : r̂j(t) = x̂j(t) + µr
j(t)

∑m
i=1 a

∗
ij ŝi(t) (2.76)

∀j : x̂j(t+1) = E{xj | qj , r̂j(t);µr
j(t))} (2.77)

∀j : µx
j (t+1) = var{xj | qj, r̂j(t);µr

j(t))} (2.78)

19



The above algorithm is summarized using absolute values and conjugates to facil-

itate operation in the complex-valued case, in which case the definitions (2.64)-(2.65)

would use circular complex Gaussian distributions. We also note that the rigorous

GAMP analysis presented in [6] requires several small modifications of the above al-

gorithm, some of which assume that the columns of A are approximately unit-norm.

2.5 Example Channel Models for MMSE GAMP

In this section we provide examples of the prior on the unknown signal (2.1),

which Rangan refers to as an input channel, and the likelihood function (2.2), which

Rangan refers to as the output channel.

In later chapters, we will consider a variety of likelihood functions, including Gaus-

sian mixtures and Laplacian noise. However, the most common choice for the output

channel is Additive White Gaussian Noise (AWGN), i.e., pY |Z(y | z) = N (y; z, µw) for

noise variance µw. The required mean and variance calculations to implement GAMP

for this channel model are given as

E{z | y, p̂;µp} = p̂+
µp

µp + µw
(y − p̂) (2.79)

var{z | y, p̂;µp} =
1

1/µp + 1/µw
. (2.80)

Note that the complex-valued circular-AWGN output channel yields the same expres-

sions.

For the input channel, one of the most common choices will be the sparsity induc-

ing Bernoulli-Gaussian distribution given by pX|Q(x | q = [λ, θ̂, µθ]) = λN (x; θ̂, µθ) +

(1−λ)δ(x), where θ̂, µθ are the mean and variance, respectively, of the non-zero com-

ponents, and λ ∈ [0, 1] controls the sparsity rate. The required mean and variance

20



expressions to implement this channel model are given by

E{x|q, r̂;µr} =
γ

α
(2.81)

var{x|q, r̂;µr} = γ2α− 1

α2
+

ν

α
, (2.82)

for

α = 1 +
1− λ

λ

√
µθ

ν
exp

(
1

2

[
(r̂ − θ̂)2

µθ + µr
− r̂2

µr

])
(2.83)

γ =
θ̂/µθ + r̂/µr

1/µθ + 1/µr
(2.84)

ν =
1

1/µr + 1/µθ
. (2.85)

Note that, when θ̂ = 0, some equations can be simplified:

α = 1 +
1− λ

λ

√
µθ

ν
exp

(
−1

2

γ2

ν

)
(2.86)

γ =
νr̂

µr
. (2.87)

For Bernoulli-CN , we remove the above square-roots and 1
2
terms, and change squares

to absolute-squares.

2.6 Damping for Numerical Robustness

GAMP was derived and analyzed for random, iid matrices A. However, the use

of “damping” with GAMP yields provable convergence guarantees with arbitrary

matrices [18]. Practical implementations of GAMP thus use an adaptive step size

procedure to ensure convergence. A step size β, marked in red for clarity, is inserted

into the algorithm to obtain

21



Initialization (t = 1):

∀j : x̂j(1) =
∫
x pX|Q(x|qj)dx (2.88)

∀j : µx
j (1) =

∫
|x− x̂j(1)|2 pX|Q(x|qj)dx (2.89)

∀i : ŝi(0) = 0 (2.90)

Output nodes (t ≥ 1):

µp
i (t) = β

∑n
j=1 |aij|2µx

j (t) + (1− β)µp
i (t− 1) (2.91)

p̂i(t) =
n∑

j=1

aij x̂j(t)− µp
i (t)ŝi(t− 1) (2.92)

ŝi(t) = βgout
(
p̂i(t), yi, µ

p
i (t)
)
+ (1− β)ŝi(t− 1) (2.93)

µs
i (t) = −βg′out

(
p̂i(t), yi, µ

p
i (t)
)
+ (1− β)µs

i (t− 1) (2.94)

Input nodes (t ≥ 1):

xj(t) = βx̂j(t) + (1− β)xj(t− 1) (2.95)

µr
j(t) =

(∑m
i=1 |aij|2µs

i (t)
)−1

(2.96)

r̂j(t) = xj(t) + µr
j(t)

∑m
i=1 a

∗
ij ŝi(t) (2.97)

x̂j(t+1) = gin(r̂j(t), qj, µ
r
j(t)) (2.98)

µx
j (t+1) = µr

j(t) g
′
in(r̂j(t), qj , µ

r
j(t)), (2.99)

where we have written the algorithm in terms of the previously defined gin function.

We also use a similar gout notation to represent the output channel. In particular,

gout
(
p̂i(t), yi, µ

p
i (t)
)
, H ′

(
p̂i(t), yi, µ

p
i (t)
)
, which, recalling (2.21) and (2.22), implies

that −g′out
(
p̂i(t), yi, µ

p
i (t)
)
=
(
1− µz

i (t)/µ
p
i (t)
)
/µp

i (t).

Notice that the algorithm now contains an extra state, namely xj(t). To avoid

choosing an initialization for this state, β = 1 for the first time step. In general,

22



some schemes allow β to vary with the time step, while others use a constant step,

with the exception of t = 1. The step is taken in all of the quantities that are used

to compute r̂j(t). In this way, a step size of zero results in no change in the current

state. Trivially, we note that β = 1 for all time steps reduces to the standard GAMP

algorithm. Finally, the practical implementation uses a step-acceptance procedure to

verify that a given step improves the cost function described in Section 2.8 before

updating the actual state variables.

2.7 Additional Modifications for Numerical Robustness

Particularly for problems at very high signal to noise ratios, several of the vari-

ances tracked by the GAMP algorithm take on extreme values over a potentially

problematic dynamic range. In particular, µs becomes very large, while µx, µr, and

µp become extremely small. Our practical implementation bounds the small vari-

ances from below, but it may be beneficial to track scaled versions of these variances

to avoid potential numerical problems. Here we develop a slightly modified algorithm

to accomplish this goal.

Initialization (t = 1):

∀j : x̂j(1) =
∫
x pX|Q(x|qj)dx (2.100)

∀j : µx
j (1) =

∫
|x− x̂j(1)|2 pX|Q(x|qj)dx (2.101)

∀i : ŝi(0) = 0 (2.102)

23



Output nodes (t ≥ 1):

µp
i (t) = β

∑n
j=1 |aij|2µx

j (t) + (1− β)µp
i (t− 1) (2.103)

< µp(t) > =
1

m

m∑

i=1

µp
i (t) (2.104)

p̂i(t) =
n∑

j=1

aijx̂j(t)−
µp
i (t)

< µp(t− 1) >
ŝi(t− 1) (2.105)

ŝi(t) = β < µp(t) > gout
(
p̂i(t), yi, µ

p
i (t)
)
+ (1− β)ŝi(t− 1) (2.106)

µs

i
(t) = −β < µp(t) > g′out

(
p̂i(t), yi, µ

p
i (t)
)
+ (1− β)µs

i
(t− 1) (2.107)

Input nodes (t ≥ 1):

xj(t) = βx̂j(t) + (1− β)xj(t− 1) (2.108)

µr

j
(t) =

(∑m
i=1 |aij |2µs

i
(t)
)−1

(2.109)

r̂j(t) = xj(t) + µr

j
(t)
∑m

i=1 a
∗
ij ŝi(t) (2.110)

x̂j(t+1) = gin(r̂j(t), qj, < µp(t) > µr

j
(t)) (2.111)

µx
j (t+1) = < µp(t) > µr

j
(t) g′in(r̂j(t), qj , < µp(t) > µr

j
(t)) (2.112)

Notice that we are now computing normalized versions of ŝi(t), µ
s
i
(t), and µr

j
(t).

If we fix β = 1 for all iterations, then the normalizations by < µp(t) > have no

effect on the algorithm analytically. Notice in particular that the scale factors in the

calculation of r̂j(t) cancel. We have also added a step size into the calculation of

µp
i (t).

2.8 Cost Function for MMSE-GAMP

In Section 2.6, we described a method for improving GAMP’s convergence be-

havior using an adaptive step scheme. In this section, we describe the cost function

24



used in the GAMPmatlab [19] implementation of MMSE GAMP to test whether a

candidate step will be accepted. In particular, a step is “accepted” if it reduces the

value of the cost function3.

The first goal is to formulate the cost function associated with MMSE GAMP, i.e.,

an optimization problem whose critical points are the fixed points of MMSE GAMP.

Following Rangan’s development from [20], we first notice that (trivially)

p(x, z|y, q) = argmin
b(x,z)

D(b(x, z) ‖ p(x, z|y, q)) (2.113)

where D(p1‖p2) denotes the KL divergence between distributions p1 and p2. Further-

more, because the joint posterior enforces the constraint z = Ax via p(x, z|y, q) =

C(y)p(x|q)p(y|z)δ(z − Ax), we can safely restrict the distributions b(x, z) in the

minimization above to the form b(x, z) = bx(x)δ(z −Ax), in which case

D(b(x, z) ‖ p(x, z|y, q)) =
∫

x,z

b(x, z) log
b(x, z)

p(x, z|y, q) (2.114)

=

∫

x,z

b(x, z) log
bx(x)δ(z −Ax)

C(y)p(x|q)p(y|z)δ(z −Ax)
(2.115)

=

∫

x,z

b(x, z) log
bx(x)

C(y)p(x|q)p(y|z) (2.116)

=

∫

x

bx(x) log
bx(x)

p(x|q) +
∫

z

bz(z) log
1

p(y|z) − logC(y) (2.117)

=

∫

x

bx(x) log
bx(x)

p(x|q) +
∫

z

bz(z) log
bz(z)

p(y|z)Z(y)−1

+

∫

z

bz(z) log
1

bz(z)
− log

C(y)

Z(y)−1
(2.118)

= D(bx(x)‖p(x|q)) +D(bz(z)‖p(y|z)) +H(bz) + const (2.119)

where H(p1) is the entropy of distribution p1 and Z(y) =
∫
z
p(y | z) is a scaling

constant. Then, because the objective function in (2.113) has decoupled into terms

3An enhancement allows the cost function to increase over a small window of iterations.

25



that involve only bx(x) and bz(z), the optimization problem (2.113) can be restated

as

(p(x |y, q), p(z |y, q)) = argmin
bx,bz

JKL(b
x, bz) s.t. bz = TAb

x, (2.120)

JKL(b
x, bz) = D

(
bx
∥∥∥∥

N∏

j=1

pX|Q(·|qj)
)
+D

(
bz
∥∥∥∥

M∏

i=1

pY |Z(yi | ·)Z−1i

)
+H

(
bz
)
,

(2.121)

where the constraint bz = TAb
x indicates that bz is the density of z = Ax where

x ∼ bx.

Unfortunately, the approximate marginal posteriors computed by GAMP are not

critical points of (2.120). Rangan thus developed an approximation to (2.120) such

that MMSE GAMP converges to a fixed point of the modified problem. The approx-

imation involves three steps. First, separable approximations to the true marginal

posteriors are employed. Thus, the optimization is restricted to separable densities4

of the form

bx(x) =
N∏

j=1

bxj (xj) (2.122)

bz(z) =

M∏

i=1

bzi (zi). (2.123)

Second, the entropy H(bzi ) is replaced with a Gaussian upper bound HG(b
z
i , µ

p
i ) to

yield the modified objective function

JSP (b
x, bz,µp) = D

(
bx
∥∥∥∥

N∏

j=1

pX|Q(·|qj)
)
+D

(
bz
∥∥∥∥

M∏

i=1

pY |Z(yi | ·)Z−1i

)

+

M∑

i=1

HG

(
bzi , µ

p
i

)
(2.124)

HG

(
bzi , µ

p
i

)
,

var(zi | zi ∼ bzi )

2µp
i

+
log 2πµp

i

2
. (2.125)

4This approximation is analogous to the mean field approximation used in physics.

26



Using the entropy maximizing property of the Gaussian distribution, it is straight-

forward to prove that H(bzi ) ≤ HG

(
bzi , µ

p
i

)
, with equality when bzi is Gaussian with

variance µp
i . As a result, for any positive vector µp and densities5 bx and bz, we have

the upper bound

JSP (b
x, bz,µp) ≥ JKL(b

x, bz). (2.126)

The third approximation involves weakening the constraint bz = TAb
x. The separable

approximate marginal distributions will in general not satisfy this constraint. In-

stead, the constraint is replaced with a weaker pair of moment matching constraints:

E{z | bz} = E{Ax | bx} = AE{x | bx} and µp = var{Ax | bx} = A2 var{x | bx}. Here,

the square onA2 is understood to be taken component-wise, and the var{·} represents

the vector of component variances, rather than a covariance matrix.

Combining all three of these approximations, Rangan obtains the optimization

problem

(
b̂x, b̂z,µp

)
= argmin

bx,bz,µp
JSP (b

x, bz,µp)

s.t. E{z | bz} = AE{x | bx}, µp = A2 var{x | bx}. (2.127)

As Rangan points out, the resulting minimum is neither an upper or lower bound

to that of (2.120); while JSP is an upper bound to JKL, the constraints have been

weakened. However, Rangan proves a claim that if MMSE GAMP converges, then

5The bound holds even if the densities are not separable.

27



its approximated marginal posteriors

p̂(x|y) =
N∏

j=1

pX|Q,R(xj | qj, r̂j;µr
j) =

N∏

j=1

pX|Q(xj | qj)N (xj; r̂j , µ
r
j)C

−1
j (2.128)

for Cj ,

∫

xj

pX|Q(xj | qj)N (xj; r̂j, µ
r
j)

p̂(z|y) =
M∏

i=1

pZ|Y,P (zi | yi, p̂i;µp
i ) =

M∏

i=1

pY |Z(yi | zi)N (zi; p̂i, µ
p
i )B

−1
i (2.129)

for Bi ,

∫

zi

pY |Z(yi | zi)N (zi; p̂i, µ
p
i )

along with its variances µp are critical points of the problem (2.127). This correspon-

dence motivates us to consider JSP as a cost function for step size selection in MMSE

GAMP.

At this point, we pause to make a few comments about the relationships between

some of GAMP’s signal estimates. We define the mean and component-wise variance

of (2.129) as ẑ(t) and µz(t), respectively. Notice that these are the mean and variance

quantities that are used to compute gout and g′out. Similarly, we will refer to the mean

and variance of (2.128), which are the quantities computed by gin and g′in, as x̂(t) and

µx(t). A natural question arises as to how these estimates are related.

We have just seen that GAMP provides a solution to (2.127) when it converges.

Thus, from the first moment matching constraint, we know that Ax̂(t) = ẑ(t) at

convergence. This equivalence can be easily seen by writing out the update equation

for ŝ(t) from (2.73) in terms of these estimates,

ŝ(t) = [ẑ(t)−Ax̂(t) + µp(t)⊙ ŝ(t− 1)]⊘ µp(t), (2.130)

28



where ⊙ and ⊘ indicate element-wise multiplication and division, respectively.

Clearly, ŝ(t) = ŝ(t − 1) once the two estimates are equal6. Indeed, one might con-

sider using ‖ẑ(t) − Ax̂(t)‖2F as a convergence criterion for GAMP. In contrast, we

emphasize that in general p̂(t) 6= ẑ(t), even at convergence, since p̂(t) includes an

additional Onsager correction term, i.e., the µp
i (t)ŝi(t−1) in (2.70), based on ŝ(t−1).

This relationship between ẑ(t) and p̂(t) is clear from the form of the approximate

posterior (2.129).

Finally, we note that the µp(t) = A2µx(t) variances are distinct from, and larger

than, the µz(t) variances. As a simple example, µz(t) will be zero for all t in the case

of noise-free measurements, whereas µp(t) will only approach zero as the algorithm

converges in this noiseless case.

With these comments in mind, we are finally prepared to state the cost function for

MMSE GAMP step size selection. Rangan bases the cost function on JSP . Rangan’s

implementation evaluates the cost function at the approximated posterior (2.128),

but he elects to use a Gaussian approximation in place of the approximate posterior

(2.129). In particular, he considers the Gaussian approximated posterior given by

p̂(z |y) ≈
M∏

i=1

pZ|P (zi | pi;µp
i ) =

M∏

i=1

N (zi; pi, µ
p
i ) = N (z;Ax̂, diag(A2µx)), (2.131)

where we use the definition p(t) , Ax̂(t). This choice for the approximate posterior

on z satisfies the first moment matching constraint in (2.127) for all t. In addition, for

this Gaussian approximation, the bound (2.126) is tight. Put another way, we have

H(bzi ) = HG

(
bzi , µ

p
i

)
. This choice also simplifies the implementation, since various

step sizes can be tested without recomputing the gout functions. Notice also from

6The cancelation of µp(t) in this expression suggests why allowing these variances to become
arbitrarily small can lead to numerical problems.

29



the last equality in (2.131) that this approximate posterior for z can be written as a

simple function of the moments of (2.128). Finally, the simple Gaussian functional

form simplifies the evaluation of JSP .

The reader may wonder why µp(t) is used as the variance in this approximation,

rather than µz(t). There are at least two motivations for this choice. First, the use

of µp(t) is necessary to make the bound (2.126) tight. Second, the µz(t) variances

may be very small even for small t, potentially leading to numerical difficulties. As

already pointed out, in the noise free case, µz(t) is zero for all time. Thus, µz(t) may

not capture the uncertainty in the x̂(t) estimate prior to convergence.

Plugging in (2.131) and (2.128) into the objective function from (2.127), we obtain

Rangan’s cost function for MMSE GAMP step size selection as

J =

N∑

j=1

D
(
pX|Q,R(· | qj, r̂j;µr

j)
∥∥ pX|Q(·|qj)

)
+

M∑

i=1

D
(
pZ|P (· | pi;µp

i )
∥∥ pY |Z(yi | ·)Z−1i

)

+
m∑

i=1

H
(
pZ|P (· | pi;µp

i )
)

(2.132)

=

N∑

j=1

D
(
pX|Q,R(· | qj, r̂j;µr

j)
∥∥ pX|Q(·|qj)

)

+

M∑

i=1

(∫

zi

pZ|P (zi | pi;µp
i ) log

pZ|P (zi | pi;µp
i )i

pY |Z(yi | zi)Z−1i

−
∫

zi

pZ|P (zi | pi;µp
i ) log pZ|P (zi | pi;µp

i )

)
(2.133)

=
N∑

j=1

D
(
pX|Q,R(·|qj, r̂j;µr

j)
∥∥ pX|Q(·|qj)

)
− EpZ|P (·|pi;µp

i )

{
log pY |Z(yi |Z)

}
+ const.

(2.134)

The constant term depends only on the prior distributions and can be ignored by

MMSE-GAMP. Notice that the second term in (2.134) is the (negative) expected

log-likelihood. Next we show how the terms in (2.134) can be simplified.

30



2.8.1 Expected Log-likelihood of the measured data

The first term in (2.134) can then be simplified as follows:

M∑

i=1

EpZ|P (·|pi;µp
i )

{
log pY |Z(yi |Z)

}
=

M∑

i=1

∫

zi

N (zi; pi, µ
p
i ) log pY |Z(yi | zi). (2.135)

In the AWGN case, i.e., pY |Z(yi | zi) = N (yi; zi, µ
w), we can simplify further:

M∑

i=1

EpZ|P (·|pi;µp
i )

{
log pY |Z(yi |Z)

}

=

M∑

i=1

∫

zi

N (zi; pi, µ
p
i ) logN (yi; zi, µ

w) (2.136)

= −
M∑

i=1

(
log
√
2πµw +

1

2µw

∫

zi

N (zi; pi, µ
p
i ) (zi − yi)

2
)
. (2.137)

Finally, using

∫

zi

N (zi; pi, µ
p
i ) (zi − yi)

2

=

∫

zi

N (zi; pi, µ
p
i ) (zi − pi + pi − yi)

2 (2.138)

=

∫

zi

N (zi; pi, µ
p
i )
(
(zi − pi)

2 + 2(zi − pi)(pi − yi) + (pi − yi)
2
)

= µp
i + (pi − yi)

2, (2.139)

we get

M∑

i=1

EpZ|P (·|pi;µp
i )

{
log pY |Z(yi |Z)

}
= −

M∑

i=1

(
log
√
2πµw +

1

2µw

(
µp
i + (pi − yi)

2
))

.

(2.140)

Notice that the log
√
2πµw can be neglected when µw is known, as GAMPmatlab

does.

31



2.8.2 KL divergence from the prior

We now simplify the second term in (2.134):

D
(
pX|Q,R(·|qj, r̂j ;µr

j)
∥∥ pX|Q(·|qj)

)

=

∫

xj

pX|Q,R(xj | qj, r̂j;µr
j) log

pX|Q(xj | qj)N (xj; r̂j, µ
r
j)C

−1
j

pX|Q(xj |qj)
(2.141)

=

∫

xj

pX|Q,R(xj | qj, r̂j;µr
j) logN (xj; r̂j, µ

r
j)− logCj (2.142)

= −
(
logCj + log

√
2πµr

j +
1

2µr
j

∫

xj

pX|Q,R(xj | qj, r̂j ;µr
j) (xj − r̂j)

2
)
. (2.143)

Recalling that the pdf pX|Q,R(· | qj, r̂j;µr
j) has mean x̂j and variance µx

j , we can write

∫

xj

pX|Q,R(xj | qj, r̂j;µr
j) (xj − r̂j)

2

=

∫

xj

pX|Q,R(xj | qj, r̂j;µr
j) (xj − x̂j + x̂j − r̂j)

2 (2.144)

=

∫

xj

pX|Q,R(xj | qj, r̂j;µr
j)
(
(xj − x̂j)

2 + 2(xj − x̂j)(x̂j − r̂j) + (x̂j − r̂j)
2
)

(2.145)

= µx
j + (x̂j − r̂j)

2, (2.146)

so that

N∑

j=1

D
(
pX|Q,R(·|qj, r̂j;µr

j)
∥∥ pX|Q(·|qj)

)

= −
N∑

j=1

(
logCj + log

√
2πµr

j +
1

2µr
j

(
µx
j + (x̂j − r̂j)

2
))

. (2.147)

A very simple form for this cost function is available when pX|Q(xj | qj) =

N (xj; x0, µ
x
0). In this case, we notice that

pX|Q,R(xj | qj, r̂j;µr
j) = N (xj; x̂j , µ

x
j ), (2.148)

32



which allows us to compute

N∑

j=1

D
(
pX|Q,R(·|qj, r̂j;µr

j)
∥∥ pX|Q(·|qj)

)

=

N∑

j=1

∫

xj

N (xj; x̂j , µ
x
j ) log

N (xj; x̂j , µ
x
j )

N (xj; x0, µx
0)

(2.149)

=

N∑

j=1

∫

xj

N (xj; x̂j , µ
x
j )

[
log

√
µx
0

µx
j

− (xj − x̂j)
2

2µx
j

+
(xj − x0)

2

2µx
0

]
(2.150)

=
N∑

j=1

1

2

[
log

µx
0

µx
j

+

(
µx
j

µx
0

− 1

)
+

(x̂j − x0)
2

µx
0

]
. (2.151)

A common situation arises when we wish to define a prior with a given spar-

sity level λ and some arbitrary distribution for the non-zero entries. Rangan’s

SparseScaEstim class from GAMPmatlab specifically handles this case, defining the

prior

pX|Q(x|q) = (1− λ)δ(x− ζ) + λfX(x), (2.152)

where the special case ζ = 0 yields a sparsity inducing prior, and fX(x) is some arbi-

trary distribution, e.g., a Gaussian mixture. The advantage of the SparseScaEstim

class is that it allows you to design an estimator based on the distribution fX(x) and

then produce the corresponding estimator for (2.152) with no additional coding.

To see how this works, we first compute

Cj =

∫

xj

pX|Q(xj | qj)N (xj; r̂j, µ
r
j) (2.153)

= (1− λ)N (ζ ; r̂j, µ
r
j)︸ ︷︷ ︸

,C0
j

+λ

∫

xj

fX(x)N (xj ; r̂j, µ
r
j)

︸ ︷︷ ︸
,C1

j

. (2.154)

The quantity C1
j is computed by the plikey method of an EstimIn object in the

GAMPmatlab code. To understand why we refer to this quantity as a likelihood,

33



consider a binary indicator variable γj that determines whether xj is on (drawn from

the fX(x) distribution) or off (xj = ζ). With this hidden indicator variable defined, we

see that C0
j and C1

j are precisely the likelihoods given r̂j that γj is 0 or 1, respectively.

Furthermore, we can define the posterior probabilities of xj being on or off given r̂j

as

p(γj = 0 | r̂j) =
(1− λ)C0

j

Cj
, π0

j (2.155)

p(γj = 1 | r̂j) =
λC1

j

Cj

, π1
j = 1− π0

j . (2.156)

If we are given an estimator designed for the prior fX(x), then it will compute the

KL divergence

D1(r̂,µr) , D

(
N∏

j=1

fX(xj)N (xj; r̂j, µ
r
j)(C

1
j )
−1 ‖

N∏

j=1

fX(xj)

)
(2.157)

=
N∑

j=1

∫

xj

fX(xj)N (xj; r̂j, µ
r
j)(C

1
j )
−1

log

(N (xj; r̂j, µ
r
j)

C1
j

)

︸ ︷︷ ︸
,D1

j (r̂j ,µ
r
j )

, (2.158)

where we leveraged the form (2.142) to obtain the second line. The estimator designed

for the prior fX(x) will also return C1
j and estimates x̂1 and µ(x,1).

We also require the corresponding quantities for the off case, i.e., γj = 0 with the

prior δ(x− ζ). Fortunately, these quantities are readily computed as

D0(r̂,µr) ,

∫

xj

δ(xj − ζ)N (xj; r̂j, µ
r
j)(C

0
j )
−1

log

(N (xj ; r̂j, µ
r
j)

C0
j

)
= 0 (2.159)

x̂0
j = ζ (2.160)

µx,0
j = 0. (2.161)

34



We can immediately obtain the approximate posterior moments as

x̂j = π0
j ζ + π1

j x̂
1
j (2.162)

µx
j = π0

j ζ
2 + π1

j

[
(x̂1

j )
2 + µ

(x,1)
j

]
− x̂2

j . (2.163)

Our remaining goal is to find a simple expression for

∑N
j=1D

(
pX|Q,R(·|qj, r̂j ;µr

j)
∥∥ pX|Q(·|qj)

)
in terms of the already available D1(r̂,µr).

Starting with the form (2.142), we obtain

N∑

j=1

D
(
pX|Q,R(·|qj, r̂j;µr

j)
∥∥ pX|Q(·|qj)

)

=

N∑

j=1

∫

xj

pX|Q,R(xj | qj, r̂j;µr
j) log

(N (xj ; r̂j, µ
r
j)

Cj

)
(2.164)

=
N∑

j=1

∫

xj

(1− λ)δ(xj − ζ)N (xj; r̂j, µ
r
j)(Cj)

−1 log

(N (xj ; r̂j, µ
r
j)

Cj

)
(2.165)

+ λfX(xj)N (xj; r̂j, µ
r
j)(Cj)

−1 log

(N (xj; r̂j, µ
r
j)

Cj

)
(2.166)

=

N∑

j=1

π0
l

∫

xj

δ(xj − ζ)N (xj; r̂j, µ
r
j)(C

0
j )
−1
[
log

(N (xj; r̂j , µ
r
j)

C0
j

)
+ log

C0
j

Cj

]
(2.167)

+ π1
l

∫

xj

fX(xj)N (xj ; r̂j, µ
r
j)(C

1
j )
−1
[
log

(N (xj; r̂j, µ
r
j)

C1
j

)
+ log

C1
j

Cj

]
(2.168)

=
N∑

j=1

π0
j

[
D0

j (r̂j , µ
r
j) + log

π0
j

1− λ

]
+ π1

j

[
D1

j (r̂j, µ
r
j) + log

π1
j

λ

]
(2.169)

=

N∑

j=1

π0
j log

π0
j

1− λ
+ π1

j

[
D1

j (r̂j, µ
r
j) + log

π1
j

λ

]
. (2.170)

Thus we can compute the required KL divergence for the prior (2.152) given the

output of an estimator designed for the prior fX(x). This completes the derivation

of the procedure used by the SparseScaEstim class.

35



2.9 Connection to Donoho/Bayati/Montanari AMP

Rangan [6] states that his GAMP algorithm is equivalent to the AMP presented in

[11] when considering the Gaussian output channel. Here we clarify this relationship

between the algorithms. First, as pointed out already, under the AWGN or circular-

AWGN output channel, we obtain

gout(p̂, y, µ
p) =

y − p̂

µp + µw
(2.171)

−g′out(p̂, y, µ
p) =

1

µp + µw
. (2.172)

GAMP is only equivalent to AMP given a few simplifications. In particular, we

simplify the variance estimates to be the same for all nodes to obtain

µp
i (t) =

N∑

j=1

|aij |2µx
j (t) ≈

1

M

N∑

j=1

µx
j (t) , µp(t) (2.173)

µs
i (t) =

1

µp
i (t) + µw

≈ 1

µp(t) + µw
, µs(t) (2.174)

µr
j(t) =

(
M∑

i=1

|aij |2µs
i (t)

)−1
≈ 1

µs(t)
= µp(t) + µw , µr(t). (2.175)

These definitions yield simplified expressions for the µx
j variables as

µx
j (t+ 1) = µr

j(t) g
′
in(r̂j(t), qj , µ

r
j(t)) ≈ µr(t) g′in(r̂j(t), qj, µ

r(t)). (2.176)

With these simplifications in mind, we can express GAMP in a more compact form.

Notice that

r̂(t) = x̂(t) + µr(t)AH ŝ(t) (2.177)

= x̂(t) + µr(t)AH

(
y − p̂(t)

µp(t) + µw

)
(2.178)

= x̂(t) +AH (y − p̂(t)) (2.179)

= x̂(t) +AH v̂(t), (2.180)

36



where we have defined for convenience v̂(t) = y− p̂(t). We can express v̂(t) in a form

that makes the AMP equivalence obvious. Consider

v̂(t) = y − p̂(t) (2.181)

= y −Ax̂(t)− µp(t)
y − p̂(t− 1)

µp(t− 1) + µw
(2.182)

= y −Ax̂(t) +

(
µp(t)

µr(t− 1)

)
v̂(t− 1) (2.183)

= y −Ax̂(t) +

(
1
M

∑N
j=1 µ

x
j (t)

µr(t− 1)

)
v̂(t− 1) (2.184)

= y −Ax̂(t) +

(
1
M

∑N
j=1 µ

r(t− 1) g′in(r̂j(t− 1), qj, µ
r(t− 1))

µr(t− 1)

)
v̂(t− 1)

(2.185)

= y −Ax̂(t) +
1

δ
< g′in(r̂(t− 1), q, µr(t− 1)) > v̂(t− 1), (2.186)

where < · > denotes the mean and gin is understood to operate on vectors component-

wise. As an aside, as suggested in [21], we can view v̂(t) as a filtered residual. Indeed,

if we define the unfiltered residual b̂(t) = y−Ax̂(t), then we can explicitly compute

v̂(t) as

v̂(t) = b̂(t) +
t−1∑

i=0

(
t∏

j=i+1

1

δ
< g′in(r̂(j − 1), q, µr(j − 1)) >

)
b̂(i). (2.187)

Thus, v̂(t) is the output of an IIR filter with time-varying coefficients acting on the

unfiltered residuals.

37



Combining these results, we can express the complete scalar-variance AWGN-

output GAMP (assuming E{|Aij|2} = 1
M
) as

v̂(t) = y −Ax̂(t) + 1
δ

µx(t)
µr(t−1) v̂(t−1) Onsager-corrected residual (2.188)

r̂(t) = x̂(t) +AH v̂(t) back-projection update (2.189)

µr(t) = µw + 1
δ
µx(t) error-variance of r̂(t) (2.190)

x̂(t+1) = gin
(
r̂(t), q, µr(t)

)
nonlinear thresholding step (2.191)

µx(t+1) = µr(t) < g′in
(
r̂(t), q, µr(t)

)
> error-variance of x̂(t+1) (2.192)

or more succinctly as

v̂(t) = y −Ax̂(t) +
1

δ
< g′in(x̂(t−1) +AH v̂(t−1), q, µr(t−1)) > v̂(t−1)

(2.193)

x̂(t+1) = gin(x̂(t) +AH v̂(t), q, µr(t)). (2.194)

Comparing (2.193)-(2.194) to the DMM-AMP recursion presented in [3]:

v̂(t) = y −Ax̂(t) +
1

δ
< η′t−1(x̂(t−1)−AH v̂(t−1)) > v̂(t−1) (2.195)

x̂(t+1) = ηt(x̂(t) +AH v̂(t)), (2.196)

we see that the recursions are equivalent when ηt(·) = gin(·, q, µr(t)).

That said, DMM have suggested various implementations of ηt(·), some of which

are equivalent to what is done in the GAMP framework, and some of which are not.

For example, the “Bayesian AMP” from DMM’s [5, (23)-(25)] suggested (after fixing

38



typos) the recursion

v̂(t) = y −Ax̂(t)

+
1

δ
< g′in(x̂(t−1) +AH v̂(t−1), q, µw + γ(t−1)) > v̂(t−1) (2.197)

x̂(t+1) = gin
(
x̂(t) +AH v̂(t), q, µw + γ(t)

)
(2.198)

γ(t+1) =
1

δ
(µw + γ(t)) < g′in(x̂(t) +AH v̂(t), q, µw + γ(t)

)
> (2.199)

which is identical to (2.193)-(2.194) via γ(t) = µx(t)/δ and µw+γ(t) = µr(t). On the

other hand, for the LASSO problem, DMM suggested in [16, Sec. 9.5.1] using

ηt(r̂(t)) = η(r̂(t);α
√
µv(t)) for µv(t) =

1

M
‖v̂(t)‖22 or

( 1

Φ−1(3/4)
|v̂(t)|(m/2)

)2

(2.200)

where η(r, θ) is the soft thresholding function with threshold value θ, |v̂(t)|(m/2) is

the median magnitude, and Φ−1(3/4) ≈ 0.6745 is the median7 absolute value of a

standard normal random variable. Here we note that i) the DMM threshold is set in

proportion to a square-root variance (i.e., α
√
µv(t)), whereas GAMP uses a variance

(i.e., λµr(t)), and ii) the DMM variance estimate µv(t) is computed directly from the

residual v̂(t), whereas GAMP’s variance estimate µr(t) is computed from η′t−1 and

µw.

7DMM and their collaborators often prefer the median estimator. Note that this expression must
be adjusted for complex-valued data, see [22].

39



Chapter 3: Matrix Uncertain Generalized Approximate

Message Passing

3.1 Introduction

As briefly described in Chapter 1, the goal in compressive sensing (CS) is to

reconstruct an N -dimensional signal x from M < N linear measurements y = Ax+

w, where w is additive noise. In the noiseless case, it is by now well known that,

when the signal is exactly K-sparse and the measurement matrix A satisfies certain

properties (e.g., restricted isometry, null space, or spark), it is possible to exactly

reconstruct the signal from M = O(K logN/K) measurements using polynomial-

complexity algorithms (e.g., greedy or convex-optimization based). Moreover, these

methods can accurately reconstruct the signal in the noisy case, even when the signal

is compressible rather than exactly sparse (e.g., [23]).

These results are, however, predicated on knowing the measurement matrix A

perfectly. In practical applications of CS, it is reasonable to expect uncertainty in

the linear measurement matrix A due to, e.g., imperfections in the signal acquisition

hardware, model mismatch, parameter discretization, and other factors.

Several authors have analyzed the impact of measurement-matrix uncertainty on

existing CS algorithms, e.g., Herman and Strohmer [24], Herman and Needell [25],

40



and Chi, Pezeshki, Scharf, and Calderbank [26]. Herman et al. analyze the effect of

additive perturbations on the Basis Pursuit and CoSaMP algorithms, respectively,

whereas Chi et al. analyze the effect, on Basis Pursuit, of a multiplicative basis

mismatch matrix that takes the form of the identity matrix plus a perturbation.

In [24–26], the authors study the worst-case effects on established algorithms, but

stop short of proposing new algorithms.

We are aware of only a few algorithms that explicitly address measurement-matrix

uncertainty, all of which consider the additive uncertainty model A = Â+E, where

Â is known and E is an unknown perturbation, yielding the observations

y = (Â+E)x+w. (3.1)

In [27], Zhu et al. develop the Sparsity-cognizant Total Least Squares (S-TLS) ap-

proach, which extends the classical TLS approach (widely applied in the context of

ℓ2 regularization) to ℓ1 regularization, yielding

{x̂S-TLS, ÊS-TLS} =

argmin
x,E

‖(Â+E)x− y‖22 + λE‖E‖2F + λ‖x‖1. (3.2)

In [28], Rosenbaum and Tsybakov propose the MU-Selector, a modified version of the

Dantzig selector [29], which reads

{x̂MU-Selector} =

argmin
x

‖x‖1 s. t. ‖ÂH
(y − Âx)‖∞ ≤ λ‖x‖1 + ǫ. (3.3)

The above criteria assume relatively little about the structure of the perturbations

w and E, and thus obtain algorithms with wide applicability, but—as we shall see—

limited performance. In [27], Zhu et al. also proposed a Weighted S-TLS (WS-TLS)

41



that can exploit structure in the matrix uncertainty E and perform significantly

better than S-TLS.

In this chapter, we address sparse-signal recovery under matrix uncertainty in a

Bayesian framework with informative priors. In particular, we extend the Approxi-

mate Message Passing (AMP) algorithm recently proposed by Donoho, Maleki, and

Montanari [3]—and in particular the Generalized AMP (GAMP) proposed by Ran-

gan [6] and reviewed in Chapter 2—to the case of probabilistic uncertainty on the

elements of the measurement matrix A. Initially, we treat the entries of A as inde-

pendent random variables that are known only in mean and variance, which can both

vary across the entries. The resulting Matrix-Uncertain GAMP (MU-GAMP) pro-

vides a computationally efficient way to obtain nearly minimum-mean-squared-error

(MMSE) estimates of the unknown signal x in the presence of uncertainties in both

the linear matrix transformation A as well as the observations of the transformed

outputs Ax.

We then turn our attention to parametric matrices of the form A(θ) = A0 +

∑P
p=1 θpAp, where {Ap} are known and θ = [θ1, . . . , θP ]

T unknown. We then pro-

pose a scheme that alternates between the estimation of θ and the estimation of x.

Conveniently, both estimation steps can be performed using the already developed

MU-GAMP framework. A salient feature of this approach is that we alternate soft

estimates as opposed to point estimates.

Throughout the chapter, we use boldface capital letters to denote matrices and

boldface small letters to denote vectors, I and 0 to denote the identity matrix and

zero matrices, (·)T transpose, and (·)∗ conjugate. For xj a realization of random

variable Xj , we use EXj
{xj} to denote mean, varXj

{xj} variance, pXj
(xj) the pdf, and

42



pXj |Dj
(xj | dj) the pdf conditioned on Dj = dj , and sometimes we omit the subscript

when there is no danger of confusion. To denote the Gaussian pdf with mean x̂ and

variance νx, we use N (x; x̂, νx).

3.2 A Large-System Blessing?

Before getting into the details of MU-GAMP, we make a curious observation:

As the problem dimensions grow large, the effect of uniform matrix uncertainty is

identical to additive white Gaussian noise (AWGN) on the observations. The following

proposition makes our claim precise.

Proposition 3.2.1 Consider an M-dimensional observation of the form in (3.1),

written equivalently as

y = Âx+ e+w for e , Ex. (3.4)

Suppose that N-dimensional x is K-sparse, and that the matrix uncertainty E is

uniform, i.e., {Emn} are i.i.d zero-mean random variables with variance νE = cE/M

for bounded positive cE (but otherwise arbitrary distribution). In the large-system limit

(i.e., M,N,K→∞ with fixed δ,M/N and ρ,K/M), the additive “interference” e

becomes i.i.d zero-mean Gaussian with variance νe = cEδ−1‖x‖22/N .

Proof. Since the rows of E are statistically independent, the elements {em} of e

are independent as well. Moreover, em =
∑K

k=1Em,n(k)xn(k), where n(k) indexes

the kth non-zero element of x. Thus, in the large-system limit (i.e., K → ∞),

the central limit theorem implies that em is zero-mean Gaussian with variance

νe , νE‖x‖22 = cEδ−1‖x‖22/N . �

43



The implication of Proposition 3.2.1 is that, for problems of uniform matrix un-

certainty and suitably large dimension, there is no need to design new algorithms

that handle matrix uncertainty; those designed to handle AWGN (e.g., LASSO [30],

GAMP, etc.) suffice, so long as they are properly tuned to handle the additional

AWGN power νe.

Now, whether or not the large-system behavior predicted by Proposition 3.2.1

manifests at a given finite (M,N,K) depends on the distribution of i.i.d {Emn} and

the sparsity K. If {Emn} are far from Gaussian (e.g., sparse) and K is relatively

small, the distribution of {em} can be far from Gaussian. On the other hand, if

{Emn} is Gaussian, then em will also be Gaussian, for any K.

Although, to our knowledge, Proposition 3.2.1 is novel8, the empirical results in

previous works support its claim; see, e.g., the negligible difference between optimally

tuned versions of S-TLS and LASSO under i.i.d Gaussian E in [27, Fig. 3]. In

Section 3.3.3, we will provide further empirical support.

3.3 Matrix-Uncertain GAMP

3.3.1 Background on GAMP

In the Bayesian approach to compressed sensing, it is typically presumed that

the signal x is drawn from a known separable pdf p(x) =
∏

n pX(xn), where pX(.)

promotes sparsity or compressibility. Similarly, the noise w is drawn from a known

separable pdf p(w) =
∏

m pW (wm). Given the observations y = Ax+w, one would

8For a recent study of this problem, which appeared after our work on MU-GAMP was published
in [7], see [31].

44



ideally like to compute the full joint posterior p(x |y). This is, however, not tractable

for the pdfs and problem dimensions typical in compressed sensing. Thus, one often

settles for approximate MAP or MMSE estimates.

The original AMP algorithm [3] assumes Laplacian pX(.) and Gaussian pW (.),

and seeks the MAP solution using an approximation of loopy belief propagation. The

approximation, which becomes tight in the large-system limit, is based on the CLT

and Taylor-series expansions, and relies on the elements of A to be known realizations

of an independent zero-mean 1/M-variance random variable.

Rangan proposed a Generalized AMP (GAMP) [6] that 1) handles either MAP or

MMSE, 2) allows arbitrary Amn, 3) allows an arbitrary signal distribution pX(.), and

4) allows an arbitrary separable pdf p(y | z) = ∏
m pY |Z(ym | zm) relating the obser-

vations y to the linearly transformed outputs z , Ax. This observation-uncertainty

model subsumes the case of additive noise w with arbitrary distribution pW (.) via

pY |Z(ym | zm) = pW (ym−zm), but also handles nonlinear output transformations like

that used in logistic regression.

3.3.2 Matrix-Uncertain GAMP

We now propose a Matrix-Uncertain GAMP (MU-GAMP) that extends GAMP [6]

to the case of uncertainty in the measurement matrix A. Unlike GAMP, which

treats {Amn} as fixed and known, MU-GAMP treats {Amn} as independent random

variables with known mean and variance,

Âmn = E{Amn} (3.5)

νA
mn = var{Amn}, (3.6)

45



definitions:

pZ|Y (z|y; ẑ, νz) =
pY |Z(y|z)N (z;ẑ,νz)∫

z′
pY |Z(y|z′)N (z′;ẑ,νz)

(D1)

gout(y, ẑ, ν
z) = 1

νz

(
EZ|Y {z|y; ẑ, νz} − ẑ

)
(D2)

g′out(y, ẑ, ν
z) = 1

νz

(
varZ|Y {z|y;ẑ,νz}

νz − 1
)

(D3)

pX|Y(x|y; r̂, νr) = pX(x)N (x;r̂,νr)∫
x′ pX(x′)N (x′;r̂,νr)

(D4)

gin(r̂, ν
r) =

∫
x
x pX|Y(x|y; r̂, νr) (D5)

g′in(r̂, ν
r) = 1

νr

∫
x
|x− gin(r̂, ν

r)|2 pX|Y(x|y; r̂, νr) (D6)
initialize:

∀n : x̂n(1) =
∫
x x pX(x) (I1)

∀n : νxn(1) =
∫
x
|x− x̂n(1)|2pX(x) (I2)

∀m : ûm(0) = 0 (I3)
for t = 1, 2, 3, . . .

∀m : ẑm(t) =
∑N

n=1 Âmnx̂n(t) (R1)

∀m : νzm(t) =
∑N

n=1 |Âmn|2νxn(t) (R2a)

∀m : νpm(t) = νzm(t) +
∑N

n=1 ν
A
mn

(
νxn + |x̂n(t)|2

)
(R2b)

∀m : p̂m(t) = ẑm(t)− νzm(t) ûm(t− 1) (R3)
∀m : ûm(t) = gout(ym, p̂m(t), νpm(t)) (R4)
∀m : νum(t) = −g′out(ym, p̂m(t), νpm(t)) (R5)

∀n : νrn(t) =
(∑N

n=1 |Âmn|2νum(t)
)−1

(R6)

∀n : r̂n(t) = x̂n(t) + νrn(t)
∑M

m=1 Â
∗
mnûm(t) (R7)

∀n : νxn(t+1) = νrn(t)g
′
in(r̂n(t), ν

r
j (t)) (R8)

∀n : x̂n(t+1) = gin(r̂n(t), ν
r
n(t)) (R9)

end

Table 3.1: The MU-GAMP Algorithm

46



reducing to GAMP in the case that νA
mn = 0. Note that, with E , A−Â, we recover

exactly the perturbation model A = Â+E used in (3.1), but now with the implicit

assumption that Emn has zero mean and variance νA
mn.

The derivation of MU-GAMP is very similar to the GAMP derivation provided in

Section 2.4. For the sake of brevity, we avoid repeating the modified derivation here.

The resulting algorithm is given in Table 3.1,9 where the only difference from the

original GAMP is the additional step (R2b). With this step, MU-GAMP requires an

additional matrix multiply, although the cost of this multiplication may be reduced

when νA
mn is structured. For example, when νA

mn = νA
m ∀n, the matrix multiplication

in (R2b) reduces to a sum.

3.3.3 Empirical Study

We now study empirical performance under uniform and non-uniform matrix

uncertainty. In both cases, we plot Normalized Mean Squared Error (NMSE) versus

M/N at N =256 and K/M =0.2, where the relatively small problem size was used

due to the implementation complexity of the MU-Selector. The K non-zero entries of

the signal x were drawn ±1 with equal probability, the (known) matrix means {Âmn}

were i.i.d N (0, 1/M), and the noise w was i.i.d N (0, νw).

To illustrate the effect of uniform matrix uncertainty, we drew the matrix errors

{Emn} i.i.d N (0, νE), noting that in this case e=Ex is truly i.i.d Gaussian (for any

given x). Moreover, we set νE = νw such that the signal to interference-plus-noise

ratio (SINR) E{‖Âx‖22}/E{‖e+w‖22} = 20 dB. Under this setup, we ran MU-GAMP

under the true (uniform) matrix error variance νA
mn = νE , the true noise statistics,

the true signal variance and sparsity rate, but a (mismatched) Bernoulli-Gaussian

9GAMPmatlab [19] includes the MU extension.

47



signal pdf. We also ran the original GAMP under the same signal prior and the

compensated AWGN variance νe+νw, for νe,var{em}=KνE . We then ran S-TLS,

the MU-Selector, and LASSO (via SpaRSA [32]), each debiased and with “genie-

aided” tuning: for each realization, each algorithm was run under several values of

its tuning parameter, and the tuning yielding minimal NMSE was selected.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

 

 
GAMP
MU−GAMP

MU−Selector
S-TLS

LASSO

support oracle

support-&-E oracle

N
M
S
E
[d
B
]

M/N

Figure 3.1: 10-trial median NMSE under uniform matrix error variance νE .

Figure 3.1 shows the resulting NMSE performance of each algorithm, as well as

that of two oracle estimators: support-aware LMMSE, and support-and-E-aware

LMMSE. We note that, under a Bernoulli-Gaussian signal pdf, the NMSEs of GAMP

and MU-GAMP are lower bounded by these respective oracles. The figure shows

that GAMP and MU-GAMP yield essentially identical NMSE, and that for M/N >

0.3, this NMSE essentially coincides with the support-oracle bound. Meanwhile, the

48



debiased and genie-tuned incarnations of S-TLS, the MU-Selector, and LASSO show

performance that is only slightly worse than GAMP and MU-GAMP for M/N > 0.3.

The fact that the matrix-uncertain algorithms (i.e., MU-GAMP, S-TLS, MU-Selector)

and the standard algorithms (i.e., GAMP, LASSO) perform near-identically under

uniform matrix uncertainty supports the claim of Proposition 3.2.1.

Next, we examine the effect of non-uniform matrix uncertainty. For this, we

used the same setup as in the previous experiment, except that we used non-uniform

variances {νE
mn} such that νE

mn = 0 for 99% of the entries, while νE
mn = CE for the

remaining 1% of the entries, where CE was chosen to make the cumulative error

νe identical to the previous experiment. MU-GAMP was then run under the true

(now non-uniform) νA
mn = νE

mn, while GAMP was run under the compensated AWGN

variance νe + νw, as before. We also implemented the Weighted S-TLS (WS-TLS)

from [27], which was given knowledge of the non-uniform {νE
mn}.

Figure 3.2 shows the resulting NMSE. In the figure, we see that the algorithms

assuming uniform matrix uncertainty νE (i.e., S-TLS and the MU-Selector) perform

essentially the same in this experiment as they did in the previous experiment, which

is due to the fact that νe was calibrated across experiments. Furthermore, these al-

gorithms do essentially no better than those designed for AWGN (i.e., LASSO and

GAMP), which makes sense in light of Proposition 3.2.1. However, the algorithms

exploiting non-uniform uncertainty {νE
mn} (i.e., WS-TLS and MU-GAMP) do signif-

icantly better. In fact, MU-GAMP performs quite close to the support-and-E-aware

oracle bound for M/N > 0.3.

49



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

 

 
GAMP
MU−GAMP

MU−Selector

S-TLS

WS-TLS

LASSO

support oracle

support-&-E oracle

N
M
S
E
[d
B
]

M/N

Figure 3.2: 10-trial median NMSE under non-uniform error variance {νE
mn}.

3.4 Alternating MU-GAMP

The performance of any reasonable compressive-sensing algorithm will improve

as matrix uncertainty diminishes, and one way to reduce uncertainty is to explicitly

estimate the unknown matrix A. In fact, this is the goal of Dictionary Learning [33],

where a large number of measurement vectors {yt}Tt=1 are assumed to be available.

Since we are interested in estimating A from one (or very few) measurement vectors,

we consider structured forms of A that depend on only a few parameters θ ∈ CP . In

particular, we consider affine linear10 models of the form (noting similarities to [27])

A(θ) = A0 +
∑P

p=1 θpAp (3.7)

10The affine linear model (3.7) may arise from a first-order Taylor series approximation of a non-

linear model A(θ) around the point θ̂, in which case A0 = A(θ̂) and Ap = ∂A(θ)/∂θp|θ=θ̂
.

50



with known {Ap}Pp=0 and unknown θ. Several examples of this structure are discussed

in the sequel. Moreover, (3.7) handles the case of unstructured A via P = MN ,

A0 = 0, and {Ap}Pp=1 each containing a single distinct non-zero entry.

3.4.1 Alternating MU-GAMP

We now propose a scheme to jointly estimate {x, θ} based on the previously de-

veloped MU-GAMP. The proposed scheme is an iterative one that alternates between

the estimation of x and θ. Say the mean and variance of θp are given by θ̂p and νθ
p ,

respectively. Then it holds that

Âmn , E{Amn(θ)} = A0,mn +
∑P

p=1 θ̂pAp,mn (3.8)

νA
mn , var{Amn(θ)} =

∑P
p=1 ν

θ
p |Ap,mn|2, (3.9)

where Ap,mn denotes the mth row and nth column of Ap. Thus, given the soft pa-

rameter estimates (θ̂,νθ), one can directly compute the matrix uncertainty statistics

{Âmn} and {νA
mn}, and—with them—run MU-GAMP to estimate the signal vector

x, which will produces the marginal posterior mean and variance vectors (x̂,νx).

Then, given the soft signal estimates (x̂,νx), we can update the parameter means

and variances (θ̂,νθ), also using MU-GAMP. To see how, we first notice that the

linear outputs z in the GAMP observation model p(y | z) take the form

z = A(θ)x = A0x+
∑P

p=1Apx θp = B(x)θ (3.10)

for θ , [θ0, θ1, . . . , θP ]
T, θ0 , 1, and the (uncertain) matrix

B(x) ,
[
A0x

∣∣A1x
∣∣ · · ·

∣∣APx
]
. (3.11)

51



Given (x̂,νx), the mean and variance of Bmp are simply

B̂mp , E{Bmp(x)} =
∑N

n=1Ap,mnx̂n (3.12)

νB
mp , var{Bmp(x)} =

∑N
n=1 |Ap,mn|2νx

n, (3.13)

which, together with an appropriate prior pdf on {θp}, are the ingredients needed to

estimate θ with MU-GAMP, yielding updated soft outputs (θ̂,νθ). For example, if

{θp}Pp=1 were known to be sparse, then a sparsifying prior would be appropriate. For

θ0, a prior with all mass at 1 would suffice to handle the constraint θ0 = 1.

Alternating between these two MU-GAMP steps, we can obtain successively re-

fined estimates of (x̂,νx) and (θ̂,νθ). Each MU-GAMP step itself involves several

iterations, but relatively few would be needed if they were “warm started” at the

values of the previous estimates. Note that, unlike typical iterative schemes for dic-

tionary learning [33], which alternate between point estimates, ours alternate between

soft estimates, i.e., mean/variance pairs.

3.4.2 Empirical Study

We now present three empirical experiments that investigate MU-GAMP and

alternating MU-GAMP (A-MU-GAMP) under parametric matrix uncertainty. In all

cases, we used M = 103, N = 256, i.i.d Gaussian A0 ∈ CM×N and θ ∈ CP , i.i.d

Bernoulli-Gaussian x ∈ CN with K=20, and complex AWGN. MU-GAMP used the

apriori matrix statistics {Âmn, ν
A
mn} from (3.8)–(3.9). A-MU-GAMP was initialized

with the same statistics, but was able to reduce the variances {νA
mn} through several

iterations.

First, we study the role of matrix-uncertainty dimension P on the NMSE perfor-

mance of MU-GAMP and A-MU-GAMP. For this example, we used i.i.d Gaussian

52



{Ap}Pp=1. As P was varied, {νθ
p} was normalized to fix the energy of the uncertainty

termE=
∑P

p=1 θpAp such that the overall SINR = 20 dB (as in Figs. 3.1–3.2). Fig. 3.3

shows the resulting NMSE-versus-P , where—as expected—MU-GAMP maintains a

constant performance versus P , whereas A-MU-GAMP benefits when P is small (and

thus θ can be learned).

0 50 100 150 200 250 300
−40

−35

−30

−25

 

 

P

N
M
S
E
(d
B
)

MU-GAMP
A-MU-GAMP

Figure 3.3: 10-trial median NMSE for estimation of x versus the parametric matrix-
uncertainty dimension P .

Next, we consider a channel-calibration example involving P = 10 parallel linear

measurement “channels”, each with an unknown offset. For this, we constructed

each matrix {Ap}Pp=1 to have ones in 1/P of its rows and zeros elsewhere, so that

i.i.d Gaussian θp modeled the additive error in the pth channel. Here, νw and νθ

53



were set so that E{‖A(θ)x‖22}/E{‖w‖22} = 20 dB. Figure 3.4 shows that A-MU-

GAMP approaches the performance of θ-aware GAMP when estimating x, which

comes within 2 dB of the support-and-θ-aware oracle MMSE. The star shows the

NMSE of MU-GAMP, which is about 20 dB worse. Meanwhile, when estimating θ,

A-MU-GAMP approaches the performance of x-aware GAMP.

0 10 20 30 40 50 60 70 80 90 100
−30

−25

−20

−15

−10

−5

 

 

0 10 20 30 40 50 60 70 80 90 100
−25

−20

−15

−10

−5

 

 

N
M
S
E
x
(d
B
)

N
M
S
E
θ
(d
B
)

MU-GAMP

A-MU-GAMP

A-MU-GAMP

oracle bound
θ-aware GAMP

x-aware GAMP

iteration

iteration

Figure 3.4: 100-trial median NMSE of A-MU-GAMP when iteratively estimating x

and θ in the channel calibration example.

Finally, we consider a compressive blind-deconvolution example. Here, A(θ) =

Φ C(θ) where C(θ) is circulant with first column θ ∈ CN andΦ =
[
IM 0

]
. As before,

νw ensured E{‖A(θ)x‖22}/E{‖w‖22} = 20 dB. Due to the size of the uncertainty

dimension, P = N , we used T = 8 measurement vectors {yt}Tt=1, which is still much

fewer than typical in dictionary learning. Figure 3.5 demonstrates that, once again,

54



A-MU-GAMP is able to effectively learn both x and θ with near-oracle MMSE, doing

≈ 20 dB better than MU-GAMP.

0 5 10 15 20 25 30
−30

−25

−20

−15

−10

−5

0

 

 

0 5 10 15 20 25 30
−20

−15

−10

−5

0

 

 

N
M
S
E
x
(d
B
)

N
M
S
E
θ
(d
B
)

MU-GAMP

A-MU-GAMP

A-MU-GAMP

oracle bound
θ-aware GAMP

x-aware GAMP

iteration

iteration

Figure 3.5: 100-trial median NMSE of A-MU-GAMP when iteratively estimating x

and θ in the compressive blind deconvolution example.

3.5 Conclusion

In this chapter, we proposed a matrix-uncertainty (MU) extension of the GAMP

algorithm, as well as an alternating A-MU-GAMP that aims to recover both the

signal and the unknown (possibly parametric) measurement matrix. We also provided

theoretical and empirical evidence of the following possibly unexpected fact: as the

dimensions grow large, the effect of uniform matrix uncertainty reduces to AWGN,

and can thus be handled by matrix-certain algorithms. Our MU-GAMP approach

55



can, however, exploit knowledge of non-uniform matrix uncertainty to do significantly

better. Moreover, our A-MU-GAMP approach, which exploits soft information (as

opposed to point estimates), achieves near-oracle performance.

MU-GAMP does not attempt to estimate the perturbed matrix A itself. While

A-MU-GAMP offers a method for estimating this operator for a particular class of

parametric models, we pursue a more flexible approach in subsequent chapters. In

particular, Chapter 4 develops a bilinear version of GAMP that jointly estimates A

and the possibly matrix-valued signal X . This approach is applicable to dictionary

learning, matrix completion, robust principle components analysis (PCA), and other

related problems. Furthermore, a version of this algorithm which handles parametric

operators similar to those addressed by A-MU-GAMP will be developed in Chapter 5.

56



Chapter 4: Bilinear Generalized Approximate Message

Passing

4.1 Introduction

In this chapter, we present a new algorithmic framework for the following gen-

eralized bilinear inference problem: estimate the matrices A = [amn] ∈ R
M×N and

X = [xnl]∈RN×L from a matrix observation Y ∈ RM×L that is statistically coupled

to their product, Z ,AX. In doing so, we treat A and X as realizations of inde-

pendent random matrices A and X with known separable pdfs (or pmfs in the case

of discrete models), i.e.,

pA(A) =
∏

m

∏

n

pamn(amn) (4.1)

pX(X) =
∏

n

∏

l

pxnl
(xnl), (4.2)

and we likewise assume that the likelihood function of Z is known and separable, i.e.,

pY|Z(Y |Z) =
∏

m

∏

l

pyml|zml
(yml | zml). (4.3)

Recently, various special cases of this problem have gained the intense interest of

the research community, e.g.,

1. Matrix Completion: In this problem, one observes a few (possibly noise-

corrupted) entries of a low-rank matrix and the goal is to infer the missing

57



entries. In our framework, Z=AX would represent the complete low-rank ma-

trix (with tall A and wide X) and pyml|zml
the observation mechanism, which

would be (partially) informative about zml at the observed entries (m, l) ∈ Ω

and non-informative at the missing entries (m, l) /∈ Ω.

2. Robust PCA: Here, the objective is to recover a low-rank matrix (or its princi-

pal components) observed in the presence of noise and sparse outliers. In our

framework, Z = AX could again represent the low-rank matrix, and pyml|zml

the noise-and-outlier-corrupted observation mechanism. Alternatively, X could

also capture the outliers, as described in the sequel.

3. Dictionary Learning : Here, the objective is to learn a dictionary A for which

there exists a sparse data representation X such that AX closely matches the

observed data Y . In our framework, {pxnl
} would be chosen to induce sparsity,

Z = AX would represent the noiseless observations, and {pyml|zml
} would model

the (possibly noisy) observation mechanism.

While a plethora of approaches to these problems have been proposed based on

optimization techniques (e.g., [34–44]), greedy methods (e.g., [45–49]), Bayesian sam-

pling methods (e.g., [50,51]), variational methods (e.g., [52–56]), and discrete message

passing (e.g., [57]), ours is based on the Approximate Message Passing (AMP) frame-

work, an instance of loopy belief propagation (LBP) [58] that was recently developed

to tackle linear [3, 4, 16] and generalized linear [6] inference problems encountered in

the context of compressive sensing (CS). In the generalized-linear CS problem, one

estimates x ∈ RN from observations y ∈ RM that are statistically coupled to the

58



transform outputs z = Ax through a separable likelihood function py|z(y|z), where

in this case the transform A is fixed and known.

In the context of CS, the AMP framework yields algorithms with remarkable

properties: i) solution trajectories that, in the large-system limit (i.e., as M,N →

∞ with M/N fixed, under iid sub-Gaussian A) are governed by a state-evolution

whose fixed points—when unique—yield the true posterior means [59, 60] and ii) a

low implementation complexity (i.e., dominated by one multiplication with A andAT

per iteration, and relatively few iterations) [16]. Thus, a natural question is whether

the AMP framework can be successfully applied to the generalized bilinear problem

described earlier.

In this chapter, we propose an AMP-based approach to generalized bilinear infer-

ence that we henceforth refer to as Bilinear Generalized AMP (BiG-AMP), and we

uncover special cases under which the general approach can be simplified. In addi-

tion, we propose an adaptive damping [18] mechanism, an expectation-maximization

(EM)-based [61] method of tuning the parameters of pamn , pxnl
, and pyml|zml

(in case

they are unknown), and methods to select the rank N (in case it is unknown). In the

case that pamn , pxnl
, and/or pyml|zml

are completely unknown, they can be modeled

as Gaussian-mixtures with mean/variance/weight parameters learned via EM [62].

Finally, we present a detailed numerical investigation of BiG-AMP applied to matrix

completion, robust PCA, and dictionary learning. Our empirical results show that

BiG-AMP yields an excellent combination of estimation accuracy and runtime when

compared to existing state-of-the-art algorithms for each application.

59



Although the AMP methodology is itself restricted to separable known pdfs (4.1)-

(4.3), the results of Part II suggest that this limitation is not an issue for many prac-

tical problems of interest. However, in problems where the separability assumption

is too constraining, it can be relaxed through the use of hidden (coupling) variables,

as originally proposed in the context of “turbo-AMP” [63] and applied to BiG-AMP

in [64]. Due to space limitations, however, this approach will not be discussed here.

Finally, although we focus on real-valued random variables, all of the methodology

described in this work can be easily extended to circularly symmetric complex-valued

random variables.

We now discuss related work. One possibility of applying AMP methods to matrix

completion was suggested by Montanari in [16, Sec. 9.7.3] but the approach described

there differs from BiG-AMP in that it was i) constructed from a factor graph with

vector-valued variables and ii) restricted to the (incomplete) additive white Gaussian

noise (AWGN) observation model. Moreover, no concrete algorithm nor performance

evaluation was reported. Since we first reported on BiG-AMP in [65, 66], Rangan

and Fletcher [67] proposed an AMP-based approach for the estimation of rank-one

matrices from AWGN-corrupted observations, and showed that it can be character-

ized by a state evolution in the large-system limit. More recently, Krzakala, Mézard,

and Zdeborová [68] proposed an AMP-based approach to blind calibration and dic-

tionary learning in AWGN that bears similarity to a special case of BiG-AMP, and

derived a state-evolution using the cavity method. Their method, however, was not

numerically successful in solving dictionary learning problems [68]. The BiG-AMP

algorithm that we derive here is a generalization of those in [67, 68] in that it han-

dles generalized bilinear observations rather than AWGN-corrupted ones. Moreover,

60



our work is the first to detail adaptive damping, parameter tuning, and rank-selection

mechanisms for AMP based bilinear inference, and it is the first to present an in-depth

numerical investigation involving both synthetic and real-world datasets. An applica-

tion/extension of the BiG-AMP algorithm described here to hyperspectral unmixing

(an instance of non-negative matrix factorization) was recently proposed in [64].

The remainder of the chapter is organized as follows. Section 4.2 derives the

BiG-AMP algorithm, and Section 4.3 presents several special-case simplifications of

BiG-AMP. Section 4.4 describes the adaptive damping mechanism, and Section 4.5

the EM-based tuning of prior parameters and selection of rankN . Application-specific

issues and numerical results demonstrating the efficacy of our approach for matrix

completion, robust PCA, and dictionary learning, are discussed in Sections 4.6–4.8,

respectively, and concluding remarks are offered in Section 4.9.

4.2 Bilinear Generalized AMP

4.2.1 Problem Formulation

For the statistical model (4.1)-(4.3), the posterior distribution is

pX,A|Y(X,A |Y )

= pY|X,A(Y |X,A) pX(X) pA(A)/pY(Y ) (4.4)

∝ pY|Z(Y |AX) pX(X) pA(A) (4.5)

=

[∏

m

∏

l

pyml|zml

(
yml

∣∣∣
∑

k

amkxkl

)]

×
[∏

n

∏

l

pxnl
(xnl)

][∏

m

∏

n

pamn(amn)

]
, (4.6)

where (4.4) employs Bayes’ rule and ∝ denotes equality up to a constant scale factor.

61



The posterior distribution can be represented with a factor graph, as depicted in

Fig. 4.1. There, the factors of pX,A|Y from (4.6) are represented by “factor nodes” that

appear as black boxes, and the random variables are represented by “variable nodes”

that appear as white circles. Each variable node is connected to every factor node

in which that variable appears. The observed data {yml} are treated as parameters

of the pyml|zml
factor nodes in the middle of the graph, and not as random variables.

The structure of Fig. 4.1 becomes intuitive when recalling that Z = AX implies

zml =
∑N

n=1 amnxnl.

l

k

m
n

xnl pyml|zml amk
pxnl pamk

Figure 4.1: The factor graph for generalized bilinear inference for (toy-sized) problem
dimensions M = 4, L = 3, and N = 2.

62



4.2.2 Loopy Belief Propagation

In this work, we aim to compute minimum mean-squared error (MMSE) estimates

of X and A, i.e., the means11 of the marginal posteriors pxnl|Y(· |Y ) and pamn|Y(· |Y ),

for all pairs (n, l) and (m,n). Although exact computation of these quantities is gen-

erally prohibitive, they can be efficiently approximated using loopy belief propagation

(LBP) [58].

In LBP, beliefs about the random variables (in the form of pdfs or log pdfs) are

propagated among the nodes of the factor graph until they converge. The standard

way to compute these beliefs, known as the sum-product algorithm (SPA) [14, 15],

stipulates that the belief emitted by a variable node along a given edge of the graph

is computed as the product of the incoming beliefs from all other edges, whereas

the belief emitted by a factor node along a given edge is computed as the integral

of the product of the factor associated with that node and the incoming beliefs on

all other edges. The product of all beliefs impinging on a given variable node yields

the posterior pdf for that variable. In cases where the factor graph has no loops,

exact marginal posteriors result from two (i.e., forward and backward) passes of the

SPA [14,15]. For loopy factor graphs, exact inference is in general NP hard [69] and so

LBP does not guarantee correct posteriors. That said, LBP has shown state-of-the-

art performance in many applications, such as inference on Markov random fields [70],

turbo decoding [71], LDPC decoding [72], multiuser detection [73], and compressive

sensing [3, 4, 6, 59, 60].

11Another worthwhile objective could be to compute the joint MAP estimate
argmaxX,A pX,A|Y(X,A |Y ); we leave this to future work.

63



In high-dimensional inference problems, exact implementation of the SPA is im-

practical, motivating approximations of the SPA. A notable example is the generalized

approximate message passing (GAMP) algorithm, developed in [6] and reviewed in

Chapter 2 to solve the generalized CS problem, which exploits the “blessings of di-

mensionality” that arise when A is a sufficiently large and dense and which was

rigorously analyzed in [60]. In the sequel, we derive an algorithm for the generalized

bilinear inference BiG-AMP algorithm that employs GAMP-like approximations to

the SPA on the factor graph in Fig. 4.1. As we shall see, the approximations are

primarily based on central-limit-theorem (CLT) and Taylor-series arguments.

4.2.3 Sum-product Algorithm

In our formulation of the SPA, messages take the form of log-pdfs with arbitrary

constant offsets. For example, the iteration-t (where t ∈ Z) message ∆x
m→nl(t, .)

can be converted to the pdf 1
C
exp(∆x

m→nl(t, .)), where the choice of scale factor

C =
∫
xnl

exp(∆x
m→nl(t, xnl)) ensures that the pdf integrates to one. Four types of

message will be used, as specified in Table 4.1. We also find it convenient to express

the (iteration-t SPA-approximated) posterior pdfs pxnl|Y(t, . |Y ) and pamn|Y(t, . |Y ) in

the log domain as ∆x
nl(t, .) and ∆a

mn(t, .), respectively, again with arbitrary constant

offsets.

64



∆x
m→nl(t, .) SPA message from node pyml|zml

to node xnl
∆x

m←nl(t, .) SPA message from node xnl to node pyml|zml

∆a
l→mn(t, .) SPA message from node pyml|zml

to node amn

∆a
l←mn(t, .) SPA message from node amn to node pyml|zml

∆x
nl(t, .) SPA-approximated log posterior pdf of xnl

∆a
mn(t, .) SPA-approximated log posterior pdf of amn

Table 4.1: SPA message definitions at iteration t ∈ Z for BiG-AMP.

Applying the SPA to the factor graph in Fig. 4.1, we arrive at the following update

rules for the four messages in Table 4.1.

∆x
m→nl(t, xnl)

= log

∫

{amk}Nk=1,{xrl}r 6=n

pyml|zml

(
yml

∣∣∣∣
N∑

k=1

amkxkl

)

×
∏

r 6=n

exp
(
∆x

m←rl(t, xrl)
) N∏

k=1

exp
(
∆a

l←mk(t, amk)
)

+ const (4.7)

∆x
m←nl(t+1, xnl)

= log pxnl
(xnl) +

∑

k 6=m

∆x
k→nl(t, xnl) + const (4.8)

∆a
l→mn(t, amn)

= log

∫

{amr}r 6=n,{xkl}Nk=1

pyml|zml

(
yml

∣∣∣∣
N∑

k=1

amkxkl

)

×
N∏

k=1

exp
(
∆x

m←kl(t, xkl)
)∏

r 6=n

exp
(
∆a

l←mr(t, amr)
)

+ const (4.9)

∆a
l←mn(t+1, amn)

= log pamn(amn) +
∑

k 6=l

∆a
k→mn(t, amn) + const, (4.10)

65



where const is an arbitrary constant (w.r.t xnl in (4.7) and (4.8), and w.r.t amn

in (4.9) and (4.10)). In the sequel, we denote the mean and variance of the pdf

1
C
exp(∆x

m←nl(t, .)) by x̂m,nl(t) and νx
m,nl(t), respectively, and we denote the mean and

variance of 1
C
exp(∆a

l←mn(t, .)) by âl,mn(t) and νa
l,mn(t). For the log-posteriors, the SPA

implies

∆x
nl(t+1, xnl)

= log pxnl
(xnl) +

M∑

m=1

∆x
m→nl(t, xnl) + const (4.11)

∆a
mn(t+1, amn)

= log pamn(amn) +
L∑

l=1

∆a
l→mn(t, amn) + const, (4.12)

and we denote the mean and variance of 1
C
exp(∆x

nl(t, .)) by x̂nl(t) and νx
nl(t), and the

mean and variance of 1
C
exp(∆a

mn(t, .)) by âmn(t) and νa
mn(t).

4.2.4 Approximated Factor-to-Variable Messages

We now apply AMP approximations to the SPA updates (4.7)-(4.12). As we

shall see, the approximations are based primarily on central-limit-theorem (CLT)

and Taylor-series arguments that become exact in the large-system limit, where

M,L,N → ∞ with fixed ratios M/N and L/N . (Due to the use of finite M,L,N in

practice, we still regard them as approximations.) In particular, our derivation will

neglect terms that vanish relative to others as N → ∞, which requires that we estab-

lish certain scaling conventions. First, we assume w.l.o.g12 that E{z2ml} and E{x2nl}

scale as O(1), i.e., that the magnitudes of these elements do not change as N → ∞.

In this case, assuming that amn is zero mean, the relationship zml =
∑N

n=1 amnxnl

implies that E{a2mn} must scale as O(1/N). These scalings are assumed to hold for

12Other scalings on E{z2ml}, E{x2nl}, and E{a2mn} could be used as long as they are consistent with

the relationship zml =
∑N

n=1 amnxnl.

66



ẑml(t) O(1) νz
ml(t) O(1) x̂m,nl(t)− x̂nl(t) O( 1√

N
)

x̂m,nl(t) O(1) νx
m,nl(t) O(1) x̂2

m,nl(t)− x̂2
nl(t) O( 1√

N
)

x̂nl(t) O(1) νx
nl(t) O(1) νx

m,nl(t)− νx
nl(t) O( 1√

N
)

âl,mn(t) O( 1√
N
) νa

l,mn(t) O( 1
N
) âl,mn(t)− âmn(t) O( 1

N
)

âmn(t) O( 1√
N
) νa

mn(t) O( 1
N
) â2l,mn(t)− â2mn(t) O( 1

N3/2 )

p̂ml(t) O(1) νp
ml(t) O(1) νa

l,mn(t)− νa
mn(t) O( 1

N3/2 )
r̂m,nl(t) O(1) νr

m,nl(t) O(1) r̂m,nl(t)− r̂nl(t) O( 1√
N
)

r̂nl(t) O(1) νr
nl(t) O(1) νr

m,nl(t)− νr
nl(t) O( 1

N
)

q̂l,mn(t) O( 1√
N
) νq

l,mn(t) O( 1
N
) q̂l,mn(t)− q̂mn(t) O( 1

N
)

q̂mn(t) O( 1√
N
) νq

mn(t) O( 1
N
) νq

l,mn(t)− νq
mn(t) O( 1

N2 )

ŝml(t) O(1) νs
ml(t) O(1)

Table 4.2: BiG-AMP variable scalings in the large-system limit.

random variables zml, amn, and xml distributed according to the prior pdfs, accord-

ing to the pdfs corresponding to the SPA messages (4.7)-(4.10), and according to

the pdfs corresponding to the SPA posterior approximations (4.11)-(4.12). These as-

sumptions lead straightforwardly to the scalings of ẑml(t), ν
z
ml(t), x̂m,nl(t), ν

x
m,nl(t),

x̂nl(t), ν
x
nl(t), âl,mn(t), ν

a
l,mn(t), âmn(t), and νa

mn(t) specified in Table 4.2. Furthermore,

because ∆x
m→nl(t, ·) and ∆x

nl(t, ·) differ by only one term out of M , it is reasonable to

assume [6, 16] that the corresponding difference in means x̂m,nl(t) − x̂nl(t) and vari-

ances νx
m,nl(t)− νx

nl(t) are both O(1/
√
N), which then implies that x̂2

m,nl(t)− x̂2
nl(t) is

also O(1/
√
N). Similarly, because ∆a

l→mn(t, ·) and ∆a
mn(t, ·) differ by only one term

out of N , where âl,mn(t) and âmn(t) are O(1/
√
N), it is reasonable to assume that

âl,mn(t)− âmn(t) is O(1/N) and that both νa
l,mn(t)− νa

mn(t) and â2l,mn(t)− â2mn(t) are

O(1/N3/2). The remaining entries in Table 4.2 will be explained below.

67



We start by approximating the message ∆x
m→nl(t, .). Expanding (4.7), we find

∆x
m→nl(t, xnl)

= log

∫

{amk}Nk=1,{xrl}r 6=n

pyml|zml

(
yml

∣∣∣

zml︷ ︸︸ ︷

amnxnl +

N∑

k=16=n

amkxkl

)

×
∏

r 6=n

exp
(
∆x

m←rl(t, xrl)
) N∏

k=1

exp
(
∆a

l←mk(t, amk)
)

+ const. (4.13)

For large N , the CLT motivates the treatment of zml, the random variable associated

with the zml identified in (4.13), conditioned on xnl = xnl, as Gaussian and thus com-

pletely characterized by a (conditional) mean and variance. Defining the zero-mean

r.v.s ãl,mn , amn− âl,mn(t) and x̃m,nl = xnl− x̂m,nl(t), where amn ∼ 1
C
exp(∆a

l←mn(t, ·))

and xnl ∼ 1
C
exp(∆x

m←nl(t, ·)), we can write

zml =
(
âl,mn(t) + ãl,mn

)
xnl +

∑

k 6=n

(
âl,mk(t) x̂m,kl(t)

+ âl,mk(t)x̃m,kl + ãl,mkx̂m,kl(t) + ãl,mkx̃m,kl

)
(4.14)

after which it is straightforward to see that

E{zml | xnl = xnl} = âl,mn(t)xnl + p̂n,ml(t) (4.15)

var{zml | xnl = xnl} = νa
l,mn(t)x

2
nl + νp

n,ml(t) (4.16)

for

p̂n,ml(t) ,
∑

k 6=n

âl,mk(t)x̂m,kl(t) (4.17)

νp
n,ml(t) ,

∑

k 6=n

(
â2l,mk(t)ν

x
m,kl(t) + νa

l,mk(t)x̂
2
m,kl(t)

+ νa
l,mk(t)ν

x
m,kl(t)

)
. (4.18)

68



With this conditional-Gaussian approximation, (4.13) becomes

∆x
m→nl(t, xnl) ≈ const + log

∫

zml

pyml|zml
(yml | zml) (4.19)

×N
(
zml; âl,mn(t)xnl+p̂n,ml(t), ν

a
l,mn(t)x

2
nl+νp

n,ml(t)
)

= Hml

(
âl,mn(t)xnl + p̂n,ml(t),

νa
l,mn(t)x

2
nl + νp

n,ml(t); yml

)
+ const (4.20)

in terms of the function

Hml

(
q̂, νq; y

)
, log

∫

z

pyml|zml
(y | z)N (z; q̂, νq). (4.21)

Unlike the original SPA message (4.7), the approximation (4.20) requires only a

single integration. Still, additional simplifications are possible. First, notice that

p̂n,ml(t) and νp
n,ml(t) differ from the corresponding n-invariant quantities

p̂ml(t) ,
N∑

k=1

âl,mk(t)x̂m,kl(t) (4.22)

νp
ml(t) ,

N∑

k=1

(
â2l,mk(t)ν

x
m,kl(t) + νa

l,mk(t)x̂
2
m,kl(t)

+ νa
l,mk(t)ν

x
m,kl(t)

)
(4.23)

by one term. In the sequel, we will assume that p̂ml(t) and νp
ml(t) are O(1) since these

quantities can be recognized as the mean and variance, respectively, of an estimate

69



of zml, which is O(1). Writing the Hml term in (4.20) using (4.22)-(4.23),

Hml

(
âl,mn(t)xnl + p̂n,ml(t), ν

a
l,mn(t)x

2
nl + νp

n,ml(t); yml

)

= Hml

(
âl,mn(t)

(
xnl − x̂m,nl(t)

)
+ p̂ml(t),

νa
l,mn(t)

(
x2
nl − x̂2

m,nl(t)
)
− â2l,mn(t)ν

x
m,nl(t)

− νa
l,mn(t)ν

x
m,nl(t) + νp

ml(t); yml

)
(4.24)

= Hml

(
âl,mn(t)

(
xnl − x̂nl(t)

)
+ p̂ml(t) +O(1/N),

νa
l,mn(t)

(
x2
nl − x̂2

nl(t)
)
+ νp

ml(t) +O(1/N); yml

)
(4.25)

where in (4.25) we used the facts that âl,mn(t)(x̂nl(t)− x̂m,nl(t)) and νa
l,mn(t)(x̂

2
m,nl(t)−

x̂2
nl(t)))− â2l,mn(t)ν

x
m,nl(t)− νa

l,mn(t)ν
x
m,nl(t) are both O(1/N).

Rewriting (4.20) using a Taylor series expansion in xnl about the point x̂nl(t), we

get

∆x
m→nl(t, xnl) ≈ const

+Hml

(
p̂ml(t) +O(1/N), νp

ml(t) +O(1/N); yml

)

+ âl,mn(t)
(
xnl − x̂nl(t)

)

×H ′ml

(
p̂ml(t) +O(1/N), νp

ml(t) +O(1/N); yml

)

+ 2νa
l,mn(t)x̂nl(t)

(
xnl − x̂nl(t)

)

× Ḣml

(
p̂ml(t) +O(1/N), νp

ml(t) +O(1/N); yml

)

+νa
l,mn(t)

(
xnl − x̂nl(t)

)2

×Ḣml

(
p̂ml(t) +O(1/N), νp

ml(t) +O(1/N); yml

)

+
1

2
â2l,mn(t)

(
xnl − x̂nl(t)

)2

×H ′′ml

(
p̂ml(t) +O(1/N), νp

ml(t) +O(1/N); yml

)

+O(1/N3/2), (4.26)

70



where H ′ml and H ′′mn are the first two derivatives of Hmn w.r.t its first argument

and Ḣml is the first derivative w.r.t its second argument. Note that, in (4.26) and

elsewhere, the higher-order terms in the Taylor’s expansion are written solely in terms

of their scaling dependence on N , which is what will eventually allow us to neglect

these terms (in the large-system limit).

We now approximate (4.26) by dropping terms that vanish, relative to the second-

to-last term in (4.26), as N → ∞. Since this second-to-last term is O(1/N) due to

the scalings of â2l,mn(t), p̂ml(t), and νp
ml(t), we drop terms that are of order O(1/N3/2),

such as the final term. We also replace νa
l,mn(t) with νa

mn(t), and â2l,mn(t) with â2mn(t),

since in both cases the difference is O(1/N3/2). Finally, we drop the O(1/N) terms

inside the Hml derivatives, which can be justified by taking a Taylor series expansion

of these derivatives with respect to the O(1/N) perturbations and verifying that the

higher-order terms in this latter expansion are O(1/N3/2). All of these approximations

are analogous to those made in previous AMP derivations, e.g., [4], [16], and [6].

Applying these approximations to (4.26) and absorbing xnl-invariant terms into

the const term, we obtain

∆x
m→nl(t, xnl) ≈

[
ŝml(t)âl,mn(t) + νs

ml(t)â
2
mn(t)x̂nl(t)

]

× xnl − 1
2

[
νs
ml(t)â

2
mn(t)−νa

mn(t)

×(ŝ2ml(t)− νs
ml(t))

]
x2
nl + const, (4.27)

where we used the relationship

Ḣml

(
q̂, νq; y

)
=

1

2

[(
H ′ml

(
q̂, νq; y

))2
+H ′′ml

(
q̂, νq; y

)]
(4.28)

71



and defined

ŝml(t) , H ′ml

(
p̂ml(t), ν

p
ml(t); yml

)
(4.29)

νs
ml(t) , −H ′′ml

(
p̂ml(t), ν

p
ml(t); yml

)
. (4.30)

Note that (4.27) is essentially a Gaussian approximation to the pdf 1
C
exp(∆x

m→nl(t, .)).

It was shown in Section 2.4 that

ŝml(t) =
1

νp
ml(t)

(
ẑml(t)− p̂ml(t)

)
(4.31)

νs
ml(t) =

1

νp
ml(t)

(
1− νz

ml(t)

νp
ml(t)

)
, (4.32)

for the conditional mean and variance

ẑml(t) , E{zml | pml= p̂ml(t); ν
p
ml(t)} (4.33)

νz
ml(t) , var{zml | pml= p̂ml(t); ν

p
ml(t)}, (4.34)

computed according to the (conditional) pdf

pzml|pml

(
zml | p̂ml(t); ν

p
ml(t)

)

, 1
C
pyml|zml

(yml | zml)N
(
zml; p̂ml(t), ν

p
ml(t)

)
, (4.35)

where here C =
∫
z
pyml|zml

(yml | z)N
(
z; p̂ml(t), ν

p
ml(t)

)
. In fact, (4.35) is BiG-AMP’s

iteration-t approximation to the true marginal posterior pzml|Y(·|Y ). We note that

(4.35) can also be interpreted as the (exact) posterior pdf for zml given the likeli-

hood pyml|zml
(yml|·) from (4.3) and the prior zml ∼ N

(
p̂ml(t), ν

p
ml(t)

)
that is implicitly

assumed by iteration-t BiG-AMP.

Since ZT = XTAT, the derivation of the BiG-AMP approximation of ∆a
l→mn(t, .)

closely follows the derivation for ∆x
m→nl(t, .). In particular, it starts with (similar to

72



(4.13))

∆a
l→mn(t, amn)

= log

∫

{amk}k 6=n,{xrl}Nr=1

pyml|zml

(
yml

∣∣∣

zml︷ ︸︸ ︷
amnxnl +

∑

k 6=n

amkxkl

)

×
N∏

r=1

exp
(
∆x

m←rl(t, xrl)
)∏

k 6=n

exp
(
∆a

l←mk(t, amk)
)

+ const, (4.36)

where again the CLT motivates the treatment of zml, conditioned on amn = amn, as

Gaussian. Eventually we arrive at the Taylor-series approximation (similar to (4.27))

∆a
l→mn(t, amn) ≈

[
ŝml(t)x̂m,nl(t) + νs

ml(t)x̂
2
nl(t)âmn(t)

]

× amn − 1
2

[
νs
ml(t)x̂

2
nl(t)−νx

nl(t)

×(ŝ2ml(t)− νs
ml(t))

]
a2mn

+ const. (4.37)

4.2.5 Approximated Variable-to-Factor Messages

We now turn to approximating the messages flowing from the variable nodes to

the factor nodes. Starting with (4.8) and plugging in (4.27) we obtain

∆x
m←nl(t+1, xnl)

≈ const + log pxnl
(xnl) +

∑

k 6=m

([
ŝkl(t)âl,kn(t)

+νs
kl(t)â

2
kn(t)x̂nl(t)

]
xnl − 1

2

[
νs
kl(t)â

2
kn(t)

−νa
kn(t)

(
ŝ2kl(t)− νs

kl(t)
)]
x2
nl

)
(4.38)

= const + log pxnl
(xnl)−

1

2νr
m,nl(t)

(
xnl − r̂m,nl(t)

)2
(4.39)

= const + log
(
pxnl

(xnl)N
(
xnl; r̂m,nl(t), ν

r
m,nl(t)

))
(4.40)

73



for

νr
m,nl(t) ,

(∑

k 6=m

â2kn(t)ν
s
kl(t)−νa

kn(t)
(
ŝ2kl(t)− νs

kl(t)
))−1

(4.41)

r̂m,nl(t) , x̂nl(t)
(
1 + νr

m,nl(t)
∑

k 6=m

νa
kn(t)[ŝ

2
kl(t)− νs

kl(t)]
)

+ νr
m,nl(t)

∑

k 6=m

âl,kn(t)ŝkl(t). (4.42)

Since â2mn(t) and νa
mn(t) are O(1/N), and recalling ŝ2ml(t) and νs

ml(t) are O(1), we take

νr
m,nl(t) to be O(1). Meanwhile, since r̂m,nl(t) is an estimate of xnl, we reason that it

is O(1).

The mean and variance of the pdf associated with the ∆x
m←nl(t+1, .) approximation

in (4.40) are

x̂m,nl(t+1)

,
1

C

∫

x

x pxnl
(x)N

(
x; r̂m,nl(t), ν

r
m,nl(t)

)

︸ ︷︷ ︸
, gxnl

(r̂m,nl(t), ν
r
m,nl(t))

(4.43)

νx
m,nl(t+1)

,
1

C

∫

x

∣∣x− x̂m,nl(t+1)
∣∣2pxnl

(x)N
(
x; r̂m,nl(t), ν

r
m,nl(t)

)

︸ ︷︷ ︸
νr
m,nl(t) g

′
xnl
(r̂m,nl(t), ν

r
m,nl(t)) (4.44)

where here C =
∫
x
pxnl

(x)N
(
x; r̂m,nl(t), ν

r
m,nl(t)

)
and g′xnl denotes the derivative of

gxnl
with respect to the first argument. The fact that (4.43) and (4.44) are related

through a derivative was shown in [6].

We now derive approximations of x̂m,nl(t) and νx
m,nl(t) that avoid the dependence

on the destination node m. For this, we introduce m-invariant versions of r̂m,nl(t)

74



and νr
m,nl(t):

νr
nl(t) ,

( M∑

m=1

â2mn(t)ν
s
ml(t)−νa

mn(t)
(
ŝ2ml(t)− νs

ml(t)
))−1

(4.45)

r̂nl(t) , x̂nl(t)
(
1 + νr

nl(t)

M∑

m=1

νa
mn(t)[ŝ

2
ml(t)− νs

ml(t)]
)

+ νr
nl(t)

M∑

m=1

âl,mn(t)ŝml(t). (4.46)

Comparing (4.45)-(4.46) with (4.41)-(4.42) and applying previously established scal-

ings from Table 4.2 reveals that νr
m,nl(t) − νr

nl(t) is O(1/N) and that r̂m,nl(t) =

r̂nl(t)−νr
nl(t)âmn(t)ŝml(t) +O(1/N), so that (4.43) implies

x̂m,nl(t+1)

= gxnl

(
r̂nl(t)− νr

nl(t)âmn(t)ŝml(t) +O(1/N),

νr
nl(t) +O(1/N)

)
(4.47)

= gxnl

(
r̂nl(t)− νr

nl(t)âmn(t)ŝml(t), ν
r
nl(t)

)
+O(1/N) (4.48)

= gxnl

(
r̂nl(t), ν

r
nl(t)

)
(4.49)

−νr
nl(t)âmn(t)ŝml(t) g

′
xnl

(
r̂nl(t), ν

r
nl(t)

)
+O(1/N)

≈ x̂nl(t+1)− âmn(t)ŝml(t)ν
x
nl(t+1). (4.50)

Above, (4.48) follows from taking Taylor series expansions around each of the O(1/N)

perturbations in (4.47); (4.49) follows from a Taylor series expansion in the first

argument of (4.48) about the point r̂nl(t); and (4.50) follows by neglecting the O(1/N)

term (which vanishes relative to the others in the large-system limit) and applying

the definitions

x̂nl(t+1) , gxnl

(
r̂nl(t), ν

r
nl(t)

)
(4.51)

νx
nl(t+1) , νr

nl(t)g
′
xnl

(
r̂nl(t), ν

r
nl(t)

)
, (4.52)

75



which match (4.43)-(4.44) sans the m dependence. Note that (4.50) confirms that the

difference x̂m,nl(t)− x̂nl(t) is O(1/
√
N), as was assumed at the start of the BiG-AMP

derivation. Likewise, taking Taylor series expansions of g′xnl
in (4.44) about the point

r̂nl(t) in the first argument and about the point νr
nl(t) in the second argument and

then comparing the result with (4.52) confirms that νx
m,nl(t)− νx

nl(t) is O(1/
√
N).

We then repeat the above procedure to derive an approximation to ∆a
l←mn(t+1, .)

analogous to (4.40), whose corresponding mean is then further approximated as

âl,mn(t+1) ≈ âmn(t+1)− x̂nl(t)ŝml(t)ν
a
mn(t+1), (4.53)

for

âmn(t+1) , gamn

(
q̂mn(t), ν

q
mn(t)

)
(4.54)

νa
mn(t+1) , νq

mn(t)g
′
amn

(
q̂mn(t), ν

q
mn(t)

)
(4.55)

gamn(q̂, ν
q) ,

∫
a
a pamn(a)N (a; q̂, νq)∫
a
pamn(a)N (a; q̂, νq)

(4.56)

where

νq
mn(t) ,

( L∑

l=1

x̂2
nl(t)ν

s
ml(t)−νx

nl(t)
(
ŝ2ml(t)− νs

ml(t)
))−1

(4.57)

q̂mn(t) , âmn(t)
(
1 + νq

mn(t)

L∑

l=1

νx
nl(t)[ŝ

2
ml(t)− νs

ml(t)]
)

+ νq
mn(t)

L∑

l=1

x̂m,nl(t)ŝml(t). (4.58)

Arguments analogous to the discussion following (4.42) justify the remaining scalings

in Table 4.2.

4.2.6 Closing the Loop

The penultimate step in the derivation of BiG-AMP is to approximate earlier

steps that use âl,mn(t) and x̂m,nl(t) in place of âmn(t) and x̂nl(t). For this, we start

76



by plugging (4.50) and (4.53) into (4.22), which yields13

p̂ml(t) = O(1/
√
N) +

, pml(t)︷ ︸︸ ︷
N∑

n=1

âmn(t)x̂nl(t)−ŝml(t−1)

×
N∑

n=1

(
νa
mn(t)x̂nl(t)x̂nl(t−1) + âmn(t)âmn(t−1)νx

nl(t)
)

+ ŝ2ml(t−1)

N∑

n=1

âmn(t−1)νa
mn(t)ν

x
nl(t)x̂nl(t−1) (4.59)

≈ pml(t)− ŝml(t−1)
N∑

n=1

(
νa
mn(t)x̂

2
nl(t) + â2mn(t)ν

x
nl(t)

)

︸ ︷︷ ︸
, νp

ml(t)

,

(4.60)

where, for (4.60), we used â2mn(t) in place of âmn(t)âmn(t−1), used x̂2
nl(t) in place of

x̂nl(t)x̂nl(t−1), and neglected terms that are O(1/
√
N), since they vanish relative to

the remaining O(1) terms in the large-system limit.

Next we plug (4.50), (4.53), νx
m,nl(t) = νx

nl(t) +O(1/
√
N), and νa

l,mn(t) = νa
mn(t) +

O(1/N3/2) into (4.23), giving

νp
ml(t) = νp

ml(t) +

N∑

n=1

νa
mn(t)ν

x
nl(t) (4.61)

− 2ŝml(t−1)

N∑

n=1

(
νa
mn(t)âmn(t)x̂nl(t−1)νx

nl(t)

+ νa
mn(t)âmn(t−1)x̂nl(t)ν

x
nl(t)

)

+ ŝml(t−1)2
N∑

n=1

(
(νa

mn(t))
2x̂2

nl(t−1)νx
nl(t)

+ νa
mn(t)â

2
mn(t−1)(νx

nl(t))
2
)
+O(1/

√
N)

≈ νp
ml(t) +

N∑

n=1

νa
mn(t)ν

x
nl(t), (4.62)

13Recall that the error of the approximation in (4.50) is O(1/N) and the error in (4.53) is
O(1/N3/2).

77



where (4.62) retains only the O(1) terms from (4.61).

Similarly, we plug (4.53) into (4.46) and (4.50) into (4.58) to obtain

r̂nl(t) ≈ x̂nl(t)

(
1−

∑M
m=1 ν

a
mn(t)ν

s
ml(t)∑M

m=1 â
2
mn(t)ν

s
ml(t)

)

+ νr
nl(t)

M∑

m=1

âmn(t)ŝml(t) (4.63)

q̂mn(t) ≈ âmn(t)

(
1−

∑L
l=1 ν

x
nl(t)ν

s
ml(t)∑L

l=1 x̂
2
nl(t)ν

s
ml(t)

)

+ νq
mn(t)

L∑

l=1

x̂nl(t)ŝml(t), (4.64)

where the approximations involve the use of ŝ2ml(t) in place of ŝml(t)ŝml(t − 1), of

âmn(t) in place of âmn(t−1), of x̂nl(t) in place of x̂nl(t−1), and the dropping of terms

that vanish in the large-system limit. Finally, we make the approximations

νr
nl(t) ≈

( M∑

m=1

â2mn(t)ν
s
ml(t)

)−1
(4.65)

νq
mn(t) ≈

( L∑

l=1

x̂2
nl(t)ν

s
ml(t)

)−1
, (4.66)

by neglecting the ŝ2ml(t)− νs
ml(t) terms in (4.45) and (4.57).

Here we pause to explain the approximations (4.65)-(4.66). The term neglected

in going from (4.45) to (4.65) can be written using (4.31)-(4.32) as

M∑

m=1

νa
mn(t)

(
ŝ2ml(t)− νs

ml(t)
)

=
M∑

m=1

νa
mn(t)

[
(ẑml(t)− p̂ml(t))

2 + νz
ml(t)

νp
ml(t)

2
− 1

νp
ml(t)

]
(4.67)

=

M∑

m=1

νa
mn(t)

νp
ml(t)

[
E

{
(zml − p̂ml(t))

2

νp
ml(t)

}
− 1

]
(4.68)

where the expectations are taken over zml ∼ pzml|pml

(
· | p̂ml(t); ν

p
ml(t)

)
from (4.35).

For GAMP, [6, Sec. VI.D] clarifies that, in the large system limit, under i.i.d priors

78



and scalar variances, the true zm and the iterates p̂m(t) converge empirically to a pair

of random variables (z, p) that satisfy pz | p(z | p̂(t)) = N (z; p̂(t), νp(t)). This result

leads us to believe that the expectation in (4.68) is approximately unit-valued when

averaged over m, and thus (4.68) is approximately zero-valued. Similar reasoning

applies to (4.66).

4.2.7 Approximated Posteriors

The final step in the BiG-AMP derivation is to approximate the SPA posterior

log-pdfs in (4.11) and (4.12). Plugging (4.27) and (4.37) into those expressions, we

get

∆x
nl(t+1, xnl)

≈ const + log
(
pxnl

(xnl)N
(
xnl; r̂nl(t), ν

r
nl(t)

))
(4.69)

∆a
mn(t+1, amn)

≈ const + log
(
pamn(amn)N

(
amn; q̂mn(t), ν

q
mn(t)

))
(4.70)

using steps similar to (4.40). The associated pdfs are

pxnl|rnl

(
xnl | r̂nl(t); νr

nl(t)
)

, 1
Cx

pxnl
(xnl)N

(
xnl; r̂nl(t), ν

r
nl(t)

)
(4.71)

pamn|qmn

(
amn | q̂mn(t); ν

q
mn(t)

)

, 1
Ca

pamn(amn)N
(
amn; q̂mn(t), ν

q
mn(t)

)
(4.72)

for Cx ,
∫
x
pxnl

(x)N
(
x; r̂nl(t), ν

r
nl(t)

)
and Ca ,

∫
a
pamn(a)N

(
a; q̂mn(t), ν

q
mn(t)

)
,

which are iteration-t BiG-AMP’s approximations to the true marginal posteriors

pxnl|Y(xnl |Y ) and pamn|Y(amn |Y ), respectively.

79



Note that x̂nl(t+1) and νx
nl(t+1) from (4.51)-(4.52) are the mean and variance,

respectively, of the posterior pdf in (4.71). Note also that (4.71) can be interpreted as

the (exact) posterior pdf of xnl given the observation rnl = r̂nl(t) under the prior model

xnl ∼ pxnl
and the likelihood model prnl|xnl

(r̂nl(t) | xnl; ν
r
nl(t)) = N

(
r̂nl(t); xnl, ν

r
nl(t)

)

implicitly assumed by iteration-t BiG-AMP. Analogous statements can be made about

the posterior pdf of amn in (4.72).

This completes the derivation of BiG-AMP.

4.2.8 Algorithm Summary

The BiG-AMP algorithm derived in Sections 4.2.3 to 4.2.7 is summarized in Ta-

ble 4.3. There, we have included a maximum number of iterations, Tmax and a stop-

ping condition (R17) based on the (normalized) change in the residual and a user-

defined parameter τBiG-AMP. We have also written the algorithm in a more general

form that allows the use of complex-valued quantities [note the complex conjugates

in (R10) and (R12)], in which case N in (D1)-(D3) would be circular complex Gaus-

sian. For ease of interpretation, Table 4.3 does not include the important damping

modifications that will be detailed in Section 4.4.1. Suggestions for the initializations

in (I2) will be given in the sequel.

We note that BiG-AMP avoids the use of SVD or QR decompositions, lend-

ing itself to simple and potentially parallel implementations. Its complexity order

is dominated14 by ten matrix multiplications per iteration [in steps (R1)-(R3) and

(R9)-(R12)], each requiring MNL multiplications, although simplifications will be

discussed in Section 4.3.

14The computations in steps (R4)-(R8) are O(ML), while the remainder of the algorithm is
O(MN +NL). Thus, as N grows, the matrix multiplies dominate the complexity.

80



definitions:

pzml|pml
(z|p̂; νp) ,

pyml|zml
(yml|z)N (z;p̂,νp)

∫
z′ pyml|zml

(yml|z
′)N (z′;p̂,νp)

(D1)

pxnl|rnl
(x|r̂; νr) ,

pxnl
(x)N (x;r̂,νr)∫

x′ pxnl
(x′)N (x′;r̂,νr)

(D2)

pamn|qmn
(a|q̂; νq) ,

pamn(a)N (a;q̂,νq)∫
a′ pamn(a

′)N (a′;q̂,νq)
(D3)

initialization:

∀m, l : ŝml(0) = 0 (I1)
∀m,n, l : choose νxnl(1), x̂nl(1), ν

a
mn(1), âmn(1) (I2)

for t = 1, . . . Tmax

∀m, l : νp
ml(t) =

∑N
n=1 |âmn(t)|2νxnl(t) + νamn(t)|x̂nl(t)|2 (R1)

∀m, l : pml(t) =
∑N

n=1 âmn(t)x̂nl(t) (R2)

∀m, l : νpml(t) = νp
ml(t) +

∑N
n=1 ν

a
mn(t)ν

x
nl(t) (R3)

∀m, l : p̂ml(t) = pml(t) − ŝml(t−1)νp
ml(t) (R4)

∀m, l : νzml(t) = var{zml | pml= p̂ml(t); ν
p
ml(t)} (R5)

∀m, l : ẑml(t) = E{zml | pml= p̂ml(t); ν
p
ml(t)} (R6)

∀m, l : νsml(t) = (1 − νzml(t)/ν
p
ml(t))/ν

p
ml(t) (R7)

∀m, l : ŝml(t) = (ẑml(t) − p̂ml(t))/ν
p
ml(t) (R8)

∀n, l : νrnl(t) =
(∑M

m=1 |âmn(t)|2νsml(t)
)−1

(R9)

∀n, l : r̂nl(t) = x̂nl(t)(1 − νrnl(t)
∑M

m=1 ν
a
mn(t)ν

s
ml(t))

+νrnl(t)
∑M

m=1 â
∗
mn(t)ŝml(t) (R10)

∀m,n : νqmn(t) =
(∑L

l=1 |x̂nl(t)|2νsml(t)
)−1

(R11)

∀m,n : q̂mn(t) = âmn(t)(1 − νqmn(t)
∑L

l=1 ν
x
nl(t)ν

s
ml(t))

+νqmn(t)
∑L

l=1 x̂
∗
nl(t)ŝml(t) (R12)

∀n, l : νxnl(t+1) = var{xnl | rnl= r̂nl(t); ν
r
nl(t)} (R13)

∀n, l : x̂nl(t+1) = E{xnl | rnl= r̂nl(t); ν
r
nl(t)} (R14)

∀m,n : νamn(t+1) = var{amn | qmn= q̂mn(t); ν
q
mn(t)} (R15)

∀m,n : âmn(t+1) = E{amn | qmn= q̂mn(t); ν
q
mn(t)} (R16)

if
∑

m,l |pml(t) − pml(t−1)|2 ≤ τBiG-AMP
∑

m,l |pml(t)|2, stop (R17)

end

Table 4.3: The BiG-AMP Algorithm

81



The steps in Table 4.3 can be interpreted as follows. (R1)-(R2) compute a “plug-

in” estimate P of the matrix product Z=AX and a corresponding set of element-

wise variances {νp
ml}. (R3)-(R4) then apply “Onsager” correction (see [16] and [6]

for discussions in the contexts of AMP and GAMP, respectively) to obtain the cor-

responding quantities P̂ and {νp
ml}. Using these quantities, (R5)-(R6) compute the

(approximate) marginal posterior means Ẑ and variances {νz
ml} of Z. Steps (R7)-

(R8) then use these posterior moments to compute the scaled residual Ŝ and a set

of inverse-residual-variances {νs
ml}. This interpretation becomes clear in the case of

AWGN observations with noise variance νw, where

pyml|zml
(yml | zml) = N (yml; zml, ν

w). (4.73)

and hence

νs
ml =

1

νp
ml + νw

and ŝml =
yml − p̂ml

νp
ml + νw

. (4.74)

Steps (R9)-(R10) then use the residual terms Ŝ and {νs
ml} to compute R̂ and {νr

nl},

where r̂nl can be interpreted as a νr
nl-variance-AWGN corrupted observation of the

true xnl. Similarly, (R11)-(R12) compute Q̂ and {νq
mn}, where q̂mn can be interpreted

as a νq
mn-variance-AWGN corrupted observation of the true amn. Finally, (R13)-

(R14) merge these AWGN-corrupted observations with the priors {pxnl
} to produce

the posterior means X̂ and variances {νx
nl}; (R15)-(R16) do the same for the amn

quantities.

The BiG-AMP algorithm in Table 4.3 is a direct (although non-trivial) extension

of the GAMP algorithm for compressive sensing [6] described in Chapter 2, which

estimates X assuming perfectly known A, and bears even stronger similarities to the

82



MU-GAMP [7] algorithm described in Chapter 3, which estimates X assuming knowl-

edge of the marginal means and variances of unknown random A, but which makes

no attempt to estimate A itself. In Section 4.3.2, a simplified version of BiG-AMP

will be developed that is similar to the Bayesian-AMP algorithm [4] for compressive

sensing.

4.3 BiG-AMP Simplifications

We now describe simplifications of the BiG-AMP algorithm from Table 4.3 that

result from additional approximations and from the use of specific priors pyml|zml
, pxnl

,

and pamn that arise in practical applications of interest.

4.3.1 Scalar Variances

The BiG-AMP algorithm in Table 4.3 stores and processes a number of element-

wise variance terms whose values vary across the elements (e.g., νx
nl can vary across n

and l). The use of scalar variances (i.e., uniform across m,n, l) significantly reduces

the memory and complexity of the algorithm.

To derive scalar-variance BiG-AMP, we first assume ∀n, l : νx
nl(t) ≈ νx(t) ,

1
NL

∑N
n=1

∑L
l=1 ν

x
nl(t) and ∀m,n : νa

mn(t) ≈ νa(t) , 1
MN

∑M
m=1

∑N
n=1 ν

a
mn(t), so from

(R1)

νp
ml(t) ≈ νx(t)

N∑

n=1

|âmn(t)|2 + νa(t)

N∑

n=1

|x̂nl(t)|2 (4.75)

≈ ‖Â(t)‖2F
M

νx(t) +
‖X̂(t)‖2F

L
νa(t) , νp(t). (4.76)

83



Note that using (4.76) in place of (R1) avoids two matrix multiplies. Plugging these

approximations into (R3) gives

νp
ml(t) ≈ νp(t) +Nνa(t)νx(t) , νp(t) (4.77)

which, when used in place of (R3), avoids another matrix multiply. Even with the

above scalar-variance approximations, {νs
ml(t)} from (R5) are not guaranteed to be

equal (except in special cases like AWGN pyml|zml
). Still, they can be approximated

as such using νs(t) , 1
ML

∑M
m=1

∑L
l=1 ν

s
ml(t), in which case

νr
nl(t) ≈

1

νs(t)
∑M

m=1 |âmn(t)|2
≈ N

νs(t)‖Â(t)‖2F
, νr(t) (4.78)

νq
mn(t) ≈

1

νs(t)
∑L

l=1 |x̂nl(t)|2
≈ N

νs(t)‖X̂(t)‖2F
, νq(t). (4.79)

Using (4.78) in place of (R9) and (4.79) in place of (R11) avoids two matrix multiplies

and NL+MN −2 scalar divisions, and furthermore allows (R10) and (R12) to be

implemented as

r̂nl(t) = x̂nl(t)

(
1− MNνa(t)

‖Â(t)‖2F

)
+ νr(t)

M∑

m=1

âmn(t)ŝml(t) (4.80)

q̂mn(t) = âmn(t)

(
1− NLνx(t)

‖X̂(t)‖2F

)
+ νq(t)

L∑

l=1

x̂nl(t)ŝml(t), (4.81)

saving two more matrix multiplies, and leaving a total of only three matrix multiplies

per iteration.

4.3.2 Possibly Incomplete AWGN Observations

We now consider a particular observation model wherein the elements of Z=AX

are AWGN-corrupted at a subset of indices Ω ⊂ (1 . . .M)×(1 . . . L) and unobserved

at the remaining indices, noting that the standard AWGN model (4.73) is the special

84



case where |Ω|=ML. This “possibly incomplete AWGN” (PIAWGN) model arises

in a number of important applications, such as matrix completion and dictionary

learning.

We can state the PIAWGN model probabilistically as

pyml|zml
(yml | zml) =

{
N (yml; zml, ν

w) (m, l) ∈ Ω

1yml
(m, l) /∈ Ω,

(4.82)

where νw is the noise variance on the non-missing observations and 1y denotes a

point mass at y=0. Thus, at the observed entries (m, l) ∈ Ω, the quantities ŝml and

νs
ml calculated using the AWGN expressions (4.74), while at the “missing” entries

(m, l) /∈ Ω, where yml is invariant to zml, we have E{zml | pml = p̂ml; ν
p
ml}= p̂ml and

var{zml | pml= p̂ml; ν
p
ml}=νp

ml, so that ŝml=0 and νs
ml=0. This is expected, given that

νs can be interpreted as an inverse residual variance and ŝ as a νs-scaled residual. In

summary, the PIAWGN model yields

ŝml(t) =

{
yml−p̂ml(t)
νpml(t)+νw

(m, l) /∈ Ω

0 (m, l) /∈ Ω
(4.83)

νs
ml(t) =

{
1

νpml(t)+νw
(m, l) /∈ Ω

0 (m, l) /∈ Ω
. (4.84)

When the PIAWGN model is combined with the scalar-variance approximations

from Section 4.3.1, BiG-AMP simplifies considerably. To see this, we start by using

νp(t) from (4.77) in place of νp
ml(t) in (4.83)-(4.84), resulting in

Ŝ(t) = PΩ

(
Y − P̂ (t)

νp(t) + νw

)
(4.85)

νs(t) =
δ

νw + νp(t)
, (4.86)

85



where δ ,
|Ω|
ML

denotes the fraction of observed entries and PΩ : RM×L → R
M×L is

the projection operator defined by

[
PΩ(Z)

]
ml

,

{
zml (m, l) ∈ Ω

0 (m, l) /∈ Ω
. (4.87)

We can then write (R10) and (R12) as

R̂(t) = X̂(t)

(
1− MNνa(t)

‖Â(t)‖2F

)
+

N

δ‖Â(t)‖2F
ÂH(t)V̂ (t) (4.88)

Q̂(t) = Â(t)

(
1− NLνx(t)

‖X̂(t)‖2F

)
+

N

δ‖X̂(t)‖2F
V̂ (t)X̂H(t) (4.89)

using (4.80)-(4.81) and (4.85)-(4.87) with

V̂ (t) , PΩ

(
Y − P̂ (t)

)
(4.90)

= PΩ

(
Y −P (t)

)
+ νp(t)Ŝ(t−1) (4.91)

= PΩ

(
Y −P (t)

)
+

νp(t)

νp(t−1) + νw
V̂ (t−1), (4.92)

since PΩ is a projection operator, and using (R4) and (4.85).

Scalar-variance BiG-AMP under PIAWGN observations is summarized in Ta-

ble 4.4. Note that the residual matrix Û(t) , PΩ(Y − Â(t)X̂(t)) needs to be

computed and stored only at the observed entries (m, l) ∈ Ω, leading to significant

savings15 when the observations are highly incomplete (i.e., |Ω| ≪ ML). The same

is true for the Onsager-corrected residual, V̂ (t). Thus, the algorithm in Table 4.4

involves only three (partial) matrix multiplies [in steps (R3p), (R8p), and (R10p),

respectively], each of which can be computed using only N |Ω| scalar multiplies.

We note that Krzakala, Mézard, and Zdeborová recently proposed an AMP-based

approach to blind calibration and dictionary learning [68] that bears close similarity16

15Similar computational savings also occur with incomplete non-Gaussian observations.

16The approach in [68] does not compute (or use) νp(t) as given in lines (R4p)-(R5p) of Table 4.4,
but rather uses an empirical average of the squared Onsager-corrected residual in place of our
νp(t) + νw throughout their algorithm.

86



initialization:

V̂ (0) = 0 (I1p)

choose νx(1), X̂(1), νa(1), Â(1) (I2p)
for t = 1, . . . Tmax

Ga(t) = N

δ‖Â(t)‖2
F

(R1p)

Gx(t) = N

δ‖X̂(t)‖2
F

(R2p)

Û(t) = PΩ

(
Y − Â(t)X̂(t)

)
(R3p)

νp(t) =
( νx(t)
MGa(t)

+
νa(t)

LGx(t)

)
N
δ

(R4p)

νp(t) = νp(t) +Nνa(t)νx(t) (R5p)

V̂ (t) = Û(t) + νp(t)
νp(t−1)+νw V̂ (t−1) (R6p)

νr(t) = Ga(t)
(
νp(t) + νw

)
(R7p)

R̂(t) = (1−Mδνa(t)Ga(t))X̂(t) +Ga(t)ÂH(t)V̂ (t) (R8p)
νq(t) = Gx(t)

(
νp(t) + νw

)
(R9p)

Q̂(t) = (1− Lδνx(t)Gx(t))Â(t) +Gx(t)V̂ (t)X̂H(t) (R10p)

νx(t+1) = 1
NL

∑N
n=1

∑L
l=1 var{xnl |Y ; r̂nl(t), ν

r(t)} (R11p)

∀n, l : x̂nl(t+1) = E{xnl |Y ; r̂nl(t), ν
r(t)} (R12p)

νa(t+1) = 1
MN

∑M
m=1

∑N
n=1var{amn|Y ; q̂mn(t), νq(t)} (R13p)

∀m,n : âmn(t+1) = E{amn |Y ; q̂mn(t), νq(t)} (R14p)

if ‖Û(t) − Û(t−1)‖2F ≤ τBiG-AMP‖Û(t)‖2F , stop (R15p)
end

Table 4.4: Scalar-variance BiG-AMP with PIAWGN py|z

to BiG-AMP under the special case of AWGN-corrupted observations (i.e., |Ω| = ML)

and scalar variances. Their derivation differs significantly from that in Section 4.2

due to the many simplifications offered by this special case.

4.3.3 Zero-mean iid Gaussian Priors on A and X

In this section we will investigate the simplifications that result in the case that

both pamn and pxnl
are zero-mean iid Gaussian, i.e.,

pxnl
(x) = N (x; 0, νx

0 ) ∀n, l (4.93)

pamn(a) = N (a; 0, νa
0 ) ∀m,n, (4.94)

which, as will be discussed later, is appropriate for matrix completion. In this

case, straightforward calculations reveal that E{xnl | rnl = r̂nl; ν
r
nl} = r̂nlν

x
0 /(ν

r
nl + νx

0 )

87



initialization:

V̂ (0) = 0 (I1i)

choose νx(1), X̂(1), νa(1), Â(1) (I2i)
for t = 1, . . . Tmax

Ga(t) = N

δ‖Â(t)‖2
F

(R1i)

Gx(t) = N

δ‖X̂(t)‖2
F

(R2i)

Û(t) = PΩ

(
Y − Â(t)X̂(t)

)
(R3i)

νp(t) =
( νx(t)
MGa(t)

+
νa(t)

LGx(t)

)
N
δ

(R4i)

νp(t) = νp(t) +Nνa(t)νx(t) (R5i)

V̂ (t) = Û(t) + νp(t)
νp(t−1)+νw V̂ (t−1) (R6i)

νr(t) = Ga(t)
(
νp(t) + νw

)
(R7i)

νq(t) = Gx(t)
(
νp(t) + νw

)
(R8i)

νx(t+1) =
(

1
νr(t)

+ 1
νx
0

)−1
(R9i)

X̂(t+1) = νx(t+1)
νr(t)

(
(1−Mδνa(t)Ga(t))X̂(t)

+Ga(t)ÂH(t)V̂ (t)
)

(R10i)

νa(t+1) =
(

1
νq(t)

+ 1
νa
0

)−1
(R11i)

Â(t+1) =
νa(t+1)
νq(t)

(
(1− Lδνx(t)Gx(t))Â(t)

+Gx(t)V̂ (t)X̂H(t)
)

(R12i)

if ‖Û(t) − Û(t−1)‖2F ≤ τBiG-AMP‖Û(t)‖2F , stop (R13i)
end

Table 4.5: BiG-AMP-Lite: Scalar-variance, PIAWGN, Gaussian px and pa

and var{xnl | rnl = r̂nl; ν
r
nl}) = νx

0 ν
r
nl/(ν

r
nl + νx

0 ) and, similarly, that E{amn | qmn =

q̂mn; ν
q
mn} = q̂mnν

a
0/(ν

q
mn + νa

0 ) and var{amn | qmn = q̂mn, ν
q
mn} = νa

0ν
q
mn/(ν

q
mn + νa

0 ).

Combining these iid Gaussian simplifications with the scalar-variance simplifications

from Section 4.3.1 yields an algorithm whose computational cost is dominated by

three matrix multiplies per iteration, each with a cost of MNL scalar multiplies. The

precise number of multiplies it consumes depends on the assumed likelihood model

that determines steps (R7g)-(R8g).

Additionally incorporating the PIAWGN observations from Section 4.3.2 reduces

the cost of the three matrix multiplies to only N |Ω| scalar multiplies each, and yields

the “BiG-AMP-Lite” algorithm summarized in Table 4.5, consuming (3N + 5)|Ω| +

3(MN +NL) + 29 multiplies per iteration.

88



4.4 Adaptive Damping

The approximations made in the BiG-AMP derivation presented in Section 4.2

were well-justified in the large system limit, i.e., the case where M,N,L → ∞ with

fixed M
N

and L
N
. In practical applications, however, these dimensions (especially N)

are finite, and hence the algorithm presented in Section 4.2 may diverge. In case of

compressive sensing, the use of “damping” with GAMP yields provable convergence

guarantees with arbitrary matrices [18]. Here, we propose to incorporate damping into

BiG-AMP. Moreover, we propose to adapt the damping of these variables to ensure

that a particular cost criterion decreases monotonically (or near-monotonically), as

described in the sequel. The specific damping strategy that we adopt is similar to

that described in [74] and coded in [19].

4.4.1 Damping

In BiG-AMP, the iteration-t damping factor β(t) ∈ (0, 1] is used to slow the

evolution of certain variables, namely νp
ml, ν

p
ml, ν

s
ml, ŝml, x̂nl, and âmn. To do this,

89



steps (R1), (R3), (R7), and (R8) in Table 4.3 are replaced with

νp
ml(t) = β(t)

( N∑

n=1

|âmn(t)|2νx
nl(t) + νa

mn(t)|x̂nl(t)|2
)

+ (1− β(t))νp
ml(t− 1) (4.95)

νp
ml(t) = β(t)

(
νp
ml(t) +

N∑

n=1

νa
mn(t)ν

x
nl(t)

)

+ (1− β(t))νp
ml(t− 1) (4.96)

νs
ml(t) = β(t)

(
(1− νz

ml(t)/ν
p
ml(t))/ν

p
ml(t)

)

+ (1− β(t))νs
ml(t−1) (4.97)

ŝml(t) = β(t)
(
ẑml(t)− p̂ml(t))/ν

p
ml(t)

)

+ (1− β(t))ŝml(t−1), (4.98)

and the following are inserted between (R8) and (R9):

xnl(t) = β(t)x̂nl(t) + (1− β(t))xnl(t− 1) (4.99)

amn(t) = β(t)âmn(t) + (1− β(t))amn(t− 1). (4.100)

The newly defined state variables xnl(t) and amn(t) are then used in place of x̂nl(t)

and âmn(t) in steps (R9)-(R12) [but not (R1)-(R2)] of Table 4.3. A similar approach

can be used for the algorithm in Table 4.4 (with the damping applied to V̂ (t) instead

of Ŝ(t)) and those in Table 4.5. Notice that, when β(t) = 1, the damping has no

effect, whereas when β(t)=0, all quantities become frozen in t.

4.4.2 Adaptive Damping

The idea behind adaptive damping is to monitor a chosen cost criterion J(t) and

decrease β(t) when the cost has not decreased sufficiently17 relative to {J(τ)}t−1τ=t−1−T

17The following adaptation procedure is borrowed from GAMPmatlab [19], where it has been
established to work well in the context of GAMP-based compressive sensing. When the current

90



for some “step window” T ≥ 0. This mechanism allows the cost criterion to increase

over short intervals of T iterations and in this sense is similar to the procedure used

by SpaRSA [75]. We now describe how the cost criterion J(t) is constructed, building

on ideas in [20] that were reviewed in Section 2.8.

Notice that, for fixed observations Y , the joint posterior pdf solves the (trivial)

KL-divergence minimization problem

pX,A|Y = argmin
bX,A

D(bX,A‖pX,A|Y). (4.101)

The factorized form (4.5) of the posterior allows us to write

D(bX,A‖pX,A|Y)− log pY(Y )

=

∫

A,X

bX,A(A,X) log
bX,A(A,X)

pY|Z(Y |AX) pX(X) pA(A)
(4.102)

= D(bX,A‖pApX)−
∫

A,X

bX,A(A,X) log pY|Z(Y |AX) (4.103)

Equations (4.101) and (4.103) then imply that

pX,A|Y = argmin
bX,A

J(bX,A) (4.104)

J(bX,A) , D(bX,A‖pApX)− EbX,A

{
log pY|Z(Y |AX)

}
. (4.105)

To judge whether a given time-t BiG-AMP approximation “bX,A(t)” of the joint

posterior pX,A|Y is better than the previous approximation bX,A(t−1), one could in

principle plug the posterior approximation expressions (4.71)-(4.72) into (4.105) and

then check whether J(bX,A(t)) < J(bX,A(t−1)). But, since the expectation in (4.105)

cost J(t) is not smaller than the largest cost in the most recent stepWindow iterations, then the
“step” is deemed unsuccessful, the damping factor β(t) is reduced by the factor stepDec, and the
step is attempted again. These attempts continue until either the cost criterion decreases or the
damping factor reaches stepMin, at which point the step is considered successful, or the iteration
count exceeds Tmax or the damping factor reaches stepTol, at which point the algorithm terminates.
When a step is deemed successful, the damping factor is increased by the factor stepInc, up to the
allowed maximum value stepMax.

91



is difficult to evaluate, we approximate the cost (4.105) by using, in place of AX, an

independent Gaussian matrix18 whose component means and variances are matched

to those of AX. Taking the joint BiG-AMP posterior approximation bX,A(t) to be

the product of the marginals from (4.71)-(4.72), the resulting component means and

variances are

EbX,A(t){[AX]ml} =
∑

n

EbX,A(t){amn}EbX,A(t){xnl} (4.106)

=
∑

n

âmn(t)x̂nl(t) = pml(t) (4.107)

varbX,A(t){[AX]ml} =
∑

n

â2mn(t)ν
x
nl(t) + νa

mn(t)x̂
2
nl(t)

+ νa
mn(t)ν

x
nl(t) (4.108)

= νp
ml(t). (4.109)

In this way, the approximate iteration-t cost becomes

Ĵ(t) =
∑

n,l

D
(
pxnl|rnl

(
·
∣∣ r̂nl(t); νr

nl(t)
)∥∥∥ pxnl

(·)
)

(4.110)

+
∑

m,n

D
(
pamn|qmn

(
·
∣∣ q̂mn(t); ν

q
mn(t)

)∥∥∥ pamn(·)
)

−
∑

m,l

Ezml∼N (pml(t);ν
p
ml(t))

{
log pyml|zml

(yml | zml)
}
.

Intuitively, the first term in (4.110) penalizes the deviation between the (BiG-AMP

approximated) posterior and the assumed prior on X, the second penalizes the devi-

ation between the (BiG-AMP approximated) posterior and the assumed prior on A,

and the third term rewards highly likely estimates Z.

18The GAMP work [20] uses a similar approximation.

92



4.5 Parameter Tuning and Rank Selection

4.5.1 Parameter Tuning via Expectation Maximization

Recall that BiG-AMP requires the specification of priors pX(X) =
∏

n,l pxnl
(xnl),

pA(A) =
∏

m,n pamn(amn), and pY|Z(Y |Z) =
∏

m,l pyml|zml
(yml|zml). In practice, al-

though one may know appropriate families for these distributions, the exact param-

eters that govern them are generally unknown. For example, one may have good

reason to believe apriori that the observations are AWGN corrupted, justifying the

choice pyml|zml
(yml|zml) = N (yml; zml, ν

w), but the noise variance νw may be unknown.

In this section, we outline a methodology that takes a given set of BiG-AMP param-

eterized priors {pxnl
(·; θ), pamn(·; θ), pyml|zml

(yml|·; θ)}∀m,n,l and tunes the parameter

vector θ using an expectation-maximization (EM) [61] based approach, with the goal

of maximizing the likelihood, i.e., finding θ̂ , argmaxθ pY(Y ; θ). The approach pre-

sented here can be considered as a generalization of the GAMP-based work [62] to

BiG-AMP.

Taking X, A, and Z to be the hidden variables, the EM recursion can be written

as [61]

θ̂
k+1

= argmax
θ

E
{
log pX,A,Z,Y(X,A,Z,Y; θ)

∣∣∣Y ; θ̂
k
}

= argmax
θ

{∑

n,l

E
{
log pxnl

(xnl; θ)
∣∣∣Y ; θ̂

k
}

(4.111)

+
∑

m,n

E
{
log pamn(amn; θ)

∣∣∣Y ; θ̂
k
}

+
∑

m,l

E
{
log pyml|zml

(yml | zml; θ)
∣∣∣Y ; θ̂

k
}}

where for (4.111) we used the fact pX,A,Z,Y(X,A,Z,Y; θ) =

pX(X; θ)pA(A; θ)pY|Z(Y|Z; θ)1Z−AX and the factorizability of pX, pA, and pY|Z. As can

93



be seen from (4.111), knowledge of the marginal posteriors {pxnl|Y, pamn|Y, pzml|Y}∀m,n,l

is sufficient to compute the EM update. Since the exact marginal posteriors are

unknown, we employ BiG-AMP’s approximations from (4.71), (4.72), and (4.35) for

approximate EM. In addition, we adopt the “incremental” update strategy from [76],

where the maximization over θ is performed one element at a time while holding the

others fixed.

As a concrete example, consider updating the noise variance νw under the PI-

AWGN model (4.82). Equation (4.111) suggests

(νw)k+1 = argmax
νw

∑

(m,l)∈Ω

∫

zml

pzml|Y(zml|Y )

× logN (yml; zml, ν
w), (4.112)

where the true marginal posterior pzml|Y(·|Y ) is replaced with the most recent BiG-

AMP approximation pzml|pml
(·|p̂ml(Tmax); ν

p
ml(Tmax), θ̂

k
), where “most recent” is with

respect to both EM and BiG-AMP iterations. Zeroing the derivative of the sum in

(4.112) with respect to νw,

(νw)k+1 =
1

|Ω|
∑

(m,l)∈Ω

(
yml − ẑml(Tmax)

)2
+ νz

ml(Tmax), (4.113)

where ẑml(t) and νz
ml(t) are the BiG-AMP approximated posterior mean and variance

from (4.33)-(4.34).

The overall procedure can be summarized as follows. From a suitable initialization

θ̂
0
, BiG-AMP is run using the priors {pxnl

(·; θ̂0
), pamn(·; θ̂

0
), pyml|zml

(yml|·; θ̂
0
)}∀m,n,l

and iterated to completion, yielding approximate marginal posteriors on

{xnl, amn, zml}∀m,n,l. These posteriors are used in (4.111) to update the parame-

ters θ one element at a time, yielding θ̂
1
. BiG-AMP is then run using the priors

{pxnl
(·; θ̂1

), pamn(·; θ̂
1
), pyml|zml

(yml|·; θ̂
1
)}∀m,n,l, and so on. A detailed discussion in

94



the context of GAMP, along with explicit update equations for the parameters of

Bernoulli-Gaussian-mixture pdfs, can be found in [62].

4.5.2 Rank Selection

BiG-AMP and EM-BiG-AMP, as described up to this point, require the specifi-

cation of the rank N , i.e., the number of columns in A (and rows in X) in the matrix

factorization Z = AX. Since, in many applications, the best choice of N is difficult

to specify in advance, we now describe two procedures to estimate N from the data

Y , building on well-known rank-selection procedures.

Penalized log-likelihood maximization

Consider a set of possible models {HN}NN=1 for the observation Y where, under

HN , EM-BiG-AMP estimates ΘN = {AN ,XN , θ}. Here, the subscripts on AN and

XN indicate the restriction toN columns and rows, θ refers to the vector of parameters

defined in Section 4.5.1, and the subscript on ΘN indicates the dependence of the

overall number of parameters in ΘN with the rank N . Because the selection rule

N̂ = argmaxN pY(Y ;HN) is typically intractable, several well-known rules of the

form

N̂ = argmax
N=1,...,N

2 log pY|ΘN
(Y | Θ̂N)− η(N) (4.114)

have been developed, such as the Bayesian Information Criterion (BIC) and Akaike’s

Information Criterion (AIC) [77]. In (4.114), Θ̂N is the ML estimate of ΘN under

Y , and η(·) is a penalty function that depends on the effective number of scalar

parameters Neff estimated under model HN (which depends on N) and possibly on

the number of scalar parameters |Ω| that make up the observation Y .

95



Applying this methodology to EM-BiG-AMP, where pY|ΘN
(Y |ΘN ) =

pY|Z(Y |ANXN ; θ), we obtain the rank-selection rule

N̂ = argmax
N=1,...,N

2 log pY|Z(Y | ÂNX̂N ; θ̂)− η(N). (4.115)

Since Neff depends on the application (e.g., matrix completion, robust PCA, dictio-

nary learning), detailed descriptions of η(·) are deferred to the discussions of specific

examples, such as in Section 4.6.5.

To perform the maximization over N in (4.115), we start with a small hypothe-

sis N1 and run EM-BiG-AMP to completion, generating the (approximate) MMSE

estimates ÂN1 , X̂N1 and ML estimate θ̂, which are then used to evaluate19 the pe-

nalized log-likelihood in (4.115). The N hypothesis is then increased by a fixed value

(i.e., N2 = N1 + rankStep), initializations of (AN2 ,XN2, θ) are chosen based on the

previously computed (ÂN1 , X̂N1 , θ̂), and EM-BiG-AMP is run to completion, yield-

ing estimates (ÂN2, X̂N2 , θ̂) with which the penalized likelihood is again evaluated.

This process continues until either the value of the penalized log-likelihood decreases,

in which case N̂ is set at the previous (i.e., maximizing) hypothesis of N , or the

maximum-allowed rank N is reached.

Rank contraction

We now describe an alternative rank-selection procedure that is appropriate when

Z has a “cliff” in its singular value profile and which is reminiscent of that used

in LMaFit [42]. In this approach, EM-BiG-AMP is initially configured to use the

maximum-allowed rank, i.e., N = N . After the first EM iteration, the singular

values {σn} of the estimate X̂ and the corresponding pairwise ratios Rn = σn/σn+1

19Since we compute approximate MMSE estimates rather than ML estimates, we are in fact
evaluating a lower bound on the penalized log-likelihood.

96



are computed,20 from which a candidate rank estimate N̂ = argmaxnRn is identified,

corresponding to the largest gap in successive singular values. However, this candidate

is accepted only if this maximizing ratio exceeds the average ratio by the user-specified

parameter τMOS (e.g., τMOS = 5), i.e., if

RN̂ >
τMOS

N − 2

∑

i 6=N̂

Ri, (4.116)

and if N̂/N is sufficiently small. Increasing τMOS makes the approach less prone to

selecting an erroneous rank during the first few iterations, but making the value too

large prevents the algorithm from detecting small gaps between the singular values.

If N̂ is accepted, then the matrices A and X are pruned to size N̂ and EM-BiG-AMP

is run to convergence. If not, EM-BiG-AMP is run for one more iteration, after which

a new candidate N̂ is identified and checked for acceptance, and so on.

In many cases, a rank candidate is accepted after a small number of iterations,

and thus only a few SVDs need be computed. This procedure has the advantage

of running EM-BiG-AMP to convergence only once, rather than several times under

different hypothesized ranks. However, when the singular values of Z decay smoothly,

this procedure can mis-estimate the rank, as discussed in [42].

4.6 Matrix Completion

In this and the next two sections, we detail the application of BiG-AMP to the

problems of matrix completion (MC), robust principle components analysis (RPCA),

and dictionary learning (DL), respectively. For each application, we discuss the

BiG-AMP’s choice of matrix representation, priors, likelihood, initialization, adap-

tive damping, EM-driven parameter learning, and rank-selection. Also, for each

20In some cases the singular values of Â could be used instead.

97



application, we provide an extensive empirical study comparing BiG-AMP to state-

of-the-art solvers on both synthetic and real-world datasets. These results demon-

strate that BiG-AMP yields excellent reconstruction performance (often best in class)

while maintaining competitive runtimes. For each application of BiG-AMP discussed

in the sequel, we recommend numerical settings for necessary parameter values, as

well as initialization strategies when appropriate. Although we cannot guarantee

that our recommendations are universally optimal, they worked well for the range

of problems considered in this chapter, and we conjecture that they offer a useful

starting point for further experimentation. Nevertheless, modifications may be ap-

propriate when applying BiG-AMP outside the range of problems considered here.

Our BiG-AMP Matlab code can be found as part of the GAMPmatlab package at

https://sourceforge.net/projects/gampmatlab/, including examples of BiG-AMP

applied to the MC, RPCA, and DL problems.

4.6.1 Problem setup

In matrix completion (MC) [78], one seeks to recover a rank-N ≪ min(M,L)

matrix Z ∈ RM×L after observing a fraction δ = |Ω|
ML

of its (possibly noise-corrupted)

entries, where Ω denotes the set of observations.

BiG-AMP approaches the MC problem by modeling the complete matrix Z as

the product Z = AX of random matrices A ∈ RM×N and X ∈ RN×L with priors of

the decoupled form in (4.1)-(4.2), where Z is probabilistically related to the observed

matrix Y through a likelihood pY|Z(Y |Z) of the decoupled form in (4.3). To finally

98



perform MC, BiG-AMP infers A and X from Y under the above model. The corre-

sponding estimates Â and X̂ can then be multiplied to yield an estimate Ẑ = ÂX̂

of the noiseless complete matrix Z.

As in several existing Bayesian approaches to matrix completion (e.g., [52,79–81]),

we choose Gaussian priors for the factors A and X. Although EM-BiG-AMP readily

supports the use of priors with row- and/or column-dependent parameters, we focus

on simple iid priors of the form

pamn(a) = N (a; 0, 1) ∀m,n (4.117)

pxnl
(x) = N (x; x̂0, ν

x
0 ) ∀n, l, (4.118)

where the mean and variance in (4.118) can be tuned using EM-BiG-AMP, as de-

scribed in the sequel, and where the variance in (4.117) is fixed to avoid a scaling

ambiguity between A and X. Section 4.6.6 demonstrates that this simple approach

is effective in attacking several MC problems of interest. Assuming the observation

noise to be additive and Gaussian, we then choose the PIAWGN model from (4.82)

for the likelihood pY|Z given by

pyml|zml
(yml | zml) =

{
N (yml; zml, ν

w) (m, l) ∈ Ω

1yml
(m, l) /∈ Ω.

(4.119)

Note that, by using (4.117)-(4.118) with x̂0 = 0 and the scalar-variance approximation

from Section 4.3.1, the BiG-AMP algorithm from Table 4.3 reduces to the simpler

BiG-AMP-Lite algorithm from Table 4.5 with νa
0 = 1.

4.6.2 Initialization

In most cases we advocate initializing the BiG-AMP quantities X̂(1) and Â(1)

using random draws from the priors pX and pA, although setting either X̂(1) or Â(1)

99



at zero also seems to perform well in the MC application. Although it is also possible

to use SVD-based initializations of X̂(1) and Â(1) (i.e., for SVD Y = UΣDT ,

set Â(1) = UΣ1/2 and X̂(1) = Σ1/2DT ) as done in LMaFit [42] and VSBL [53],

experiments suggest that the extra computation required is rarely worthwhile for

BiG-AMP.

As for the initializations νx
nl(1) and νa

mn(1), we advocate setting them at 10 times

the prior variances in (4.117)-(4.118), which has the effect of weighting the measure-

ments Y more than the priors pX, pA during the first few iterations.

4.6.3 Adaptive damping

For the assumed likelihood (4.119) and priors (4.117)-(4.118), the adaptive-

damping cost criterion Ĵ(t) described in Section 4.4.2 reduces to

Ĵ(t) =
1

2

∑

n,l

[
log

νx
0

νx(t)
+

(
νx(t)

νx
0

− 1

)
+

(x̂nl(t)− x̂0)
2

νx
0

]

+
1

2

∑

m,n

[
log

1

νa(t)
+

(
νa(t)− 1

)
+ â2mn(t)

]

+
1

νw

(
1

2

∑

(m,l)∈Ω
(yml − pml(t))

2 + νp(t)

)

+ |Ω| log
√
2πνw. (4.120)

To derive (4.120), one can start with the first term in (4.110) and leverage the Gaus-

sianity of the approximated posterior on xnl:

∑

n,l

D
(
pxnl|rnl

(
·
∣∣ r̂nl(t); νr

nl(t)
)∥∥∥ pxnl

(·)
)

(4.121)

=
∑

n,l

∫

xnl

N (xnl; x̂nl(t), ν
x
nl(t)) log

N (xnl; x̂nl(t), ν
x
nl(t))

N (xnl; x̂0, νx
0 )

,

100



which then directly yields the first term in (4.120). The second term in (4.120) follows

using a similar procedure, and the third and fourth terms follow directly from the

PIAWGN model.

In the noise free setting (i.e., νw → 0), the third term in (4.120) dominates,

avoiding the need to compute the other terms.

4.6.4 EM-BiG-AMP

For the likelihood (4.119) and priors (4.117)-(4.118), the distributional parameters

θ = [νw, x̂0, ν
x
0 ]

T can be tuned using the EM approach from Section 4.5.1.21 To

initialize θ for EM-BiG-AMP, we adapt the procedure outlined in [62] to our matrix-

completion problem, giving the EM initializations x̂0 = 0 and

νw =
‖PΩ(Y )‖2F

(SNR0 + 1)|Ω| (4.122)

νx
0 =

1

N

[‖PΩ(Y )‖2F
|Ω| − νw

]
, (4.123)

where SNR0 is an initial estimate of the signal-to-noise ratio that, in the absence of

other knowledge, can be set at 100.

4.6.5 Rank selection

For MC rank-selection under the penalized log-likelihood strategy (4.115), we

recommend using the small sample corrected AIC (AICc) [77] penalty η(N) =

2 |Ω|
|Ω|−Neff−1Neff. For the MC problem, Neff = df + 3, where df , N(M +L−N)

counts the degrees-of-freedom in a rank-N real-valued M × L matrix [78] and the

three additional parameters come from θ. Based on the PIAWGN likelihood (4.119)

21For the first EM iteration, we recommend initializing BiG-AMP using νxnl(1) = νx0 , x̂nl(1) = x̂0,
νamn(1) = 1, and âmn(1) drawn randomly from pamn

. After the first iteration, we recommend warm-
starting BiG-AMP using the values from the previous EM iteration.

101



and the standard form of the ML estimate of νw (see, e.g., [77, eq. (7)]), the update

rule (4.115) becomes

N̂ = argmax
N=1,...,N

[
−|Ω| log

(
1

|Ω|
∑

(m,l)∈Ω

(
yml − ẑml(t)

)2
)

−2
|Ω|(N(M + L−N) + 3)

|Ω| −N(M + L−N)− 4

]
. (4.124)

We note that a similar rule (but based on BIC rather than AICc) was used for rank-

selection in [44].

MC rank selection can also be performed using the rank contraction scheme de-

scribed in Section 4.5.2. We recommend choosing the maximum rank N to be the

largest value such thatN(M+L−N) < |Ω| and setting τMOS = 1.5. Since the first EM

iteration runs BiG-AMP with the large value N = N , we suggest limiting the number

of allowed BiG-AMP iterations during this first EM iteration to nitFirstEM = 50. In

many cases, the rank learning procedure will correctly reduce the rank after these first

few iterations, reducing the added computational cost of the rank selection procedure.

4.6.6 Matrix Completion Experiments

We now present the results of experiments used to ascertain the performance

of BiG-AMP relative to existing state-of-the-art algorithms for matrix completion.

For these experiments, we considered IALM [38], a nuclear-norm based convex-

optimization method; LMaFit [42], a non-convex optimization-based approach using

non-linear successive over-relaxation; GROUSE [46], which performs gradient de-

scent on the Grassmanian manifold; Matrix-ALPS [43], a greedy hard-thresholding

approach; and VSBL [53], a variational Bayes approach. In general, we configured

102



BiG-AMP as described in Section 4.622 and made our best attempt to configure the

competing algorithms for maximum performance. That said, the different experi-

ments that we ran required somewhat different parameter settings, as we detail in

the sequel.

Low-rank matrices

We first investigate recovery of rank-N matrices Z ∈ RM×L from noiseless in-

complete observations {zml}(m,l)∈Ω with indices Ω chosen uniformly at random. To

do this, we evaluated the normalized mean square error (NMSE)
‖Z−Ẑ‖2F
‖Z‖2F

of the esti-

mate Ẑ returned by the various algorithms under test, examining 10 realizations of

(Z,Ω) at each problem size (M,L,N). Here, each realization of Z was constructed

as Z = AX for A and X with iid N (0, 1) elements.23 All algorithms were forced24

to use the true rank N , run under default settings with very minor modifications,25

and terminated when the normalized change in either Ẑ or PΩ(Ẑ) across iterations

fell below the tolerance value of 10−8.

Defining “successful” matrix completion as NMSE < −100 dB, Fig. 4.2 shows the

success rate of each algorithm over a grid of sampling ratios δ ,
|Ω|
ML

and ranks N .

22Unless otherwise noted, we used the BiG-AMP parameters Tmax = 1500 (see Section 4.2.8 for
descriptions) and the adaptive damping parameters stepInc = 1.1, stepDec = 0.5, stepMin = 0.05,
stepMax = 0.5, stepWindow = 1, and β(1) = stepMin. (See Section 4.4.2 for descriptions).

23We chose the i.i.d Gaussian construction due to its frequent appearance in the matrix-completion
literature. Similar performance was observed when the low-rank factors A and X were generated
in other ways, such as from the left and right singular vectors of an i.i.d Gaussian matrix.

24This restriction always improved the performance of the tested algorithms.

25GROUSE was run with maxCycles = 600 and step size = 0.5, where the latter was chosen
as a good compromise between phase-transition performance and runtime. VSBL was run under
MAXITER = 2000 and fixed β = 109; adaptive selection of β was found to produce a significant
degradation in the observed phase transition. LMaFit was run from the same random initialization
as BiG-AMP and permitted at most maxit = 6000 iterations. IALM was allowed at most 2000
iterations. A maximum runtime of one hour per realization was enforced for all algorithms.

103



As a reference, the solid line superimposed on each subplot delineates the problem

feasibility boundary, i.e., the values of (δ, N) yielding |Ω| = df, where df = N(M +

L − N) is the degrees-of-freedom in a rank-N real-valued M × L matrix; successful

recovery above this line is impossible by any method.

0.05 0.1 0.15 0.2 0.25

10

20

30

40

50

60

70

80

90

100
IALM

 

 

0

0.2

0.4

0.6

0.8

1

ra
n
k
N

sampling ratio δ
0.05 0.1 0.15 0.2 0.25

10

20

30

40

50

60

70

80

90

100
VSBL

 

 

0

0.2

0.4

0.6

0.8

1

ra
n
k
N

sampling ratio δ
0.05 0.1 0.15 0.2 0.25

10

20

30

40

50

60

70

80

90

100
Matrix ALPS

 

 

0

0.2

0.4

0.6

0.8

1

ra
n
k
N

sampling ratio δ

0.05 0.1 0.15 0.2 0.25

10

20

30

40

50

60

70

80

90

100
GROUSE

 

 

0

0.2

0.4

0.6

0.8

1

ra
n
k
N

sampling ratio δ
0.05 0.1 0.15 0.2 0.25

10

20

30

40

50

60

70

80

90

100
LMaFit

 

 

0

0.2

0.4

0.6

0.8

1

ra
n
k
N

sampling ratio δ
0.05 0.1 0.15 0.2 0.25

10

20

30

40

50

60

70

80

90

100
BiG−AMP Lite

 

 

0

0.2

0.4

0.6

0.8

1

ra
n
k
N

sampling ratio δ

0.05 0.1 0.15 0.2 0.25

10

20

30

40

50

60

70

80

90

100
BiG−AMP

 

 

0

0.2

0.4

0.6

0.8

1

ra
n
k
N

sampling ratio δ
0.05 0.1 0.15 0.2 0.25

10

20

30

40

50

60

70

80

90

100
EM−BiG−AMP

 

 

0

0.2

0.4

0.6

0.8

1

ra
n
k
N

sampling ratio δ

Figure 4.2: Empirical success rates for noiseless completion of an M × L matrix
sampled uniformly at random, as a function of sampling ratio δ = |Ω|

ML
and rank N .

Here, “success” is defined as NMSE < −100 dB, success rates were computed from 10
random realizations, and M = L = 1000. Points above the red curve are infeasible,
as described in the text.

Figure 4.2 shows that each algorithm exhibits a sharp phase-transition separating

near-certain success from near-certain failure. There we see that BiG-AMP yields

the best PTC. Moreover, BiG-AMP’s PTC is near optimal in the sense of coming

104



very close to the feasibility boundary for all tested δ and N . In addition, Fig. 4.2

shows that BiG-AMP-Lite yields the second-best PTC, which matches that of BiG-

AMP except under very low sampling rates (e.g., δ < 0.03). Recall that the only

difference between the two algorithms is that BiG-AMP-Lite uses the scalar-variance

simplification from Section 4.3.1.

Figure 4.3 plots median runtime26 to NMSE = −100 dB versus rank N for several

sampling ratios δ, uncovering orders-of-magnitude differences among algorithms. For

most values of δ and N , LMaFit was the fastest algorithm and BiG-AMP-Lite was

the second fastest, although BiG-AMP-Lite was faster than LMaFit at small δ and

relatively large N , while BiG-AMP-Lite was slower than GROUSE at large δ and very

small N . In all cases, BiG-AMP-Lite was faster than IALM and VSBL, with several

orders-of-magnitude difference at high rank. Meanwhile, EM-BiG-AMP was about 3

to 5 times slower than BiG-AMP-Lite. Although none of the algorithm implemen-

tations were fully optimized, we believe that the reported runtimes are insightful,

especially with regard to the scaling of runtime with rank N .

Approximately low-rank matrices

Next we evaluate the performance of recovering approximately low-rank matrices

by repeating an experiment from the LMaFit paper [42]. For this, we constructed the

complete matrix as Z = UΣV T ∈ R500×500, where U ,V were orthogonal matrices

(built by orthogonalizing iid N (0, 1) matrices using MATLAB’s orth command) and

Σ was a positive diagonal matrix containing the singular values of Z. Two versions of

26The reported runtimes do not include the computations used for initialization nor those used
for runtime evaluation.

105



5 10 15 20
10

−1

10
0

10
1

10
2

10
3

rank N

sampling ratio δ = 0.05

ru
n
ti
m
e
(s
ec
)

0 10 20 30 40 50
10

−1

10
0

10
1

10
2

10
3

rank N

sampling ratio δ = 0.1

ru
n
ti
m
e
(s
ec
)

0 20 40 60 80 100
10

−1

10
0

10
1

10
2

10
3

 

 

Matrix ALPS
GROUSE
VSBL
LMaFit
IALM
BiG−AMP Lite
BiG−AMP
EM−BiG−AMP

rank N

sampling ratio δ = 0.2

ru
n
ti
m
e
(s
ec
)

Figure 4.3: Runtime to NMSE= −100 dB for noiseless completion of an M × L
matrix sampled uniformly at random, versus rank N , at M = L = 1000 and several
sampling ratios δ = |Ω|

ML
. All results represent median performance over 10 trials.

Missing values indicate that the algorithm did not achieve the required NMSE before
termination and correspond to the black regions in Fig. 4.2.

Σ were considered: one with exponentially decaying singular values [Σ]m,m = e−0.3m,

and one with the power-law decay [Σ]m,m = m−3.

As in [42], we first tried to recover Z from the noiseless incomplete observations

{zml}(m,l)∈Ω, with Ω chosen uniformly at random. Figure 4.4 shows the performance

of several algorithms that are able to learn the underlying rank: LMaFit,27 VSBL,28

and EM-BiG-AMP under the penalized log-likelihood rank selection strategy from

Section 4.5.2.29 All three algorithms were allowed a maximum rank of N = 30.

The figure shows that the NMSE performance of BiG-AMP and LMaFit are similar,

although BiG-AMP tends to find solutions with lower rank but comparable NMSE

at low sampling ratios δ. For this noiseless experiment, VSBL consistently estimates

ranks that are too low, leading to inferior NMSEs.

27LMaFit was run under the settings provided in their source code for this example.

28VSBL was allowed at most 100 iterations and run with DIMRED THR = 103, UPDATE BETA = 1,
and tolerance = 10−8.

29Rank-selection rule (4.115) was used with up to 5 EM iterations for each rank hypothesis N , a
minimum of 30 and maximum of 100 BiG-AMP iterations for each EM iteration, and a BiG-AMP
tolerance of 10−8.

106



0.05 0.1 0.15 0.2 0.25 0.3
−80

−60

−40

−20

0

 

 

VSBL
LMaFit
EM−BiG−AMP

0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

N
M
S
E
(d
B
)

E
st
im

at
ed

ra
n
k

δ

Power Law Decay

0.05 0.1 0.15 0.2 0.25 0.3
−80

−60

−40

−20

0

 

 

VSBL
LMaFit
EM−BiG−AMP

0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

δ

Exponential Decay

Figure 4.4: NMSE (top) and estimated rank (bottom) in noiseless completion of an

M × L matrix sampled uniformly at random, versus sampling ratio δ = |Ω|
ML

. The
complete matrices were approximately low-rank, with power-law (left) and exponen-
tial (right) singular-value decays and M = L = 500. All results represent median
performance over 10 random trials.

Next, we examined noisy matrix completion by constructing the matrix Z =

UΣV T as above but then corrupting the measurements with AWGN. Figure 4.5

shows NMSE and estimated rank versus the measurement signal-to-noise ratio (SNR)

∑
(m,l)∈Ω |zml|2/

∑
(m,l)∈Ω |yml−zml|2 at a sampling rate of δ = 0.2. There we see that,

for SNRs < 50 dB, EM-BiG-AMP and VSBL offer similarly good NMSE performance

and nearly identical rank estimates, whereas LMaFit overestimates the rank and thus

performs worse in NMSE. Meanwhile, for SNRs > 50 dB, EM-BiG-AMP and LMaFit

offer similarly good NMSE performance and nearly identical rank estimates, whereas

VSBL underestimates the rank and thus performs worse in NMSE. Thus, in these

examples, EM-BiG-AMP is the only algorithm to successfully estimate the rank across

the full SNR range.

107



0 20 40 60 80 100
−80

−60

−40

−20

0

 

 

VSBL
LMaFit
EM−BiG−AMP

0 20 40 60 80 100
0

10

20

30

N
M
S
E
(d
B
)

E
st
im

at
ed

ra
n
k

SNR (dB)

Power Law Decay

0 20 40 60 80 100
−80

−60

−40

−20

0

 

 

VSBL
LMaFit
EM−BiG−AMP

0 20 40 60 80 100
0

10

20

30

SNR (dB)

Exponential Decay

Figure 4.5: NMSE (top) and estimated rank (bottom), versus SNR, in noisy com-
pletion of an 500 × 500 matrix sampled uniformly at random at rate δ = 0.2. The
complete matrices were approximately low-rank, with power-law (left) and exponen-
tial (right) singular-value decays.

Image completion

We now compare the performance of several matrix-completion algorithms for the

task of reconstructing an image from a subset of its pixels. For this, we repeated the

experiment in the Matrix-ALPS paper [43], where the 512×512 boat image was recon-

structed from 35% of its pixels sampled uniformly at random. Figure 4.6 shows the

complete (full-rank) image, the images reconstructed by several matrix-completion

algorithms30 under a fixed rank of N = 40, and the NMSE-minimizing rank-40 ap-

proximation of the complete image, computed using an SVD. In all cases, the sample

mean of the observations was subtracted prior to processing and then added back

to the estimated images, since this approach generally improved performance. Fig-

ure 4.6 also lists the median reconstruction NMSE over 10 sampling-index realizations

30All algorithms were run with a convergence tolerance of 10−4. VSBL was run with β hand-tuned
to maximize performance, as the adaptive version did not converge on this example. GROUSE was
run with maxCycles = 600 and step size = 0.1. Matrix-ALPS II with QR was run under default
parameters and 300 allowed iterations. Other settings are similar to earlier experiments.

108



Ω. From these results, it is apparent that EM-BiG-AMP provides the best NMSE,

which is only 3 dB from that of the NMSE-optimal rank-40 approximation.

Figure 4.6: For the image completion experiment, the complete image is shown on
the top left, its best rank-40 approximation is shown on the top middle, and the
observed image with 35% of the pixels observed is shown on the top right. The other
panes show various algorithms’ image reconstructions from 35% of the complete-image
pixels (selected uniformly at random) as well as the mean NMSE over 10 trials.

Collaborative Filtering

In our final experiment, we investigate the performance of several matrix-

completion algorithms on the task of collaborative filtering. For this, we repeated

an experiment from the VSBL paper [53] that used the MovieLens 100k dataset,

109



which contains ratings {zml}(m,l)∈R, where |R| = 100 000 and zml ∈ {1, 2, 3, 4, 5},

from M = 943 users about L = 1682 movies. The algorithms were provided with a

randomly chosen training subset {zml}(m,l)∈Ω of the ratings (i.e., Ω ⊂ R) from which

they estimated the unseen ratings {ẑml}(m,l)∈R\Ω. Performance was then assessed by

computing the Normalized Mean Absolute Error (NMAE)

NMAE =
1

4|R \ Ω|
∑

(m,l)∈R\Ω
|zml − ẑml|, (4.125)

where the 4 in the denominator of (4.125) reflects the difference between the largest

and smallest user ratings (i.e., 5 and 1). When constructing Ω, we used a fixed

percentage of the ratings given by each user and made sure that at least one rating

was provided for every movie in the training set.

Figure 4.7 reports the NMAE and estimated rank N̂ for EM-BiG-AMP under

the PIAWGN model (4.119), LMaFit, and VSBL,31 all of which include mechanisms

for rank estimation. Figure 4.7 shows that, under the PIAWGN model, EM-BiG-

AMP yields NMAEs that are very close to those of VSBL32 but slightly inferior

at larger training fractions, whereas LMaFit returns NMAEs that are substantially

worse all training fractions.33 Figure 4.7 also shows that LMaFit’s estimated rank is

much higher than those of VSBL and EM-BiG-AMP, suggesting that its poor NMAE

performance is the result of overfitting. (Recall that similar behavior was seen for

31VSBL was was allowed at most 100 iterations and was run with DIMRED THR= 103 and
UPDATE BETA= 1. Both VSBL and EM-BiG-AMP used a tolerance of 10−8. LMaFit was config-
ured as for the MovieLens experiment in [42]. Each algorithm was allowed a maximum rank of
N = 30.

32The NMAE values reported for VSBL in Fig. 4.7 are slightly inferior to those reported in [53].
We attribute the discrepancy to differences in experimental setup, such as the construction of Ω.

33The NMAE results presented here differ markedly from those in the MovieLens experiment
in [42] because, in the latter paper, the entire set of ratings was used for both training and testing,

with the (trivial) result that high-rank models (e.g., N̂ = 94) yield nearly zero test error.

110



noisy matrix completion in Fig. 4.5.) In addition, Fig. 4.7 shows that, as the training

fraction increases, EM-BiG-AMP’s estimated rank remains very low (i.e., ≤ 2) while

that of VSBL steady increases (to > 10). This prompts the question: is VSBL’s

excellent NMAE the result of accurate rank estimation or the use of a heavy-tailed

(i.e., student’s t) noise prior?

To investigate the latter question, we ran BiG-AMP under

pyml|zml
(yml | zml) =

{
λ
2
exp

(
− λ|yml − zml|

)
(m, l) ∈ Ω

1yml
(m, l) /∈ Ω,

(4.126)

i.e., a possibly incomplete additive white Laplacian noise (PIAWLN) model, and used

the EM-based approach from Section 4.5.1 to learn the rate parameter λ. Figure 4.7

shows that, under the PIAWLN model, EM-BiG-AMP essentially matches the NMAE

performance of VSBL and even improves on it at very low training fractions. Mean-

while, its estimated rank N̂ remains low for all training fractions, suggesting that

the use of a heavy-tailed noise model was the key to achieving low NMAE in this

experiment. Fortunately, the generality and modularity of BiG-AMP made this an

easy task.

Summary

In summary, the known-rank synthetic-data results above showed the EM-BiG-

AMP methods yielding phase-transition curves superior to all other algorithms under

test. In addition, they showed BiG-AMP-Lite to be the second fastest algorithm

(behind LMaFit) for most combinations of sampling ratio δ and rank N , although

it was the fastest for small δ and relatively high N . Also, they showed EM-BiG-

AMP was about 3 to 5 times slower than BiG-AMP-Lite but still much faster than

IALM and VSBL at high ranks. Meanwhile, the unknown-rank synthetic-data results

111



above showed EM-BiG-AMP yielding excellent NMSE performance in both noiseless

and noisy scenarios. For example, in the noisy experiment, EM-BiG-AMP uniformly

outperformed its competitors (LMaFit and VSBL).

In the image completion experiment, EM-BiG-AMP again outperformed all com-

petitors, beating the second best algorithm (Matrix ALPS) by more than 1 dB and

the third best algorithm (LMaFit) by more than 2.5 dB. Finally, in the collaborative

filtering experiment, EM-BiG-AMP (with the PIAWLN likelihood model) matched

the best competitor (VSBL) in terms of NMAE, and significantly outperformed the

second best (LMaFit).

0 0.5 1

0.2

0.3

0.4

0 0.5 1

0.18

0.19

0 0.2 0.4 0.6 0.8 1
0

10

20

30

 

 

N
M
A
E

E
st
im

at
ed

ra
n
k

Training fraction |Ω|/|R|

VSBL

LMaFit
EM-BiG-AMP assuming PIAWGN

EM-BiG-AMP assuming PIAWLN

Figure 4.7: Median NMAE (top) and estimated rank (bottom) for movie-rating pre-
diction versus fraction of training data |Ω|/|R| over 10 trials for the 100k MovieLens
data set.

112



4.7 Robust PCA

4.7.1 Problem Setup

In robust principal components analysis (RPCA) [82], one seeks to estimate a

low-rank matrix observed in the presence of noise and large outliers. The data model

for RPCA can be written as

Y = AX +E +W , (4.127)

where Z = AX—the product of tall A and wide X—is the low-rank matrix of

interest, E is a sparse outlier matrix, and W is a dense noise matrix. We now

suggest two ways of applying BiG-AMP to the RPCA problem, both of which treat

the elements of A as iid N (0, νa
0 ) similar to (4.117), the elements of X as iid N (0, νx

0 )

similar to (4.118), the non-zero elements of E as iid N (0, ν1), and the elements of W

as iid N (0, ν0), with ν1 ≫ ν0.

In the first approach, E + W is treated as additive noise on Z, leading to the

likelihood model

pyml|zml
(yml | zml)

= (1− λ)N (yml; zml, ν0) + λN (yml; zml, ν0 + ν1), (4.128)

where λ ∈ [0, 1] models outlier density.

In the second approach, W is treated as additive noise but E is treated as an

additional estimand. In this case, by multiplying both sides of (4.127) by any (known)

unitary matrix Q ∈ RM×M , we can write

QY︸︷︷︸
,Y

=
[
QA Q

]
︸ ︷︷ ︸

,A

[
X

E

]

︸ ︷︷ ︸
,X

+QW︸ ︷︷ ︸
,W

, (4.129)

113



and apply BiG-AMP to the “augmented” model Y = AX +W . Here, W remains

iid N (0, ν0), thus giving the likelihood

py
ml
|zml

(y
ml

| zml) = N (y
ml
; zml, ν0). (4.130)

Meanwhile, we choose the following separable priors on A and X:

pamn
(amn) =

{
N (amn; 0, ν

a
0 ) n ≤ N

N (amn; qmn, 0) n > N
(4.131)

pxnl
(xnl) =

{
N (xnl; 0, ν

x
0 ) n ≤ N

(1− λ)1xnl
+ λN (xnl; 0, ν1) n > N.

(4.132)

Essentially, the first N columns of A and first N rows of X model the factors of

the low-rank matrix AX, and thus their elements are assigned iid Gaussian priors,

similar to (4.117)-(4.118) in the case of matrix completion. Meanwhile, the last M

rows in X are used to represent the sparse outlier matrix E, and thus their elements

are assigned a Bernoulli-Gaussian prior. Finally, the last M columns of A are used to

represent the designed matrix Q, and thus their elements are assigned zero-variance

priors. Since we find that BiG-AMP is numerically more stable when Q is chosen as

a dense matrix, we set it equal to the singular-vector matrix of an iid N (0, 1) matrix.

After running BiG-AMP, we can recover an estimate of A by left multiplying the

estimate of A by QH.

4.7.2 Initialization

We recommend initializing âmn(1) using a random draw from its prior and ini-

tializing x̂nl(1) at the mean of its prior, i.e., x̂nl(1) = 0. The latter tends to perform

better than initializing x̂nl(1) randomly, because it allows the measurements Y to

determine the initial locations of the outliers in E. As in Section 4.6.2, we suggest

114



initializing νa
mn(1) and ν

x
nl(1) at 10 times the variance of their respective priors to

emphasize the role of the measurements during the first few iterations.

4.7.3 EM-BiG-AMP

The EM approach from Section 4.5.1 can be straightforwardly applied to BiG-

AMP for RPCA: after fixing νa
0 = 1, EM can be used to tune the remaining distri-

butional parameters, θ = [ν0, ν1, ν
x
0 , λ]

T . To avoid initializing ν0 and νx
0 with overly

large values in the presence of large outliers enl, we suggest the following procedure.

First, define the set Γ ,
{
(m, l) : |yml| ≤ median{|yml|}

}
and its complement Γc.

Then initialize

ν0 =

1
|Γ|
∑

(m,l)∈Γ |yml|2

SNR0 + 1
(4.133)

νx
0 =

1

N
SNR0ν0 (4.134)

ν1 =
1

|Γc|
∑

(m,l)∈Γc

|yml|2, (4.135)

where, as in Section 4.6.4, we suggest setting SNR0 = 100 in the absence of prior

knowledge. This approach uses the median to avoid including outliers among the

samples used to estimate the variances of the dense-noise and low-rank components.

Under these rules, the initialization λ = 0.1 was found to work well for most problems.

4.7.4 Rank Selection

In many applications of RPCA, such as video separation, the singular-value profile

of AX exhibits a sharp cutoff, in which case it is recommended to perform rank-

selection using the contraction strategy from Section 4.5.2.

115



4.7.5 Avoiding Local Minima

Sometimes, when N is very small, BiG-AMP may converge to a local solution

that mistakes entire rows or columns of AX for outliers. Fortunately, this situation

is easy to remedy with a simple heuristic procedure: the posterior probability that

yml is outlier-corrupted can be computed for each (m, l) at convergence, and if any of

the row-wise sums exceeds 0.8M or any of the column-wise sums exceeds 0.8L, then

BiG-AMP is restarted from a new random initialization. Experimentally, we found

that one or two of such restarts is generally sufficient to avoid local minima.

4.7.6 Robust PCA Experiments

In this section, we present a numerical study of the two BiG-AMP formulations

of RPCA proposed in Section 4.7, including a comparison to the state-of-the-art

IALM [38], LMaFit [42], GRASTA [49], and VSBL [53] algorithms. In the sequel,

we use “BiG-AMP-1” when referring to the formulation that treats the outliers as

noise, and “BiG-AMP-2” when referring to the formulation that explicitly estimates

the outliers.

Phase Transition Behavior

We first study the behavior of the proposed BiG-AMP algorithms for RPCA on

noise-free synthetic problems. For this, we generated problem realizations of the form

Y = Z +E, where the low-rank component Z = AX was generated from A and X

with iid N (0, 1) entries, and where the sparse corruption matrix E had a fraction δ

of non-zero entries that were located uniformly at random with amplitudes drawn iid

uniform on [−10, 10]. The dimensions of Y ∈ R
M×L were fixed at M = L = 200, the

rank N (of Z) was varied from 10 to 90, and the outlier fraction δ was varied from

116



0.05 to 0.45. We note that, under these settings, the outlier magnitudes are on the

same order as the magnitudes of Z, which is the most challenging case: much larger

outliers would be easier to detect, after which the corrupted elements of Y could

be safely treated as incomplete, whereas much smaller outliers could be treated like

AWGN.

All algorithms under test were run to a convergence tolerance of 10−8 and forced

to use the true rank N . GRASTA, LMaFit, and VSBL were run under their rec-

ommended settings.34 Two versions of IALM were tested: “IALM-1,” which uses

the universal penalty parameter λALM =
1√
M
, and “IALM-2,” which tries 50 hypothe-

ses of λALM, logarithmically spaced from 1
10
√
M

to 10√
M

and uses an oracle to choose

the MSE-minimizing hypothesis. BiG-AMP-1 and BiG-AMP-2 were given perfect

knowledge of the mean and variance of the entries of A, X, and E (although their

Bernoulli-Gaussian model of E did not match the data generation process) as well as

the outlier density λ, while EM-BiG-AMP-2 learned all model parameters from the

data. BiG-AMP-1 was run under a fixed damping of β = 0.25, while BiG-AMP-2

was run under adaptive damping with stepMin = 0.05 and stepMax = 0.5. Both

variants used a maximum of 5 restarts to avoid local minima.

Figure 4.8 shows the empirical success rate achieved by each algorithm as a func-

tion of corruption-rate δ and rank N , averaged over 10 trials, where a “success” was

defined as attaining an NMSE of −80 dB or better in the estimation of the low-rank

component Z. The red curves in Fig. 4.8 delineate the problem feasibility boundary:

for points (δ, N) above the curve, N(M+L−N), the degrees-of-freedom in Z, exceeds

34For LMaFit, however, we increased the maximum number of allowed iterations, since this im-
proved its performance.

117



(1− δ)ML, the number of uncorrupted observations, making it impossible to recover

Z without additional information.

VSBL

 

 

0.1 0.2 0.3 0.4

10

20

30

40

50

60

70

80

90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N

δ

GRASTA

 

 

0.1 0.2 0.3 0.4

10

20

30

40

50

60

70

80

90

0

0.2

0.4

0.6

0.8

1

N
δ

IALM−1

 

 

0.1 0.2 0.3 0.4

10

20

30

40

50

60

70

80

90

0

0.2

0.4

0.6

0.8

1

N

δ

IALM−2

 

 

0.1 0.2 0.3 0.4

10

20

30

40

50

60

70

80

90

0

0.2

0.4

0.6

0.8

1

N

δ
LMaFit

 

 

0.1 0.2 0.3 0.4

10

20

30

40

50

60

70

80

90

0

0.2

0.4

0.6

0.8

1

N

δ

BiG−AMP−1

 

 

0.1 0.2 0.3 0.4

10

20

30

40

50

60

70

80

90

0

0.2

0.4

0.6

0.8

1

N

δ

BiG−AMP−2

 

 

0.1 0.2 0.3 0.4

10

20

30

40

50

60

70

80

90

0

0.2

0.4

0.6

0.8

1

N

δ

EM−BiG−AMP−2

 

 

0.1 0.2 0.3 0.4

10

20

30

40

50

60

70

80

90

0

0.2

0.4

0.6

0.8

1

N

δ

Figure 4.8: Empirical success rates for RPCA with a 200×200 matrix of rank N cor-
rupted by a fraction δ of outliers with amplitudes uniformly distributed on [−10, 10].
Here, “success” is defined as NMSE < −80 dB, and success rates were averaged over
10 problem realizations. Points above the red curve are infeasible, as described in the
text.

Figure 4.8 shows that all algorithms exhibit a relatively sharp phase-transition

curve (PTC) separating success and failure regions, and that the BiG-AMP algorithms

achieve substantially better PTCs than the other algorithms. The PTCs of BiG-AMP-

1 and BiG-AMP-2 are similar (but not identical), suggesting that both formulations

are equally effective. Meanwhile, the PTCs of BiG-AMP-2 and EM-BiG-AMP-2 are

nearly identical, demonstrating that the EM procedure was able to successfully learn

the statistical model parameters used by BiG-AMP. Figure 4.8 also shows that all

RPCA phase transitions remain relatively far from the feasibility boundary, unlike

those for matrix completion (MC) shown in Fig. 4.2. This behavior, also observed

in [82], is explained by the relative difficulty of RPCA over MC: the locations of

118



RPCA outliers (which in this case effectively render the corrupted observations as

incomplete) are unknown, whereas in MC they are known.

Figure 4.9 plots runtime to NMSE = −80 dB as a function of rank N for various

outlier fractions. The results suggest that the BiG-AMP algorithms are moderate in

terms of speed, being faster than GRASTA35 and much faster than the grid-tuned

IALM-2, but slower than IALM-1, VSBL, and LMaFit. Notably, among the non-BiG-

AMP algorithms, LMaFit offers both the fastest runtime and the best phase-transition

curve on this synthetic test problem.

In summary, the results presented here suggest that BiG-AMP achieves state-

of-the-art PTCs while maintaining runtimes that are competitive with existing ap-

proaches.

10 20 30 40 50 60 70 80 90
10

−2

10
−1

10
0

10
1

10
2

N

ru
n
ti
m
e
(s
ec
)

δ = 0.05

10 20 30 40 50 60 70 80 90
10

−2

10
−1

10
0

10
1

10
2

N

ru
n
ti
m
e
(s
ec
)

δ = 0.2

10 20 30 40 50 60 70 80 90
10

−2

10
−1

10
0

10
1

10
2

 

 

BiG−AMP−1
BiG−AMP−2
EM−BiG−AMP−2
LMaFit
GRASTA
IALM−1
IALM−2
VSBL

N

ru
n
ti
m
e
(s
ec
)

δ = 0.3

Figure 4.9: Runtime to NMSE= −80 dB for RPCA with a 200× 200 matrix of rank
N corrupted by a fraction δ ∈ {0.05, 0.2, 0.3} of outliers with amplitudes uniformly
distributed on [−10, 10]. All results represent median performance over 10 trials.
Missing values indicate that the algorithm did not achieve the required NMSE before
termination and correspond to the black regions in Fig. 4.8.

35We note that, for this experiment, GRASTA was run as a Matlab M-file and not a MEX file,
because the MEX file would not compile on the supercomputer used for the numerical results. That
said, since BiG-AMP was also run as an unoptimized M-file, the comparison could be considered
“fair.”

119



Rank Estimation

We now investigate the ability to estimate the underlying rank, N , for EM-BiG-

AMP-2 (using the rank-contraction strategy from Section 4.5.236) IALM-1, IALM-

2, LMaFit, and VSBL, all of which include either explicit or implicit rank-selection

mechanisms. For this, we generated problem realizations of the form Y = Z+E+W ,

where the 200 × 200 rank-N matrix Z and δ = 0.1-sparse outlier matrix E were

generated as described in Section 4.7.6 and the noise matrix W was constructed with

iid N (0, 10−3) elements. The algorithms under test were not provided with knowledge

of the true rank N , which was varied between 5 and 90. LMaFit, VSBL, and EM-

BiG-AMP, were given an initial rank estimate of N = 90, which enforces an upper

bound on the final estimates that they report.

Figure 4.10 reports RPCA performance versus (unknown) true rank N in terms of

the estimated rank N̂ and the NMSE on the estimate Ẑ. All results represent median

performance over 10 Monte-Carlo trials. The figure shows that EM-BiG-AMP-2 and

LMaFit returned accurate rank estimates N̂ over the full range of true rank N ∈

[5, 90], whereas VSBL returned accurate rank estimates only for N ≤ 20, and both

IALM-1 and IALM-2 greatly overestimated the rank at all N . Meanwhile, Fig. 4.10

shows that EM-BiG-AMP-2 and LMaFit returned accurate estimates of Ẑ for all

N ≤ 80 (with EM-BiG-AMP-2 outperforming LMaFit by several dB throughout this

range), whereas VSBL and IALM-1 and IALM-2 returned accurate estimates of Ẑ

only for small values of N . We note that the relatively poor MSE performance of

LMaFit and EM-BiG-AMP-2 for true rank N > 80 is not due to poor rank estimation

36The rank-selection rule (4.116) was used with τMOS = 5, up to 50 EM iterations, and a minimum
of 30 and maximum of 500 BiG-AMP iterations per EM iteration.

120



but rather due to the fact that, at δ = 0.1, these operating points lie above the PTCs

shown in Fig. 4.8.

0 20 40 60 80 100
−60

−40

−20

0

Z
 N

M
S

E
 (

dB
)

0 20 40 60 80 100
0

100

200

True Rank (N)

E
st

im
at

ed
 R

an
k

 

 

EM−BiG−AMP−2
LMaFit
IALM−1
IALM−2
VSBL

Figure 4.10: NMSE (top) and estimated rank N̂ (bottom) versus true rank N for
several algorithms performing RPCA on a 200 × 200 matrix in the presence of ad-
ditive N (0, 10−3) noise and a fraction δ = 0.1 of outliers with amplitudes uniformly
distributed on [−10, 10]. All results represent the median over 10 trials.

Application to Video Surveillance

We now apply EM-BiG-AMP-2 to a video surveillance problem, where the goal is

to separate a video sequence into a static “background” component and a dynamic

“foreground” component. To do this, we stack each frame of the video sequence into

a single column of the matrix Y , run EM-BiG-AMP-2 as described in Section 4.7,

extract the background frames from the estimate of the low-rank component Z =

AX, and extract the foreground frames from the estimate of the (sparse) outlier

component E. We note that a perfectly time-invariant background would correspond

121



to a rank-one Z and that the noise term W in (4.127) can be used to account for

small perturbations that are neither low-rank nor sparse.

We tested EM-BiG-AMP37 on the popular “mall” video sequence,38 processing

200 frames (of 256 × 320 pixels each) using an initial rank estimate of N = 5. Fig-

ure 4.11 shows the result, with original frames in the left column and EM-BiG-AMP-2

estimated background and foreground frames in the middle and right columns, re-

spectively. We note that, for this sequence, the rank-contraction strategy reduced the

rank of the background component to 1 after the first EM iteration. Similar results

(not shown here for reasons of space) were obtained with other video sequences.

Figure 4.11: Three example frames from the “mall” video sequence. The left column
shows original frames, the middle column EM-BiG-AMP-2 estimated background,
and the right column EM-BiG-AMP-2 estimated foreground.

37The maximum allowed damping was reduced to stepMax = 0.125 for this experiment. To reduce
runtime, a relatively loose tolerance of 5×10−4 was used to establish EM and BiG-AMP convergence.

38See http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html.

122



4.8 Dictionary Learning

4.8.1 Problem setup

In dictionary learning (DL) [83], one seeks a dictionary A ∈ RM×N that allows

the training samples Y ∈ RM×L to be encoded as Y = AX + W for some sparse

coefficient matrix X and small perturbation W . One chooses N = M to learn a

square dictionary or N > M (where N is often a small multiple of M) to learn an

overcomplete dictionary. In general, one must have a sufficient number of training

examples, L ≫ N , to avoid over-fitting.39

The BiG-AMP methodology is particularly well-suited to the DL problem, since

both are inherently bilinear. In this work, for simplicity, we model the entries of

A using the iid standard normal prior (4.117) and the entries of X using the iid

zero-mean Bernoulli-Gaussian (BG) prior

pxnl
(x) = (1− ξ)δ(x) + ξN (x; 0, νx), (4.136)

where ξ represents the activity rate and νx the active-component variance. However,

other priors could be considered, such as truncated Gaussian mixtures with column-

dependent prior parameters in the case of non-negative matrix factorization [64]. For

the likelihood pY|Z, we again select the PIAWGN model (4.119), but note that in most

applications of DL the observations are completely observed.

4.8.2 Initialization

In general, we advocate initializing x̂nl(1) at the mean of the assumed prior on

xnl, and initializing the variances νx
nl(1) and νa

mn(1) at 10 times the variance of xnl

39See [84] for a discussion of sample-size requirements for exact recovery of square dictionaries.

123



and amn, respectively. We now discuss several strategies for initializing the dictionary

estimates âmn(1). One option is to draw âmn(1) randomly from the assumed prior

on amn, as suggested for MC and RPCA. Although this approach works reasonably

well, the prevalence of local minima in the DL problem motivates us to propose two

alternative strategies. The first alternative is to exploit prior knowledge of a “good”

sparsifying dictionaryA, in the case that such knowledge exists. With natural images,

for example, the discrete cosine transform (DCT) and discrete wavelet transform

(DWT) are known to yield reasonably sparse transform coefficients, and so the DCT

and DWT matrices make appropriate initializations of Â(1).

The second alternative is to initialize Â(1) using an appropriately chosen subset

of the columns of Y , which is well motivated in the case that there exists a very

sparse representation X. For example, if there existed a decomposition Y = AX in

which X had 1-sparse columns, then the columns of A would indeed match a subset

of the columns of Y (up to a scale factor). In the general case, however, it is not

apriori obvious which columns of Y to choose, and so we suggest the following greedy

heuristic, which aims for a well-conditioned Â(1): select (normalized) columns from Y

sequentially, in random order, accepting each candidate if the mutual coherences with

the previously selected columns and the condition number of the resulting submatrix

are all sufficiently small. If all columns of Y are examined before finding N acceptable

candidates, then the process is repeated using a different random order. If repeated

re-orderings fail, then Â(1) is initialized using a random draw from A.

124



4.8.3 EM-BiG-AMP

To tune the distributional parameters θ = [νw, νx
0 , ξ]

T , we can straightforwardly

apply the EM approach from Section 4.5.1. For this, we suggest initializing ξ = 0.1

(since Section 4.8.5 shows that this works well over a wide range of problems) and

initializing νx
0 and νw using a variation on the procedure suggested for MC that

accounts for the sparsity of xnl:

νw =
‖PΩ(Y )‖2F

(SNR0 + 1)|Ω| (4.137)

νx
0 =

1

Nξ

[‖PΩ(Y )‖2F
|Ω| − νw

]
. (4.138)

4.8.4 Avoiding Local Minima

The DL problem is fraught with local minima (see, e.g., [84]), and so it is com-

mon to run iterative algorithms several times from different random initializations.

For BiG-AMP, we suggest keeping the result of one initialization over the previous

if both40 the residual error ‖Ẑ − Y ‖F and the average sparsity (as measured by

1
NL

∑
nl Pr{xnl 6=0 |Y=Y }) decrease.

4.8.5 Dictionary Learning Experiments

In this section, we numerically investigate the performance of EM-BiG-AMP for

DL, as described in Section 4.8. Comparisons are made with the greedy K-SVD

algorithm [85], the SPAMS implementation of the online approach [86], and the ER-

SpUD(proj) approach for square dictionaries [84].

40As an alternative, if both the previous and current solutions achieve sufficiently small residual
error, then only the average sparsity is considered in the comparison.

125



Noiseless Square Dictionary Recovery

We first investigate recovery of square (i.e., N = M) dictionaries from noise-free

observations, repeating the experiment from [84]. For this, realizations of the true

dictionary A were created by drawing elements independently from the standard nor-

mal distribution and subsequently scaling the columns to unit ℓ2 norm. Meanwhile,

realizations of the true X were created by selecting K entries in each column uni-

formly at random and drawing their values from the standard normal distribution,

while setting all other entries to zero. Finally, the observations were constructed as

Y = AX, from which the algorithms estimated A and X (up to a permutation and

scale). The accuracy of the dictionary estimate Â was quantified using the relative

NMSE metric [84]

NMSE(Â) , min
J∈J

‖ÂJ −A‖2F
‖A‖2F

, (4.139)

where J is a generalized permutation matrix used to resolve the permutation and

scale ambiguities.

The subplots on the left of Fig. 4.12 show the mean NMSE achieved by K-SVD,

SPAMS, ER-SpUD(proj), and EM-BiG-AMP,41 respectively, over 50 problem realiza-

tions, for various combinations of dictionary size N ∈ {10, . . . , 60} and data sparsity

K ∈ {1, . . . , 10}, using L = 5N logN training examples. K-SVD, SPAMS, and

EM-BiG-AMP were run with 10 different random initializations for each problem re-

alization. To choose among these initializations, EM-BiG-AMP used the procedure

41EM-BiG-AMP was allowed up to 20 EM iterations, with each EM iteration allowed a minimum
of 30 and a maximum of 1500 BiG-AMP iterations. K-SVD was allowed up to 100 iterations and
provided with knowledge of the true sparsity K. SPAMS was allowed 1000 iterations and run
using the hand-tuned penalty λ = 0.1/

√
N . The non-iterative ER-SpUD(proj) was run using code

provided by the authors without modification.

126



from Section 4.8.4, while K-SVD and SPAMS used oracle knowledge to choose the

NMSE-minimizing initialization.

The left column in Fig. 4.12 shows that the K-SVD, ER-SpUD(proj), and EM-

BiG-AMP algorithms all exhibit a relatively sharp phase-transition curve (PTC) sep-

arating success and failure regions, and that ER-SpUD(proj)’s PTC is the best, while

EM-BiG-AMP’s PTC is very similar. Meanwhile, K-SVD’s PTC is much worse and

SPAMS performance is not good enough to yield a sharp phase transition,42 despite

the fact that both use oracle knowledge. EM-BiG-AMP, by contrast, was not pro-

vided with any knowledge of the DL problem parameters, such as the true sparsity

or noise variance (in this case, zero).

For the same problem realizations, Fig. 4.13 shows the runtime to NMSE =

−60 dB (measured using MATLAB’s tic and toc) versus dictionary size N . The

results show that EM-BG-AMP runs within an order-of-magnitude of the fastest algo-

rithm (SPAMS) and more than two orders-of-magnitude faster than ER-SpUD(proj)43

for larger dictionaries.

Noisy Square Dictionary Recovery

Next we examined the recovery of square dictionaries from AWGN-corrupted ob-

servations. For this, we repeated the experiment from the previous section, but con-

structed the observations as Y = Z+W , where Z = AX and W contained AWGN

samples with variance adjusted to achieve an SNR = E{∑m,l |zml|2}/E{
∑

m,l |yml −

zml|2} of 40 dB.

42Our results for SPAMS and ER-SPUD(proj) in the left column of Fig. 4.12 are nearly identical
to those in [84, Fig. 1], while our results for K-SVD are noticeably better.

43The simpler “SC” variant of ER-SpUD reduces the computational cost relative to the “proj”
variant, but results in a significantly worse PTC (see [84, Fig. 1]) and remains slower than EM-BiG-
AMP for larger problems.

127



The right subplots in Fig. 4.12 show the mean value (over 10 trials) of the relative

NMSE from (4.139) when recovering an N×N dictionary from L = 5N logN training

samples of sparsity K, for various combinations of N and K. These subplots show

that ER-SpUD(proj) falls apart in the noisy case, which is perhaps not surprising

given that it is intended only for noiseless problems. Meanwhile, the K-SVD, SPAMS,

and EM-BiG-AMP algorithms appear to degrade gracefully in the presence of noise,

yielding NMSE ≈ −50 dB at points below the noiseless PTCs.

Recovery of Overcomplete Dictionaries

Finally, we consider recovery of overcomplete M × N dictionaries, i.e., the case

where M < N . In particular, we investigated the twice overcomplete case, N =

2M . For this, random problem realizations were constructed in the same manner as

described earlier, except for the dictionary dimensions.

The left column of Fig. 4.14 shows the mean value (over 10 trials) of the relative

NMSE for noiseless recovery, while the right column shows the corresponding results

for noisy recovery. In all cases, L = 5N logN = 10M log(2M) training samples

were provided. EM-BiG-AMP, K-SVD, and SPAMS all give very similar results to

Fig. 4.12 for the square-dictionary case, verifying that these techniques are equally

suited to the recovery of over-complete dictionaries. ER-SpUD(proj), however, only

applies to square dictionaries and hence was not tested here.

Summary

In summary, Figs. 4.12-4.14 show that, for noiseless square dictionary learning,

EM-BiG-AMP yields an empirical PTC that is nearly as good as the state-of-the-

art ER-SpUD(proj) algorithm and much better than those of (genie-aided) K-SVD

128



and SPAMS. However, the figures show that, in comparison to ER-SpUD(proj), EM-

BiG-AMP is fast for large (square) dictionaries, robust to AWGN, and applicable to

non-square dictionaries.

We recall that Krzakala, Mézard, and Zdeborová recently proposed an AMP-based

approach to blind calibration and dictionary learning [68] that bears similarity to our

scalar-variance BiG-AMP under AWGN-corrupted observations (recall footnote 16).

Although their approach gave good results for blind calibration, they report that it

was “not able to solve” the DL problem [68]. We attribute EM-BiG-AMP’s suc-

cess with DL (as evidenced by Figs. 4.12-4.14) to the adaptive damping procedure

proposed in Section 4.4.2, the initialization procedure proposed in Section 4.8.2, the

EM-learning procedure proposed in Section 4.8.3, and the re-initialization procedure

proposed in Section 4.8.4.

4.9 Conclusion

In this chapter, we presented BiG-AMP, an extension of the GAMP algorithm

proposed for high-dimensional generalized-linear regression in the context of com-

pressive sensing, to generalized-bilinear regression, with applications in matrix com-

pletion, robust PCA, dictionary learning, and related matrix-factorization problems.

In addition, we proposed an adaptive damping mechanism to aid convergence under

realistic problem sizes, an expectation-maximization (EM)-based method to automat-

ically tune the parameters of the assumed priors, and two rank-selection strategies.

Extensive numerical results, conducted with synthetic and realistic datasets for ma-

trix completion, robust PCA, and dictionary learning problems, demonstrated that

129



BiG-AMP yields excellent reconstruction accuracy (often best in class) while main-

taining competitive runtimes, and that the proposed EM and rank-selection strategies

successfully avoid the need to tune algorithmic parameters.

The excellent empirical results reported here motivate future work on the analysis

of EM-BiG-AMP, on the extension of EM-BiG-AMP to, e.g., structured-sparse or

parametric models, and on the application of EM-BiG-AMP to practical problems

in high-dimensional inference. For example, preliminary results on the application

of EM-BiG-AMP to hyperspectral unmixing have been reported in [64] and are very

encouraging.

130



 

 

10 20 30 40 50 60

1

2

3

4

5

6

7

8

9

10

−60

−50

−40

−30

−20

−10

0
K-SVD

dictionary size N

tr
ai
n
in
g
sp
ar
si
ty

K

 

 

10 20 30 40 50 60

1

2

3

4

5

6

7

8

9

10

−60

−50

−40

−30

−20

−10

0
K-SVD

dictionary size N

tr
ai
n
in
g
sp
ar
si
ty

K
 

 

10 20 30 40 50 60

1

2

3

4

5

6

7

8

9

10

−60

−50

−40

−30

−20

−10

0
SPAMS

dictionary size N

tr
ai
n
in
g
sp
ar
si
ty

K

 

 

10 20 30 40 50 60

1

2

3

4

5

6

7

8

9

10

−60

−50

−40

−30

−20

−10

0
SPAMS

dictionary size N
tr
ai
n
in
g
sp
ar
si
ty

K

 

 

10 20 30 40 50 60

1

2

3

4

5

6

7

8

9

10

−60

−50

−40

−30

−20

−10

0
ER-SpUD(proj)

dictionary size N

tr
ai
n
in
g
sp
ar
si
ty

K

 

 

10 20 30 40 50 60

1

2

3

4

5

6

7

8

9

10

−60

−50

−40

−30

−20

−10

0
ER-SpUD(proj)

dictionary size N

tr
ai
n
in
g
sp
ar
si
ty

K

 

 

10 20 30 40 50 60

1

2

3

4

5

6

7

8

9

10

−60

−50

−40

−30

−20

−10

0
EM-BiG-AMP

dictionary size N

tr
ai
n
in
g
sp
ar
si
ty

K

 

 

10 20 30 40 50 60

1

2

3

4

5

6

7

8

9

10

−60

−50

−40

−30

−20

−10

0
EM-BiG-AMP

dictionary size N

tr
ai
n
in
g
sp
ar
si
ty

K

Figure 4.12: Mean NMSE (over 10 trials) for recovery of an N × N dictionary from
L = 5N logN training samples, each of sparsity K, in the noiseless case (left) and
under AWGN of 40 dB SNR (right), for several algorithms.

131



10 20 30 40 50 60
10

0

10
1

10
2

10
3

10
4

dictionary size N

ru
n
ti
m
e
(s
ec
)

training sparsity K = 1

10 20 30 40 50 60
10

0

10
1

10
2

10
3

10
4

dictionary size N

ru
n
ti
m
e
(s
ec
)

training sparsity K = 5

10 20 30 40 50 60
10

0

10
1

10
2

10
3

10
4

 

 

EM−BiG−AMP
SPAMS
ER−SpUD (proj)
K−SVD

dictionary size N

ru
n
ti
m
e
(s
ec
)

training sparsity K = 10

Figure 4.13: Median runtime until termination (over 10 trials) versus dictionary size
N , for noiseless recovery of a square dictionary from L = 5N logN K-sparse samples,
for several values of training sparsity K. Missing values indicate that the algorithm
did not achieve the required NMSE before termination and correspond to the black
regions in the panes on the left of Fig. 4.12.

132



 

 

10 20 30 40 50 60

1

2

3

4

5

6

7

8

9

10

−60

−50

−40

−30

−20

−10

0
K-SVD

dictionary rows M

tr
ai
n
in
g
sp
ar
si
ty

K

 

 

10 20 30 40 50 60

1

2

3

4

5

6

7

8

9

10

−60

−50

−40

−30

−20

−10

0
K-SVD

dictionary rows M

tr
ai
n
in
g
sp
ar
si
ty

K

 

 

10 20 30 40 50 60

1

2

3

4

5

6

7

8

9

10

−60

−50

−40

−30

−20

−10

0
SPAMS

dictionary rows M

tr
ai
n
in
g
sp
ar
si
ty

K

 

 

10 20 30 40 50 60

1

2

3

4

5

6

7

8

9

10

−60

−50

−40

−30

−20

−10

0
SPAMS

dictionary rows M

tr
ai
n
in
g
sp
ar
si
ty

K

 

 

10 20 30 40 50 60

1

2

3

4

5

6

7

8

9

10

−60

−50

−40

−30

−20

−10

0
EM-BiG-AMP

dictionary rows M

tr
ai
n
in
g
sp
ar
si
ty

K

 

 

10 20 30 40 50 60

1

2

3

4

5

6

7

8

9

10

−60

−50

−40

−30

−20

−10

0
EM-BiG-AMP

dictionary rows M

tr
ai
n
in
g
sp
ar
si
ty

K

Figure 4.14: Mean NMSE (over 10 trials) for recovery of an M × (2M) dictionary
from L = 10M log(2M) training samples, each of sparsity K, in the noiseless case
(left) and under AWGN of 40 dB SNR (right), for several algorithms.

133



Chapter 5: Parametric Bilinear Generalized Approximate

Message Passing

5.1 Overview

In this chapter, we propose an approximate-message-passing [16] based algorith-

mic framework for a class of parametric generalized bilinear inference problems. In

particular, we seek to estimate the parameter vectors b ∈ RNb and c ∈ RNc from a ma-

trix observation Y ∈ RM×L under a likelihood model of the form pY|Z(Y |A(b)X(c)),

where A(·) : RNb → RM×N and X(·) : RNc → RN×L are known matrix-valued pa-

rameterizations. In doing so, we treat b and c as realizations of random vectors b

and c with independent components, i.e.,

pb,c(b, c) =

Nb∏

i=1

pbi(bi)

Nc∏

j=1

pcj (cj), (5.1)

and we assume that the parameterized bilinear form

Z , A(b)X(c) (5.2)

has a known and separable likelihood function

pY|Z(Y |Z) =

M∏

m=1

L∏

l=1

pyml|zml
(yml | zml) (5.3)

134



where Z , A(b)X(c) is the random representation of Z.

The above model can be recognized as a parametric extension of the generalized

bilinear inference problem in [8, 9]. There, the goal was to infer the matrices A

and X from observations Y under a likelihood model pY|Z(Y |AX) with separable

pY|Z(·|·), pA(·) and pX(·). In this work, the matrices A and X are parameterized by

random vectors b and c with separable priors, which allows the priors on A(b) and

X(c) to be non-separable. In the interest of generality, we carry out the derivation

for possibly non-linear parameterizations A(·) and X(·). However, certain steps in

the derivation are rigorously justified only in the case of random linear A(·) and

X(·), as will be detailed in the sequel. Furthermore, as we show in Section 5.6.2,

the algorithm derived here reduces to the BiG-AMP algorithm from [8] for “trivial”

deterministic parameterizations, i.e., when the elements in A(b) can be put in one-to-

one correspondence with b and those inX(c) can be put in one-to-one correspondence

with c.

Notation: Throughout, we use san-serif font (e.g., x) for random variables and

serif font (e.g., x) otherwise. We use boldface capital letters (e.g., X and X) for

matrices, boldface small letters (e.g., x and x) for vectors, and non-bold small letters

(e.g., x and x) for scalars. We then use px(x) to denote the pdf of random quantity x,

and N (x; x̂, νx) to denote the Gaussian pdf for a scalar random variable with mean

x̂ and variance νx. Also, we use E{x} and var{x} to denote mean and variance of x,

respectively, and D(p1‖p2) for the Kullback-Leibler (KL) divergence between pdfs p1

and p2. For matrices X , we use xnl = [X]nl to denote the entry in the nth row and

lth column, ‖X‖F to denote the Frobenius norm, and XT to denote the transpose.

135



For vectors x, we use xn = [x]n to denote the nth entry and ‖x‖p = (
∑

n |xn|p)1/p to

denote the ℓp norm.

5.2 The Parameterizations

5.2.1 Random Affine Parameterizations

We are motivated by applications where A(·) and X(·) are smooth parameteriza-

tions, allowing first-order Taylor series approximations about b̂ ∈ RNb and ĉ ∈ RNc

that take the form

amn(b) ≈ amn(b̂) +

Nb∑

i=1

(bi − b̂i)a
(i)
mn

(
b̂
)

(5.4)

xnl(c) ≈ xnl(ĉ) +
Nc∑

j=1

(cj − ĉj)x
(j)
nl

(
ĉ
)
, (5.5)

where a
(i)
mn , ∂

∂bi
amn(b) and x

(j)
nl , ∂

∂cj
xnl(c). However, to facilitate our AMP-based

derivation, we assume that A(·) and X(·) are random affine parameterizations of the

form

amn(b) =
1√
Nb

a(0)mn +

Nb∑

i=1

bia
(i)
mn =

Nb∑

i=0

bia
(i)
mn (5.6)

xnl(c) =
1√
Nc

x
(0)
nl +

Nc∑

j=1

cjx
(j)
nl =

Nc∑

j=0

cjx
(j)
nl , (5.7)

where a
(i)
mn and x

(j)
nl are realizations of independent zero-mean random variables a

(i)
mn

and x
(j)
nl , respectively, with E{(a(i)mn)2} = O(1/N) and E{(x(j)nl )

2} = O(1). For the

second equality in (5.6)-(5.7), we used b0 , 1/
√
Nb and c0 , 1/

√
Nc. Note that, for

any b̂ and ĉ, (5.6)-(5.7) can be rewritten as

amn(b) = amn(b̂) +

Nb∑

i=1

(bi − b̂i)a
(i)
mn (5.8)

xnl(c) = xnl(ĉ) +

Nc∑

j=1

(cj − ĉj)x
(j)
nl , (5.9)

136



which are reminiscent of (5.4)-(5.5) except that (5.8)-(5.9) use equalities and location-

invariant partial derivatives.

5.2.2 Large-System Limit Scalings

Our AMP-based derivation will rely primarily on central-limit-theorem (CLT)

and Taylor-series approximations that become exact in the large-system limit (LSL),

where N,M,L,Nb, Nc → ∞ such that M/N , L/N , Nb/N
2, and Nc/N

2 converge to

fixed positive constants.

In the sequel, we will assume that both E{b2i } and E{c2j} scale as O(1/N2). Then,

invoking the independence among the elements in b and c implied by (5.1), the

random affine model (5.6)-(5.7) yields

E{amn(b)
2} = E

{
Nb∑

i=0

bia
(i)
mn

Nb∑

k=0

bka
(k)
mn

}
(5.10)

=

Nb∑

i=0

[
E{(a(i)mn)

2}E{b2i }+
∑

k 6=i

E{a(i)mn}E{a(k)mn}︸ ︷︷ ︸
=0

E{bi}E{bk}
]

(5.11)

= O(1/N) (5.12)

E{xnl(c)2} = E

{
Nc∑

j=0

cjx
(j)
nl

Nc∑

k=0

ckx
(k)
nl

}
(5.13)

=

Nc∑

j=0

[
E{(x(j)nl )

2}E{c2j}+
∑

k 6=j

E{x(j)nl }E{x
(k)
nl }︸ ︷︷ ︸

=0

E{cj}E{ck}
]

(5.14)

= O(1), (5.15)

which conveniently matches the scaling assumptions on A and X employed in the

BiG-AMP derivation [8]. Similarly, for the bilinear form zml =
∑N

n=1 amn(b)xnl(c),

137



we have

E{z2ml} = E

{
N∑

n=1

Nb∑

i=0

bia
(i)
mn

Nc∑

j=0

cjx
(j)
nl

N∑

k=1

Nb∑

r=0

bra
(r)
mk

Nc∑

q=0

cqx
(q)
kl

}
(5.16)

=

N∑

n=1

[∑

i,r

E{bibr}E{a(i)mna
(r)
mn}

∑

j,q

E{cjcq}E{x(j)nl x
(q)
nl }

+
∑

k 6=n

∑

i,r,j,q

E{bibr}E{a(i)mn}E{a(r)mk}︸ ︷︷ ︸
=0

E{cjcq}E{x(j)nl }E{x
(q)
kl }︸ ︷︷ ︸

=0

]
(5.17)

=
N∑

n=1

Nb∑

i=1

[
E{b2i }E{(a(i)mn)

2}+
∑

r 6=i

E{bi}E{br}E{a(i)mn}E{a(r)mn}︸ ︷︷ ︸
=0

]

×
Nc∑

j=1

[
E{c2j}E{(x(j)nl )

2}+
∑

q 6=j

E{cj}E{cq}E{x(j)nl }E{x
(q)
nl }︸ ︷︷ ︸

=0

]
(5.18)

= O(1), (5.19)

which matches the scaling assumptions on Z used in BiG-AMP [8]. We note that

various other choices of scalings on E{(a(i)mn)2}, E{(x(j)nl )
2}, E{b2i }, and E{c2j} yield the

scalings on E{amn(b)
2}, E{xnl(c)2}, and E{z2ml} in (5.12), (5.15), and (5.19). In thise

sense, the choices that we made purely out of convenience.

5.3 Bayesian Inference

For the statistical model (5.1)-(5.3), the posterior pdf is

pb,c|Y(b, c |Y ) = pY|b,c(Y | b, c) pb(b) pc(c)/pY(Y ) (5.20)

∝ pY|Z(Y |A(b)X(c)) pb(b) pc(c) (5.21)

=

[∏

m

∏

l

pyml|zml

(
yml

∣∣∣
∑

k

amk(b)xkl(c)
)] [∏

i

pbi(bi)

] [∏

j

pcj(cj)

]
,

(5.22)

where (5.20) employs Bayes’ rule and ∝ denotes equality up to a constant scale factor.

The posterior distribution can be represented using a bipartite factor graph of the

138



form in Fig. 5.1. There, the factors of the pdf pb,c|Y in (5.22) are represented by

“factor nodes” that appear as black boxes, and the random variables in (5.22) are

represented by “variable nodes” that appear as white circles. Each variable node is

connected to every factor node in which that variable appears. We note that the

observed data {yml} are treated as parameters of the pyml|zml
(yml|·) factor nodes, and

not as random variables. Also, although Fig. 5.1 shows an edge between every bi and

pyml|zml
node pair, a given edge will vanish when amn(·) does not depend on bi. A

similar statement applies to the edge between cj and pyml|zml
.

♣②♠❧❥③♠❧

✏

�✁✂

☞
☞
☞
P

♥ ❛✁♥✭❜✮①♥✂✭❝✮

✑
✄☎ ♣✆✝ ✭✞☎✮

✟✐♣✠✡✭☛✐✮

Figure 5.1: The factor graph for parametric generalized bilinear inference under Nb =
2, Nc = 3, and ML = 4.

5.4 Application of the Sum Product Algorithm

In our formulation of the SPA, four types of message will be used, as specified in

Table 5.1. These messages take the form of log-pdfs with arbitrary constant offsets,

which can be converted to pdfs via exponentiation and scaling. For example, mes-

sage ∆b
ml→i(t, .)) corresponds to pdf 1

C
exp(∆b

ml→i(t, .)) with C =
∫
bi
exp(∆b

ml→i(t, bi)).

Similarly, we express the (iteration-t SPA-approximated) posterior pdfs pbi|Y(t, . |Y )

139



∆b
ml→i(t, .) SPA message from node pyml|zml

to node bi

∆b
ml←i(t, .) SPA message from node bi to node pyml|zml

∆c
ml→j(t, .) SPA message from node pyml|zml

to node cj

∆c
ml←j(t, .) SPA message from node cj to node pyml|zml

∆b
i (t, .) SPA-approximated log posterior pdf of bi

∆c
j(t, .) SPA-approximated log posterior pdf of cj

Table 5.1: SPA message definitions at iteration t ∈ Z.

and pcj |Y(t, . |Y ) in the log domain as ∆b
i (t, .) and ∆c

j(t, .), respectively, again with

arbitrary constant offsets.

Applying the SPA to the factor graph in Fig. 5.1, we arrive at the following update

rules for the four messages in Table 5.1:

∆b
ml→i(t, bi) = log

∫

{br}r 6=i,{ck}Nc
k=1

pyml|zml

(
yml

∣∣∣
∑

k

amk(b)xkl(c)
)

×
∏

r 6=i

exp
(
∆b

ml←r(t, br)
) Nc∏

k=1

exp
(
∆c

ml←k(t, ck)
)
+ const (5.23)

∆c
ml→j(t, cj) = log

∫

{br}Nb
r=1,{ck}k 6=j

pyml|zml

(
yml

∣∣∣
∑

k

amk(b)xkl(c)
)

×
Nb∏

r=1

exp
(
∆b

ml←r(t, br)
)∏

k 6=j

exp
(
∆c

ml←k(t, ck)
)
+ const (5.24)

∆b
ml←i(t+1, bi) = log pbi(bi) +

∑

(r,k)6=(m,l)

∆b
rk→i(t, bi) + const (5.25)

∆c
ml←j(t+1, cj) = log pcj (cj) +

∑

(r,k)6=(m,l)

∆c
rk→j(t, cj) + const, (5.26)

where const denotes an arbitrary constant (w.r.t bi in (5.23) and (5.25) and w.r.t cj

in (5.24) and (5.26)). In the sequel, we denote the mean and variance of the pdf

1
C
exp(∆b

ml←i(t, .) by b̂ml,i(t) and νb
ml,i(t), respectively, and we denote the mean and

variance of 1
C
exp(∆c

ml←j(t, .)) by ĉml,j(t) and νc
ml,j(t). We refer to the vectors of these

140



statistics for a given (m, l) as b̂ml(t),ν
b
ml(t) ∈ R

Nb and ĉml(t),ν
c
ml(t) ∈ R

Nc . For the

log-posteriors, the SPA implies

∆b
i (t+1, bi) = log pbi(bi) +

∑

m,l

∆b
ml→i(t, bi) + const (5.27)

∆c
j(t+1, cj) = log pcj (cj) +

∑

m,l

∆c
ml→j(t, cj) + const, (5.28)

and we denote the mean and variance of 1
C
exp(∆b

i (t, .)) by b̂i(t) and νb
i (t), and the

mean and variance of 1
C
exp(∆c

j(t, .)) by ĉj(t) and νc
j (t). Finally, we denote the vectors

of these statistics as b̂(t),νb(t) ∈ RNb and ĉ(t),νc(t) ∈ RNc .

5.5 MMSE P-BiG-AMP Derivation

We now apply AMP approximations [6, 16] to the SPA updates (5.23)-(5.28). In

particular, our derivation will neglect terms that vanish relative to others in the

large-system limit, i.e., as N → ∞ while simultaneously M,L,Nb, Nc → ∞ such

that M/N , L/N , Nb/N
2, and Nc/N

2 converge to fixed positive constants. In doing

so, we assume the scalings on bi, cj , amn(b), xnl(c), and zml that were established

in Section 5.2.2, and we assume that the same scalings hold whether the random

variables are distributed according to the priors, the SPA messages (5.23)-(5.26), or

the SPA-approximated posteriors (5.27)-(5.28). These assumptions lead straightfor-

wardly to the scalings of ẑml(t), ν
z
ml(t), b̂ml,i(t), ν

b
ml,i(t), ĉml,j(t), and νc

ml,j(t) specified

in Table 5.2. Furthermore, we assume that both b̂ml,i(t) − b̂i(t) and ĉml,j(t) − ĉj(t)

are O(1/N2). Then similar reasoning leads to the assumed scalings on the variance

differences in Table 5.2. These assumptions are similar to those used in previous

AMP derivations [6,16], particularly that of BiG-AMP [8]. Other entries in the table

will be explained below.

141



amn(b) O( 1√
N
) xnl(c) O(1) b̂ml,i(t)− b̂i(t) O( 1

N2 )

a
(i)
mn O( 1√

N
) x

(j)
nl O(1) ĉml,j(t)− ĉj(t) O( 1

N2 )

p̂ml(t) O(1) νp
ml(t) O(1) νb

ml,i(t)− νb
i (t) O( 1

N3 )

b̂ml,i(t) O( 1
N
) νb

ml,i(t) O( 1
N2 ) νc

ml,j(t)− νc
j (t) O( 1

N3 )

ĉml,j(t) O( 1
N
) νc

ml,j(t) O( 1
N2 ) xnl(ĉml(t))− xnl(ĉ(t)) O( 1

N
)

ĉml,j(t) O( 1
N
) νc

ml,j(t) O( 1
N2 ) amn(b̂ml(t))− amn(b̂(t)) O( 1

N3/2 )

ẑml(t) O(1) νz
ml(t) O(1) νr

ml,j(t)− νr
j (t) O( 1

N4 )

ẑ
(i,j)
→ml(t) O(1) ẑ

(∗,j)
→ml(t) O(1) r̂ml,j(t)− r̂j(t) O( 1

N2 )

ẑ
(i,∗)
→ml(t) O(1) ẑ

(∗,∗)
ml (t) O(1) νq

ml,i(t)− νq
i (t) O( 1

N4 )

r̂ml,j(t) O( 1
N
) νr

ml,j(t) O( 1
N2 ) q̂ml,i(t)− q̂i(t) O( 1

N2 )

q̂ml,i(t) O( 1
N
) νq

ml,i(t) O( 1
N2 ) ẑ

(∗,j)
→ml(t) − ẑ

(∗,j)
ml (t) O( 1

N
)

ŝml(t) O(1) νs
ml(t) O(1) ẑ

(i,∗)
→ml(t) − ẑ

(i,∗)
ml (t) O( 1

N
)

Table 5.2: P-BiG-AMP variable scalings in the large-system limit.

5.5.1 SPA message from node pyml|zml
to node bi

Consider the message defined in (5.23)

∆b
ml→i(t, bi) = log

∫

{br}r 6=i,{ck}Nc
n=1

pyml|zml

(
yml

∣∣∣

zml︷ ︸︸ ︷
N∑

n=1

amn(b)xnl(c)
)

×
∏

r 6=i

exp
(
∆b

ml←r(t, br)
) Nc∏

k=1

exp
(
∆c

ml←k(t, ck)
)
+ const. (5.29)

The first step of our derivation invokes the large-system limit to apply the central

limit theorem (CLT) to zml, the random version of zml in (5.29). In particular, the

CLT motivates the treatment of zml conditioned on bi = bi as Gaussian and thus

completely characterized by a (conditional) mean and variance, which we compute

below.

142



Similar to previous AMP derivations, the use of the CLT can be justified in the

case of the random affine parameterization described in Section 5.2.1. To see this, we

write

zml =

N∑

n=1

Nb∑

i=0

bia
(i)
mn

Nc∑

j=0

cjx
(j)
nl =

Nb∑

i=0

bi

Nc∑

j=0

cj

N∑

n=1

a(i)mnx
(j)
nl

︸ ︷︷ ︸
,ẑ

(i,j)
ml

= bTẐmlc (5.30)

= −b̂ml(t)
TẐmlĉml(t) + b̂ml(t)

TẐmlc+ bTẐmlĉml(t)

+
(
b− b̂ml(t)

)T
Ẑml

(
c− ĉml(t)

)
, (5.31)

where in (5.30) the matrix Ẑml ∈ RNb×Nc is constructed elementwise as [Ẑml]ij = ẑ
(i,j)
ml ,

and in (5.31) we recall that b̂ml(t) is the mean of b and ĉml(t) is the mean of c under the

distribution in (5.29). Examining the terms in (5.31), we see that the first is an O(1)

constant, while the second and third are dense linear combinations of independent

random variables that also scale as O(1). As such, the second and third terms obey

the central limit theorem, each converging in distribution to a Gaussian as N → ∞.

The last term in (5.31) can be written as a quadratic form in independent zero-mean

random variables:

(
b− b̂ml(t)

)T
Ẑml

(
c− ĉml(t)

)
=

[
b− b̂ml(t)
c− ĉml(t)

]T [ 1
2
Ẑml

1
2
ZT

ml

] [
b− b̂ml(t)
c− ĉml(t)

]
. (5.32)

It is shown in [87] that, for sufficiently dense Zml (as guaranteed by our random affine

parameterization), the quadratic form in (5.31) converges in distribution to a zero-

mean Gaussian as N → ∞. Thus, in the large-system limit, zml equals a constant

plus three Gaussian random variables, and thus zml is Gaussian.

143



Recalling the affine parameterization model assumed for our derivation and lever-

aging the convenient form (5.8)-(5.9), the conditional mean is

E{zml | bi = bi} =

N∑

n=1

E{amn(b)xnl(c) | bi = bi} (5.33)

=
N∑

n=1

E

{[
amn

(
b̂ml(t)

)
+

Nb∑

i=1

(
bi − b̂ml,i(t)

)
a(i)mn

]

×
[
xnl

(
ĉml(t)

)
+

Nc∑

j=1

(
cj − ĉml,j(t)

)
x
(j)
nl

] ∣∣∣∣∣ bi = bi

}
(5.34)

=
N∑

n=1

[
amn

(
b̂ml(t)

)
+
(
bi − b̂ml,i(t)

)
a(i)mn

]
xnl

(
ĉml(t)

)
(5.35)

=

N∑

n=1

[
amn

(
b̂ml(t)

)
− b̂ml,i(t)a

(i)
mn

]
xnl

(
ĉml(t)

)

︸ ︷︷ ︸
, p̂i,ml(t)

+bi

N∑

n=1

a(i)mnxnl

(
ĉml(t)

)
. (5.36)

We note that the above definition of p̂i,ml(t) is conceptually similar to that used in

BiG-AMP [8].

144



Likewise, the conditional variance is

var{zml | bi = bi}

= E





∣∣∣∣∣
N∑

n=1

amn(b)xnl(c)−
N∑

n=1

E{amn(b)xnl(c) | bi = bi}
∣∣∣∣∣

2 ∣∣∣ bi = bi



 (5.37)

= E

{∣∣∣∣∣
N∑

n=1

(
amn

(
b̂ml(t)

)
+

Nb∑

k=1

(
bk − b̂ml,k(t)

)
a(k)mn

)

×
(
xnl

(
ĉml(t)

)
+

Nc∑

j=1

(
cj − ĉml,j(t)

)
x
(j)
nl

)

−
(
(
bi − b̂ml,i(t)

) N∑

n=1

a(i)mnxnl

(
ĉml(t)

)
+

N∑

n=1

amn

(
b̂ml(t)

)
xnl

(
ĉml(t)

)
)∣∣∣∣∣

2 ∣∣∣∣∣ bi = bi

}

(5.38)

= E

{∣∣∣∣∣
N∑

n=1

amn

(
b̂ml(t)

) Nc∑

j=1

(
cj − ĉml,j(t)

)
x
(j)
nl +

N∑

n=1

Nb∑

k=1

(
bk − b̂ml,k(t)

)
a(k)mnxnl

(
ĉml(t)

)

+

N∑

n=1

Nb∑

k=1

(
bk − b̂ml,k(t)

)
a(k)mn

Nc∑

j=1

(
cj − ĉml,j(t)

)
x
(j)
nl

−
(
bi − b̂ml,i(t)

) N∑

n=1

a(i)mnxnl

(
ĉml(t)

)
∣∣∣∣∣

2 ∣∣∣∣∣ bi = bi

}
(5.39)

= E

{∣∣∣∣∣
Nc∑

j=1

(
cj − ĉml,j(t)

) N∑

n=1

amn

(
b̂ml(t)

)
x
(j)
nl +

∑

k 6=i

(
bk − b̂ml,k(t)

) N∑

n=1

a(k)mnxnl

(
ĉml(t)

)

+

[
(
bi − b̂ml,i(t)

)
+
∑

k 6=i

(
bk − b̂ml,k(t)

)
]

Nc∑

j=1

(
cj − ĉml,j(t)

) N∑

n=1

a(k)mnx
(j)
nl

∣∣∣∣∣

2}

(5.40)

= E

{∣∣∣∣∣
Nc∑

j=1

(
cj − ĉml,j(t)

)
ẑ
(∗,j)
→ml(t) +

∑

k 6=i

(
bk − b̂ml,k(t)

)
ẑ
(k,∗)
→ml (t)

+

[
(
bi − b̂ml,i(t)

)
+
∑

k 6=i

(
bk − b̂ml,k(t)

)
]

Nc∑

j=1

(
cj − ĉml,j(t)

)
ẑ
(i,j)
ml

∣∣∣∣∣

2}
, (5.41)

where for (5.38) both (5.8)-(5.9) and (5.36) were used, for (5.39) sums were expanded

and a term was cancelled, for (5.40) sums were rearranged and the conditioning on

bi = bi was applied after which a term was cancelled, and for (5.41) the definitions in

145



(5.42)-(5.44) were applied, all of which are based on zml(b, c) , [A(b)X(c)]ml:

ẑ
(i,∗)
→ml(t) ,

∂

∂bi
zml(b, c)

∣∣∣∣
b = b̂ml(t), c = ĉml(t)

=
N∑

n=1

a(i)mnxnl

(
ĉml(t)

)
(5.42)

ẑ
(∗,j)
→ml(t) ,

∂

∂cj
zml(b, c)

∣∣∣∣
b = b̂ml(t), c = ĉml(t)

=

N∑

n=1

amn

(
b̂ml(t)

)
x
(j)
nl (5.43)

ẑ
(i,j)
ml ,

∂2

∂bi∂cj
zml(b, c)

∣∣∣∣
b = b̂ml(t), c = ĉml(t)

=
N∑

n=1

a(i)mnx
(j)
nl . (5.44)

We note that (5.44) is independent of the iteration t due to the location-invariant

nature of the parameterization’s partial derivatives under the affine model (5.8)-(5.9).

Continuing from (5.41), we rearrange terms to obtain

var{zml | bi = bi}

= E

{∣∣∣∣∣
Nc∑

j=1

(
cj − ĉml,j(t)

)[
ẑ
(∗,j)
→ml(t) +

(
bi − b̂ml,i(t)

)
ẑ
(i,j)
ml

]
+
∑

k 6=i

(
bk − b̂ml,k(t)

)
ẑ
(k,∗)
→ml (t)

+
∑

k 6=i

(
bk − b̂ml,k(t)

) Nc∑

j=1

(
cj − ĉml,j(t)

)
ẑ
(i,j)
ml

∣∣∣∣∣

2}
(5.45)

=
Nc∑

j=1

νc
ml,j(t)

[
ẑ
(∗,j)
→ml(t) +

(
bi − b̂ml,i(t)

)
ẑ
(i,j)
ml

]2
+
∑

k 6=i

νb
ml,k(t)ẑ

(k,∗)
→ml (t)

2

+
∑

k 6=i

νb
ml,k(t)

Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml (5.46)

=
Nc∑

j=1

νc
ml,j(t)

[
ẑ
(∗,j)
→ml(t)

2 + b̂ml,i(t)
2ẑ

(i,j)2
ml − 2b̂ml,i(t)ẑ

(∗,j)
→ml(t)ẑ

(i,j)
ml

]

+
∑

k 6=i

νb
ml,k(t)

[
ẑ
(k,∗)
→ml (t)

2 +
Nc∑

j=1

νc
ml,j(t)ẑ

(k,j)2
ml

]

+ b2i

Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml + 2bi

Nc∑

j=1

νc
ml,j(t)

[
ẑ
(∗,j)
→ml(t)ẑ

(i,j)
ml − b̂ml,i(t)ẑ

(i,j)2
ml

]
(5.47)

= νp
i,ml(t) + b2i

Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml + 2bi

Nc∑

j=1

νc
ml,j(t)

[
ẑ
(∗,j)
→ml(t)ẑ

(i,j)
ml − b̂ml,i(t)ẑ

(i,j)2
ml

]
,

(5.48)

146



where for (5.46) we exploited the zero-mean nature of bi − b̂ml,i(t) and cj − ĉml,j(t)

as well as the independence among the elements of [ bc ], for (5.47) we expanded and

rearranged terms, and for (5.48) we used the definition

νp
i,ml(t) ,

Nc∑

j=1

νc
ml,j(t)

[
ẑ
(∗,j)
→ml(t)

2 + b̂ml,i(t)
2ẑ

(i,j)2
ml − 2b̂ml,i(t)ẑ

(∗,j)
→ml(t)ẑ

(i,j)
ml

]

+
∑

k 6=i

νb
ml,k(t)

[
ẑ
(k,∗)
→ml (t)

2 +
Nc∑

j=1

νc
ml,j(t)ẑ

(k,j)2
ml

]
. (5.49)

Using the scalings established in Table 5.2, and invoking independence among bi, cj ,

a
(i)
mn, and x

(j)
nl , it can be readily seen that p̂i,ml(t) in (5.36), the terms in (5.42)-(5.44),

and νp
i,ml(t) all scale as O(1). Since p̂i,ml(t) and νp

i,ml(t) correspond to the mean and

variance of a distribution on zml, this scaling is expected.

A Monte Carlo simulation was performed to double-check the derivation of the

expressions in (5.36) and (5.48). For the simulation, bi was fixed at a particular value,

after which zml =
∑N

n=1

∑Nb

k=0 bka
(k)
mn

∑Nc

j=0 cjx
(j)
nl was computed using i.i.d zero-mean

Gaussian realizations of bk 6=i, cj, a
(i)
mn, and x

(j)
nl . Using 104 trials, the empirical mean

and variance of the resulting zml were computed and compared to the analytical

expressions in (5.36) and (5.48). Figure 5.2 plots the these quantities for a range of

bi values, showing a close agreement between empirical and analytical results. Under

correct (5.36) and (5.48), this is expected: the Law of Large Numbers guarantees that

the empirical and analytical values will converge as the number of Monte Carlo trials

grows to infinity.

We now use the Gaussian approximation of zml|bi=bi (whose mean and variance

appear in (5.36) and (5.48), respectively) to reduce the representation of the SPA

147



−5 −4 −3 −2 −1 0 1 2 3 4 5
−60

−40

−20

0

20

40

60

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

2

4

6

8
x 10

4

 

 

Simulation

Analytical

bi

va
r{
z m

l
|b

i
=

b i
}

E
{z

m
l
|b

i
=

b i
}

Figure 5.2: The results of a Monte-Carlo simulation used to double-check the derived
mean and variance expressions in (5.36) and (5.48). A close agreement between
simulated and analytical values is expected given that 104 number of Monte-Carlo
averages were used.

148



message (5.29) from a (Nb+Nc−1)-dimensional integral to a one-dimensional integral:

∆b
ml→i(t, bi) ≈ log

∫

zml

pyml|zml

(
yml

∣∣ zml

)
N
(
zml; E{zml | bi = bi}, var{zml | bi = bi}

)

(5.50)

= Hml

(
p̂i,ml(t) + biẑ

(i,∗)
→ml(t), νp

i,ml(t) + b2i

Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml

+ 2bi

Nc∑

j=1

νc
ml,j(t)

[
ẑ
(∗,j)
→ml(t)ẑ

(i,j)
ml − b̂ml,i(t)ẑ

(i,j)2
ml

])
+ const,

(5.51)

where we have introduced the shorthand notation

Hml

(
q̂, νq

)
, log

∫

z

pyml|zml
(yml | z)N (z; q̂, νq). (5.52)

Further approximations to (5.51) will now be made. For this, we first introduce

the following i-invariant versions of p̂i,ml(t) and νp
i,ml(t):

p̂ml(t) ,

N∑

n=1

amn

(
b̂ml(t)

)
xnl

(
ĉml(t)

)
(5.53)

νp
ml(t) ,

Nc∑

j=1

νc
ml,j(t)ẑ

(∗,j)
→ml(t)

2 +

Nb∑

k=1

νb
ml,k(t)

[
ẑ
(k,∗)
→ml (t)

2 +
Nc∑

j=1

νc
ml,j(t)ẑ

(k,j)2
ml

]
, (5.54)

noting that

p̂ml,i(t) = p̂ml(t)− b̂ml,i(t)ẑ
(i,∗)
→ml(t) (5.55)

νp
i,ml(t) = νp

ml(t) +
Nc∑

j=1

νc
ml,j(t)

[
b̂ml,i(t)

2ẑ
(i,j)2
ml − 2b̂ml,i(t)ẑ

(∗,j)
→ml(t)ẑ

(i,j)
ml

]

− νb
ml,i(t)

[
ẑ
(i,∗)
→ml(t)

2 +

Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml

]
. (5.56)

In the sequel, as with p̂i,ml(t) and νp
i,ml(t), we will assume that p̂ml(t) and νp

ml(t)

are O(1), since these quantities can be recognized as the mean and variance of a

149



distribution on the O(1) random variable zml. Next, we define

ẑ
(i,∗)
ml (t) ,

N∑

n=1

a(i)mnxnl

(
ĉ(t)

)
(5.57)

ẑ
(∗,j)
ml (t) ,

N∑

n=1

amn

(
b̂(t)

)
x
(j)
nl (5.58)

ẑ
(∗,∗)
ml (t) ,

N∑

n=1

amn

(
b̂(t)

)
xnl

(
ĉ(t)

)
, (5.59)

which are versions of (5.42)-(5.43) and p̂ml(t) evaluated at b̂(t) and ĉ(t), the means

of the SPA-approximated posteriors, rather than at b̂ml(t) and ĉml(t), the means

of the SPA messages. As such, the quantities in (5.57)-(5.59) are also O(1).

Recalling that
(
ĉml,j(t) − ĉj(t)

)
is O(1/N2), an examination of (5.9) under the

random affine model shows that
(
xnl(ĉml(t)) − xnl(ĉ(t))

)
is O(1/N). Compar-

ing (5.42) and (5.57) and invoking the independence of b and c, we then con-

clude that
(
ẑ
(i,∗)
→ml(t) − ẑ

(i,∗)
ml (t)

)
is O(1/N). A similar line of reasoning shows that

(
amn(b̂ml(t))−amn(b̂(t))

)
is O(1/N3/2), after which a comparison of (5.43) and (5.58)

reveals that
(
ẑ
(∗,j)
→ml(t) − ẑ

(∗,j)
ml (t)

)
is O(1/N).

150



Using (5.53) and (5.54), we can now rewrite the Hml(·) term in (5.51) as

Hml

(
p̂i,ml(t) + biẑ

(i,∗)
→ml(t), νp

i,ml(t) + b2i

Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml

+ 2bi

Nc∑

j=1

νc
ml,j(t)

[
ẑ
(∗,j)
→ml(t)ẑ

(i,j)
ml − b̂ml,i(t)ẑ

(i,j)2
ml

])

= Hml

(
p̂ml(t) +

(
bi − b̂ml,i(t)

)
ẑ
(i,∗)
→ml(t), νp

ml(t) +
(
bi − b̂ml,i(t)

)2 Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml

+ 2
(
bi − b̂ml,i(t)

) Nc∑

j=1

νc
ml,j(t)ẑ

(∗,j)
→ml(t)ẑ

(i,j)
ml

− νb
ml,i(t)

[
ẑ
(i,∗)
→ml(t)

2 +
Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml

])
(5.60)

= Hml

(
p̂ml(t) +

(
bi − b̂i(t)

)
ẑ
(i,∗)
→ml(t) +O(1/N2),

νp
ml(t) +

(
bi − b̂i(t)

)2 Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml

+ 2
(
bi − b̂i(t)

) Nc∑

j=1

νc
ml,j(t)ẑ

(∗,j)
ml (t)ẑ

(i,j)
ml +O(1/N2)

)
. (5.61)

Next we will perform a Taylor series expansion of the Gaussian-approximated message

(5.51) in bi about b̂i(t). For this, we need the first two derivatives of the Hml(·) term

w.r.t bi. From (5.61), we find that

∂Hml

∂bi
= ẑ

(i,∗)
→ml(t)H

′
ml +

(
2
(
bi − b̂i(t)

) Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml + 2

Nc∑

j=1

νc
ml,j(t)ẑ

(∗,j)
ml (t)ẑ

(i,j)
ml

)
Ḣml,

(5.62)

which implies

∂Hml

∂bi

∣∣∣∣∣
bi=b̂i(t)

= ẑ
(i,∗)
→ml(t)H

′
ml +

(
2

Nc∑

j=1

νc
ml,j(t)ẑ

(∗,j)
ml (t)ẑ

(i,j)
ml

)
Ḣml, (5.63)

151



and

∂2Hml

∂b2i
= ẑ

(i,∗)
→ml(t)

2H ′′ml

+

(
2
(
bi − b̂i(t)

) Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml + 2

Nc∑

j=1

νc
ml,j(t)ẑ

(∗,j)
ml (t)ẑ

(i,j)
ml

)
ẑ
(i,∗)
→ml(t)Ḣ

′
ml

+

(
2

Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml

)
Ḣml

+

[
2
(
bi − b̂i(t)

) Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml + 2

Nc∑

j=1

νc
ml,j(t)ẑ

(∗,j)
ml (t)ẑ

(i,j)
ml

]

×
[
ẑ
(i,∗)
→ml(t)Ḣ

′
ml +

(
2
(
bi − b̂i(t)

) Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml

+ 2
Nc∑

j=1

νc
ml,j(t)ẑ

(∗,j)
ml (t)ẑ

(i,j)
ml

)
Ḧml

]
(5.64)

which implies

∂2Hml

∂∂b2i

∣∣∣∣∣
bi=b̂i(t)

= ẑ
(i,∗)
→ml(t)

2H ′′ml +

(
4

Nc∑

j=1

νc
ml,j(t)ẑ

(∗,j)
ml (t)ẑ

(i,j)
ml

)
ẑ
(i,∗)
→ml(t)Ḣ

′
ml

+

(
2

Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml

)
Ḣml +

(
2

Nc∑

j=1

νc
ml,j(t)ẑ

(∗,j)
ml (t)ẑ

(i,j)
ml

)2

Ḧml,

(5.65)

where H ′ml(·, ·) denotes the derivative w.r.t the first argument and Ḣml(·, ·) denotes

the derivative w.r.t the second argument. Note that, in the expressions (5.62)-(5.65),

the arguments of Hml and its derivatives were suppressed for brevity. The Taylor

152



series expansion of (5.51) can then be stated as

∆b
ml→i(t, bi) ≈ const +Hml

(
p̂ml(t) +O(1/N2), νp

ml(t) +O(1/N2)
)

+
(
bi − b̂i(t)

)
[
ẑ
(i,∗)
→ml(t)H

′
ml

(
p̂ml(t) +O(1/N2), νp

ml(t) +O(1/N2)
)

+ 2

(
Nc∑

j=1

νc
ml,j(t)ẑ

(∗,j)
ml (t)ẑ

(i,j)
ml

)

× Ḣml

(
p̂ml(t) +O(1/N2), νp

ml(t) +O(1/N2)
)
]

+
1

2

(
bi − b̂i(t)

)2
[
ẑ
(i,∗)
→ml(t)

2H ′′ml

(
p̂ml(t) +O(1/N2), νp

ml(t) +O(1/N2)
)

+

(
2

Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml

)

× Ḣml

(
p̂ml(t) +O(1/N2), νp

ml(t) +O(1/N2)
)
]

+O(1/N3), (5.66)

where the second and fourth terms in (5.65) were absorbed into the O(1/N3) term in

(5.66) using the facts that
(
4

Nc∑

j=1

νc
ml,j(t)ẑ

(∗,j)
ml (t)ẑ

(i,j)
ml

)
ẑ
(i,∗)
→ml(t) = O(1/N) (5.67)

(
2

Nc∑

j=1

νc
ml,j(t)ẑ

(i,j)2
ml

)
= O(1) (5.68)

(
2

Nc∑

j=1

νc
ml,j(t)ẑ

(∗,j)
ml (t)ẑ

(i,j)
ml

)2

= O(1/N2). (5.69)

which follow from the random affine parameterization and the O(1/N2) scaling of

νc
ml,j(t), as well as from the facts that

(
bi − b̂i(t)

)2
is O(1/N2) and the function Hml

and its partials are O(1).

Note that the second-order expansion term in (5.66) is O(1/N2). We will now

approximate (5.66) by dropping terms that vanish relative to the latter as N → ∞.

153



First, we replace ẑ
(i,∗)
→ml(t) with ẑ

(i,∗)
ml (t) in the quadratic term in (5.66), since

(
ẑ
(i,∗)
→ml(t)−

ẑ
(i,∗)
ml (t)

)
is O(1/N), which gets reduced to O(1/N3) via scaling by

(
bi − b̂i(t)

)2
. Note

that we cannot make a similar replacement in the linear term in (5.66), because

the
(
bi − b̂i(t)

)
scaling is not enough to render the difference negligible. Next, we

replace νc
ml,j(t) with νc

j (t) throughout (5.66), since the difference is O(1/N3). Finally,

as established in [8], the O(1/N2) perturbations inside the Hml derivatives can be

dropped because they have an O(1/N3) effect on the overall message. With these

approximations, and absorbing bi-invariant terms into the const, we obtain

∆b
ml→i(t, bi) ≈ const

+

[
ŝml(t)ẑ

(i,∗)
→ml(t) +

(
ŝ2ml(t)− νs

ml(t)
) Nc∑

j=1

νc
j (t)ẑ

(i,j)
ml

(
ẑ
(∗,j)
ml (t) − b̂i(t)ẑ

(i,j)
ml

)

+ νs
ml(t)̂bi(t)ẑ

(i,∗)
ml (t)2

]
bi

− 1

2

[
νs
ml(t)ẑ

(i,∗)
ml (t)2 −

(
ŝ2ml(t)− νs

ml(t)
) Nc∑

j=1

νc
j (t)ẑ

(i,j)2
ml

]
b2i , (5.70)

where we used

ŝml(t) , H ′ml

(
p̂ml(t), ν

p
ml(t)

)
(5.71)

νs
ml(t) , −H ′′ml

(
p̂ml(t), ν

p
ml(t)

)
(5.72)

and the following relationship established in [8]:

Ḣml

(
q, νq

)
=

1

2

[
H ′ml

(
q, νq

)2
+H ′′ml

(
q, νq

)]
. (5.73)

Note that, since the message (5.70) is quadratic, we have essentially made a Gaussian

approximation to the pdf 1
C
exp(∆b

ml→i(t, .)). Also note that, since the function Hml(·)

and its partials are O(1), and since all the arguments of these functions are O(1), we

conclude that (5.71) and (5.72) are O(1) as well.

154



Furthermore, the derivation in [8, Appendix A] shows that (5.71)-(5.72) can be

rewritten as

ŝml(t) =
1

νp
ml(t)

(
ẑml(t)− p̂ml(t)

)
(5.74)

νs
ml(t) =

1

νp
ml(t)

(
1− νz

ml(t)

νp
ml(t)

)
, (5.75)

using the conditional mean and variance

ẑml(t) , E{zml | pml= p̂ml(t); ν
p
ml(t)} (5.76)

νz
ml(t) , var{zml | pml= p̂ml(t); ν

p
ml(t)}, (5.77)

computed according to the (conditional) pdf

pzml|pml

(
zml | p̂ml(t); ν

p
ml(t)

)

, 1
C
pyml|zml

(yml | zml)N
(
zml; p̂ml(t), ν

p
ml(t)

)
, (5.78)

where here C =
∫
z
pyml|zml

(yml | z)N
(
z; p̂ml(t), ν

p
ml(t)

)
. In fact, (5.78) is P-BiG-AMP’s

iteration-t approximation to the true marginal posterior pzml|Y(zml|Y ). We note that

(5.78) can also be interpreted as the (exact) posterior pdf for zml given the likeli-

hood pyml|zml
(yml|·) from (5.3) and the prior zml ∼ N

(
p̂ml(t), ν

p
ml(t)

)
that is implicitly

adopted by iteration-t P-BiG-AMP.

5.5.2 SPA message from node pyml|zml
to node cj

Since the bilinear form zml =
∑N

n=1

∑Nb

i=0 a
(i)
mnbi

∑Nc

j=0 x
(j)
nl cj implies a symmetry be-

tween bi and cj, the derivation of ∆c
ml→j(t, ·) closely follows the derivation of ∆b

ml→i(t, ·)

155



from Section 5.5.1. Following the same process, we begin with

∆c
ml→j(t, cj) = log

∫

{br}Nb
r=1,{ck}k 6=j

pyml|zml

(
yml

∣∣∣

zml︷ ︸︸ ︷
N∑

n=1

amn(b)xnl(c)
)

×
Nb∏

r=1

exp
(
∆b

ml←r(t, br)
)∏

k 6=j

exp
(
∆c

ml←k(t, ck)
)
+ const (5.79)

and apply the CLT in order to treat zml|bml = bi, i.e., the random variable associated

with the zml identified in (5.79), as Gaussian in the large-system limit. Using the

same methods as before, the conditional mean becomes

E{zml | cj = cj} = p̂j,ml(t) + cj ẑ
(∗,j)
→ml(t), (5.80)

where, with an abuse of notation,44 we employed the definition

p̂j,ml(t) ,
N∑

n=1

amn

(
b̂ml(t)

)
xnl

(
ĉml(t)

)
− ĉml,j(t)

N∑

n=1

amn

(
b̂ml(t)

)
x
(j)
nl (5.81)

= p̂ml(t)− ĉml,j(t)ẑ
(∗,j)
→ml(t). (5.82)

Similarly, the conditional variance is

var{zml | cj = cj} = νp
j,ml(t) + c2j

Nb∑

i=1

νb
ml,i(t)ẑ

(i,j)2
ml

+ 2cj

Nb∑

i=1

νb
ml,i(t)

[
ẑ
(i,∗)
→ml(t)ẑ

(i,j)
ml − ĉml,j(t)ẑ

(i,j)2
ml

]
, (5.83)

where, again with an abuse of notation, we employed the definition

νp
j,ml(t) ,

Nb∑

i=1

νb
ml,i(t)

[
ẑ
(i,∗)
→ml(t)

2 + ĉml,j(t)
2ẑ

(i,j)2
ml − 2ĉml,j(t)ẑ

(i,∗)
→ml(t)ẑ

(i,j)
ml

]

+
∑

k 6=j

νc
ml,k(t)

[
ẑ
(∗,k)
→ml (t)

2 +

Nb∑

i=1

νc
ml,k(t)ẑ

(i,k)
ml (t)2

]
. (5.84)

44Notice that p̂i,ml(t) and p̂j,ml(t) have different functional forms. However, both reduce to p̂ml(t)
from (5.53) when the dependance on destination (i.e., i or j) is removed.

156



The conditional-Gaussian approximation reduces the high-dimensional integral in

(5.79) to a one-dimensional integral, so that

∆c
ml→j(t, cj) (5.85)

≈ log

∫

zml

pyml|zml

(
yml

∣∣ zml

)
N
(
zml; E{zml | cj = cj}, var{zml | cj = cj}

)

= Hml

(
p̂j,ml(t) + cj ẑ

(∗,j)
→ml(t), νp

j,ml(t) + c2j

Nb∑

i=1

νb
ml,i(t)ẑ

(i,j)2
ml

+ 2cj

Nb∑

i=1

νb
ml,i(t)

[
ẑ
(i,∗)
→ml(t)ẑ

(i,j)
ml − ĉml,j(t)ẑ

(i,j)2
ml

])
+ const (5.86)

= const +Hml

(
p̂ml(t) +

(
cj − ĉj(t)

)
ẑ
(∗,j)
→ml(t) +O(1/N2),

νp
ml(t) +

(
cj − ĉj(t)

)2 Nb∑

i=1

νb
ml,i(t)ẑ

(i,j)2
ml

+ 2
(
cj − ĉj(t)

) Nb∑

i=1

νb
ml,i(t)ẑ

(i,∗)
ml (t)ẑ

(i,j)
ml +O(1/N2)

)
, (5.87)

where (5.87) uses the same line of reasoning as (5.61). Taking a Taylor series expan-

sion of (5.87) in cj about ĉj(t), we obtain

∆c
ml→j(t, cj) ≈ const +Hml

(
p̂ml(t) +O(1/N2), νp

ml(t) +O(1/N2)
)

+
(
cj − ĉj(t)

)
[
ẑ
(∗,j)
→ml(t)H

′
ml

(
p̂ml(t) +O(1/N2), νp

ml(t) +O(1/N2)
)

+ 2

(
Nb∑

i=1

νb
ml,i(t)ẑ

(i,∗)
ml (t)ẑ

(i,j)
ml

)

× Ḣml

(
p̂ml(t) +O(1/N2), νp

ml(t) +O(1/N2)
)
]

+
1

2

(
cj − ĉj(t)

)2
[
ẑ
(∗,j)
→ml(t)

2H ′′ml

(
p̂ml(t) +O(1/N2), νp

ml(t) +O(1/N2)
)

+

(
2

Nb∑

i=1

νb
ml,i(t)ẑ

(i,j)2
ml

)
Ḣml

(
p̂ml(t) +O(1/N2), νp

ml(t) +O(1/N2)
)
]

+O(1/N3) (5.88)

157



using arguments similar to those used for (5.66). Finally, as in (5.70), we neglect

terms that vanish relative to the quadratic term in (5.88), yielding

∆c
ml→j(t, cj) ≈ const

+

[
ŝml(t)ẑ

(∗,j)
→ml(t) +

(
ŝ2ml(t)− νs

ml(t)
) Nb∑

i=1

νb
i (t)ẑ

(i,j)
ml

(
ẑ
(i,∗)
ml (t) − ĉj(t)ẑ

(i,j)
ml

)

+ νs
ml(t)ĉj(t)ẑ

(∗,j)
ml (t)2

]
cj

− 1

2

[
νs
ml(t)ẑ

(∗,j)
ml (t)2 −

(
ŝ2ml(t)− νs

ml(t)
) Nb∑

i=1

νb
i (t)ẑ

(i,j)2
ml

]
c2j . (5.89)

At this point, we have obtained quadratic approximations to all the messages flowing

out from the pyml|zml
nodes. We now turn to approximating the messages flowing out

of the variable nodes.

5.5.3 SPA message from node cj to pyml|zml

We start with (5.26) and plug in the approximation for ∆c
ml→j(t, cj) in (5.89) to

obtain

∆c
ml←j(t+1, cj)

≈ const + log pcj (cj)

+
∑

(r,k)6=(m,l)

([
ŝrk(t)ẑ

(∗,j)
→rk (t) +

(
ŝ2rk(t)− νs

rk(t)
) Nb∑

i=1

νb
i (t)ẑ

(i,j)
rk

(
ẑ
(i,∗)
rk (t) − ĉj(t)ẑ

(i,j)
rk

)

+ νs
rk(t)ĉj(t)ẑ

(∗,j)
rk (t)2

]
cj −

1

2

[
νs
rk(t)ẑ

(∗,j)
rk (t)2 −

(
ŝ2rk(t)− νs

rk(t)
) Nb∑

i=1

νb
i (t)ẑ

(i,j)2
rk

]
c2j

)

(5.90)

= const + log pcj(cj)−
1

2νr
ml,j(t)

(
cj − r̂ml,j(t)

)2
(5.91)

= const + log
(
pcj (cj)N

(
cj ; r̂ml,j(t), ν

r
ml,j(t)

))
(5.92)

158



where

νr
ml,j(t) ,

[ ∑

(r,k)6=(m,l)

(
νs
rk(t)ẑ

(∗,j)
rk (t)2 −

(
ŝ2rk(t)− νs

rk(t)
) Nb∑

i=1

νb
i (t)ẑ

(i,j)2
rk

)]−1
(5.93)

r̂ml,j(t) , ĉj(t)

+ νr
ml,j(t)

∑

(r,k)6=(m,l)

(
(
ŝ2rk(t)− νs

rk(t)
) Nb∑

i=1

νb
i (t)ẑ

(i,j)
rk ẑ

(i,∗)
rk (t) + ŝrk(t)ẑ

(∗,j)
→rk (t)

)
.

(5.94)

Since νr
ml,j(t) is the reciprocal of a sum of ML terms of O(1), we conclude that it is

O(1/N2). Given this and the scalings from Table 5.2, we see that r̂ml,j(t) is O(1/N).

Since r̂ml,j(t) can be interpreted as an estimate of cj , this scaling is anticipated.

The mean and variance of the pdf associated with the ∆c
ml←j(t+1, cj) message

approximation from (5.92) are

ĉml,j(t+1) ,
1

K

∫

c

c pcj (c)N
(
c; r̂ml,j(t), ν

r
ml,j(t)

)

︸ ︷︷ ︸
, gcj(r̂ml,j(t), ν

r
ml,j(t))

(5.95)

νc
ml,j(t+1) ,

1

K

∫

c

∣∣c− ĉml,j(t+1)
∣∣2pcj (c)N

(
c; r̂ml,j(t), ν

r
ml,j(t)

)

︸ ︷︷ ︸
νr
ml,j(t) g

′
cj
(r̂ml,j(t), ν

r
ml,j(t)) (5.96)

where K =
∫
c
pcj (c)N

(
c; r̂ml,j(t), ν

r
ml,j(t)

)
here and g′cj denotes the derivative of gcj

with respect to the first argument. The fact that (5.95) and (5.96) are related through

a derivative was shown in [6].

Next we develop mean and variance approximations that do not depend on the

destination node ml. For this, we introduce ml-invariant versions of r̂ml,j(t) and

159



νr
ml,j(t):

νr
j (t) ,

[∑

m,l

(
νs
ml(t)ẑ

(∗,j)
ml (t)2 −

(
ŝ2ml(t)− νs

ml(t)
) Nb∑

i=1

νb
i (t)ẑ

(i,j)2
ml

)]−1
(5.97)

r̂j(t) , ĉj(t) + νr
j (t)

∑

m,l

(
(
ŝ2ml(t)− νs

ml(t)
) Nb∑

i=1

νb
i (t)ẑ

(i,j)
ml ẑ

(i,∗)
ml (t) + ŝml(t)ẑ

(∗,j)
→ml(t)

)
.

(5.98)

Comparing (5.93)-(5.94) and (5.97)-(5.98) reveals that
(
νr
ml,j(t) − νr

j (t)
)
scales as

O(1/N4) and that r̂ml,j(t) = r̂j(t) − νr
j (t)ŝml(t)ẑ

(∗,j)
ml (t) + O(1/N3), and thus (5.95)

implies

ĉml,j(t+1) = gcj

(
r̂j(t)− νr

j (t)ŝml(t)ẑ
(∗,j)
ml (t) +O(1/N3), νr

j (t) +O(1/N4)
)

(5.99)

= gcj

(
r̂j(t)− νr

j (t)ŝml(t)ẑ
(∗,j)
ml (t), νr

j (t)
)
+O(1/N3) (5.100)

= gcj
(
r̂j(t), ν

r
j (t)
)
− νr

j (t)g
′
cj

(
r̂j(t), ν

r
j (t)
)
ŝml(t)ẑ

(∗,j)
ml (t) +O(1/N3)

(5.101)

= ĉj(t+1)− ŝml(t)ẑ
(∗,j)
ml (t)νc

j (t+1) +O(1/N3), (5.102)

where (5.100) follows by taking Taylor series expansions of (5.99) about the perturba-

tions to the arguments; (5.101) follows by taking a Taylor series expansion of (5.100)

in the first argument about the point r̂j(t); and (5.102) follows from the definitions

ĉj(t+1) , gcj
(
r̂j(t), ν

r
j (t)
)

(5.103)

νc
j (t+1) , νr

j (t)g
′
cj

(
r̂j(t), ν

r
j (t)
)
. (5.104)

Note that (5.102) is consistent with our earlier assumption that
(
ĉml,j(t+1)− ĉj(t+1)

)

is O(1/N2).

160



5.5.4 SPA message from node bi to pyml|zml

Once again, due to symmetry, the derivation for ∆b
ml←i(t+1, bi) closely parallels

that for ∆c
ml←j(t+1, cj). Plugging approximation (5.70) into (5.25), we obtain

∆b
ml←i(t+1, bi)

≈ const + log pbi(bi)

+
∑

(r,k)6=(m,l)

([
ŝrk(t)ẑ

(i,∗)
→rk(t) +

(
ŝ2rk(t)− νs

rk(t)
) Nc∑

j=1

νc
j (t)ẑ

(i,j)
rk

(
ẑ
(∗,j)
rk (t) − b̂i(t)ẑ

(i,j)
rk

)

+ νs
rk(t)̂bi(t)ẑ

(i,∗)
rk (t)2

]
bi −

1

2

[
νs
rk(t)ẑ

(i,∗)
rk (t)2 −

(
ŝ2rk(t)− νs

rk(t)
) Nc∑

j=1

νc
j (t)ẑ

(i,j)2
rk

]
b2i

)

(5.105)

= const + log
(
pci(bi)N

(
bi; q̂ml,i(t), ν

q
ml,i(t)

))
(5.106)

where

νq
ml,i(t) ,

[ ∑

(r,k)6=(m,l)

(
νs
rk(t)ẑ

(i,∗)
rk (t)2 −

(
ŝ2rk(t)− νs

rk(t)
) Nc∑

j=1

νc
j (t)ẑ

(i,j)2
rk

)]−1
(5.107)

q̂ml,i(t) , b̂i(t)

+ νq
ml,i(t)

∑

(r,k)6=(m,l)

(
(
ŝ2rk(t)− νs

rk(t)
) Nc∑

j=1

νc
j (t)ẑ

(i,j)
rk ẑ

(∗,j)
rk (t) + ŝrk(t)ẑ

(i,∗)
→rk(t)

)
.

(5.108)

Due to the symmetry and previously established scalings, the q variables follow the

same scaling as the r variables, as shown in Table 5.2.

161



The mean and variance of the pdf associated with the ∆b
ml←i(t+1, bi) approximation

in (5.106) are

b̂ml,i(t+1) ,
1

K

∫

b

b pbi(b)N
(
b; q̂ml,i(t), ν

q
ml,i(t)

)

︸ ︷︷ ︸
, gbi(q̂ml,i(t), ν

q
ml,i(t))

(5.109)

νb
ml,i(t+1) ,

1

K

∫

b

∣∣b− b̂ml,i(t+1)
∣∣2pbi(b)N

(
b; q̂ml,i(t), ν

q
ml,i(t)

)

︸ ︷︷ ︸
νq
ml,i(t) g

′
bi
(q̂ml,i(t), ν

q
ml,i(t)) (5.110)

where K =
∫
b
pbi(b)N

(
b; q̂ml,i(t), ν

q
ml,i(t)

)
here and g′bi denotes the derivative of gbi

with respect to the first argument. Following the same procedure as before, we define

the ml-invariant quantities

νq
i (t) ,

[∑

m,l

(
νs
ml(t)ẑ

(i,∗)
ml (t)2 −

(
ŝ2ml(t)− νs

ml(t)
) Nc∑

j=1

νc
j (t)ẑ

(i,j)2
ml

)]−1
(5.111)

q̂i(t) , b̂i(t) + νq
i (t)

∑

m,l

(
(
ŝ2ml(t)− νs

ml(t)
) Nc∑

j=1

νc
j (t)ẑ

(i,j)
ml ẑ

(∗,j)
ml (t) + ŝml(t)ẑ

(i,∗)
→ml(t)

)

(5.112)

and perform several Taylor series expansions, finally dropping terms that vanish in

the large system limit, to obtain

b̂ml,i(t+1) = gbi

(
q̂i(t)− νq

i (t)ŝml(t)ẑ
(i,∗)
ml (t) +O(1/N3), νq

i (t) +O(1/N4)
)

(5.113)

= gbi

(
q̂i(t)− νq

i (t)ŝml(t)ẑ
(i,∗)
ml (t), νq

i (t)
)
+O(1/N3) (5.114)

= gbi
(
q̂i(t), ν

q
i (t)
)
− νq

i (t)g
′
bi

(
q̂i(t), ν

q
i (t)
)
ŝml(t)ẑ

(i,∗)
ml (t) +O(1/N3) (5.115)

= b̂i(t+1)− ŝml(t)ẑ
(i,∗)
ml (t)νb

i (t+1) +O(1/N3), (5.116)

where we have used the definitions

b̂i(t+1) , gbi
(
q̂i(t), ν

q
i (t)
)

(5.117)

νb
i (t+1) , νq

i (t)g
′
bi

(
q̂i(t), ν

q
i (t)
)
. (5.118)

162



5.5.5 Closing the loop

To complete the derivation of P-BiG-AMP, we use (5.102) and (5.116) to eliminate

the dependence on ml in the bi and cj estimates and to eliminate the dependence on

i and j in the zml estimates. First, applying (5.102) to (5.9) evaluated at c = ĉml(t)

and ĉ = ĉ(t) yields

xnl

(
ĉml(t)

)
= xnl

(
ĉ(t)

)
− ŝml(t−1)

Nc∑

j=1

ẑ
(∗,j)
ml (t−1)νc

j (t)x
(j)
nl +O(1/N2), (5.119)

and applying (5.116) to (5.8) yields

amn

(
b̂ml(t)

)
= amn

(
b̂(t)

)
− ŝml(t−1)

Nb∑

i=1

ẑ
(i,∗)
ml (t−1)νb

i (t)a
(i)
mn +O(1/N2.5). (5.120)

Equations (5.119)-(5.120) can be used to write p̂ml(t) from (5.53) as

p̂ml(t) =

N∑

n=1

(
amn

(
b̂(t)

)
− ŝml(t−1)

Nb∑

i=1

ẑ
(i,∗)
ml (t−1)νb

i (t)a
(i)
mn

)

×
(
xnl

(
ĉ(t)

)
− ŝml(t−1)

Nc∑

j=1

ẑ
(∗,j)
ml (t−1)νc

j (t)x
(j)
nl

)
+O(1/N2) (5.121)

= ẑ
(∗,∗)
ml (t) − ŝml(t−1)

(
Nb∑

i=1

ẑ
(i,∗)
ml (t−1)ẑ

(i,∗)
ml (t)νb

i (t) +
Nc∑

j=1

ẑ
(∗,j)
ml (t−1)ẑ

(∗,j)
ml (t)νc

j (t)

)

+ ŝ2ml(t−1)

(
Nb∑

i=1

Nc∑

j=1

νb
i (t)ν

c
j (t)ẑ

(i,j)
ml ẑ

(i,∗)
ml (t−1)ẑ

(∗,j)
ml (t−1)

)
+O(1/N2)

(5.122)

≈ ẑ
(∗,∗)
ml (t) − ŝml(t−1)

(
Nb∑

i=1

ẑ
(i,∗)
ml (t−1)ẑ

(i,∗)
ml (t)νb

i (t) +
Nc∑

j=1

ẑ
(∗,j)
ml (t−1)ẑ

(∗,j)
ml (t)νc

j (t)

)
,

(5.123)

where the final step follows by neglecting terms that vanish in the large system limit

relative to the remaining O(1) terms. Although not justified by the large-system

163



limit, we will also apply the approximations

Nb∑

i=1

ẑ
(i,∗)
ml (t−1)ẑ

(i,∗)
ml (t)νb

i (t) ≈
Nb∑

i=1

ẑ
(i,∗)
ml (t)2νb

i (t) (5.124)

Nc∑

j=1

ẑ
(∗,j)
ml (t−1)ẑ

(∗,j)
ml (t)νc

j (t) ≈
Nc∑

j=1

ẑ
(∗,j)
ml (t)2νc

j (t) (5.125)

for the sake of algorithmic simplicity, yielding

p̂ml(t) ≈ ẑ
(∗,∗)
ml (t) − ŝml(t−1)

(
Nb∑

i=1

ẑ
(i,∗)
ml (t)2νb

i (t) +
Nc∑

j=1

ẑ
(∗,j)
ml (t)2νc

j (t)

)

︸ ︷︷ ︸
, νp

ml(t)

, (5.126)

and note that similar approximations were made for BiG-AMP in [8], where empirical

tests showed little effect. Of course, a more complicated version of the P-BiG-AMP

algorithm could be stated using (5.123) instead of (5.126).

Equations (5.119)-(5.120) can also be used to simplify νp
ml(t). For this, we first

use the facts νc
ml,j(t) = νc

j (t)+O(1/N3) and νb
ml,i(t) = νb

i (t)+O(1/N3) to write (5.54)

as

νp
ml(t) =

Nc∑

j=1

νc
j (t)ẑ

(∗,j)
→ml(t)

2 +

Nb∑

i=1

νb
i (t)ẑ

(i,∗)
→ml(t)

2 +

Nb∑

i=1

Nc∑

j=1

νb
i (t)ν

c
j (t)ẑ

(i,j)2
ml +O(1/N).

(5.127)

Then we use (5.119) to write (5.42) as

ẑ
(i,∗)
→ml(t) =

N∑

n=1

a(i)mn

(
xnl

(
ĉ(t)

)
− ŝml(t−1)

Nc∑

j=1

ẑ
(∗,j)
ml (t−1)νc

j (t)x
(j)
nl

)
+O(1/N2)

(5.128)

= ẑ
(i,∗)
ml (t) − ŝml(t−1)

Nc∑

j=1

ẑ
(∗,j)
ml (t−1)ẑ

(i,j)
ml νc

j (t) +O(1/N2), (5.129)

164



and (5.120) to write (5.43) as

ẑ
(∗,j)
→ml(t) =

N∑

n=1

x
(j)
nl

(
amn

(
b̂(t)

)
− ŝml(t−1)

Nb∑

i=1

ẑ
(i,∗)
ml (t−1)νb

i (t)a
(i)
mn

)
+O(1/N2)

(5.130)

= ẑ
(∗,j)
ml (t) − ŝml(t−1)

Nb∑

i=1

ẑ
(i,∗)
ml (t−1)ẑ

(i,j)
ml νb

i (t) +O(1/N2), (5.131)

which can be plugged into (5.127) to yield

νp
ml(t) =

Nc∑

j=1

νc
j (t)

(
ẑ
(∗,j)
ml (t) − ŝml(t−1)

Nb∑

i=1

ẑ
(i,∗)
ml (t−1)ẑ

(i,j)
ml νb

i (t)

)2

+

Nb∑

i=1

νb
i (t)

(
ẑ
(i,∗)
ml (t) − ŝml(t−1)

Nc∑

j=1

ẑ
(∗,j)
ml (t−1)ẑ

(i,j)
ml νc

j (t)

)2

+

Nb∑

i=1

Nc∑

j=1

νb
i (t)ν

c
j (t)ẑ

(i,j)2
ml +O(1/N) (5.132)

= νp
ml(t) +

Nb∑

i=1

Nc∑

j=1

νb
i (t)ν

c
j (t)ẑ

(i,j)2
ml

− 2ŝml(t−1)

[
Nc∑

j=1

νc
j (t)ẑ

(∗,j)
ml (t)

Nb∑

i=1

ẑ
(i,∗)
ml (t−1)ẑ

(i,j)
ml νb

i (t)

+

Nb∑

i=1

νb
i (t)ẑ

(i,∗)
ml (t)

Nc∑

j=1

ẑ
(∗,j)
ml (t−1)ẑ

(i,j)
ml νc

j (t)

]

+ ŝ2ml(t−1)

[
Nc∑

j=1

νc
j (t)

(
Nb∑

i=1

ẑ
(i,∗)
ml (t−1)ẑ

(i,j)
ml νb

i (t)

)2

+

Nb∑

i=1

νb
i (t)

(
Nc∑

j=1

ẑ
(∗,j)
ml (t−1)ẑ

(i,j)
ml νc

j (t)

)2]

+O(1/N) (5.133)

≈ νp
ml(t) +

Nb∑

i=1

Nc∑

j=1

νb
i (t)ν

c
j (t)ẑ

(i,j)2
ml , (5.134)

where we have again retained only the O(1) terms, since the others vanish in the

large-system limit.

165



Next, we eliminate the dependence on ẑ
(∗,j)
→ml(t) from r̂j(t). Plugging (5.131) into

(5.98), we obtain

r̂j(t) = ĉj(t) + νr
j (t)

∑

m,l

(
ŝ2ml(t)− νs

ml(t)
) Nb∑

i=1

νb
i (t)ẑ

(i,j)
ml ẑ

(i,∗)
ml (t)

+ νr
j (t)

∑

m,l

ŝml(t)

(
ẑ
(∗,j)
ml (t) − ŝml(t−1)

Nb∑

i=1

ẑ
(i,∗)
ml (t−1)ẑ

(i,j)
ml νb

i (t)

)
+O(1/N3)

(5.135)

≈ ĉj(t) + νr
j (t)

∑

m,l

(
ŝ2ml(t)− νs

ml(t)
) Nb∑

i=1

νb
i (t)ẑ

(i,j)
ml ẑ

(i,∗)
ml (t)

+ νr
j (t)

∑

m,l

ŝml(t)

(
ẑ
(∗,j)
ml (t) − ŝml(t−1)

Nb∑

i=1

ẑ
(i,∗)
ml (t−1)ẑ

(i,j)
ml νb

i (t)

)
, (5.136)

neglecting terms that vanish in the large-system limit. We note that the order of the

neglected term, O(1/N3), is consistent with the approximation term in (5.102). Al-

though not justified by the large-system limit, we will also employ the approximation

∑

m,l

ŝ2ml(t)

Nb∑

i=1

νb
i (t)ẑ

(i,j)
ml ẑ

(i,∗)
ml (t) ≈

∑

m,l

ŝml(t)ŝml(t−1)

Nb∑

i=1

νb
i (t)ẑ

(i,j)
ml ẑ

(i,∗)
ml (t−1) (5.137)

for the sake of algorithmic simplicity, yielding

r̂j(t) ≈ ĉj(t) + νr
j (t)

∑

m,l

(
ŝml(t)ẑ

(∗,j)
ml (t) − νs

ml(t)

Nb∑

i=1

νb
i (t)ẑ

(i,j)
ml ẑ

(i,∗)
ml (t)

)
. (5.138)

noting that similar approximations were also made for BiG-AMP [8]. Similarly, we

substitute (5.129) into (5.112) and make analogous approximations to obtain

q̂i(t) ≈ b̂i(t) + νq
i (t)

∑

m,l

(
ŝml(t)ẑ

(i,∗)
ml (t) − νs

ml(t)
Nc∑

j=1

νc
j (t)ẑ

(i,j)
ml ẑ

(∗,j)
ml (t)

)
. (5.139)

166



Next, we simply expressions for the variances νr
j (t) and νq

i (t). For this, we first

note that the second half of νr
j (t) from (5.97) can be written as

∑

m,l

(
ŝ2ml(t)− νs

ml(t)
) Nb∑

i=1

νb
i (t)ẑ

(i,j)2
ml (5.140)

=
∑

m,l

[(
ẑml(t)− p̂ml(t)

νp
ml(t)

)2

− 1

νp
ml(t)

(
1− νz

ml(t)

νp
ml(t)

)] Nb∑

i=1

νb
i (t)ẑ

(i,j)2
ml (5.141)

=
∑

m,l

((
ẑml(t)− p̂ml(t)

)2
+ νz

ml(t)

νp
ml(t)

− 1

)∑Nb

i=1 ν
b
i (t)ẑ

(i,j)2
ml

νp
ml(t)

(5.142)

=
∑

m,l

(
E

{(
zml − p̂ml(t)

)2

νp
ml(t)

}
− 1

)∑Nb

i=1 ν
b
i (t)ẑ

(i,j)2
ml

νp
ml(t)

, (5.143)

where the expressions for ŝ2ml(t) and νs
ml(t) came from (5.74) and (5.75) and the ran-

dom variable zml above is distributed according to the pdf in (5.78). For the simpler

GAMP algorithm, [6, Sec. VI.D] clarifies that, under i.i.d priors and scalar variances,

in the large-system limit, the true zm and the GAMP iterates p̂m(t) converge empir-

ically to a pair of random variables (z, p) that satisfy pz|p(z|p̂(t)) = N (z; p̂(t), νp(t)).

This leads us to believe that (5.143) is negligible in the large-system limit, yielding

the approximation

νr
j (t) ≈

(∑

m,l

νs
ml(t)ẑ

(∗,j)
ml (t)2

)−1
. (5.144)

A similar argument yields

νq
i (t) ≈

(∑

m,l

νs
ml(t)ẑ

(i,∗)
ml (t)2

)−1
. (5.145)

The final step in our P-BiG-AMP derivation approximates the SPA posterior log-

pdfs in (5.27) and (5.28). Plugging (5.70) and (5.89) into these expressions, we get

∆b
i (t+1, bi) ≈ const + log

(
pbi(bi)N

(
bi; q̂i(t), ν

q
i (t)
))

(5.146)

∆c
j(t+1, cj) ≈ const + log

(
pcj (cj)N

(
cj ; r̂j(t), ν

r
j (t)
))

, (5.147)

167



using steps similar to those used for (5.92). The associated pdfs are given as (D2) and

(D3) in Table 5.3 and represent P-BiG-AMP’s iteration-t approximations to the true

marginal posteriors pbi|Y(bi |Y ) and pcj |Y(cj |Y ). The quantities b̂i(t+1) and νb
i (t+1)

are then defined as the mean and variance, respectiveley, of the pdf associated with

(5.146), and ĉj(t+1) and νc
j (t+1) are the mean and variancce of the pdf associated

with (5.147). As such, b̂i(t+1) represents P-BiG-AMP’s approximation to the MMSE

estimate of bi and νb
i (t+1) represents its approximation of the corresponding MSE.

Likewise, ĉj(t+1) represents P-BiG-AMP’s approximation to the MMSE estimate of cj

and νc
j (t+1) represents its approximation of the corresponding MSE. This completes

the derivation of P-BiG-AMP.

5.5.6 Algorithm Summary

The P-BiG-AMP algorithm is summarized in Table 5.3. The version stated in the

table includes a maximum number of iterations Tmax, as well as a stopping condition

(R24) that terminates the iterations when the change in the residual ẑ
(∗,∗)
ml (t) falls

below a user-defined parameter τstop. Noting the complex conjugates in (R17) and

(R19), the stated version also allows the use of complex-valued quantities, in which

case N in (D1)-(D3) would denote a circular complex Gaussian pdf. However, for

ease of interpretation, Table 5.3 does not include the important damping modifications

that will be detailed in Section 5.8.

Furthermore, Table 5.3 is written in a way that facilitates the use of non-linear pa-

rameterizationsA(·) andX(·), where the corresponding element-wise partials a
(i)
mn

(
b
)

and x
(j)
nl

(
c
)
can vary with b and c, as in the Taylor-series expansion (5.4)-(5.5). This is

visible from steps (R3)-(R4), as well as from the t-dependence on ẑ
(i,j)
ml (t). In the case

168



definitions:

pzml|pml

(
z | p̂; νp

)
,

pyml|zml
(yml | z)N

(
z;p̂,νp

)
∫
z′ pyml|zml

(yml | z
′)N

(
z′;p̂,νp

) (D1)

pcj |rj
(
c | r̂; νr

)
,

pcj (c)N
(
c;r̂,νr

)
∫
c′ pcj (c

′)N
(
c′;r̂,νr

) (D2)

pbi|qi
(
b | q̂; νq

)
,

pbi
(b)N

(
b;q̂,νq

)
∫
b′ pbi

(b′)N
(
b′;q̂,νq

) (D3)

initialization:

∀m, l : ŝml(0)= 0 (I1)

∀i, j : choose b̂i(1), ν
b
i (1), ĉj(1), ν

c
j (1) (I2)

for t = 1, . . . Tmax

∀m,n : âmn(t) = amn
(
b̂(t)

)
(R1)

∀n, l : x̂nl(t) = xnl

(
ĉ(t)

)
(R2)

∀m,n, i : â
(i)
mn(t) = a

(i)
mn

(
b̂(t)

)
(R3)

∀n, l, j : x̂
(j)
nl (t) = x

(j)
nl

(
ĉ(t)

)
(R4)

∀m, l, i, j : ẑ
(i,j)
ml (t) =

∑N
n=1 â

(i)
mn(t)x̂

(j)
nl (t) (R5)

∀m, l, i : ẑ
(i,∗)
ml (t) =

∑N
n=1 â

(i)
mn(t)x̂nl(t) (R6)

∀m, l, j : ẑ
(∗,j)
ml (t) =

∑N
n=1 âmn(t)x̂

(j)
nl (t) (R7)

∀m, l : ẑ
(∗,∗)
ml (t) =

∑N
n=1 âmn(t)x̂nl(t) (R8)

∀m, l : νpml(t) =
∑Nb

i=1 |ẑ
(i,∗)
ml (t)|2νbi (t)

+
∑Nc

j=1 |ẑ
(∗,j)
ml (t)|2νcj (t) (R9)

∀m, l : νpml(t) = νpml(t) +
∑Nb

i=1

∑Nc
j=1 ν

b
i (t)ν

c
j (t)|ẑ

(i,j)
ml (t)|2(R10)

∀m, l : p̂ml(t) = ẑ
(∗,∗)
ml (t) − ŝml(t−1)νp

ml(t) (R11)

∀m, l : νzml(t) = var{zml | pml= p̂ml(t); ν
p
ml(t)} (R12)

∀m, l : ẑml(t) =E{zml | pml= p̂ml(t); ν
p
ml(t)} (R13)

∀m, l : νsml(t) = (1− νzml(t)/ν
p
ml(t))/ν

p
ml(t) (R14)

∀m, l : ŝml(t) = (ẑml(t) − p̂ml(t))/ν
p
ml(t) (R15)

∀j : νrj (t) =
(∑

m,l ν
s
ml(t)|ẑ

(∗,j)
ml (t)|2

)−1
(R16)

∀j : r̂j(t) = ĉj(t) + νrj (t)
∑

m,l

(
ŝml(t)ẑ

(∗,j)
ml (t)∗

− νsml(t)
∑Nb

i=1 ν
b
i (t)ẑ

(i,j)
ml (t)∗ ẑ

(i,∗)
ml (t)

)
(R17)

∀i : νqi (t) =
(∑

m,l ν
s
ml(t)|ẑ

(i,∗)
ml (t)|2

)−1
(R18)

∀i : q̂i(t) = b̂i(t) + νqi (t)
∑

m,l

(
ŝml(t)ẑ

(i,∗)
ml (t)∗

− νsml(t)
∑Nc

j=1 ν
c
j (t)ẑ

(i,j)
ml (t)∗ ẑ

(∗,j)
ml (t)

)
(R19)

∀j : νcj (t+1)=var{cj | rj = r̂j(t); νrj (t)} (R20)

∀j : ĉj(t+1)=E{cj | rj = r̂j(t); ν
r
j (t)} (R21)

∀i : νbi (t+1)=var{bi | qi= q̂i(t); ν
q
i (t)} (R22)

∀i : b̂i(t+1)=E{bi | qi= q̂i(t); ν
q
i (t)} (R23)

if
∑

m,l |ẑ
(∗,∗)
ml (t) − ẑ

(∗,∗)
ml (t−1)|2 ≤ τstop

∑
m,l |ẑ

(∗,∗)
ml (t)|2, stop (R24)

end

Table 5.3: The P-BiG-AMP Algorithm

169



that A(·) and/or X(·) are nonlinear, steps (R1)-(R4) show that P-BiG-AMP takes a

first-order Taylor series approximation of A(·) and X(·) about the current-iteration’s

parameter estimates b̂(t) and ĉ(t), similar to the Extended Kalman Filter [88]. By

contrast, in the simpler affine case assumed throughout the derivation, the partial

derivatives a
(i)
mn

(
b
)
and x

(j)
nl

(
c
)
are invariant to b and c, as in (5.8)-(5.9), in which

case steps (R3)-(R4) become trivial.

The initializations used in step (I2) are application specific. In many cases, random

draws from the prior distributions, along with large initial variances, is a reasonable

choice. With sparse coefficients, initializing either b̂(1) or ĉ(1) with zeros can also be

effective.

The number of multiplies required by each step of Table 5.3 is tabulated in Ta-

ble 5.4. The complexity of steps (R1)-(R4) cannot be characterized in generality

because it depends strongly on the nature of the parameterizations A(·) and X(·).

Similarly, the number of multiplies required in steps (R12)-(R13) and (R20)-(R23)

depend strongly on the prior and the likelihood, respectively. Thus, for (R1), we

denote the complexity as fR1(Nb, N,M), which is some function of the dimensions

Nb, N , and M , and we similar for steps (R2)-(R4), (R12)-(R13), and (R20)-(R23).

In fact, as we shall see in the sequel, certain classes of A(·) and X(·) allow simplifi-

cations to be made to other steps in Table 5.3, and thus the complexities reported in

Table 5.4 should be interpreted as “worst case” values.

170



(R1) fR1(Nb,M,N) (R2) fR2(Nc, N,L) (R3) fR3(Nb,M,N)
(R4) fR4(Nc, N, L) (R5) NbNcMNL (R6) NbMNL
(R7) NcMNL (R8) NML (R9) 2(Nb +Nc)ML
(R10) 3NbNcML (R11) ML (R12) fR12(M,L)
(R13) fR13(M,L) (R14) 2ML (R15) ML

(R16) 2NcML (R17)
2NbNcML
+NcML

(R18)
2NbNcML
+NbML

(R19) 2NbML (R20) fR20(Nc) (R21) fR21(Nc)
(R22) fR22(Nb) (R23) fR23(Nb)

Table 5.4: Multiplies consumed by each step of P-BiG-AMP from Table 5.3.

5.6 Special Parameterizations

We now describe several special cases of the parameterizations A(·) and X(·) that

arise commonly in practice and the corresponding simplifications that can be made

to P-BiG-AMP.

5.6.1 Affine Parameterizations

First we consider the case where both A(·) and X(·) are affine, as defined in

(5.6)-(5.7) and assumed throughout the derivation of P-BiG-AMP. In this case, the

partial derivatives â
(i)
mn(t) = a

(i)
mn

(
b̂(t)

)
and x̂

(j)
nl (t) = x

(j)
nl

(
ĉ(t)

)
in steps (R3) and (R4)

of Table 5.3 are invariant to b̂(t) and ĉ(t), and thus can be pre-computed, relieving

the algorithm of further calls to (R3)-(R4). Consequently, ẑ
(i,j)
ml (t) from step (R5) can

also be pre-computed and used for all t, relieving the algorithm of further calls to

(R5).

Furthermore, the pre-computation of ẑ
(i,j)
ml (t) facilitates an alternative approach

to steps (R1)-(R2) and (R6)-(R8) that bypasses the explicit evaluation of A(·) and

171



X(·). In particular, using (5.6)-(5.7), steps (R2) and (R6) reduce to

ẑ
(i,∗)
ml (t) =

N∑

n=1

a(i)mnxnl

(
ĉ(t)

)
=

N∑

n=1

a(i)mn

Nc∑

j=0

ĉj(t)x
(j)
nl =

Nc∑

j=0

ĉj(t)
N∑

n=1

a(i)mnx
(j)
nl (5.148)

=
Nc∑

j=0

ĉj(t)ẑ
(i,j)
ml . (5.149)

In a similar manner, steps (R1) and (R7) reduce to

ẑ
(∗,j)
ml (t) =

Nb∑

i=0

b̂i(t)ẑ
(i,j)
ml (5.150)

and step (R8) reduces to

ẑ
(∗,∗)
ml (t) =

N∑

n=1

amn

(
b̂(t)

)
xnl

(
ĉ(t)

)
=

N∑

n=1

Nb∑

i=0

b̂i(t)a
(i)
mn

Nc∑

j=0

ĉj(t)x
(j)
nl (5.151)

=

Nb∑

i=0

Nc∑

j=0

b̂i(t)ĉj(t)ẑ
(i,j)
ml (5.152)

=

Nb∑

i=0

b̂i(t)ẑ
(i,∗)
ml (t) =

Nc∑

j=0

ĉj(t)ẑ
(∗,j)
ml (t). (5.153)

We note that, in the expressions above, b̂0(t) = 1/
√
Nb ∀t and ĉ0(t) = 1/

√
Nc ∀t,

because, in (5.6)-(5.7), the true values of these estimates, b0 = 1/
√
Nb and c0 =

1/
√
Nc, are known constants.

A natural question arises as to whether it is computationally advantageous to

use (5.149), (5.150), and (5.153) in place of (R1)-(R2) and (R6)-(R8). To answer

this question, we first note that evaluating (5.149) for all m, l, i consumes NbNcML

multiplies,45 evaluating (5.150) for all m, l, j consumes another NbNcML multiplies,

and evaluating (5.153) for all m, l consumes min(Nb, Nc)ML multiplies, for a grand

total of ≈ 2NbNcML multiplies. Meanwhile, direct computation of (R1) and (R2) via

45To simplify the exposition, we neglect the extra multiply associated with the i, j = 0 terms in
the sums.

172



(5.6) and (5.7) consumes NbMN and NcNL multiplies, respectively, and Table 5.4

specifies that (R6)-(R8) consume a total of (Nb + Nc + 1)NML multiplies, for a

grand total of ≈ (NbN + NcN)ML multiplies. Thus, when Nb ≪ N and Nc ≪

N , the computational savings from (5.149), (5.150), and (5.153) can be substantial.

Conversely, when Nb ≫ N or Nc ≫ N , the use of (5.149), (5.150), and (5.153) can be

counterproductive. Later, we discuss the special case where A(·) and/or X(·) have

a fast implementation (e.g., FFT) that can be used to circumvent direct evaluation

of (R1) and/or (R2), in which case the computational tradeoff must be re-evaluated.

5.6.2 Trivial Parameterizations

Next we consider the case of trivial parameterizations, where the elements inA (or

X) can be put in one-to-one correspondence with the elements in b (or c). Concretely,

we refer to A(·) as a “trivial parameterization” when [A(b)]mn = [b]φb(m,n) for some

one-to-one index map φb(·, ·) : {1...M} × {1...N} → {1...Nb}, which requires that

Nb = MN . Similarly, X(·) is a trivial parameterization when [X(c)]nl = [c]φc(n,l) for

some one-to-one index map φc(·, ·) : {1...N}×{1...L} → {1...Nc}, which requires that

Nc = NL. As an example, the case of column-major vectorizations b = vec(A) and

c = vec(X) yields the index maps φb(m,n) = m+(n−1)M and φc(n, l) = n+(l−1)N .

For use in the sequel, we note that trivial parameterizations have partial derivatives

of the form

a(i)mn

(
b
)
=

{
1 i = φb(m,n)

0 i 6= φb(m,n)
∀b (5.154)

x
(j)
nl

(
c
)
=

{
1 j = φc(n, l)

0 j 6= φc(n, l)
∀c. (5.155)

173



One Parameterization is Trivial

We now show that P-BiG-AMP simplifies even when only one of the parameter-

izations A(·) or X(·) is trivial. For the sake of brevity, we only consider the case

where X(·) is trivial, noting that a similar treatment can be applied ot the case where

A(·) is trivial.

First we recall that, by definition, trivial X(·) implies

x̂nl(t) = xnl

(
ĉ(t)

)
= ĉφc(n,l)(t). (5.156)

Thus, steps (R2), (R6), and (R8) in Table 5.3 reduce to

ẑ
(i,∗)
ml (t) =

N∑

n=1

â(i)mn(t)x̂nl(t) =

N∑

n=1

â(i)mn(t)ĉφc(n,l)(t) (5.157)

ẑ
(∗,∗)
ml (t) =

N∑

n=1

âmn(t)x̂nl(t) =
N∑

n=1

âmn(t)ĉφc(n,l)(t), (5.158)

which can be implemented efficiently, via matrix multiplication, after appropriately

reshaping ĉ(t).

Next we recall that (5.155) holds for trivial X(·). There, for each fixed pair

(j, l), there exists at most one (but possibly no) value of n ∈ {1...N} that satisfies

j = φc(n, l). In other words, given an index j into b and a column index l in X,

there exists at most one row index n such that [X ]n,l = bj . We now define a mapping

ϕc(·, ·) : {0...Nc} × {1...L} → {0...N} such that ϕc(j, l) = n ∈ {1...N} if such a row

index n exists and ϕc(j, l) = 0 if no such n exists. Then, similar to (5.155), a trivial

X(·) ensures that, for any n ∈ {1...N}, l ∈ {1...L}, j ∈ {0...Nc}:

x̂
(j)
nl (t) = x

(j)
nl

(
ĉ(t)

)
=

{
1 n = ϕc(j, l)

0 n 6= ϕc(j, l)
. (5.159)

174



Thus, steps (R4), (R5), and (R7) reduce to

ẑ
(i,j)
ml (t) =

N∑

n=1

â(i)mn(t)x̂
(j)
nl (t) =

{
â
(i)
m,ϕc(j,l)

(t) ϕc(j, l) ∈ {1...N}
0 ϕc(j, l) = 0

(5.160)

ẑ
(∗,j)
ml (t) =

N∑

n=1

âmn(t)x̂
(j)
nl (t) =

{
âm,ϕc(j,l)(t) ϕc(j, l) ∈ {1...N}
0 ϕc(j, l) = 0,

(5.161)

which require no computation and allow subsequent steps based on ẑ
(∗,j)
ml (t) to be

computed using only elements from Â(t).

Many other steps46 in the algorithm can also be computed efficiently by oper-

ating on matrix-shaped versions of ĉ(t), {νc
j}, r̂, and {νr

j }, with similarities to the

corresponding steps in BiG-AMP.

Both Parameterizations are Trivial

We now show that, when both A(·) and X(·) are trivial, the P-BiG-AMP algo-

rithm in Table 5.3 reduces to the BiG-AMP algorithm in Table III of [8].

First, we note that the x̂nl(t) = ĉφc(n,l)(t) computed by P-BiG-AMP in lines (R2)

and (R21) of Table 5.3 is identical to the x̂nl(t) computed by BiG-AMP in line (R14)

of [8, Table III] whenX(·) is trivial. Likewise, the âmn(t) = b̂φb(m,n)(t) computed by P-

BiG-AMP in lines (R1) and (R23) of Table 5.3 is identical to the âmn(t) computed by

BiG-AMP in line (R16) of [8, Table III] when A(·) is trivial. As for the corresponding

variance estimates, νc
φc(n,l)

(t) computed by P-BiG-AMP in line (R20) of Table 5.3 is

identical to the νx
nl(t) computed by BiG-AMP in line (R13) of [8, Table III] when X(·)

is trivial. Likewise, νb
φb(m,n)(t) computed by P-BiG-AMP in line (R22) of Table 5.3

is identical to the νa
mn(t) computed by BiG-AMP in line (R15) of [8, Table III] when

A(·) is trivial.
46The details are implemented in the A PLinTrans X trivial ParametricZ class from the GAMP-

matlab package [19].

175



Next we examine the quantity νp
ml(t) computed for P-BiG-AMP in line (R9) of

Table 5.3. When both X(·) and A(·) are trivial, we can plug (5.161) and a similar

identity for ẑ
(i,∗)
ml (t) into (R9) to obtain

νp
ml(t) =

Nb∑

i=1

∣∣∣∣∣
N∑

n=1

â(i)mn(t)︸ ︷︷ ︸
δi−φb(m,n)

x̂nl(t)

∣∣∣∣∣

2

νb
i (t) +

Nc∑

j=1

∣∣∣∣∣
N∑

n=1

âmn(t) x̂
(j)
nl (t)︸ ︷︷ ︸

δj−φc(n,l)

∣∣∣∣∣

2

νc
j (t) (5.162)

=

N∑

n=1

|x̂nl(t)|2 νb
φb(m,n)(t)︸ ︷︷ ︸
=νamn(t)

+|âmn(t)|2 νc
φc(n,l)(t)︸ ︷︷ ︸
=νxnl(t)

. (5.163)

For (5.163) we used the facts that, for any fixed combination of (i,m), there is at

most one value of n that yields i = φb(m,n), and for any fixed pair (j, l), there is

at most one value of n that yields j = φc(n, l). Then, by inspection of (5.163), the

νp
ml(t) computed by P-BiG-AMP is identical to the one computed by BiG-AMP in

line (R1) of [8, Table III] when A(·) and X(·) are both trivial.

Regarding the νp
ml(t) computed by P-BiG-AMP in line (R10) of Table 5.3, we note

that trivial A(·) and X(·) implies

Nb∑

i=1

Nc∑

j=1

νb
i (t)ν

c
j (t)|ẑ(i,j)ml (t)|2 =

Nb∑

i=1

Nc∑

j=1

νb
i (t)ν

c
j (t)

∣∣∣∣∣
N∑

n=1

â(i)mn(t)︸ ︷︷ ︸
δi−φb(m,n)

x̂
(j)
nl (t)︸ ︷︷ ︸

δj−φc(n,l)

∣∣∣∣∣

2

(5.164)

=

N∑

n=1

νb
φb(m,n)(t)︸ ︷︷ ︸
=νamn(t)

νc
φc(n,l)(t)︸ ︷︷ ︸
=νxnl(t)

, (5.165)

since, for any fixed combination of (i, j,m, l), there is at most one value of n that

yields i = φb(m,n) and j = φc(n, l). Thus, the νp
ml(t) computed by P-BiG-AMP is

identical to the one computed by BiG-AMP in line (R3) of [8, Table III] when A(·)

and X(·) are both trivial.

By inspection, we can see that the quantity ẑ
(∗,∗)
ml (t) computed by P-BiG-AMP

in line (R8) of Table 5.3 is identical to pml(t) computed by BiG-AMP in line (R2)

176



of [8, Table III], and that the quantities p̂ml(t), ν
z
ml(t), ẑml(t), ν

s
ml(t), ŝml(t) are identical

across algorithms.

Next, with trivial A(·) and X(·), the quantity νr
j (t) computed by P-BiG-AMP in

line (R16) of Table 5.3 can be written, using j = φc(n, l) and (5.161), as

νr
φc(n,l)(t) =

(∑

m,l

νs
ml(t)

∣∣∣∣∣
N∑

k=1

âmk(t) x̂
(φc(n,l))
kl (t)︸ ︷︷ ︸

δφc(n,l)−φc(k,l)

∣∣∣∣∣

2)−1
(5.166)

=

(∑

m,l

νs
ml(t)|âmn(t)|2

)−1
, (5.167)

since, for any pair (n, l), the unique value of k satisfying φc(n, l) = φc(k, l) is k = n.

From (5.167), it becomes evident that P-BiG-AMP’s νr
φc(n,l)

(t) is identical to BiG-

AMP’s νr
nl(t) from step (R9) of [8, Table III]. Similar arguments show that P-BiG-

AMP’s νq
φb(m,n)(t) is identical to BiG-AMP’s νq

mn(t) from step (R11) of [8, Table III].

Finally, with trivial A(·) and X(·), the quantity r̂j(t) computed by P-BiG-AMP

in line (R17) of Table 5.3 can be written, using j = φc(n, l), as

r̂φc(n,l)(t) = ĉφc(n,l)(t) + νr
φc(n,l)(t)

M∑

m=1

L∑

k=1

(
ŝmk(t)ẑ

(∗,φc(n,l))
mk (t)∗ − νs

mk(t)

Nb∑

i=1

νb
i (t)ẑ

(i,φc(n,l))
mk (t)∗ẑ(i,∗)mk (t)

)

(5.168)

Since ẑ
(i,φc(n,l))
mk (t) = δl−kδi−φb(m,n), we find that

r̂φc(n,l)(t) = ĉφc(n,l)(t) + νr
φc(n,l)(t)

M∑

m=1

(
ŝml(t)ẑ

(∗,φc(n,l))
ml (t)∗ − νs

ml(t)ν
b
φb(m,n)(t)ẑ

(φb(m,n),∗)
ml (t)

)

(5.169)

= x̂nl(t) + νr
φc(n,l)(t)︸ ︷︷ ︸
νrnl(t)

M∑

m=1

(
ŝml(t)â

∗
mn(t)− νs

ml(t) ν
b
φb(m,n)(t)︸ ︷︷ ︸
νamn(t)

x̂nl(t)

)
, (5.170)

which is identical to r̂nl(t) computed in line (R10) of [8, Table III]. Similar arguments

show that P-BiG-AMP’s q̂φb(m,n)(t) is identical to BiG-AMP’s q̂mn(t) from step (R12)

of [8, Table III].

177



At this point, we have examined all the quantities computed by P-BiG-AMP and

thus established that, in the case of trivial A(·) and X(·), the P-BiG-AMP algorithm

in Table 5.3 reduces to the BiG-AMP algorithm in Table III of [8].

5.7 Implicit Operators

We now discuss the case where some or all of Â(t), X̂(t), {Â(i)
(t)}Nb

i=1, and

{X̂(j)
(t)}Nc

j=1 computed in steps (R1)-(R4) of Table 5.3 can be represented by implicit

linear operators (from RN → RM or RL → RN) rather than as explicit matrices.

As we shall see, the use of implicit operators can lead to significant simplifications

in memory and complexity relative to the naive implementation of P-BiG-AMP that

executes the algorithm exactly as stated in Table 5.3.

To see how implicit operators might be useful, we first recall from Table 5.3

that Â(t), X̂(t), {Â(i)
(t)}Nb

i=1, and {X̂(j)
(t)}Nc

j=1 are used only to construct ẑ
(i,j)
ml (t),

ẑ
(i,∗)
ml (t), ẑ

(∗,j)
ml (t), and ẑ

(∗,∗)
ml (t), which in turn are used by the remaining steps of the al-

gorithm. Thus, there is no need for explicit computation of Â(t), X̂(t), {Â(i)
(t)}Nb

i=1,

and {X̂(j)
(t)}Nc

j=1. Furthermore, ẑ
(i,j)
ml (t), ẑ

(i,∗)
ml (t), ẑ

(∗,j)
ml (t) are used only to construct

νp
ml(t), ν

p
ml(t), ν

r
j (t), r̂j(t), ν

q
i (t), q̂i(t). Thus, this is no need for explicit computation

of ẑ
(i,j)
ml (t), ẑ

(i,∗)
ml (t), ẑ

(∗,j)
ml (t) either. By avoiding explicit computation of the afore-

mentioned quantities, the complexity and memory burden of P-BiG-AMP can be

significantly reduced.

We now propose an alternative implementation strategy for P-BiG-AMP that is

able to exploit the advantages of implicit operators, should they exist. In particular,

we propose to replace steps (R1)-(R10) with procedure (5.171) below, and to replace

178



steps (R16)-(R19) with procedure (5.172) below;47 steps (R11)-(R15) and (R20)-

(R23) are to be implemented exactly as described in Table 5.3.

[
{ẑ(∗,∗)ml (t)}, {νp

ml(t)}, {νp
ml(t)}

]
= Fp

(
b̂(t), ĉ(t), {νb

i (t)}, {νc
j (t)}

)
(5.171)

[
{νr

j (t)}, r̂(t), {νq
i (t)}, q̂(t)

]
= F rq

(
b̂(t), ĉ(t), {νb

i (t)}, {νc
j (t)}, Ŝ(t), {νs

ml(t)}
)
.

(5.172)

The most efficient implementations of Fp and F rq will be highly dependent on the

joint nature of A(·) and X(·). We note, however, that the overall structure of the

proposed implementation strategy (5.171)-(5.172) is generic enough to handle any

A(·) and X(·). In fact, it can be used even when Â(t), X̂(t), {Â(i)
(t)}Nb

i=1, and

{X̂(j)
(t)}Nc

j=1 are explicit matrices, although in this latter case there would be no

advantage over directly calling the steps in Table 5.3.

5.7.1 Sandwich A(·) and Trivial X(·)

To illustrate the possible advantage of the proposed implementation strategy, we

now detail the construction of (5.171)-(5.172) in the case thatX(·) is a trivial operator

(as discussed in Section 5.6.2) and A(·) is what we call a “sandwich” operator:48

Â(t) = A
(
b̂(t)

)
= F A0

(
b̂(t)

)
︸ ︷︷ ︸
, Â0(t)

W , (5.173)

which occurs in a multitude of practical applications. For this, we focus on the

interesting case49 where at least one of the operators F , W , and Â0(t) is implicit,

47These two procedures are implemented by objects of the ParametricZ class in the MATLAB
implementation [19].

48In the MATLAB implementation [19], this combination of A(·) and X(·) is handled by the
A PLinTrans X trivial ParametricZ subclass of ParametricZ.

49Notice that this case encompasses arbitrary implicit operators Â(t) by setting F and W as
appropriately sized identity matrices.

179



meaning that Â(t) and the corresponding derivative operators {Â(i)
(t)}Nb

i=1 are also

implicit.

First, we briefly describe some practical applications that involve this setup. In

one example, Â(t) is a non-uniform FFT operator (with b̂(t) specifying the sampling

locations), for which multiplication with an N -vector can be implemented implicitly

with only O(N logN) complexity [89] and the matrices {Â(i)
(t)}Nb

i=1 would each be

sparse, leading to with O(N)-complexity multiply operations. Another example is

where W represents a sparsifying basis (such as a wavelet transform), A0 represents

a measurement operation with parametric uncertainty, and F represents domain con-

version (such as a Fourier transformation) and/or subsampling. A variety of problems

in medical imaging, geophysics, and related applications can be cast in this form, and

they often feature dimensionalities large enough that explicit construction of Â(t)

is impractical. Finally, a wide variety of blind deconvolution problems, where A0

represents a convolution in one or more dimensions with an unknown kernel b̂(t), and

where F and W represent domain-specific pre/post-processing operations, can also

be modeled using (5.173).

We now turn to the details of implementing Fp and F rq for trivial X(·) and

sandwich A(·). First, as shown in Section 5.6.2, the quantities ẑ
(i,j)
ml (t) and ẑ

(∗,j)
ml (t)

are sparse versions of elements Â(t) and {Â(i)
(t)}Nb

i=1. It can be shown50 that the

P-BiG-AMP computations involving ẑ
(i,j)
ml (t) and ẑ

(∗,j)
ml (t) can all be implemented via

the implicit operators Â(t) and {Â(i)
(t)}Nb

i=1. Similarly, ẑ
(∗,∗)
ml (t) can be computed

using implicit Â(t). On the other hand, for this particular combination of A(·) and
50For these low-level details, as well as other low-level details in this section, we refer the reader

to A PLinTrans X trivial ParametricZ.m in [19].

180



X(·), we find it necessary to explicitly compute and store ẑ
(i,∗)
ml (t) using (5.157) and

the implicit operators {Â(i)
(t)}Nb

i=1.

Considering Fp, we see that steps (R9) and (R10) use the squared entries |ẑ(i,j)ml (t)|2

and |ẑ(∗,j)ml (t)|2, which are not explicitly available. In particular, due to the trivial

nature of X(·), it can be seen that steps (R9) and (R10) require multiplications with

|âmn(t)|2 and |â(i)mn(t)|2, which can be approximated using the Frobenius norm. For

example, the second term in (R9) can be written as

Nc∑

j=1

ẑ
(∗,j)
ml (t)2νc

j (t) =
N∑

n=1

|âmn(t)|2νc
φc(n,l)(t) (5.174)

≈
N∑

n=1

(
1

MN

M∑

m=1

N∑

n=1

|âmn(t)|2
)
νc
φc(n,l)(t) (5.175)

=
‖Â(t)‖2F
MN

N∑

n=1

νc
φc(n,l)(t), (5.176)

where the first step plugs in (5.161) and uses the definition of the trivial mapping for

X(·). The required Frobenius norm will be constant and known for some parameter-

izations, such as the non-uniform FFT. For more general cases, the Frobenius norm

can be estimated using a small number of multiplications with random vectors.

Turning to F rq, a similar Frobenius approximation can be made to address the

squared entries in step (R16), whereas the squared entries needed for (R18) are avail-

able. The remaining issue lies in steps (R17) and (R19). Considering (R17), we see

that it requires us to work with terms of the form ẑ
(i,j)
ml (t)∗ẑ(i,∗)ml (t), which we can

avoid by making an approximation. Assuming for a moment that A(·) is affine, we

181



can write

∑

m,l

νs
ml(t)

(
Nb∑

i=1

νb
i (t)ẑ

(i,j)∗
ml ẑ

(i,∗)
ml (t)

)

=
∑

m,l

νs
ml(t)

(
Nb∑

i=1

νb
i (t)ẑ

(i,j)∗
ml

(
Nc∑

k=0

ĉkẑ
(i,k)
ml

))
(5.177)

=

Nb∑

i=1

νb
i (t)

Nc∑

k=0

ĉk

(∑

m,l

νs
ml(t)ẑ

(i,j)∗
ml ẑ

(i,k)
ml

)
(5.178)

≈
Nb∑

i=1

νb
i (t)ĉj

(∑

m,l

νs
ml(t)|ẑ(i,j)ml |2

)
(5.179)

= ĉj
∑

m,l

νs
ml(t)

(
Nb∑

i=1

νb
i (t)|ẑ(i,j)ml (t)|2

)
, (5.180)

where (5.177) plugs in (5.149), and (5.179) makes the approximation

∑
m,l ν

s
ml(t)ẑ

(i,j)∗
ml ẑ

(i,k)
ml ≈ 0 for k 6= j. We also restore the t dependance on

|ẑ(i,j)ml (t)|2 to emphasize that this approximation can be applied for non-affine A(·).

The neglected term is a weighted Frobenius inner product between two ẑ
(i,j)
ml matrices

with νs
ml(t) acting as the weighting matrix. In the case of trivial X(·) considered

here, the term neglected in this approximation reduces to the weighted inner product

between two distinct columns of Â
(i)
(t), which is likely small in many applications.

With this approximation, step (R17) has been written in terms of |â(i)mn(t)|2 and

can now be further approximated using ‖Â(i)
(t)‖2F , analogously to (5.176), to avoid

computing the entry-wise squares. We can obtain a similar approximation for the

double-sum term in (R19):

∑

m,l

νs
ml(t)

(
Nc∑

j=1

νc
j (t)ẑ

(i,j)
ml (t)∗ẑ(∗,j)ml (t)

)
≈ b̂i

∑

m,l

νs
ml(t)

(
Nc∑

j=1

νc
j (t)|ẑ(i,j)ml (t)|2

)
, (5.181)

which can also be further approximated using the Frobenius norm.

182



5.8 Adaptive Damping

5.8.1 Damping

Damping strategies have been proposed for both GAMP [74] and BiG-AMP [8] to

prevent divergence when using matrices that differ from the ideal case of an infinite-

dimensional i.i.d sub-Gaussian matrix. For GAMP, damping yields provable local-

convergence guarantees with arbitrary matrices [18] while, for BiG-AMP, damping

has been shown to be very effective through an extensive empirical study [9].

Motivated by these successes, we adopt a similar damping scheme for P-BiG-AMP.

In particular, we use the iteration-t damping factor β(t) ∈ [0, 1] to slow the evolution

of certain variables, namely, νp
ml, ν

p
ml, ν

s
ml, ŝml, b̂i, and ĉj . To do this, we replace steps

(R9), (R10), (R14), and (R15) in Table 5.3 with

νp
ml(t) = β(t)

( Nb∑

i=1

|ẑ(i,∗)ml (t)|2νb
i (t) +

Nc∑

j=1

|ẑ(∗,j)ml (t)|2νc
j (t)

)

+ (1− β(t))νp
ml(t− 1) (5.182)

νp
ml(t) = β(t)

(
νp
ml(t) +

Nb∑

i=1

Nc∑

j=1

νb
i (t)ν

c
j (t)|ẑ(i,j)ml (t)|2

)

+ (1− β(t))νp
ml(t− 1) (5.183)

νs
ml(t) = β(t)

(
(1− νz

ml(t)/ν
p
ml(t))/ν

p
ml(t)

)

+ (1− β(t))νs
ml(t−1) (5.184)

ŝml(t) = β(t)
(
ẑml(t)− p̂ml(t))/ν

p
ml(t)

)

+ (1− β(t))ŝml(t−1), (5.185)

183



and we insert the following lines between (R15) and (R16):

bi(t) = β(t)̂bi(t) + (1− β(t))bi(t− 1) (5.186)

cj(t) = β(t)ĉj(t) + (1− β(t))cj(t− 1) (5.187)

z
(i,j)
ml (t) =

N∑

n=1

a(i)mn

(
b(t)

)
x
(j)
nl

(
c(t)

)
(5.188)

z
(i,∗)
ml (t) =

N∑

n=1

a(i)mn

(
b(t)

)
xnl

(
c(t)

)
(5.189)

z
(∗,j)
ml (t) =

N∑

n=1

amn

(
b(t)

)
x
(j)
nl

(
c(t)

)
. (5.190)

The quantities z
(i,j)
ml (t), z

(i,∗)
ml (t), and z

(∗,j)
ml (t) are then used in steps (R16)-(R19), but

not in (R9)-(R11), in place of the versions computed in steps (R5)-(R7). The newly

created state variables bi(t) and cj(t) are used only to compute these replacements.

Notice that, when β(t) = 1, the damping has no effect, whereas when β(t) = 0, all

quantities become frozen in t.

5.8.2 Adaptive Damping

Because damping slows the convergence of the algorithm, we would like to damp

only as much as needed to prevent divergence. With this in mind, we propose a scheme

to adapt β(t) by monitoring an appropriate cost J(t). Omitting the derivation details

for brevity, the cost we use,

Ĵ(t) =
∑

j

D
(
pcj |rj

(
·
∣∣ r̂j(t); νr

j (t)
)∥∥∥ pcj(·)

)
(5.191)

+
∑

i

D
(
pbi|qi

(
·
∣∣ q̂i(t); νq

i (t)
)∥∥∥ pbi(·)

)

−
∑

m,l

E
zml∼N (ẑ

(∗,∗)
ml (t);νpml(t))

{
log pyml|zml

(yml | zml)
}
,

is a natural extension of the MMSE-GAMP cost derived in [20], and reduces to

the one used for BiG-AMP stepsize adaptation in [8] when both A(·) and X(·) are

184



trivial. Intuitively, the first term in (5.191) penalizes the deviation between the (P-

BiG-AMP approximated) posterior and the assumed prior on c, the second penalizes

the deviation between the (P-BiG-AMP approximated) posterior and the assumed

prior on b, and the third term rewards highly likely estimates Z.

For stepsize adaptation, we adopt the approach used for both GAMP and BiG-

AMP in the public domain GAMPmatlab implementation [19]. In particular, if the

current cost J(t) is not smaller than the largest cost in the most recent stepWindow

iterations, then the “step” is declared unsuccessful, the damping factor β(t) is reduced

by the factor stepDec, and the step is attempted again. These attempts continue

until either the cost criterion decreases or the damping factor reaches stepMin, at

which point the step is considered successful, or the iteration count exceeds Tmax

or the damping factor reaches stepTol, at which point the algorithm terminates.

Otherwise, the step is declared successful, and the damping factor is increased by the

factor stepInc up to a maximum allowed value stepMax.

5.9 Tuning of the Prior and Likelihood

5.9.1 Expectation Maximization

In order to run P-BiG-AMP, we must specify the prior and likelihood models (5.1)

and (5.3). In practice, while a reasonable family of distributions may be dictated by

the application, the specific parameters of the distributions will need to be tuned.

Building on the approach developed to address this challenge for GAMP [62], which

was extended successfully to BiG-AMP in [8], we outline a methodology that takes

a given set of P-BiG-AMP priors {pbi(·; θ), pcj(·; θ), pyml|zml
(yml|·; θ)}∀m,n,l and tunes

185



the vector θ using an expectation-maximization (EM) [61] based approach, with the

goal of maximizing its likelihood, i.e., finding θ̂ , argmaxθ pY(Y ; θ).

Taking b, c, and Z to be the hidden variables, the EM recursion can be written

as [61]

θ̂
k+1

= argmax
θ

E
{
log pb,c,Z,Y(b, c,Z,Y; θ)

∣∣∣Y ; θ̂
k
}

= argmax
θ

{∑

i

E
{
log pbi(bi; θ)

∣∣∣Y ; θ̂
k
}

(5.192)

+
∑

j

E
{
log pcj (cj; θ)

∣∣∣Y ; θ̂
k
}

+
∑

m,l

E
{
log pyml|zml

(yml | zml; θ)
∣∣∣Y ; θ̂

k
}}

where for (5.192) we used the fact pb,c,Z,Y(b, c,Z,Y; θ) =

pb(b; θ)pc(c; θ)pY|Z(Y|Z; θ)1Z−A(b)X(c) and the separability of pb, pc, and pY|Z. As can

be seen from (5.192), knowledge of the marginal posteriors {pbi|Y, pcj |Y, pzml|Y}∀m,n,l

is sufficient to compute the EM update. Since the exact marginal posteriors are

too difficult to compute, we employ the iteration-t approximations produced by

P-BiG-AMP, i.e.,

pbi|Y(bi |Y ) ≈ pbi|qi
(
bi | q̂i(t); νq

i (t)
)

(5.193)

pcj |Y(cj |Y ) ≈ pcj |rj
(
cj | r̂j(t); νr

j (t)
)

(5.194)

pzml|Y(zml |Y ) ≈ pzml|pml

(
zml | p̂ml(t); ν

p
ml(t)

)
, (5.195)

for suitably large t, where the distributions above are defined in (D1)-(D3) of Ta-

ble 5.3. In addition, we adopt the “incremental” update strategy from [76], where

the maximization over θ is performed one element at a time while holding the others

fixed. The remaining details are analogous to the GAMP case, for which we refer the

interested reader to [62].

186



5.9.2 Initialization of θ

The EM procedure requires a good initialization of θ, since it guarantees only local

maximization of the parameter likelihood. Since the best choice of initialization proce-

dure will be highly dependent on the nature of pbi(·; θ), pcj (·; θ), and pyml|zml
(yml|·; θ),

we only make a few comments in this section.

Arguably the most common model for the output channel is the AWGN model, in

which case pyml|zml
(yml|zml; ν

w) = N (yml; zml, ν
w). An straightforward generalization

of is the “possibly incomplete AWGN” (PIAWGN) model, where only a subset Ω ⊂

{1...M} × {1...L} of the output indices are observed, i.e.,

pyml|zml
(yml|zml; ν

w) =

{
N (yml; zml, ν

w) (m, l) ∈ Ω

δ(yml) (m, l) /∈ Ω.
(5.196)

For the PIAWGN model, we suggest to initialize the noise variance as

νw =
‖PΩ(Y )‖2F

(SNR0 + 1)|Ω| , (5.197)

where SNR0 is a guess of the SNR and PΩ(·) zeros the entries with indices in Ω while

preserving the rest. In the case that the SNR is completely unknown, we suggest

setting SNR0 = 100. We note that this is the same recommendation given for BiG-

AMP [8].

In most cases, the parameters in θ affecting the pb and pc distributions can be

initialized based on domain knowledge. That said, there are some general principles

that should be taken into account when doing so. For example, since Z = A(b)X(c),

there is a fundamental ambiguity between the gain of the operator A(b) and the gain

of the operator X(c). Thus, when initializing and/or tuning θ, it is usually sufficient

to fix the typical size of the elements in A(b) and adjust only the typical size of the

elements in X(c). Similar observations were made in the context of BiG-AMP [9],

187



which (as we have seen) is equivalent to P-BiG-AMP in the case of trivial A(·) and

X(·).

Whereas in BiG-AMP the parameters θ affected the gain of the operators A and

X directly, with P-BiG-AMP the parameterizations A(·) and X(·) also play a role.

To see this more concretely, we first notice that, for affine A(·), the average squared

energy-gain of the random operator A(b), i.e., Eb{‖A(b)‖2F}, can be related to the

mean and variance of b as follows:

Eb{‖A(b)‖2F} =
∑

m

∑

n

Eb





∣∣∣∣∣
Nb∑

i=0

bia
(i)
mn

∣∣∣∣∣

2


 (5.198)

=
∑

m

∑

n

[
Nb∑

i=0

Eb{|bi|2}|a(i)mn|2 +
Nb∑

i=0

∑

k 6=i

a(i)mna
(k)∗
mn Eb{bi}Eb{b∗k}

]

(5.199)

≈
∑

m

∑

n

[
Nb∑

i=0

Eb{|bi|2}|a(i)mn|2
]

(5.200)

=

Nb∑

i=0

(
|Eb{bi}|2 + varb{bi}

)
‖A(i)‖2F , (5.201)

where the approximation in (5.200) holds in the large-system limit for the random

affine parameterizations described in Section 5.2.1, or for generic affine parameteriza-

tions when {bi}i>0 are zero-mean. A similar relationship holds between Ec{‖X(c)‖2F}

and the mean and variance of ci.

We now give an example of how these relationships can be used for the initializa-

tion of θ in the case of PIAWGN observations, affine A(·), trivial X(·), and sparse

i.i.d zero-mean cj. Suppose that the (initial) pb has been chosen, and the goal is to

select the initialization parameters in θ̂
0
that affect pc. We suggest to first set θ̂

0

such that the sparsity rate of cj equals ξ0, where ξ0 is usually chosen according to the

188



phase-transition curve, as in [62]. Then, set θ̂
0
such that the variance of cj equals

νc
0 =

(
ML
|Ω|

)
‖PΩ(Y )‖2F −MLνw

Eb{‖A(b)‖2F}Lξ0
, (5.202)

where the expectation is taken over pb(·; θ̂
0
). Note that (5.201) can be used to evaluate

the denominator in (5.202).

5.10 Numerical Examples

In this section we present two numerical examples to demonstrate the effectiveness

of P-BiG-AMP.

5.10.1 Random Affine A(·) with Trivial X(·)

Our first example addresses the recovery of a sparse signal c ∈ RN from AWGN-

corrupted outputs y of a linear transformation A ∈ R
M×N , where A has an affine

parameterization with unknown coefficients b ∈ RNb . In particular,

y =
(
A(0) +

Nb∑

i=1

biA
(i)
)
c+w, (5.203)

wherew ∼ N (0, νwI) is unknown noise, [A(0)]mn are drawn iidN (0, Nb) and assumed

known, and [A(i)]mn are drawn iid N (0, 1) and assumed known. The parameter vector

b is drawn iid N (0, 1), and the signal c is drawn Bernoulli-Gaussian with sparsity

rate ξ ∈ (0, 1] and N (0, νc) non-zero entries. Our objective is jointly estimating c

and b.

This problem can be cast in the P-BiG-AMP framework using L = 1, a trivial

parameterization for X(·), and the random affine model (5.6) for A(·). One small

difference w.r.t (5.6) is that the entries of A(0) have larger variance than those of

A(i)|i>0. This change was made for two reasons. First, the larger affine offset avoids

189



scaling ambiguities, simplifying the interpretation of the results. Second, this model

is consistent with numerous applications of interest where the parameters control

small perturbations of an otherwise known measurement operator. We will run P-

BiG-AMP on this problem with oracle knowledge of all the underlying distributions.

EM-P-BiG-AMP will also be tested while using the methods described in Section 5.9

to learn the distributional parameters θ = [νw, ξ, νc].

The results for our techniques will be compared against a state-of-the-art opti-

mization approach and oracle bounds. Notice that, given the true value of c, the

MMSE estimate of the parameter b can be written in closed form, and we denote

this estimator as the c-oracle. Similarly, given knowledge of b and the support set

of c, the MMSE estimator of c can be written in closed form as well, and we de-

note this estimator as the b,support-Oracle. For further comparison, we consider

the Weighted and Structured Sparsity Cognizant Total Least Squares (WSS-TLS)

approach from [27], which can be written for the problem of interest as

(b̂, ĉ) = argmin
b,c

∥∥∥∥∥
(
A(0) +

Nb∑

i=1

biA
(i)
)
c− y

∥∥∥∥∥

2

2

+ νw‖b‖22 + λ‖c‖1, (5.204)

with the tuning parameter λ. WSS-TLS solves this problem in an alternating fashion,

holding each unknown fixed on alternate iterations. For a fixed b̂, the problem is

solved efficiently as a linear program, whereas the update holding ĉ fixed can be

solved in closed form. Following the guidance provided by example code from the

authors of [27], we run the algorithm for several values of λ ∈ [0, ‖A(0)Ty‖∞] and

report the best performance. Notice that WSS-TLS is run with oracle knowledge of

the useful distributional parameters from θ, along with oracle-aided tuning of λ.

To assess the performance of P-BiG-AMP for this problem setup, we conducted

a series of random trials. The signal dimension was fixed at N = 256, the size of the

190



parameter b was set at Nb = 10, and the sparsity of the unknown signal was fixed

at ‖c‖0 = 10, with non-zero entry variance νc = 1. The AWGN variance νw was

selected to enforce SNR = 20 log10 ‖y −w‖2/‖w‖2 = 40 dB. Finally, the number of

measurements M was varied to cover under sampling ratios M/N ranging from 0.1

to 0.9. The results showing the mean NMSE over 10 trials for estimating both b and

c from the measurements y are shown in Fig. 5.3. P-BiG-AMP obtains accurate so-

lutions with fewer measurements than WSS-TLS, succeeding at M/N = 0.2, whereas

WSS-TLS only obtains reasonable reconstructions for M/N ≥ 0.3. Furthermore,

P-BiG-AMP nearly matches the oracle bounds for M/N ≥ 0.3, whereas WSS-TLS,

despite oracle-aided tuning of the parameter λ, continues to exhibit a performance

gap of several dB, even at M/N = 0.9. EM-P-BiG-AMP very nearly matches the

performance of P-BiG-AMP, with the exception of a small gap at M/N = 0.2, in

spite of the need to learn the underlying distributional parameters θ.

5.10.2 Noisy Partial 2D Fourier Measurements of a Sparse
Image with Row-wise Phase Errors

Our second example is motivated by the problem of simultaneous sparse imaging

and phase error correction in synthetic aperture radar as studied in [90]. Here, we

consider a simplified setup that captures the salient features of this application. In

particular, we adopt the model

y = Φ diag(b⊗ 1N)Fc +w, (5.205)

where c ∈ CN2
contains the vectorized complex-valued pixels in an N × N 2-D im-

age that we seek to reconstruct, and F ∈ CN2×N2
implements a 2D Discrete Fourier

Transform (DFT) with vectorized input and output. The entries of b ∈ C
N are

191



0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0

10

 

 

M/N

N
M
S
E
(b
)

P-BiG-AMP
EM-P-BiG-AMP
WSS-TLS
c-Oracle

0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0

 

 

M/N

N
M
S
E
(c
)

P-BiG-AMP
EM-P-BiG-AMP
WSS-TLS
b,support-Oracle

Figure 5.3: NMSE for estimation of the trivially-parameterized sparse signal X(c) ∈
RN (right) with ‖c‖0 = 10 and the parameter b ∈ R10 (left) of the random affine
measurement operatorA(b) ∈ RM×N as a function of the ratio between the number of
measurements M and the signal length N = 256. The measurements were corrupted
with AWGN at a SNR of 40 dB. All results represent mean performance over 10
random trials.

drawn uniformly at random on the unit circle in the complex plane. Multiplication

with diag(b ⊗ 1N) thus adds an unknown phase error to all of the Fourier measure-

ments such that the error is constant for each row of the 2D DFT. Finally, Φ ∈ RM×N2

is a selection matrix which down-samples the phase-corrupted Fourier measurements,

and w ∈ CM represents additive circular complex Gaussian noise. This problem also

fits into the P-BiG-AMP framework with X(·) chosen as the trivial parameterization,

A(b) = Φdiag(b ⊗ 1N)F , and a CAWGN likelihood. The prior on b can be imple-

mented in the P-BiG-AMP framework using a similar methodology to the one applied

for uncertain output phases in [74], while a Bernoulli-Gaussian prior is selected for c.

Notice that the model here includes additional structure beyond the standard phase-

retrieval problem that P-BiG-AMP is able to exploit, since the unknown phase errors

are constant across rows of the DFT output.

192



We simulated an example with N = 128, 300 non-zero pixels with values drawn

iid CN (0, 1), M = 0.2N2, phase errors bi chosen uniformly on [−90◦, 90◦], and νw

selected to obtain SNR = 40 dB. The results are depicted in Fig. 5.4. The top left

pane shows the magnitudes of the pixels in the original image on a normalized dB

scale. Naively applying GAMP with the correct signal model, with the exception

of ignoring the phase errors, produces the severely corrupted result shown on the

top right. On the other hand, applying P-BiG-AMP allows the phase errors to be

accurately reconstructed, as shown on the bottom right, and simultenously produces

an accurate estimate of the original image, shown on the bottom left. The NMSE

in the P-BiG-AMP estimate of the image is −49.62 dB, rendering the result visually

indistinguishable from the original in this example.

5.11 Conclusion

In this chapter, we presented P-BiG-AMP, a parametric extension of the BiG-

AMP algorithm described in Chapter 4. P-BiG-AMP offers a framework for solving

a variety of bilinear inference problems where one or both of the matrix factors has

a parsimonious, parametric representation. This parametric approach allowed us to

relax the assumption of separable priors on these factors and offers the potential to

apply bilinear AMP based inference to a variety of practical problems in remote sens-

ing and other domains. Building on techniques developed for GAMP and BiG-AMP,

we also proposed adaptive damping and parameter tuning schemes for the algorithm.

Several simplifications and approximations of P-BiG-AMP were considered for partic-

ular choices of the parameterizations. Finally, we presented two numerical examples

to demonstrate the effectiveness of P-BiG-AMP.

193



 

 

20 40 60 80 100 120

20

40

60

80

100

120
−60

−50

−40

−30

−20

−10

0
Original Image

 

 

20 40 60 80 100 120

20

40

60

80

100

120
−60

−50

−40

−30

−20

−10

0
GAMP: Phase Errors Ignored

 

 

20 40 60 80 100 120

20

40

60

80

100

120
−60

−50

−40

−30

−20

−10

0
P-BiG-AMP

0 50 100 150
−100

−50

0

50

100

 

 
P-BiG-AMP: Phase Corrections

P
h
as
e
E
rr
or

(d
eg
re
es
)

Row Index

Truth
Estimate

Figure 5.4: Recovery of a 128 × 128 complex-valued image with 300 non-zero pixels
from partial noisy 2D Fourier measurements with row-wise phase errors uniformly
distributed on [−90◦, 90◦] and AWGN at SNR = 40 dB. The magnitude of the original
image on a normalized dB scale is shown on the top left, and the reconstruction using
GAMP, which ignores the phase errors, is shown on the top right. The P-BiG-AMP
estimates of the image and the required phase corrections are shown on the bottom
left and right, respectively. The NMSE in the recovery of the image using P-BiG-AMP
is −49.62 dB.

194



Chapter 6: Conclusion and Future Work

Motivated by the success of Compressive Sensing (CS) techniques for solving linear

inference problems with sparsity constraints, and in particular by the effectiveness of

Approximate Message Passing (AMP) methods, this dissertation has explored several

extensions to the Generalized AMP (GAMP) algorithm, enabling its use to solve a

variety of bilinear inference problems. First, we developed a Matrix Uncertain GAMP

(MU-GAMP) to address measurement matrix uncertainty in problems reminiscent of

those considered in the traditional CS literature. Along the way, we demonstrated

that uniform uncertainty in the measurement matrix could be handled without spe-

cialized algorithms for sufficiently large problems and introduced an alternating ver-

sion of MU-GAMP that could estimate the measurement matrix itself under certain

conditions, empirically demonstrating near-oracle performance. Building on the suc-

cess of this alternating scheme, a Bilinear GAMP (BiG-AMP) algorithm was derived

to jointly estimate both factors of an unknown matrix product. The two matrix fac-

tors were modeled using separable priors on their entries, and the resulting algorithm

achieved performance comparable, and in some cases superior, to state-of-the-art al-

gorithms on problems in matrix completion, robust principal components analysis,

and dictionary learning. A variety of modifications to the algorithm were also pro-

posed and tested to reduce computational cost, learn unknown prior parameters and

195



model orders, and improve performance on real-world data sets. Finally, an exten-

sion of BiG-AMP enabled the use of non-separable priors on the matrix factors by

representing them with known parametric models. While the resulting P-BiG-AMP

subsumes BiG-AMP for a particular choice of the parameterizations and is justified

rigorously for random affine parameterizations, it can be applied to a much wider

class of nonlinear parameterizations, offering a host of potential applications.

A variety of directions could be pursued in future work. First, a detailed analysis

of the convergence behavior of EM-BiG-AMP under both matched and mismatched

statistics would offer insights into the applicability of the algorithm and might lead

to improved schemes for adaptive damping. Various model extensions, including

structured-sparsity or the ability to impose additional, possibly non-linear constraints

on the resulting solutions might allow wider application of BiG-AMP. For example,

certain motion estimation problems require the further restriction that the columns

of low rank solutions lie on the surface of a low-dimensional ellipsoid. As briefly

mentioned in Chapter 4, a variety of practical problems in high-dimensional inference

could also be attacked using BiG-AMP, including extensions to preliminary results

for hyperspectral unmixing and other problem domains in remote sensing. The most

promising future work, however, lies in applying P-BiG-AMP to these and similar

problems. Several potential applications are possible, including simultaneous calibra-

tion and sparse imaging from Fourier data, registration of sensor data across modal-

ities, automatic learning of sensitivity maps in parallel magnetic resonance imaging,

various formulations of blind deconvolution in communications, and numerous others.

196



Bibliography

[1] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information The-

ory, vol. 52, no. 4, pp. 1289–1306, April 2006.

[2] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and

inaccurate measurements,” Communications on Pure and Applied Mathematics,
vol. 59, no. 8, pp. 1207–1223, 2006.

[3] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms for

compressed sensing,” Proc. Nat. Acad. Sci., vol. 106, no. 45, pp. 18 914–18 919,
Nov. 2009.

[4] ——, “Message passing algorithms for compressed sensing: I. Motivation and

construction,” in Proc. Inform. Theory Workshop, Cairo, Egypt, Jan. 2010, pp.
1–5.

[5] ——, “Message passing algorithms for compressed sensing: II. Analysis and
validation,” in Proc. Inform. Theory Workshop, Cairo, Egypt, Jan. 2010, pp.

1–5.

[6] S. Rangan, “Generalized approximate message passing for estimation with ran-
dom linear mixing,” in Proc. IEEE Int. Symp. Inform. Thy., Saint Petersburg,

Russia, Aug. 2011, pp. 2168–2172, (Full version at arXiv:1010.5141 ).

[7] J. T. Parker, V. Cevher, and P. Schniter, “Compressive sensing under matrix
uncertainties: An approximate message passing approach,” in Proc. Asilomar

Conf. Signals Syst. Comput., Pacific Grove, CA, Nov. 2011, pp. 804–808.

[8] J. T. Parker, P. Schniter, and V. Cevher, “Bilinear generalized approximate

message passing, Part 1: Derivation,” Submitted to IEEE Trans. Signal Process.,
2013.

[9] ——, “Bilinear generalized approximate message passing, Part 2: Applications,”

Submitted to IEEE Tran. Signal Process., 2013.

[10] J. T. Parker and P. Schniter, “Parametric bilinear generalized approximate mes-

sage passing,” In Preparation for IEEE Trans. Signal Process., 2014.

197



[11] M. Bayati and A. Montanari, “The dynamics of message passing on dense graphs,
with applications to compressed sensing,” arXiv:1001.3448, Jan. 2010.

[12] D. Guo and C.-C. Wang, “Asymptotic mean-square optimality of belief propa-

gation for sparse linear systems,” in Proc. Inform. Theory Workshop, Chengdu,
China, Oct. 2006, pp. 194–198.

[13] ——, “Random sparse linear systems observed via arbitrary channels: A de-

coupling principle,” in Proc. IEEE Int. Symp. Inform. Thy., Nice, France, Jun.
2007, pp. 946–950.

[14] J. Pearl, Probabilistic Reasoning in Intelligent Systems. San Mateo, CA: Morgan

Kaufman, 1988.

[15] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Trans. Inform. Theory, vol. 47, pp. 498–519, Feb.

2001.

[16] A. Montanari, “Graphical models concepts in compressed sensing,” in Com-
pressed Sensing: Theory and Applications, Y. C. Eldar and G. Kutyniok, Eds.

Cambridge Univ. Press, 2012.

[17] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová, “Probabilistic

reconstruction in compressed sensing: algorithms, phase diagrams, and threshold
achieving matrices,” Journal of Statistical Mechanics: Theory and Experiment,

vol. 2012, no. 08, p. P08009, 2012.

[18] S. Rangan, P. Schniter, and A. Fletcher, “On the convergence of generalized
approximate message passing with arbitrary matrices,” in Proc. IEEE Int.

Symp. Inform. Thy., Honolulu, Hawaii, Jul. 2014, to appear., (Full version at
arXiv:1402.3210 ).

[19] S. Rangan, J. T. Parker, P. Schniter, J. Ziniel, J. Vila, M. Borgerding, and et al.,

“GAMPmatlab,” https://sourceforge.net/projects/gampmatlab/.

[20] S. Rangan, P. Schniter, E. Riegler, A. Fletcher, and V. Cevher, “Fixed points
of generalized approximate message passing with arbitrary matrices,” in Proc.

IEEE Int. Symp. Inform. Thy., Istanbul, Turkey, Jul. 2013, pp. 664–668, (Full
version at arXiv:1301.6295 ).

[21] V. Cevher, “On accelerated hard thresholding methods for sparse approxima-

tion,” Idiap Research Institute, Ecole Polytechnique, Tech. Rep., 2011.

[22] L. Anitori, A. Maleki, M. Otten, R. Baraniuk, and P. Hoogeboom, “Design
and analysis of compressed sensing radar detectors,” Signal Processing, IEEE

Transactions on, vol. 61, no. 4, pp. 813–827, 2013.

198



[23] E. Candès, “The restricted isometry property and its implications for compressed
sensing,” Comptes rendus-Mathématique, vol. 346, no. 9-10, pp. 589–592, 2008.

[24] M. A. Herman and T. Strohmer, “General deviants: An analysis of perturbations
in compressed sensing,” IEEE Journal of Selected Topics in Signal Processing,

vol. 4, no. 2, pp. 342–349, 2010.

[25] M. Herman and D. Needell, “Mixed operators in compressed sensing,” in Infor-

mation Sciences and Systems (CISS), 2010 44th Annual Conference on. IEEE,
2010, pp. 1–6.

[26] Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “Sensitivity to basis
mismatch in compressed sensing,” IEEE Trans. Signal Process., vol. 59, no. 5,

pp. 2182–2195, May 2011.

[27] H. Zhu, G. Leus, and G. Giannakis, “Sparsity-cognizant total least-squares for
perturbed compressive sampling,” Signal Processing, IEEE Transactions on,

vol. 59, no. 5, pp. 2002 –2016, May 2011.

[28] M. Rosenbaum and A. Tsybakov, “Sparse recovery under matrix uncertainty,”

The Annals of Statistics, vol. 38, no. 5, pp. 2620–2651, 2010.

[29] E. Candes and T. Tao, “The dantzig selector: Statistical estimation when p is

much larger than n,” The Annals of Statistics, vol. 35, no. 6, pp. 2313–2351,
2007.

[30] R. Tibshirani, “Regression shrinkage and selection via the LASSO,” Journal of
the Royal Statistical Society. Series B (Methodological), pp. 267–288, 1996.

[31] Y. Tang, L. Chen, and Y. Gu, “On the performance bound of sparse estimation

with sensing matrix perturbation,” Signal Processing, IEEE Transactions on,
vol. 61, no. 17, pp. 4372–4386, Sept 2013.

[32] S. Wright, R. Nowak, and M. Figueiredo, “Sparse reconstruction by separable
approximation,” Signal Processing, IEEE Transactions on, vol. 57, no. 7, pp.

2479 –2493, july 2009.

[33] I. Tošić and P. Frossard, “Dictionary learning,” IEEE Signal Process. Mag.,

vol. 28, no. 2, pp. 27–38, Mar. 2011.

[34] J. Cai, E. Candès, and Z. Shen, “A singular value thresholding algorithm

for matrix completion,” SIAM Journal on Optimization, vol. 20, no. 4, pp.
1956–1982, 2010. [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/

080738970

199



[35] S. Ma, D. Goldfarb, and L. Chen, “Fixed point and bregman iterative
methods for matrix rank minimization,” Mathematical Programming, vol. 128,

no. 1-2, pp. 321–353, 2011. [Online]. Available: http://dx.doi.org/10.1007/
s10107-009-0306-5

[36] Z. Zhou, X. Li, J. Wright, E. Candès and, and Y. Ma, “Stable principal compo-
nent pursuit,” in Information Theory Proceedings (ISIT), 2010 IEEE Interna-

tional Symposium on, june 2010, pp. 1518 –1522.

[37] B. Recht, M. Fazel, and P. Parrilo, “Guaranteed minimum-rank solutions of

linear matrix equations via nuclear norm minimization,” SIAM Review, vol. 52,
no. 3, pp. 471–501, 2010. [Online]. Available: http://epubs.siam.org/doi/abs/

10.1137/070697835

[38] Z. Lin, M. Chen, L. Wu, and Y. Ma, “The augmented lagrange multiplier
method for exact recovery of corrupted low-rank matrices,” Arxiv preprint

arXiv:1009.5055, 2010.

[39] M. Tao and X. Yuan, “Recovering low-rank and sparse components of matri-

ces from incomplete and noisy observations,” SIAM Journal on Optimization,
vol. 21, no. 1, pp. 57–81, 2011.

[40] T. Zhou and D. Tao, “Godec: Randomized low-rank and sparse matrix decom-
position in noisy case,” in Proceedings of the 28th International Conference on

Machine Learning (ICML-11), ser. ICML ’11, L. Getoor and T. Scheffer, Eds.
New York, NY, USA: ACM, June 2011, pp. 33–40.

[41] H. Ghasemi, M. Malek-Mohammadi, M. Babaei-Zadeh, and C. Jutten, “SRF:
Matrix completion based on smoothed rank function,” in Proc. IEEE Int. Conf.

Acoust. Speech & Signal Process., Prague, Czech Republic, May 2011.

[42] Z. Wen, W. Yin, and Y. Zhang, “Solving a low-rank factorization model
for matrix completion by a nonlinear successive over-relaxation algorithm,”

Mathematical Programming Computation, vol. 4, pp. 333–361, 2012. [Online].
Available: http://dx.doi.org/10.1007/s12532-012-0044-1

[43] A. Kyrillidis and V. Cevher, “Matrix recipes for hard thresholding methods,”
arXiv:1203.4481, 2012.

[44] G. Marjanovic and V. Solo, “On optimization and matrix completion,” Signal
Processing, IEEE Transactions on, vol. 60, no. 11, pp. 5714–5724, 2012.

[45] J. Haldar and D. Hernando, “Rank-constrained solutions to linear matrix equa-
tions using PowerFactorization,” Signal Processing Letters, IEEE, vol. 16, no. 7,

pp. 584 –587, july 2009.

200



[46] L. Balzano, R. Nowak, and B. Recht, “Online identification and tracking of
subspaces from highly incomplete information,” Arxiv preprint arXiv:1006.4046,

2010.

[47] R. Keshavan, A. Montanari, and S. Oh, “Matrix completion from a few entries,”

Information Theory, IEEE Transactions on, vol. 56, no. 6, pp. 2980 –2998, june
2010.

[48] W. Dai and O. Milenkovic, “SET: An algorithm for consistent matrix comple-
tion,” in Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE Inter-

national Conference on, 2010, pp. 3646–3649.

[49] J. He, L. Balzano, and J. Lui, “Online robust subspace tracking from partial

information,” Arxiv preprint arXiv:1109.3827, 2011.

[50] R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization,” Advances
in neural information processing systems, vol. 20, pp. 1257–1264, 2008.

[51] X. Ding, L. He, and L. Carin, “Bayesian robust principal component analysis,”
Image Processing, IEEE Transactions on, vol. 20, no. 12, pp. 3419 –3430, dec.

2011.

[52] Y. Lim and Y. Teh, “Variational bayesian approach to movie rating prediction,”

in Proceedings of KDD Cup and Workshop. Citeseer, 2007, pp. 15–21.

[53] S. D. Babacan, M. Luessi, R. Molina, and A. K. Katsaggelos, “Sparse Bayesian

methods for low-rank matrix estimation,” IEEE Trans. Signal Process., vol. 60,
no. 8, pp. 3964–3977, Aug. 2012.

[54] M. Tipping and C. Bishop, “Probabilistic principal component analysis,” Journal

of the Royal Statistical Society: Series B (Statistical Methodology), vol. 61, no. 3,
pp. 611–622, 1999.

[55] F. Léger, G. Yu, and G. Sapiro, “Efficient matrix completion with gaussian
models,” in Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE In-

ternational Conference on. IEEE, 2011, pp. 1113–1116.

[56] N. Wang, T. Yao, J. Wang, and D. Yeung, “A probabilistic approach to ro-

bust matrix factorization,” in Proceedings of European Conference on Computer
Vision, A. Fitzgibbon, Ed., vol. VII, no. 2012, 2012, pp. 126–139.

[57] B.-H. Kim, A. Yedla, and H. Pfister, “Imp: A message-passing algorithm for ma-
trix completion,” in Turbo Codes and Iterative Information Processing (ISTC),

2010 6th International Symposium on, 2010, pp. 462–466.

201



[58] B. J. Frey and D. J. C. MacKay, “A revolution: Belief propagation in graphs
with cycles,” in Proc. Neural Inform. Process. Syst. Conf., Denver, CO, 1997,

pp. 479–485.

[59] M. Bayati and A. Montanari, “The dynamics of message passing on dense graphs,
with applications to compressed sensing,” IEEE Trans. Inform. Theory, vol. 57,

no. 2, pp. 764–785, Feb. 2011.

[60] A. Javanmard and A. Montanari, “State evolution for general approximate mes-
sage passing algorithms, with applications to spatial coupling,” Information and

Inference, Oct. 2013.

[61] A. Dempster, N. M. Laird, and D. B. Rubin, “Maximum-likelihood from in-
complete data via the EM algorithm,” J. Roy. Statist. Soc., vol. 39, pp. 1–17,

1977.

[62] J. P. Vila and P. Schniter, “Expectation-maximization Gaussian-mixture ap-
proximate message passing,” IEEE Trans. Signal Process., vol. 61, no. 19, pp.

4658–4672, Oct. 2013.

[63] P. Schniter, “Turbo reconstruction of structured sparse signals,” in Proc. Conf.

Inform. Science & Syst., Princeton, NJ, Mar. 2010, pp. 1–6.

[64] J. Vila, P. Schniter, and J. Meola, “Hyperspectral image unmixing via bilinear
generalized approximate message passing,” Proc. SPIE, vol. 8743, p. Y, 2013.

[65] P. Schniter and V. Cevher, “Approximate message passing for bilinear models,”

in Proc. Workshop Signal Process. Adaptive Sparse Struct. Repr. (SPARS), Ed-
inburgh, Scotland, Jun. 2011, p. 68.

[66] P. Schniter, J. T. Parker, and V. Cevher, “Bilinear generalized approximate

message passing (BiG-AMP) for matrix recovery problems,” Feb. 2012, presented
at the Infom. Thy. & Appl. Workshop (ITA), (La Jolla, CA).

[67] S. Rangan and A. K. Fletcher, “Iterative estimation of constrained rank-one

matrices in noise,” arXiv:1202.2759, February 2012.

[68] F. Krzakala, M. Mézard, and L. Zdeborová, “Phase diagram and approximate
message passing for blind calibration and dictionary learning,” arXiv:1301.5898,

January 2013.

[69] G. F. Cooper, “The computational complexity of probabilistic inference using
Bayesian belief networks,” Artificial Intelligence, vol. 42, pp. 393–405, 1990.

[70] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, “Learning low-level vision,”

Intl. J. Computer Vision, vol. 40, no. 1, pp. 25–47, Oct. 2000.

202



[71] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as an
instance of Pearl’s ‘belief propagation’ algorithm,” IEEE J. Sel. Areas Commun.,

vol. 16, no. 2, pp. 140–152, Feb. 1998.

[72] D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms. New

York: Cambridge University Press, 2003.

[73] J. Boutros and G. Caire, “Iterative multiuser joint decoding: Unified framework

and asymptotic analysis,” IEEE Trans. Inform. Theory, vol. 48, no. 7, pp. 1772–
1793, Jul. 2002.

[74] P. Schniter and S. Rangan, “Compressive phase retrieval via generalized approx-
imate message passing,” in Proc. Allerton Conf. Commun. Control Comput.,

Monticello, IL, Oct. 2012.

[75] S. Wright, R. Nowak, and M. Figueiredo, “Sparse reconstruction by separable
approximation,” IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2479–2493, Jul.

2009.

[76] R. Neal and G. Hinton, “A view of the EM algorithm that justifies incremental,

sparse, and other variants,” in Learning in Graphical Models, M. I. Jordan, Ed.
MIT Press, 1999, pp. 355–368.

[77] P. Stoica and Y. Selen, “Model-order selection: a review of information criterion
rules,” Signal Processing Magazine, IEEE, vol. 21, no. 4, pp. 36 – 47, july 2004.

[78] E. J. Candès and Y. Plan, “Matrix completion with noise,” Proc. IEEE, vol. 98,
no. 6, pp. 925–936, Jun. 2010.

[79] M. E. Tipping and C. M. Bishop, “Probabilistic principal component analysis,”

J. Roy. Statist. Soc. B, vol. 61, no. 3, pp. 611–622, 1999.

[80] R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization,” in Proc.

Neural Inform. Process. Syst. Conf., Vancouver, BC, Dec. 2008, pp. 1257–1264.

[81] N. D. Lawrence and R. Urtasun, “Non-linear matrix factorization with Gaussian

processes,” in Proc. Int. Conf. Mach. Learning, Montreal, Quebec, Jun. 2009,
pp. 601–608.

[82] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” J. ACM, vol. 58, no. 3, pp. 11:1–11:37, Jun. 2011. [Online]. Available:

http://doi.acm.org/10.1145/1970392.1970395

[83] R. Rubinstein, A. Bruckstein, and M. Elad, “Dictionaries for sparse representa-

tion modeling,” Proceedings of the IEEE, vol. 98, no. 6, pp. 1045–1057, 2010.

203



[84] D. A. Spielman, H. Wang, and J. Wright, “Exact recovery of sparsely-used dic-
tionaries,” in JMLR: Workshop and Conference Proceedings of 25th Annual Con-

ference on Learning Theory, vol. 23, 2012.

[85] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing

overcomplete dictionaries for sparse representation,” Signal Processing, IEEE
Transactions on, vol. 54, no. 11, pp. 4311–4322, 2006.

[86] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix factor-
ization and sparse coding,” The Journal of Machine Learning Research, vol. 11,

pp. 19–60, 2010.

[87] P. de Jong, “A central limit theorem for generalized quadratic forms,” Probab.

Th. Rel. Fields, vol. 75, pp. 261–277, 1987.

[88] H. W. Sorenson, Kalman Filtering: Theory and Application. Piscataway, NJ:
IEEE, 1985.

[89] L. Greenbard and J.-Y. Lee, “Accelerating the nonuniform fast fourier trans-
form,” SIAM Review, vol. 46, no. 3, pp. 443–454, 2004.

[90] N. Onhon and M. Cetin, “A sparsity-driven approach for joint sar imaging and
phase error correction,” Image Processing, IEEE Transactions on, vol. 21, no. 4,

pp. 2075 –2088, april 2012.

204


