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Abstract

Recent developments in compressive sensing (CS) combined with increasing de-
mands for effective high-dimensional inference techniques across a variety of disci-
plines have motivated extensive research into algorithms exploiting various notions
of parsimony, including sparsity and low-rank constraints. In this dissertation, we
extend the generalized approximate message passing (GAMP) approach, originally
proposed for high-dimensional generalized-linear regression in the context of CS, to
handle several classes of bilinear inference problems. First, we consider a general form
of noisy CS where there is uncertainty in the measurement matrix as well as in the
measurements. Matrix uncertainty is motivated by practical cases in which there are
imperfections or unknown calibration parameters in the signal acquisition hardware.
While previous work has focused on analyzing and extending classical CS algorithms
like the LASSO and Dantzig selector for this problem setting, we propose a new al-
gorithm called Matrix Uncertain GAMP (MU-GAMP) whose goal is minimization of
mean-squared error of the signal estimates in the presence of these uncertainties, with-
out attempting to estimate the uncertain measurement matrix itself. Next, we extend
GAMP to the generalized-bilinear case, in which the measurement matrix is estimated
jointly with the signals of interest, enabling its application to matrix completion, ro-
bust PCA, dictionary learning, and related matrix-factorization problems. We derive
this Bilinear GAMP (BiG-AMP) algorithm as an approximation of the sum-product
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belief propagation algorithm in the high-dimensional limit, where central limit theo-
rem arguments and Taylor-series approximations apply, and under the assumption of
statistically independent matrix entries with known priors. In addition, we propose
an adaptive damping mechanism that aids convergence under finite problem sizes, an
expectation-maximization (EM)-based method to automatically tune the parameters
of the assumed priors, and two rank-selection strategies. We then discuss the special-
izations of EM-BiG-AMP to the problems of matrix completion, robust PCA, and
dictionary learning, and present the results of an extensive empirical study comparing
EM-BiG-AMP to state-of-the-art algorithms on each problem. Our numerical results,
using both synthetic and real-world datasets, demonstrate that EM-BiG-AMP yields
excellent reconstruction accuracy (often best in class) while maintaining competitive
runtimes and avoiding the need to tune algorithmic parameters. Finally, we propose
a parametric extension known as P-BiG-AMP, which recovers BiG-AMP as a spe-
cial case, that relaxes the assumption of statistically independent matrix entries by
introducing parametric models for the two matrix factors. The resulting algorithm
is rigorously justified for random affine parameterizations and constructed to allow
its use with an even wider class of non-linear parameterizations, enabling numerous

potential applications.
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Chapter 1: Introduction

The origin of the name Compressive Sensing (CS) [1,2] lies in a particular inter-
pretation of CS algorithms as an approach to signal compression. Many practical
systems sample a signal of interest at a rate above the Nyquist rate dictated by its
bandwidth, transform the signal to a basis which concentrates the signal’s energy
into a few large entries, and achieve compression by storing the values and locations
of only these dominant coefficients. JPEG2000 is an excellent example of processing
in this vein, relying on a wavelet transformation to sparsify natural images. Since
the signal is eventually encoded with only a few coefficients, it seems natural to
ask if fewer measurements could have been taken in the first place. Under various
technical conditions, CS accomplishes this goal by combining a reduced number of,
typically randomized, measurements with nonlinear reconstruction algorithms and
known sparsifying transformations. In particular, CS algorithms typically consider
linear regression problems of the form y = Ax + w, with noise w, a sparse or com-
pressible signal € RY, and an under-determined linear operator A € RM*¥ with
M < N.

Over the past several years, work on CS has spurred research into several classes of
algorithms for under-determined linear regression, including methods in convex opti-

mization, greedy techniques, and various Bayesian approaches. Of particular interest
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here is Approximate Message Passing (AMP) [3-5] and the subsequent Generalized
AMP (GAMP) [6], which offers state-of-the-art performance for linear CS problems,
significant flexibility in the assumed prior models for the signal of interest x, a gen-
eralized measurement model that supports non-Gaussian noise and even non-linear
measurements, and low implementation complexity. These methods, like the vast ma-
jority of other CS techniques, treat the measurement matrix A as fixed and known.
In this dissertation, motivated by the success of AMP methods for solving linear
problems in CS, we consider extensions of the AMP framework to handle various
bilinear inference problems in which A is partially or even completely unknown.
This dissertation is organized as follows. Chapter 2 reviews prior work on GAMP
and includes a detailed derivation of the algorithm. Various modifications required
for its practical implementation are also described, along with the simplifications
required to reduce GAMP to the original AMP. While GAMP itself does not represent
a contribution of this dissertation, we have made notable contributions to its publicly
available implementation, which we have also extended to include the novel algorithms
presented in subsequent chapters. Next, Chapter 3 summarizes our first contribution,
an extension of GAMP which models the entries of A as independent random variables
with known means and variances in an effort to recover & more accurately in the
presence of an uncertain measurement matrix. Empirically, we show that this Matrix
Uncertain GAMP (MU-GAMP) [7] approach performs near oracle bounds. We also
present a simple analysis showing that, for suitably large systems, it suffices to treat
uniform matrix uncertainty as additive white Gaussian noise. While MU-GAMP does

not estimate A directly, we show that it can be applied in an alternating fashion,



referred to as A-MU-GAMP, to learn both the signal vector and the measurement
matrix when A can be written as an affine combination of known matrices.

In Chapter 4, we pursue a more flexible approach which jointly estimates A and
matrix-valued X by placing separable priors on the elements of both matrix factors.
This bilinear inference algorithm is referred to as Bilinear GAMP (BiG-AMP) [8,9].
We present several special-case simplifications of the algorithm that offer reduced
computational complexity. In addition, an adaptive damping mechanism, expecta-
tion maximization (EM) based tuning of the prior parameters, and two methods for
selecting the rank N of the product AX are presented. The resulting algorithm is
then specialized for matrix completion, robust principal components anlaysis, and
dictionary learning. A detailed empirical study shows that BiG-AMP yields an ex-
cellent combination of estimation accuracy and runtime when compared to existing
state-of-the-art algorithms for each application.

Our final contribution is described in Chapter 5, where we develop a parametric
extension of BiG-AMP. This P-BiG-AMP algorithm [10] handles the case where A
and X are described by known parametric models and seeks to jointly estimate the
parameters of these models, rather than the matrices themselves. This approach re-
duces to BiG-AMP for “trivial” deterministic parameterizations, but can also handle
much more general settings where the effective priors on A and X are non-separable,
e.g., a measurement system with a small number of calibration parameters. In the
interest of generality, we carry out the derivation for possibly non-linear parameteriza-
tions, although certain steps in the derivation are rigorously justified only in the case
of random affine parameterizations. Practical implementation issues for P-BiG-AMP

are also addressed, along with numerical examples to demonstrate the technique’s



effectiveness. Finally, we offer conclusions and a summary of possible future work in

Chapter 6.



Chapter 2: Generalized Approximate Message Passing

2.1 Overview

In this chapter, we provide a detailed derivation of the Generalized Ap-
proximate Message Passing (GAMP) algorithm from [6] and describe several is-
sues surrounding its practical implementation. GAMP is a generalization of
Donoho/Maleki/Montanari’s AMP [3-5], where the latter handled only Gaussian
output channels. The GAMP analysis closely follows the AMP analysis of Bay-
ati/Montanari [11]. GAMP is also closely related to Guo/Wang’s relaxed BP [12,13],
but admits a rigorous analysis with dense matrices A, as well as a somewhat simpler
implementation. Rangan’s work [6] provides asymptotic analysis that shows that, for
ii.d Gaussian A, as limy_ % = [, the empirical distributions of GAMP esti-
mates converge (at all iterations) to distributions predicted by a state evolution (SE)
formalism. Moreover, the SE equations are shown to coincide with those derived using
the non-rigorous replica method from statistical physics, as well as with those derived
using sparse-matrix assumptions. Mismatched statistics are also considered. We refer
the reader to [6] for the details of these analyses, as our focus here will be on the
derivation and implementation of the algorithm. The derivation is based primarily

on Taylor Series and Central Limit Theorem (CLT) arguments and introduces several



techniques used in the novel derivations carried out in subsequent chapters. While
Rangan provides versions of GAMP for both minimum mean squared error (MMSE)
and maximum a posteriori (MAP) estimation, here we restrict our attention to the
MMSE case.

The chapter is organized as follows: in Section 2.2, we set up the problem of inter-
est for GAMP. We then introduce the sum product algorithm in Section 2.3 and apply
it to derive MMSE GAMP in Section 2.4. Next, example channel models along with
some practical convergence issues are addressed in Section 2.5 to Section 2.7. Finally,
we describe the cost function used for step acceptance in practical implementations
of GAMP in Section 2.8 and describe the connection between GAMP and AMP in

Section 2.9.

2.2 Problem Setup

We denote the signal vector of interest as & € RY, drawn from the arbitrary

separable pdf

p(x|q) prwcz (; | 4)), (2.1)

where {¢;} are known parameters. Given the known measurement matrix A € R¥*¥
with entries a;; = [A]; j, sometimes with M < N, we define the noiseless measure-
ments (in practice unknown) as z = Az € RM. The vector of known noisy measure-

ments y € RM is related to z via the arbitrary separable “output channel”

y | z HpY|Z Yi | Zz (22)

Our goal is to estimate x from y using the MMSE criterion.



2.3 Review of the Sum-Product Algorithm

The sum-product algorithm [14, 15] is a form of belief propagation (BP) that

attempts to iteratively estimate the marginals of the posterior p(x |y, q):

ply|z)p(z|q)

p(x|y,q) = x p(y|z)p(x|q)

p(ylaq)
= _pr\z(yil [Az],) HPXIQ(%’ 4)). (2:3)

In BP, messages are passed between nodes of the factor graph of p(x | y, ), illustrated
in Fig. 2.1. There, the factors of p(x |y, q) are represented by “function nodes” de-
picted as black squares and random variables in p(x | y, q) are represented by “variable
nodes,” depicted as white circles. Each variable (node) is connected to every factor
(node) in which it appears. Note that since {y;}}1, and {g;}_, are known, they are

treated as pdf parameters and not as random variables.

A1—>1($1)

pyiz(y1 | [Az]y) 2

W oo |a)

M)

pyiz(y2 | [Az]) W xo(r2] )

Tn,
— U W pxo(@y|av)
Aiej(z;)

pY|Z(yM | [A$]M)

Figure 2.1: The factor graph for generalized linear inference.



In our formulation of the sum product algorithm [14,15], messages take the form
of log-pdfs, with arbitrary constant offsets. For example, the message A, ;(x;) cor-
responds to the pdf L exp(A,;(z;)), where Z £ fmj exp(Ai;(z;)) is a necessary
scaling factor. The sum-product algorithm estimates the posterior pdf of a given
variable as the product of exponentiated messages entering that variable node (after
appropriate scaling). For example, on the graph in Fig. 2.1, the estimate of p(z; | y, q)

takes the form of £ exp (A;(z;)), where

Aj(z;) = const +logpxi(z;lgy) + Y Aisj(x)), (2.4)
i=1

and where A;_,;(z;) denotes the message from the i function node (on the left) to
the j* variable node (on the right). We use const to denote an arbitrary constant
offset. Without loops in the graph, BP yields exact posteriors with one round of
message passing. With loops, exact inference is generally NP hard, but approximate
inference via BP can perform very well, such as in the case described here. We now
apply the sum product algorithm to the graph in Fig. 2.1 to arrive at update rules
for the messages A, j(x;) and A, ;(x;).

First, the outgoing message from a factor node on a given branch is the log of
the integrated product of the local function and all exponentiated incoming messages
on other branches. Applying this procedure to the function-to-variable messages
A j(x;), we obtain

Aij(z;) = const + log / pyiz(yil [Az)) [[exp (A (@) (2.5)
{zr}rz; ki
The calculation of this message is depicted graphically in Fig. 2.2. For variable nodes,

the outgoing message on a given branch is the sum of all incoming messages on other



branches, which allows us to compute the variable-to-function messages A, ;(z;) as

Ai(—j('rj) = const + 1ngX\Q(xj ‘ QJ) + Z Al—)j(xj)- (26)
11

A graphical depiction of this message calculation is provided in Fig. 2.3. For the factor
graph in Fig. 2.1, exact implementation of the sum-product algorithm has complexity

exponential in /N, motivating the simpler scheme described in the sequel.

pyiz(v1 | [Az],) I

W rxo(zi|a)

py|z(y2 | [Az]2) Px|o(T2q2)

TN

PY|Z(?JM | [Azx]nr)

O W rxo(rngn)

Aiej(z))

Figure 2.2: A graphical depiction of the portion of the factor graph used to compute
A;,;(z;). The red arrows represent the incoming messages used in the calculation,
while the blue arrow marks the resulting message.

2.4 GAMP for the MMSE Case

The sum-product algorithm is now approximated using central limit theorem

(CLT) and Taylor-series ideas, yielding the MMSE version of the GAMP algorithm.



W rxo(zila)

px|o(72|q2)

TN
O=—— pxio(7n|qN)

pyviz(Ym | [Az] )

N~ 7

AW—N(xN)

Figure 2.3: A graphical depiction of the portion of the factor graph used to compute
Ajj(x;). The red and green arrows represent the incoming messages used in the
calculation, while the blue arrow marks the resulting message. The message from the
prior node py|g(7n|qn) is shown in green to emphasize that this message is known
and does not need to be recomputed for each iteration.

The following means and variances are used in the sequel:

z;(t) = B{z;| At )} (2.7)
pi(t) = var{z;| At )} (2.8)
Ti(t) = E{r;|Ai(t, )} (2.9)
ph () & var{a; | Ais(t, )}, (2.10)

where in (2.7)-(2.10) it is assumed that x; ~ L exp(A(t,.)) for Z £ ij exp(A(t, x;)).

In the sequel, we approximate the updates (2.4)-(2.6) using the AMP framework.
Our approximations will be guided by analyzing the algorithm in the large system
limit, where § & M/N is held constant as N — oc. Similar to the derivations in [6,
16,17], we shall assume that z; is O(1) and a;; is O(1/v/N) and drawn randomly from
a zero mean distribution, which implies that z; is O(1). Based on these assumptions
and our subsequent derivation, Table 2.1 summarizes how several variables used by

10



ZO oM [mm] o
7() | o) | i) | o)
ms(t) | o) | (0| o)
0 o) | ww | o
S o) | win) | o
) o) | ) | o)
s0) o) | | o)
Tat) —2,() | O(/VN)
Wyt () | 0(/N)
Pyt~ () | O(1/VE)
W0 — () | O(/N)

Table 2.1: GAMP variable scalings in the large system limit.

GAMP, most of which will be defined in the sequel, are assumed to scale relative to

N in the large system limit.
2.4.1 Messages emitted by the function (or “output”) nodes

Rule (2.5) of the sum-product algorithm yields the time-¢ message

Aii(t, )
= const + log/ py‘z(yi a;;x; + Z air:):r> H gRierter) (2.11)
{@rtrz r#j r#j
Av
= Z’i

For large N, the CLT motivates the treatment of z; as conditionally Gaussian, i.e.,

zilz; o~ N(aijl"j +@j(t)>li§}(t))> (2.12)
where
Pi(t) 2 > anZn(t) (2.13)
r#j
W) 2 S @), (2.14)
rj

11



Using this CLT approximation,

Ai—>j(t7 LL’j) ~ const + log / py‘Z(yi | ZZ') N(Zi; aijxj —|—]/9\ij(t), /J/Z(t)) (215)

é H(Cl,ijl’j +]/7\zj(t)a Yi, ij(t))

The related quantities

pit) &> aydyh) (2.16)
J
w2 D agu () (2.17)
J
can be plugged into (2.15) to get

Aisj(t,x;) ~ const+ H(ag(z; — Ty(t)) + Dilt), yi, 5 (t)) (2.18)

= const + H (a;;(z; — T;(t)) + pi(t) + O(1/N), ...
yis 17 (t) + O(1/N)), (2.19)
where in (2.19) we have recognized, recalling Table 2.1, that a;;[z;(t) — Z;;(t)] is
O(1/N). The difference between pij;(t) and 47 (t) is also O(1/N), since they differ by
a single term that is scaled by a?j. Notice that the remaining terms in both function

arguments are O(1). Applying a Taylor-series approximation to (2.19), one finds

Aisj(t,z;) =~ const+ H(pi(t), yi, 1 (1))
+ag(z; = 2;(0) H' (Pi(t), v, 115 (1))

102 (ay — &5 () H" (Bi(t), s 12(1)). (2.20)

where H'(-,-,-) denotes the derivative of H(,-,-) with respect to the first argument,
and H"(-,-,-) the second derivative. A sum containing O(N) of the A, ;(¢, z;) mes-
sages is used to compute A, ;(x;). Thus, we have only retained terms in the ex-
pansion that are O(1/N) or larger. In particular, we have dropped the O(1/N)

12



perturbations of the H'(-,-,-) and H"(-,-,-) function arguments' and the cubic? and

higher order terms in the Taylor series. Defining

S0 2 B (Gt). i) (2.21)
pi(t) = —H"(pi(t),yi i (1)), (2.22)

and noting that H (p;(t), y;, £ (t)) is constant w.r.t z;, (2.20) becomes

~ ~ ~ 2 4
Ai—)j(taxj> ~ const + CLZ'j(LUj - x](t))sl(t) - %a?j (SL’j - Ij(t)) ;i (t) (223)

= const + [§;(t)ai; + i (t)ad,T; ()] x; — Spus(t)aa?. (2.24)

In essence, the pdf %exp(AHj(t,:cj)) has been approximated as Gaussian, even
though pyz(.|.) in (2.15) may be non-Gaussian.

As shown below, the quantities in (2.21) and (2.22) can be simplified. From

H(p,y,u?) = 1og/pY|z(y|Z)N(Z;ﬁ,up)dz, (2.25)

it can be seen that

H'(p,y, 1)
0 1 1 P
— oz | py\z(ylz) e (= gz = 7)) (226)

- 0 {log VoL + log i exp <logpy‘z(y |2) — %(z — ﬁ)2> dz} (2.27)

8 D2 22
— 8_27\{ — —Q,uf” + log/exp (logpy|z(y| z) — 2—p + )dz} (2.28)
_ _ﬁ ﬁ P o ; 4L i
= + % log [,u /e'xp (¢(u) —i—pu)du] via u = ” (2.29)
= 5 -
= —% + 8—ﬁlog/exp (¢(u) + pu)du (2.30)

LA further Taylor series expansion of these terms reveals that these perturbations can be ne-
glected, since the coefficients premultiplying them are O(1/v/ N) or smaller.

*Notice that the cubic term is scaled by a;, which is O(1/N3/2).

13



for appropriate ¢(-). Now, for Z(p) £ [ exp (¢(u) + pu)du, simple calculus yields

0 P P . ~ ex w)+-pu

55108 2(0) = Blulp} with puip(u|p) = = (2.31)
’ (¢(u)+pu)

o 08 2®) = var{u|p} with pup(u|p) = “HGHEL. (2.32)

Thus, from (2.30) and (2.31), it follows that

) b [ e (o) + )
H (p,y,pu*) = —£+/u e~ du 2.33
Gv) = -2 - (239
D exp (lo 2) — ot 2B
- _£+/i p( ng|Z(y|A) 2u )% via u & (2.34)
I P Z(p) e I
) eX lo ~(z —D)?
_ _£+i p (logpyiz(yl2) — 55 (2 — P) )dz (2.35)
Np u”Z( )exp( )
P
e T y\ N(z P, pr)dz
1 BN PR
L

where pziyv.p(z|y,D;p?) o< pyiz(y|2)N(z;p,p?). This notation invokes the in-
terpretation that GAMP calculates the approximate prior pgzp(z|pi(t); i (t)) =
N (zi; pi(t), 1t (t)) and combines it with the likelihood py|z(y;| z) to form the result-
ing posterior pzy,p(2i | ys, Di(t); pf (t)), which is an approximation to the true marginal

posterior pzyy (2i | yi)-

14



Similarly, from (2.30) and (2.32),

—H"(p,y, 1¥)
- {-meum} = {L - Siez) (239
_ % —var{u| P} (2.39)
A
_ % N / <£ _ E{z] ?ijp; up})2 exp UO%PYZ;?J(;) — o T u_p)% (2.41)
R NIRRT
_ %(1 _ var{z \[ij,p;u }>‘ (2.43)

We define the moments of the time-t approximated marginal posterior as

5(8) = B o Bi(8); 10(8)} (2.44)
i (t) = var{z | o i (8); 1 (1)}, (2.45)

which can be exported for use elsewhere as needed, e.g., in EM learning of likelihood

parameters.

15



2.4.2 Messages emitted by the variable (or “input”) nodes

Rule (2.6) of the sum-product algorithm yields

Ai<—j (t+]., [L’j)

= const +log pxio(; | ;) + Y Ar(t,z)) (2.46)
i
~ const + logpxia(e; | ) + Y ([Bilt)ay + i (ad ()] 2; — Sy (1)ada2)2.47)
1#i
= const + log pxjo(z; | ¢;)
1 > (@gBit) + afiu ()75(1)) \ 2
o 2 s —1 xj - Z 2 8(t> (248)
2( D0z ajyi (1)) i i
1 - 2
= const + logp 7| q5) — = x; — 1t 2.49
X\Q( ]| J) 2,uij(t)( J ]( )) ( )
for
-1
1) 2 (D akui) (2:50)
£
Flt) & T + ()Y aysi(), (2.51)

I#i
where both quantities are O(1). The quantities Z;j;(t) and y; from (2.9) and (2.10)

can now be updated using the message approximation (2.49). In particular, (2.49)

implies

f TPX|Q x|qJ)N(
f PxiQ (z]g5) N(

£ Gin (ﬂj(t), 9, ij(t))

( ), (1))
qu (t))

7

Ti(t+1) 2 Bz | A j(t+1)} =~ .(2.52)

?
?

Furthermore, as shown below, (2.52) implies that

PE(T) 2 varfe; | A (D)} & g (R, a5, (0) (0, (2.53)
where ¢/ (-, -, ) denotes the derivative of gi,(-, -, ) w.r.t the first argument. As justi-

fication for (2.53), we define

GFq i) 2 log / pxio(z| @) N (@, 1), (2.54)

16



which has a very similar form to H(p,y, x?) in (2.25). In fact, following the same

steps as before, one finds that

- 1 PO,
GFan) = o(Bleleru -7) (2:55)
- 1 T
G"(T’,q,,ur) _ _(Var{$|q rip } o 1>’ (256)
pr pr
where mean and variance are computed using pxigr(®|q, 7 u") x

pxio(@|q) N(z;7,p").  This notation invokes the interpretation that GAMP
calculates the approximate likelihood pgjx(7}(t)|xs; p5(t)), which is then com-
bined with the (assumed) prior px|o(z;|g;) to form the resulting posterior
pxiQ.r(xj [ q;,7(t); ¢} (t)), which is GAMP’s iteration-t approximation to the true

marginal posterior px|y (z;|y). Then, from (2.52) and (2.55), it follows that
gn(F.q, ") = T+ p'G'(Tq,n7), (2.57)

after which differentiating (2.57) w.r.t 7 and plugging in (2.56) yields

var{z | ¢, 75 "}

v (2.58)

InToqp") = 14+ p'G"(Fq, ") =
which establishes (2.53).

The mean 7;;(t+1) is now further approximated using the O(1) quantities

-1

pi(t) = (Z a?juf(t)) (2.59)

mi(t) 2 T+ Z a;;5; (2.60)

Comparison with (2.50) reveals that i, (t) —p(t) is O(1/N), as indicated in Table 2.1.

From (2.52), the approximation yu;(t) ~ p(t) yields

Tii(t+1) =~ gin(75(t) — aisi(H) (1), g5, 5 (t)) (2.61)
X in (75(t), 45, M;-(t)l —a;;5;(t) g;(t)ga'n (75(t), a5, M}f(t))j (2.62)
£ @-vtﬂ) < (t+1)

17



where a first-order Taylor-series approximation was used in (2.62). We have neglected
O(1/N) terms and note that the remaining correction to 7;(t + 1) is O(1/V/N), as
expected from comparison to the derivations in [6,16,17]. It should be noted that the
definitions of Z;(t+1) and pf(t+1) below (2.62) are consistent with those of Z;;(t+1)
and pf;(t+1) in (2.52) and (2.53), respectively.

Finally, the updates to p;(¢) and u(t) (recall (2.16) and (2.17)) can be approxi-

mated as follows:

pi(t+1) Za”xw (t+1) Za,jxj (t4+1) — 5( Za”u] (t+1). (2.63)

~ i (t+1)

18



2.4.3 Summary of MMSE GAMP

Definitions:
PZ|Y,P(Zi|yi,@§Mf) X PY|Z(yi|Zi)N(Zi§@,Mf) (2-64)
px1Q.&(T1q5, Ty 117) o pxi(@ilg)N (2575, 1) (2.65)

Initialization (¢ = 1):

Vit z;(1) = [xpxio(le)de (2.66)
Vit (1) = [lz—7;(1)P pxje(@le)de (2.67)
Vi: 5(0) = 0 (2.68)

Output nodes (t > 1):

Vi (t) = S layPui() (2.69)
Vii i) = D a®i(t) = u(t)sit = 1) (2.70)
Vi: Zi(t) = Blzilv,pi(t); ()} (2.71)
Vi wi(t) = var{z |y, Bil0); i (1)) (2.72)
Vi (1) = (30 = Bilt) /(1) (2.73)
Vi () = (L—ui(t)/ul(t)/id(®) (2.74)
Input nodes (t > 1):

it = (S0 lauPe) (2.75)

AR OREAORYTOD SR HEA) (2.76)
is 1) = E{ay gm0 m50)} (2.77)
itop(tl) = var{a;|q;m(0): ()} (278)
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The above algorithm is summarized using absolute values and conjugates to facil-
itate operation in the complex-valued case, in which case the definitions (2.64)-(2.65)
would use circular complex Gaussian distributions. We also note that the rigorous
GAMP analysis presented in [6] requires several small modifications of the above al-

gorithm, some of which assume that the columns of A are approximately unit-norm.

2.5 Example Channel Models for MMSE GAMP

In this section we provide examples of the prior on the unknown signal (2.1),
which Rangan refers to as an input channel, and the likelihood function (2.2), which
Rangan refers to as the output channel.

In later chapters, we will consider a variety of likelihood functions, including Gaus-
sian mixtures and Laplacian noise. However, the most common choice for the output
channel is Additive White Gaussian Noise (AWGN), i.e., py|z(y | 2) = N (y; z, u*) for
noise variance u*. The required mean and variance calculations to implement GAMP
for this channel model are given as

P

~ ~ 1% ~
E{z|y,p i’} = p+ ——(y— 2.79
{2y, D 1"} p Mp+uw(y D) (2.79)
1
var{z |y, p; p*} = ————. 2.80

Note that the complex-valued circular-AWGN output channel yields the same expres-
sions.

For the input channel, one of the most common choices will be the sparsity induc-
ing Bernoulli-Gaussian distribution given by pxq(z|q = [, 0, %)) = M (z;0, 1) +
(1—=X)d(z), where 5, 1? are the mean and variance, respectively, of the non-zero com-

ponents, and A € [0, 1] controls the sparsity rate. The required mean and variance

20



expressions to implement this channel model are given by

Bfalg,7ip’} = L (2.81)

var{zlq, 7 p"t = v + -, (2.82)

for

1—X [pf 1
a = 1+ —— 'u—exp<§

G ﬁ]) (2.83)

\ v M€+Mr Iur
0/’ +7/u"
v = //ie /MT (2.84)
1/pf +1/p
1
= —. 2.85
Y L/pr +1/pf (2.85)

Note that, when 0= 0, some equations can be simplified:

B T—X [ub 12
v o= V—j (2.87)
1

For Bernoulli-CN, we remove the above square-roots and % terms, and change squares

to absolute-squares.

2.6 Damping for Numerical Robustness

GAMP was derived and analyzed for random, iid matrices A. However, the use
of “damping” with GAMP yields provable convergence guarantees with arbitrary
matrices [18]. Practical implementations of GAMP thus use an adaptive step size
procedure to ensure convergence. A step size [, marked in red for clarity, is inserted

into the algorithm to obtain
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Initialization (¢t = 1):

Vit 7;(1) = [zpxielzlg)de (2.88)
Vit wi(l) = [lr—7;0)Ppxe(ele)de (2.89)
Vi: 5(0) = 0 (2.90)

Output nodes (t > 1):

pe(t) = B35 laglui(t) + (1= B)uf(t — 1) (2.91)
pi(t) = Zaiﬁj(t) — i ()5t —1) (2.92)
5i(t) = Bgour(Di(t), yi, (1)) + (1 = B)Si(t = 1) (2.93)
() = =B (Pi(t), yis 1 (1)) + (1 = B)pi (t — 1) (2.94)

Input nodes (¢t > 1):

T(t) = B30+ (1 - Azt —1) (2.95)
uit) = (S layPui)) (2.96)
) = T+ 50 T a0 (2.97)
Bt = gl (). p5(0) (2.98)
HEEHL) = () (70, g5, 15 (0), (2.99)

where we have written the algorithm in terms of the previously defined g;, function.
We also use a similar g,,; notation to represent the output channel. In particular,
Gout (Di (1), yi, 1 (t)) £ H'(Pi(t), yi, £ (t)), which, recalling (2.21) and (2.22), implies
that —ghu (Pi(t), yi, 17 (1) = (1 — i (8)/ 17 (1)) /17 (2).

Notice that the algorithm now contains an extra state, namely 7;(¢). To avoid
choosing an initialization for this state, § = 1 for the first time step. In general,
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some schemes allow 3 to vary with the time step, while others use a constant step,
with the exception of ¢ = 1. The step is taken in all of the quantities that are used
to compute 7;(¢). In this way, a step size of zero results in no change in the current
state. Trivially, we note that g = 1 for all time steps reduces to the standard GAMP
algorithm. Finally, the practical implementation uses a step-acceptance procedure to
verify that a given step improves the cost function described in Section 2.8 before

updating the actual state variables.

2.7 Additional Modifications for Numerical Robustness

Particularly for problems at very high signal to noise ratios, several of the vari-
ances tracked by the GAMP algorithm take on extreme values over a potentially
problematic dynamic range. In particular, u® becomes very large, while p*, pu”, and
u? become extremely small. Our practical implementation bounds the small vari-
ances from below, but it may be beneficial to track scaled versions of these variances
to avoid potential numerical problems. Here we develop a slightly modified algorithm
to accomplish this goal.

Initialization (¢t = 1):

Vi z;(1) = fpr|Q(:L’|qj)d:L’ (2.100)
Vi: wi(1) = [lz—2;(1)]pxie(elg)de (2.101)
Vi: 5(0) = 0 (2.102)
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Output nodes (t > 1):

pi(t) =

< pP(t) > =
pit) =

/ﬁ\z(t) =

©(t) =

7(t+1)

py(t+1)

B3 lai P () + (1= B)pf (£ = 1)
A0

N Pt .
;%’%‘ () - %ﬁi(t -1

B < uP(t) > Gour (Di(t), yi, iE (1)) + (1 — B)3;(t — 1)

—B < P (t) > gou (Dilt), i, () + (1 — B)ps(t — 1)

— 50+ (1= BTt~ 1)
= (S el )

= T;(t) + H; (t) >0, afjgi(t)

= gin(75(t), g5, < pP (1) > pi(1))

= < P(0) > () Gy (). 4y < P (0) > (1)

(2.103)

(2.104)

(2.105)

(2.106)

(2.107)

(2.108)
(2.109)

(2.110)

(2.111)

(2.112)

Notice that we are now computing normalized versions of ;(t), p?(t), and H’Jf(t).

If we fix 8 = 1 for all iterations, then the normalizations by < p?(t) > have no

effect on the algorithm analytically. Notice in particular that the scale factors in the

calculation of 7;(¢) cancel. We have also added a step size into the calculation of

i (t)-

2.8 Cost Function for MMSE-GAMP

In Section 2.6, we described a method for improving GAMP’s convergence be-

havior using an adaptive step scheme. In this section, we describe the cost function
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used in the GAMPmatlab [19] implementation of MMSE GAMP to test whether a
candidate step will be accepted. In particular, a step is “accepted” if it reduces the
value of the cost function?.

The first goal is to formulate the cost function associated with MMSE GAMP, i.e.,
an optimization problem whose critical points are the fixed points of MMSE GAMP.

Following Rangan’s development from [20], we first notice that (trivially)

p(, zly,q) = arg m)in D(b(z, z) | p(z. 2|y, q)) (2.113)

where D(p1||p2) denotes the KL divergence between distributions p; and p. Further-
more, because the joint posterior enforces the constraint z = Ax via p(x, 2|y, q) =
C(y)p(x|q)p(y|z)d(z — Ax), we can safely restrict the distributions b(x, z) in the

minimization above to the form b(x, z) = b*(x)d(z — Ax), in which case

DO 2) | 2l.a) = [ Wamlog- 2
B (@, 2) 1o b*(x)d(z — Ax)
= ), A s )6z — Aw) (2.115)

b ()
V@ 2)loe 7 el (2.116)

- [ / V() log - (y1|z) ~log C(y) (2.117)
= | i) )) / b () 1og1%
/ 2)log —— bz ~log % (2.118)
D(v*(z)|[p(z|q)) +D(bz( )Ip(y|z)) + H(b*) + const (2.119)
where H(p;) is the entropy of distribution p; and Z(y) = [, p(y|z) is a scaling

constant. Then, because the objective function in (2.113) has decoupled into terms

3An enhancement allows the cost function to increase over a small window of iterations.

25



that involve only 0" (x) and b*(z), the optimization problem (2.113) can be restated

as

(p(x|y,q),p(2|y,q)) = ar;g Ibnin Jrr(b°,b%) s.t. b® = Tab", (2.120)

Iia b, ) = D1 ljjpm('\qj)) + (v f[lm(yi 927 ) 4 H ()

(2.121)

where the constraint b* = T,b" indicates that b* is the density of z = Ax where
x ~ b".

Unfortunately, the approximate marginal posteriors computed by GAMP are not
critical points of (2.120). Rangan thus developed an approximation to (2.120) such
that MMSE GAMP converges to a fixed point of the modified problem. The approx-
imation involves three steps. First, separable approximations to the true marginal
posteriors are employed. Thus, the optimization is restricted to separable densities*

of the form

Vo (x) = Hb;?(xj) (2.122)

V(z) = Hbf(z,-). (2.123)

Second, the entropy H(b?) is replaced with a Gaussian upper bound Hg(bZ, 1) to

yield the modified objective function

li_lleQ('Mj)) (v

Jsp(b, b7, puP) = D(bx ‘

ﬁleZ(yi | ')Zi_l)

M
£ Ha (b7 2) (2,120
i=1
var(z; | z; ~ b? log 27
He (b7, i) = ( 2|/ﬁ-’ ) g2 Hi (2.125)

4This approximation is analogous to the mean field approximation used in physics.
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Using the entropy maximizing property of the Gaussian distribution, it is straight-
forward to prove that H(b7) < He (b7, pf), with equality when b7 is Gaussian with
variance pf. As a result, for any positive vector p? and densities® b” and b*, we have

the upper bound
Jsp(bm,bz,[,l,p) > JKL(bm,bz). (2126)

The third approximation involves weakening the constraint b* = T40”. The separable
approximate marginal distributions will in general not satisfy this constraint. In-
stead, the constraint is replaced with a weaker pair of moment matching constraints:
E{z|b*} = E{Az |b*} = AE{z |b"} and p? = var{Az|b"} = A®var{x |b*}. Here,
the square on A? is understood to be taken component-wise, and the var{-} represents
the vector of component variances, rather than a covariance matrix.

Combining all three of these approximations, Rangan obtains the optimization
problem

@z,gz, ,up> = arg min Jgp(b*, b*, @)
bz7bz7ﬁp

st. E{z|b’} = AE{z|b"}, pP = A’var{z|b"}. (2.127)
As Rangan points out, the resulting minimum is neither an upper or lower bound
to that of (2.120); while Jgp is an upper bound to Jgp, the constraints have been

weakened. However, Rangan proves a claim that if MMSE GAMP converges, then

5The bound holds even if the densities are not separable.

27



its approximated marginal posteriors

N N
plzly) = HPX\Q,R(%' | g5, 755 1) = HPX\Q(SCJ' | )N (2575, 1) C (2.128)
j=1

j=1

for C; = / PX|Q(93j | C.IJ)N(f’fjﬁ’\jW;)

J

M M
p(zly) = HpZ\Y,P(Zi | i, Pis 1) = HPY|Z(yi | 20N (235 pir 1) B (2.129)
i=1 i=1

for B; £ / py|z(yz‘ | zi)N (2i5 Di, 128

along with its variances p? are critical points of the problem (2.127). This correspon-
dence motivates us to consider Jgp as a cost function for step size selection in MMSE
GAMP.

At this point, we pause to make a few comments about the relationships between
some of GAMP’s signal estimates. We define the mean and component-wise variance
of (2.129) as z(t) and p*(t), respectively. Notice that these are the mean and variance
quantities that are used to compute gou and g. .. Similarly, we will refer to the mean
and variance of (2.128), which are the quantities computed by ¢, and ¢/, as Z(t) and
p*(t). A natural question arises as to how these estimates are related.

We have just seen that GAMP provides a solution to (2.127) when it converges.
Thus, from the first moment matching constraint, we know that AZ(t) = z(t) at
convergence. This equivalence can be easily seen by writing out the update equation

for s(t) from (2.73) in terms of these estimates,

S(t) = [2(t) — AZ(t) + P (t) © 5(t — 1)] @ p”(t), (2.130)
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where ©® and @ indicate element-wise multiplication and division, respectively.
Clearly, 5(t) = 8(t — 1) once the two estimates are equal®. Indeed, one might con-
sider using ||z(t) — AZ(t)||% as a convergence criterion for GAMP. In contrast, we
emphasize that in general p(t) # z(t), even at convergence, since p(t) includes an
additional Onsager correction term, i.e., the p?'(¢)s;(t—1) in (2.70), based on §(t—1).
This relationship between z(t) and p(t) is clear from the form of the approximate
posterior (2.129).

Finally, we note that the p?(t) = A*u®(t) variances are distinct from, and larger
than, the p*(t) variances. As a simple example, p*(t) will be zero for all ¢ in the case
of noise-free measurements, whereas p?(t) will only approach zero as the algorithm
converges in this noiseless case.

With these comments in mind, we are finally prepared to state the cost function for
MMSE GAMP step size selection. Rangan bases the cost function on Jgp. Rangan’s
implementation evaluates the cost function at the approximated posterior (2.128),
but he elects to use a Gaussian approximation in place of the approximate posterior

(2.129). In particular, he considers the Gaussian approximated posterior given by
M M
Bz ) ~ [[ et |5 i) = T[N (2555, ) = N (2 AR, ding(A%07)),  (2.131)
i=1 i=1
where we use the definition p(t) £ AZ(t). This choice for the approximate posterior
on z satisfies the first moment matching constraint in (2.127) for all £. In addition, for
this Gaussian approximation, the bound (2.126) is tight. Put another way, we have
H(b?) = Hg (bf, i ) This choice also simplifies the implementation, since various
step sizes can be tested without recomputing the go,: functions. Notice also from

6The cancelation of pP(t) in this expression suggests why allowing these variances to become
arbitrarily small can lead to numerical problems.
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the last equality in (2.131) that this approximate posterior for z can be written as a
simple function of the moments of (2.128). Finally, the simple Gaussian functional
form simplifies the evaluation of Jgp.

The reader may wonder why p?(t) is used as the variance in this approximation,
rather than p?®(t). There are at least two motivations for this choice. First, the use
of pP(t) is necessary to make the bound (2.126) tight. Second, the p*(¢) variances
may be very small even for small ¢, potentially leading to numerical difficulties. As
already pointed out, in the noise free case, p*(t) is zero for all time. Thus, p*(¢) may
not capture the uncertainty in the Z(¢) estimate prior to convergence.

Plugging in (2.131) and (2.128) into the objective function from (2.127), we obtain

Rangan’s cost function for MMSE GAMP step size selection as

J = ZD(pX|Q,R(' | 45,755 15) | pxio(lg;)) + ZD(PZ|ﬁ(' s 1) || pyviz(wi| ) Z7)
+ZH(I?Z\?(' D55 17)) (2.132)

= D(pxjo.a(- 14,75 1) || pxio(-lg))

=1

M = . ,,P
_ Pzip(2i | Dis 145
+y (/ P2z | B 1) log =

=\ /s pyiz(yi| 2) 27

.

- / Pzp(zi | Pis 1) 1og p 45 (2i | By 1] )) (2.133)

Zi

I
.MZ

D(pxiq.r(1a;,75:145) || pxio(lay) — By s Bt {log py|z(yi | Z)} + const.
1

J

(2.134)
The constant term depends only on the prior distributions and can be ignored by
MMSE-GAMP. Notice that the second term in (2.134) is the (negative) expected

log-likelihood. Next we show how the terms in (2.134) can be simplified.
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2.8.1 Expected Log-likelihood of the measured data

The first term in (2.134) can then be simplified as follows:

M M
Y Ep, imn) {logpyiz(v:1 2)} = / N (zi:pi 1) log pyz2(yi | ). (2.135)
i=1 i=1 7Y%

In the AWGN case, i.e., py|z(y; | z:) = N (ys; 2, 1*), we can simplify further:

M
Z By Ciput) {ogpyiz(yi| 2)}

i=1
M
= Z/ N (23 Dy, 117) log N (yis 2, 1) (2.136)
i=1 7z
d 1
- Z <log 2mp + 2/~L—w/ N (295 1) (2 — yi)2). (2.137)
=1 Zi
Finally, using
[ Meipen) -
= / N (253 1) (20 = Py + Bi — i) (2.138)

— [ NGB i) (= B + 2 = BB = ) + (B = 90))

=1+ (p; — vi)°,

(2.139)
we get
= = w 1 P = 2
Z D) {logpyz(yi| 2)} = — Z (log 2mpt + %—w(ﬂz + (B — i) ))
i—1 i=1
(2.140)

Notice that the log+/27pu® can be neglected when p* is known, as GAMPmatlab

does.
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2.8.2 KL divergence from the prior

We now simplify the second term in (2.134):

D(pxiq.r(la; 75 115) || pxie(-las))
pxi(x; | )N (575, 15)C; !

= [ pxiqr(z;|q;,7j; 1) log (2.141)
/xj QI pxie(z;lg;)
= / pxiQ.r(x; [ ¢5, 75 1) log N (2575, 1) — log C (2.142)
z
1 . R
—<long+log 27Tu]+2ur/ pxio.r(T5 | 5,755 15) (xj—rj)2>. (2.143)
j

Recalling that the pdf px g &(- | ¢j,75; p}) has mean 7; and variance pf, we can write

/x_ pxio.r(xj | 45,75 1) (25 — 75)?
/x, PxiQR(ey 145,75 p5) (2 = Ty + &5 = 75)° (2.144)
_ /x px1Q.r(T; | 45,755 15) ((:cj — )2 4 20z — ) (@ — 7)) + (7 — ?j>z> (2.145)
- ”§J+ @ = 73" (2.146)
so that

N
ZD px1Q,r (g5, 755 15) | pxio(la;))
7=1

1 x -~ ~\2
5 5+ @ =) )). (2.147)

N
=— Z <log Cj+log \/2mp’;
j=1

A very simple form for this cost function is available when px|o(z;|q;)

N (45 o, ). In this case, we notice that

pxiQ.r(T; | 45,755 1) = N (a3 75, 15), (2.148)
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which allows us to compute

=z

>~ D(pxioinlla 75:155) || pxiollay)

j=1
N ~
N (@3 75, 15)
- N (z;: T, p%) log ———L 1777 (2.149)
;/xj s N(x]7x0>ug)
= T Tjy frj) |log [ = — z z :
N ~
1 T T L 2
=Y - [log Po (“—i = 1) + M] . (2.151)
=2 1 o 1o

A common situation arises when we wish to define a prior with a given spar-
sity level A and some arbitrary distribution for the non-zero entries. Rangan’s
SparseScaEstim class from GAMPmatlab specifically handles this case, defining the

prior

pxje(lq) = (1= A)d(z — ¢) + Afx (), (2.152)

where the special case ¢ = 0 yields a sparsity inducing prior, and fx(x) is some arbi-
trary distribution, e.g., a Gaussian mixture. The advantage of the SparseScaEstim
class is that it allows you to design an estimator based on the distribution fx(x) and
then produce the corresponding estimator for (2.152) with no additional coding.

To see how this works, we first compute

€ = [ pxiafes | )N e (2.153)
— (= NNGT )+ [ el T (215
—_—— zj
éc(_) . ~ J
! 201

J

The quantity C’} is computed by the plikey method of an EstimIn object in the

GAMPmatlab code. To understand why we refer to this quantity as a likelihood,
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consider a binary indicator variable v; that determines whether z; is on (drawn from
the fx (x) distribution) or off (x; = ¢). With this hidden indicator variable defined, we
see that C'jo and C'Jl are precisely the likelihoods given 7 that 7; is 0 or 1, respectively.
Furthermore, we can define the posterior probabilities of z; being on or off given 7

as

(1—N)C? 0

Py =017)) = —F— =, (2.155)
J
N AC}
p(wzl\rj)zﬁéﬁ;zl_”?' (2.156)

J
If we are given an estimator designed for the prior fx(z), then it will compute the

KL divergence

N
D'(#,u") £ D (H N (75, 1) (CH) | fo (; ) (2.157)

—Z/ Fx ()N (575, 1) (CH) ™ log(W) (2.158)

:Djl‘ (ij/»‘j')

where we leveraged the form (2.142) to obtain the second line. The estimator designed
for the prior fx(z) will also return C} and estimates ' and p(@.
We also require the corresponding quantities for the off case, i.e., 7; = 0 with the

prior d(x — (). Fortunately, these quantities are readily computed as

— N 7/\7 ;
)2 / Sy — WG og () —0 - (2a1s0)
J
—¢ (2.160)
b0 =0 (2.161)
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We can immediately obtain the approximate posterior moments as

T; = m)¢ + T (2.162)

s = mct ) @)+ ] - 32 (2.163)

J

Our  remaining goal is to find a  simple expression  for
Z;.Vzl D(pxiq.r(1a;,75: 145) || pxio(-lg;)) in terms of the already available D'(7, u").

Starting with the form (2.142), we obtain

=

> D(pxiq.aCla 75 m5) || pxial-lay)

j=1
al N 7/\7 f

= [ ot .75 o () ) 2164
j=1"% !
= N (375, 15)

I B e e ) (2.165)
j=1"v%j J

N’ .;A.7 r
A0 o375 () o (ST (2.166)
J

N ~
o N (5575, 15) &
= Zﬂ'lo/ (x5 — QN (75, 15)(CY) ' {log (%) + log ?j} (2.167)
=1 Y ’ ’
. - N (575, 15) C;
et [ et el log (L) 02| 26y
zj J J
N 0 7l
=> {Dg(?j,ug) +log _JA} +7; [Djl-(?j,,u;) + log 73] (2.169)
j=1
N 0 7l
= Zﬂ'? log : _J)\ + 7 {Djl(?],u’;) + log X]] : (2.170)
j=1

Thus we can compute the required KL divergence for the prior (2.152) given the
output of an estimator designed for the prior fx(z). This completes the derivation

of the procedure used by the SparseScaEstim class.
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2.9 Connection to Donoho/Bayati/Montanari AMP

Rangan [6] states that his GAMP algorithm is equivalent to the AMP presented in
[11] when considering the Gaussian output channel. Here we clarify this relationship
between the algorithms. First, as pointed out already, under the AWGN or circular-

AWGN output channel, we obtain

~

by, ) = ——L 2.171
gout(payau) Mp+uw ( . )
1
4 (9 P\ —
gout(payalu ) - ,up +,uw (2172)

GAMP is only equivalent to AMP given a few simplifications. In particular, we

simplify the variance estimates to be the same for all nodes to obtain

) = S o (0) 2 S (0) 2 ) (2.173)
si 1 N 1 A s

0= e S e (2174)

() = (Z | uf (t)) & Mj(t) = pP(t) + pt = (). (2.175)

These definitions yield simplified expressions for the yuj variables as

pi (t+ 1) = p5(t) gin(75(2), g5, 115(1)) = 17 (8) gin(75(1), 455 17 (2)). (2.176)

With these simplifications in mind, we can express GAMP in a more compact form.

Notice that

7(t) = B(t) + p" () AT3(t) (2.177)
— 3 rpyal (Y =P
=Z(t)+ " (t)A <up(t) +W> (2.178)
=2(t) + A" (y — p(t)) (2.179)
=z(t) + A"v(t), (2.180)



where we have defined for convenience v(t) = y —p(t). We can express v(t) in a form

that makes the AMP equivalence obvious. Consider

3(t) = y - B(1) 2181)
—y— AG(t) — (¢ )ug(t _p(ltllu) (2.182)
_ )+ (M(t(i)l ) (t—1) (2.183)
_ )+ (flw ]t i“lﬂ ) B(t—1) (2.184)
1) g7t — 1), g5 07— 1))

_y— Az +( S (- >5.n(ij_<t1) A >>>v(t_1)
(2.185)
oy — AR() 4 = < gL (Bt — 1) qu it — 1)) > B(t — 1), (2.186)

o

where < - > denotes the mean and g;, is understood to operate on vectors component-
wise. As an aside, as suggested in [21], we can view ¥(t) as a filtered residual. Indeed,

if we define the unfiltered residual /I;(t) =y — AZ(t), then we can explicitly compute

B =b(1) + Y ( [T 5 < G-~ Dau—1) >> b(i).  (2.187)

J=i+1
Thus, v(t) is the output of an IIR filter with time-varying coefficients acting on the

unfiltered residuals.
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Combining these results, we can express the complete scalar-variance AWGN-

output GAMP (assuming E{|A;;|*} = ;) as

L
M

v(t) =y — AzZ(t) + %uf;(_t)l)'ﬁ(t—l) Onsager-corrected residual
r(t) = 2(t) + ATD(t) back-projection update
ph(t) = pt 4+ spt(t) error-variance of 7(t)
Z(t+1) = gin(7(t), q, 1" (1)) nonlinear thresholding step
p(t+1) = 1 (t) < g (7(t), q, 1" (t) > error-variance of Z(t+1)

or more succinctly as

(2.188)
(2.189)
(2.190)
(2.191)

(2.192)

B(1) =y — AB(1) + = < gl (B(i—1) + A"B(t=1), @, )7 (t=1)) > B(t—1)

4]

T(t+1) = gin(B(t) + A"D(t), q, 1" (1)).
Comparing (2.193)-(2.194) to the DMM-AMP recursion presented in [3]:

B(t) =y — AZ(t) + % < (&B(t—1) — A"B(t—1)) > B(t—1)

Z(t+1) = n(2(t) + A"B(t)),

we see that the recursions are equivalent when 7,(+) = gin(+, q, " (t)).

(2.193)
(2.194)

(2.195)

(2.196)

That said, DMM have suggested various implementations of 7,(-), some of which

are equivalent to what is done in the GAMP framework, and some of which are not.

For example, the “Bayesian AMP” from DMM’s [5, (23)-(25)] suggested (after fixing
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typos) the recursion

o(t) = y— Az(t)

L g @)+ ATB(t—1),q 1" + A (E—1)) > Bl —1) (2.197)

)
Z(t+1) = gn(Z(t)+ A"0(t),q, 1" + (1)) (2.198)
D) = S +(0) < (@0 + ATB0), g i +o(0) > (2199)

which is identical to (2.193)-(2.194) via v(t) = p*(¢)/d and pu* +~(t) = p"(t). On the

other hand, for the LASSO problem, DMM suggested in [16, Sec. 9.5.1] using

nFe) = nFeray/m0) tor 1(0) = 3P0 or (G0l
(2.200)
where 7(r,¢) is the soft thresholding function with threshold value 6, |0(t)|(n/2) is
the median magnitude, and ®7'(3/4) ~ 0.6745 is the median” absolute value of a
standard normal random variable. Here we note that i) the DMM threshold is set in
proportion to a square-root variance (i.e., a\/,uT(t)), whereas GAMP uses a variance

(i.e.,, Au"(t)), and ii) the DMM variance estimate p(t) is computed directly from the

residual v(t), whereas GAMP’s variance estimate p"(t) is computed from 7;_, and

w

we.

"DMM and their collaborators often prefer the median estimator. Note that this expression must
be adjusted for complex-valued data, see [22].
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Chapter 3: Matrix Uncertain Generalized Approximate

Message Passing

3.1 Introduction

As briefly described in Chapter 1, the goal in compressive sensing (CS) is to
reconstruct an N-dimensional signal  from M < N linear measurements y = Ax +
w, where w is additive noise. In the noiseless case, it is by now well known that,
when the signal is exactly K-sparse and the measurement matrix A satisfies certain
properties (e.g., restricted isometry, null space, or spark), it is possible to exactly
reconstruct the signal from M = O(K log N/K) measurements using polynomial-
complexity algorithms (e.g., greedy or convex-optimization based). Moreover, these
methods can accurately reconstruct the signal in the noisy case, even when the signal
is compressible rather than exactly sparse (e.g., [23]).

These results are, however, predicated on knowing the measurement matrix A
perfectly. In practical applications of CS, it is reasonable to expect uncertainty in
the linear measurement matrix A due to, e.g., imperfections in the signal acquisition
hardware, model mismatch, parameter discretization, and other factors.

Several authors have analyzed the impact of measurement-matrix uncertainty on

existing CS algorithms, e.g., Herman and Strohmer [24], Herman and Needell [25],
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and Chi, Pezeshki, Scharf, and Calderbank [26]. Herman et al. analyze the effect of
additive perturbations on the Basis Pursuit and CoSaMP algorithms, respectively,
whereas Chi et al. analyze the effect, on Basis Pursuit, of a multiplicative basis
mismatch matrix that takes the form of the identity matrix plus a perturbation.
In [24-26], the authors study the worst-case effects on established algorithms, but
stop short of proposing new algorithms.

We are aware of only a few algorithms that explicitly address measurement-matrix
uncertainty, all of which consider the additive uncertainty model A = A+ E. where

A is known and E is an unknown perturbation, yielding the observations

o~

y=(A+ E)r +w. (3.1)

In [27], Zhu et al. develop the Sparsity-cognizant Total Least Squares (S-TLS) ap-
proach, which extends the classical TLS approach (widely applied in the context of

{5 regularization) to ¢; regularization, yielding

{Zsr1s, Esris) =

argrEmn||(A+E)m—y||§+AE||E||§+A||wy|1. (3.2)

In [28], Rosenbaum and Tsybakov propose the MU-Selector, a modified version of the

Dantzig selector [29], which reads

{/w\MU—Solector } =

. ~H ~
argmin ||z]]; s. t. |A (y — Az)||e < A1 + € (3.3)

The above criteria assume relatively little about the structure of the perturbations
w and E, and thus obtain algorithms with wide applicability, but—as we shall see—
limited performance. In [27], Zhu et al. also proposed a Weighted S-TLS (WS-TLS)
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that can exploit structure in the matrix uncertainty E and perform significantly
better than S-TLS.

In this chapter, we address sparse-signal recovery under matrix uncertainty in a
Bayesian framework with informative priors. In particular, we extend the Approxi-
mate Message Passing (AMP) algorithm recently proposed by Donoho, Maleki, and
Montanari [3]—and in particular the Generalized AMP (GAMP) proposed by Ran-
gan [6] and reviewed in Chapter 2—to the case of probabilistic uncertainty on the
elements of the measurement matrix A. Initially, we treat the entries of A as inde-
pendent random variables that are known only in mean and variance, which can both
vary across the entries. The resulting Matrix-Uncertain GAMP (MU-GAMP) pro-
vides a computationally efficient way to obtain nearly minimum-mean-squared-error
(MMSE) estimates of the unknown signal @ in the presence of uncertainties in both
the linear matrix transformation A as well as the observations of the transformed
outputs Ax.

We then turn our attention to parametric matrices of the form A(0) = Ag +
25:1 0,A,, where {A,} are known and 6 = [fy,...,0p]" unknown. We then pro-
pose a scheme that alternates between the estimation of 8 and the estimation of x.
Conveniently, both estimation steps can be performed using the already developed
MU-GAMP framework. A salient feature of this approach is that we alternate soft
estimates as opposed to point estimates.

Throughout the chapter, we use boldface capital letters to denote matrices and
boldface small letters to denote vectors, I and 0 to denote the identity matrix and

*

zero matrices, (+)T transpose, and (-)* conjugate. For z; a realization of random

variable X;, we use Ex, {z;} to denote mean, varx, {z;} variance, px,(x;) the pdf, and
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px,|p,;(7; | d;) the pdf conditioned on D;=d;, and sometimes we omit the subscript
when there is no danger of confusion. To denote the Gaussian pdf with mean z and

variance v*, we use N (z;7,v%).
3.2 A Large-System Blessing?

Before getting into the details of MU-GAMP, we make a curious observation:
As the problem dimensions grow large, the effect of uniform matrix uncertainty is
identical to additive white Gaussian noise (AWGN) on the observations. The following

proposition makes our claim precise.

Proposition 3.2.1 Consider an M-dimensional observation of the form in (3.1),

written equivalently as
y=Az+e+w for e Ex. (3.4)

Suppose that N-dimensional x is K-sparse, and that the matriz uncertainty E is
uniform, i.e., {E,} are i.i.d zero-mean random variables with variance v¥ =c¥ /M
for bounded positive c® (but otherwise arbitrary distribution). In the large-system limit
(i.e., M, N, K — oo with fited 2 M/N and p=K/M ), the additive “interference” e

becomes i.i.d zero-mean Gaussian with variance v = c6=1||z||3/N.

Proof. Since the rows of E are statistically independent, the elements {e,,} of e
are independent as well. Moreover, e, = 25:1 Ern(k)Tn(k), Where n(k) indexes
the & non-zero element of x. Thus, in the large-system limit (i.e., K — o0),

the central limit theorem implies that e, is zero-mean Gaussian with variance

ve £ 08|23 = cFo|z]l3/N. B
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The implication of Proposition 3.2.1 is that, for problems of uniform matrix un-
certainty and suitably large dimension, there is no need to design new algorithms
that handle matrix uncertainty; those designed to handle AWGN (e.g., LASSO [30],
GAMP, etc.) suffice, so long as they are properly tuned to handle the additional
AWGN power v°.

Now, whether or not the large-system behavior predicted by Proposition 3.2.1
manifests at a given finite (M, N, K) depends on the distribution of i.i.d {F,,,} and
the sparsity K. If {FE,,,} are far from Gaussian (e.g., sparse) and K is relatively
small, the distribution of {e,,} can be far from Gaussian. On the other hand, if
{Emn} is Gaussian, then e, will also be Gaussian, for any K.

Although, to our knowledge, Proposition 3.2.1 is novel®, the empirical results in
previous works support its claim; see, e.g., the negligible difference between optimally
tuned versions of S-TLS and LASSO under ii.d Gaussian E in [27, Fig. 3]. In

Section 3.3.3, we will provide further empirical support.

3.3 Matrix-Uncertain GAMP
3.3.1 Background on GAMP

In the Bayesian approach to compressed sensing, it is typically presumed that
the signal « is drawn from a known separable pdf p(x) = [[, px(x,), where px(.)
promotes sparsity or compressibility. Similarly, the noise w is drawn from a known
separable pdf p(w) = [[,, pw(wy,). Given the observations y = Az + w, one would

8For a recent study of this problem, which appeared after our work on MU-GAMP was published
in [7], see [31].
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ideally like to compute the full joint posterior p(« | y). This is, however, not tractable
for the pdfs and problem dimensions typical in compressed sensing. Thus, one often
settles for approximate MAP or MMSE estimates.

The original AMP algorithm [3] assumes Laplacian px(.) and Gaussian py(.),
and seeks the MAP solution using an approximation of loopy belief propagation. The
approximation, which becomes tight in the large-system limit, is based on the CLT
and Taylor-series expansions, and relies on the elements of A to be known realizations
of an independent zero-mean 1/M-variance random variable.

Rangan proposed a Generalized AMP (GAMP) [6] that 1) handles either MAP or
MMSE, 2) allows arbitrary A,,,, 3) allows an arbitrary signal distribution px(.), and
4) allows an arbitrary separable pdf p(y |2) = [[,, Pv|z(Ym | 2m) relating the obser-
vations y to the linearly transformed outputs z = Az. This observation-uncertainty
model subsumes the case of additive noise w with arbitrary distribution py(.) via
Pv1z(Ym | 2m) = Pw (Ym —2m), but also handles nonlinear output transformations like

that used in logistic regression.

3.3.2 Matrix-Uncertain GAMP

We now propose a Matrix-Uncertain GAMP (MU-GAMP) that extends GAMP [6]
to the case of uncertainty in the measurement matrix A. Unlike GAMP, which
treats {A,,,} as fixed and known, MU-GAMP treats {A,,,} as independent random

variables with known mean and variance,

o~

Ay = E{A,} (3.5)

vaA = var{Am}, (3.6)

mn ~
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definitions: N
py|z(ylz) N(z:Z,v7)

pzy (2ly; 2,07) = T v G NGZ)

gout(yv Z) = = (Bapyizly:z 7}
pX\Y(x|y7 7VT) = ff);(i?)/;[/(\;(;)yrzﬂ)
gin(F V") = f WX\YW!N“ V')
gy = L[ e
initialize:
Vn:3,(1) = [ zpx(z)
Vn:vri(l) = fz |z —Z,(1)Ppx (2)
Ym :u,(0) = 0
fort=1,2,3,...
Vm:Zm(t) = SN Apain(t)
Vm vz (t) Z,J:[_l |/A1mn| vy (t)
Ym:vP(t) = v - n
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Vm :Um(t) = gout(Ym,Dm (1), VB (
Vm : V;fl(t) = _gé)ut(ym/a\ﬁma)v van(
Vn:vh(t) = (Zﬁlzl | Ao [P ( )):
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_1)

gin (T, V") px y(z|y; 7 07)
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X O =

A~ N~~~
oo o
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Table 3.1: The MU-GAMP
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reducing to GAMP in the case that v} = 0. Note that, with E = A — 2, we recover
exactly the perturbation model A = A + E used in (3.1), but now with the implicit
assumption that E,,, has zero mean and variance v .

The derivation of MU-GAMP is very similar to the GAMP derivation provided in
Section 2.4. For the sake of brevity, we avoid repeating the modified derivation here.
The resulting algorithm is given in Table 3.1,° where the only difference from the
original GAMP is the additional step (R2b). With this step, MU-GAMP requires an

additional matrix multiply, although the cost of this multiplication may be reduced

when v4

A is structured. For example, when v/ = v Vn, the matrix multiplication

in (R2b) reduces to a sum.
3.3.3 Empirical Study

We now study empirical performance under uniform and non-uniform matrix
uncertainty. In both cases, we plot Normalized Mean Squared Error (NMSE) versus
M/N at N =256 and K/M =0.2, where the relatively small problem size was used
due to the implementation complexity of the MU-Selector. The K non-zero entries of
the signal & were drawn +1 with equal probability, the (known) matrix means { A, }
were 1.i.d N (0,1/M), and the noise w was i.i.d N(0,0").

To illustrate the effect of uniform matrix uncertainty, we drew the matrix errors
{E} 1i.d N(0, ), noting that in this case e= E is truly i.i.d Gaussian (for any
given x). Moreover, we set v¥ = v such that the signal to interference-plus-noise
ratio (SINR) E{||Az||2}/ E{||e+w||2} = 20 dB. Under this setup, we ran MU-GAMP

A

under the true (uniform) matrix error variance v = v the true noise statistics,

the true signal variance and sparsity rate, but a (mismatched) Bernoulli-Gaussian

9GAMPmatlab [19] includes the MU extension.
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signal pdf. We also ran the original GAMP under the same signal prior and the
compensated AWGN variance v°+1Y, for v¢ £var{e,,} = Kv*¥. We then ran S-TLS,
the MU-Selector, and LASSO (via SpaRSA [32]), each debiased and with “genie-
aided” tuning: for each realization, each algorithm was run under several values of

its tuning parameter, and the tuning yielding minimal NMSE was selected.

5 T T
—f— GAMP
o = MU-GAMP J
N 5, S-TLS
—— MU-Selector
-5+ —B— LAsso B
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= = = support oracle
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_45 L L | | | | | ik T Pl

Figure 3.1: 10-trial median NMSE under uniform matrix error variance v

Figure 3.1 shows the resulting NMSE performance of each algorithm, as well as
that of two oracle estimators: support-aware LMMSE, and support-and- E-aware
LMMSE. We note that, under a Bernoulli-Gaussian signal pdf, the NMSEs of GAMP
and MU-GAMP are lower bounded by these respective oracles. The figure shows
that GAMP and MU-GAMP yield essentially identical NMSE, and that for M/N >

0.3, this NMSE essentially coincides with the support-oracle bound. Meanwhile, the
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debiased and genie-tuned incarnations of S-TLS, the MU-Selector, and LASSO show
performance that is only slightly worse than GAMP and MU-GAMP for M/N > 0.3.
The fact that the matrix-uncertain algorithms (i.e., MU-GAMP, S-TLS, MU-Selector)
and the standard algorithms (i.e., GAMP, LASSO) perform near-identically under
uniform matrix uncertainty supports the claim of Proposition 3.2.1.

Next, we examine the effect of non-uniform matrix uncertainty. For this, we
used the same setup as in the previous experiment, except that we used non-uniform
variances {vZ, } such that vZ = 0 for 99% of the entries, while 2 = C¥ for the
remaining 1% of the entries, where CF was chosen to make the cumulative error
v¢ identical to the previous experiment. MU-GAMP was then run under the true
(now non-uniform) v4 = vE while GAMP was run under the compensated AWGN
variance v¢ + v as before. We also implemented the Weighted S-TLS (WS-TLS)
from [27], which was given knowledge of the non-uniform {v% }.

Figure 3.2 shows the resulting NMSE. In the figure, we see that the algorithms
assuming uniform matrix uncertainty ¥ (i.e., S-TLS and the MU-Selector) perform
essentially the same in this experiment as they did in the previous experiment, which
is due to the fact that v was calibrated across experiments. Furthermore, these al-
gorithms do essentially no better than those designed for AWGN (i.e., LASSO and
GAMP), which makes sense in light of Proposition 3.2.1. However, the algorithms
exploiting non-uniform uncertainty {v2 1} (i.e., WS-TLS and MU-GAMP) do signif-
icantly better. In fact, MU-GAMP performs quite close to the support-and- E-aware

oracle bound for M/N > 0.3.
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Figure 3.2: 10-trial median NMSE under non-uniform error variance {v% }.

3.4 Alternating MU-GAMP

The performance of any reasonable compressive-sensing algorithm will improve
as matrix uncertainty diminishes, and one way to reduce uncertainty is to explicitly
estimate the unknown matrix A. In fact, this is the goal of Dictionary Learning [33],
where a large number of measurement vectors {y,}.; are assumed to be available.
Since we are interested in estimating A from one (or very few) measurement vectors,
we consider structured forms of A that depend on only a few parameters 8 € C*. In

particular, we consider affine linear'® models of the form (noting similarities to [27])

A(O) = Ao+ Z;I;D:l epAp (3-7)

0The affine linear model (3.7) may arise from a first-order Taylor series approximation of a non-
linear model A(@) around the point 8, in which case Ag = A(0) and A, = 0A(0)/00,|,_g.
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with known {A,}” ; and unknown . Several examples of this structure are discussed
in the sequel. Moreover, (3.7) handles the case of unstructured A via P = MN,

Ay =0, and {Ap}ff:l each containing a single distinct non-zero entry.
3.4.1 Alternating MU-GAMP

We now propose a scheme to jointly estimate {x, 8} based on the previously de-
veloped MU-GAMP. The proposed scheme is an iterative one that alternates between
the estimation of © and 6. Say the mean and variance of 0, are given by 5p and I/g,

respectively. Then it holds that

~

A 2 B{Apn(0)} = Ao un + 33 OpAp (3-8)

Vi & var{ A (0)} = 3007, Vol Apn?, (3.9)

where A, ., denotes the m' row and n* column of A,. Thus, given the soft pa-
rameter estimates (5, 1/‘9), one can directly compute the matrix uncertainty statistics
{Apn} and {v2 }, and—with them—run MU-GAMP to estimate the signal vector

@, which will produces the marginal posterior mean and variance vectors (T, v").

Then, given the soft signal estimates (&, "), we can update the parameter means

o~

and variances (0,v%), also using MU-GAMP. To see how, we first notice that the

linear outputs z in the GAMP observation model p(y | z) take the form

z=A0)x=Ax+) .  Axl,=B(x)0 (3.10)
for @ 2 [0y, 01,...,0p]7, 6y = 1, and the (uncertain) matrix
B(x)£ [ Ajx | Az |- |Apz |. (3.11)
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Given (Z,v"), the mean and variance of B,,, are simply

Bup 2 E{Bup(@)} = XN | A, nn (3.12)

VfB;L;D é V&I‘{Bmp(w)} - Zivzl |Ap,mn|27/£> (313)

which, together with an appropriate prior pdf on {6,}, are the ingredients needed to
estimate @ with MU-GAMP, yielding updated soft outputs (5, V). For example, if
{91,}5:1 were known to be sparse, then a sparsifying prior would be appropriate. For
6y, a prior with all mass at 1 would suffice to handle the constraint 6, = 1.
Alternating between these two MU-GAMP steps, we can obtain successively re-
fined estimates of (Z,%) and (0,1). Each MU-GAMP step itself involves several
iterations, but relatively few would be needed if they were “warm started” at the
values of the previous estimates. Note that, unlike typical iterative schemes for dic-
tionary learning [33], which alternate between point estimates, ours alternate between

soft estimates, i.e., mean/variance pairs.
3.4.2 Empirical Study

We now present three empirical experiments that investigate MU-GAMP and
alternating MU-GAMP (A-MU-GAMP) under parametric matrix uncertainty. In all
cases, we used M = 103, N = 256, i.i.d Gaussian A, € CM*N and 8 € C*, ii.d
Bernoulli-Gaussian € C with K =20, and complex AWGN. MU-GAMP used the
apriori matrix statistics {ﬁmn, vA 1 from (3.8)-(3.9). A-MU-GAMP was initialized
with the same statistics, but was able to reduce the variances {v/} } through several
iterations.

First, we study the role of matrix-uncertainty dimension P on the NMSE perfor-
mance of MU-GAMP and A-MU-GAMP. For this example, we used i.i.d Gaussian
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{A,} . As P was varied, {¢//} was normalized to fix the energy of the uncertainty
term E = 211;1 6,A, such that the overall SINR = 20 dB (as in Figs. 3.1-3.2). Fig. 3.3
shows the resulting NMSE-versus-P, where—as expected—MU-GAMP maintains a

constant performance versus P, whereas A-MU-GAMP benefits when P is small (and

thus @ can be learned).

:2: MU-GAMP
A-MU-GAMP

0 50 100 150 200 250 300

Figure 3.3: 10-trial median NMSE for estimation of @ versus the parametric matrix-
uncertainty dimension P.

Next, we consider a channel-calibration example involving P = 10 parallel linear
measurement “channels”, each with an unknown offset. For this, we constructed
each matrix {A,}}_, to have ones in 1/P of its rows and zeros elsewhere, so that

i.i.d Gaussian #, modeled the additive error in the p”* channel. Here, v* and 1’
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were set so that E{||A(0)z|3}/E{||w|j3} = 20 dB. Figure 3.4 shows that A-MU-
GAMP approaches the performance of 8-aware GAMP when estimating @, which
comes within 2 dB of the support-and-@-aware oracle MMSE. The star shows the
NMSE of MU-GAMP, which is about 20 dB worse. Meanwhile, when estimating 0,

A-MU-GAMP approaches the performance of x-aware GAMP.

T T
A-MU-GAMP

101 *  MU-GAMP L
— — — oracle bound
— - — B-aware GAMP

iteration

T T T
—— A-MU-GAMP
— — — z-aware GAMP

iteration

Figure 3.4: 100-trial median NMSE of A-MU-GAMP when iteratively estimating
and 6 in the channel calibration example.

Finally, we consider a compressive blind-deconvolution example. Here, A(0) =
® C(0) where C(0) is circulant with first column @ € CV and ® = [I; 0]. As before,
v ensured E{||A(0)z|3}/E{|w]|]3} = 20 dB. Due to the size of the uncertainty
dimension, P = N, we used 7' = 8 measurement vectors {y,}.,, which is still much

fewer than typical in dictionary learning. Figure 3.5 demonstrates that, once again,
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A-MU-GAMP is able to effectively learn both & and 8 with near-oracle MMSE, doing

~ 20 dB better than MU-GAMP.
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Figure 3.5: 100-trial median NMSE of A-MU-GAMP when iteratively estimating a
and @ in the compressive blind deconvolution example.

3.5 Conclusion

In this chapter, we proposed a matrix-uncertainty (MU) extension of the GAMP
algorithm, as well as an alternating A-MU-GAMP that aims to recover both the
signal and the unknown (possibly parametric) measurement matrix. We also provided
theoretical and empirical evidence of the following possibly unexpected fact: as the
dimensions grow large, the effect of uniform matrix uncertainty reduces to AWGN,

and can thus be handled by matrix-certain algorithms. Our MU-GAMP approach
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can, however, exploit knowledge of non-uniform matrix uncertainty to do significantly
better. Moreover, our A-MU-GAMP approach, which exploits soft information (as
opposed to point estimates), achieves near-oracle performance.

MU-GAMP does not attempt to estimate the perturbed matrix A itself. While
A-MU-GAMP offers a method for estimating this operator for a particular class of
parametric models, we pursue a more flexible approach in subsequent chapters. In
particular, Chapter 4 develops a bilinear version of GAMP that jointly estimates A
and the possibly matrix-valued signal X. This approach is applicable to dictionary
learning, matrix completion, robust principle components analysis (PCA), and other
related problems. Furthermore, a version of this algorithm which handles parametric

operators similar to those addressed by A-MU-GAMP will be developed in Chapter 5.
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Chapter 4: Bilinear Generalized Approximate Message

Passing

4.1 Introduction

In this chapter, we present a new algorithmic framework for the following gen-
eralized bilinear inference problem: estimate the matrices A = [a,,] € RM*N and
X = [z) € RM*E from a matrix observation Y € RM*L that is statistically coupled
to their product, Z = AX. In doing so, we treat A and X as realizations of inde-
pendent random matrices A and X with known separable pdfs (or pmfs in the case

of discrete models), i.e.,

pa(A) = H Hpamn (Gmn) (4.1)
px(X) =[] ] [ P (om), (4.2)

and we likewise assume that the likelihood function of Z is known and separable, i.e.,

pvz(Y | Z) = H prml\zm (Yt | 2m1)- (4.3)
m 1

Recently, various special cases of this problem have gained the intense interest of

the research community, e.g.,

1. Matriz Completion: In this problem, one observes a few (possibly noise-
corrupted) entries of a low-rank matrix and the goal is to infer the missing
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entries. In our framework, Z = A X would represent the complete low-rank ma-
trix (with tall A and wide X') and py ., the observation mechanism, which
would be (partially) informative about z,, at the observed entries (m,l) € Q

and non-informative at the missing entries (m,[) ¢ €.

. Robust PCA: Here, the objective is to recover a low-rank matrix (or its princi-
pal components) observed in the presence of noise and sparse outliers. In our
framework, Z = AX could again represent the low-rank matrix, and p, |, .
the noise-and-outlier-corrupted observation mechanism. Alternatively, X could

also capture the outliers, as described in the sequel.

. Dictionary Learning: Here, the objective is to learn a dictionary A for which
there exists a sparse data representation X such that AX closely matches the
observed data Y. In our framework, {p, , } would be chosen to induce sparsity,
Z = AX would represent the noiseless observations, and {py ., } would model

the (possibly noisy) observation mechanism.

While a plethora of approaches to these problems have been proposed based on

optimization techniques (e.g., [34-44]), greedy methods (e.g., [45-49]), Bayesian sam-

pling methods (e.g., [50,51]), variational methods (e.g., [52-56]), and discrete message

passing (e.g., [57]), ours is based on the Approzimate Message Passing (AMP) frame-

work, an instance of loopy belief propagation (LBP) [58] that was recently developed

to tackle linear [3,4,16] and generalized linear [6] inference problems encountered in

the context of compressive sensing (CS). In the generalized-linear CS problem, one

estimates & € RY from observations y € RM that are statistically coupled to the
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transform outputs z = Ax through a separable likelihood function py|,(y|z), where
in this case the transform A is fized and known.

In the context of CS, the AMP framework yields algorithms with remarkable
properties: i) solution trajectories that, in the large-system limit (i.e., as M, N —
oo with M/N fixed, under iid sub-Gaussian A) are governed by a state-evolution
whose fixed points—when unique—yield the true posterior means [59,60] and ii) a
low implementation complexity (i.e., dominated by one multiplication with A and AT
per iteration, and relatively few iterations) [16]. Thus, a natural question is whether
the AMP framework can be successfully applied to the generalized bilinear problem
described earlier.

In this chapter, we propose an AMP-based approach to generalized bilinear infer-
ence that we henceforth refer to as Bilinear Generalized AMP (BiG-AMP), and we
uncover special cases under which the general approach can be simplified. In addi-
tion, we propose an adaptive damping [18] mechanism, an expectation-maximization
(EM)-based [61] method of tuning the parameters of p,,.., Px,,, and py |, (in case
they are unknown), and methods to select the rank N (in case it is unknown). In the
case that p,,. ., Px,, and/or p, |, are completely unknown, they can be modeled
as Gaussian-mixtures with mean/variance/weight parameters learned via EM [62].
Finally, we present a detailed numerical investigation of BiG-AMP applied to matrix
completion, robust PCA, and dictionary learning. Our empirical results show that
BiG-AMP yields an excellent combination of estimation accuracy and runtime when

compared to existing state-of-the-art algorithms for each application.
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Although the AMP methodology is itself restricted to separable known pdfs (4.1)-
(4.3), the results of Part IT suggest that this limitation is not an issue for many prac-
tical problems of interest. However, in problems where the separability assumption
is too constraining, it can be relaxed through the use of hidden (coupling) variables,
as originally proposed in the context of “turbo-AMP” [63] and applied to BiG-AMP
in [64]. Due to space limitations, however, this approach will not be discussed here.
Finally, although we focus on real-valued random variables, all of the methodology
described in this work can be easily extended to circularly symmetric complex-valued
random variables.

We now discuss related work. One possibility of applying AMP methods to matrix
completion was suggested by Montanari in [16, Sec. 9.7.3] but the approach described
there differs from BiG-AMP in that it was i) constructed from a factor graph with
vector-valued variables and ii) restricted to the (incomplete) additive white Gaussian
noise (AWGN) observation model. Moreover, no concrete algorithm nor performance
evaluation was reported. Since we first reported on BiG-AMP in [65,66], Rangan
and Fletcher [67] proposed an AMP-based approach for the estimation of rank-one
matrices from AWGN-corrupted observations, and showed that it can be character-
ized by a state evolution in the large-system limit. More recently, Krzakala, Mézard,
and Zdeborova [68] proposed an AMP-based approach to blind calibration and dic-
tionary learning in AWGN that bears similarity to a special case of BiG-AMP, and
derived a state-evolution using the cavity method. Their method, however, was not
numerically successful in solving dictionary learning problems [68]. The BiG-AMP
algorithm that we derive here is a generalization of those in [67,68] in that it han-

dles generalized bilinear observations rather than AWGN-corrupted ones. Moreover,
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our work is the first to detail adaptive damping, parameter tuning, and rank-selection
mechanisms for AMP based bilinear inference, and it is the first to present an in-depth
numerical investigation involving both synthetic and real-world datasets. An applica-
tion/extension of the BiG-AMP algorithm described here to hyperspectral unmixing
(an instance of non-negative matrix factorization) was recently proposed in [64].
The remainder of the chapter is organized as follows. Section 4.2 derives the
BiG-AMP algorithm, and Section 4.3 presents several special-case simplifications of
BiG-AMP. Section 4.4 describes the adaptive damping mechanism, and Section 4.5
the EM-based tuning of prior parameters and selection of rank N. Application-specific
issues and numerical results demonstrating the efficacy of our approach for matrix
completion, robust PCA, and dictionary learning, are discussed in Sections 4.6-4.8,

respectively, and concluding remarks are offered in Section 4.9.
4.2 Bilinear Generalized AMP
4.2.1 Problem Formulation

For the statistical model (4.1)-(4.3), the posterior distribution is

pxay (X, AlY)
= pyxa(Y | X, A) px(X) pa(A)/py(Y) (4.4)
x pyiz(Y | AX) px(X) pa(A) (4.5)

— [1;[ H Pyl (ymz ’ Zk: amkxkl)}
| TTTT st || TT T )| (46)

where (4.4) employs Bayes’ rule and o denotes equality up to a constant scale factor.
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The posterior distribution can be represented with a factor graph, as depicted in
Fig. 4.1. There, the factors of px ajy from (4.6) are represented by “factor nodes” that
appear as black boxes, and the random variables are represented by “variable nodes”
that appear as white circles. Each variable node is connected to every factor node
in which that variable appears. The observed data {y,,} are treated as parameters
of the py .., factor nodes in the middle of the graph, and not as random variables.

The structure of Fig. 4.1 becomes intuitive when recalling that Z = AX implies

N
Zml = Zn:l AmnXnl-

])Xn[

N

Figure 4.1: The factor graph for generalized bilinear inference for (toy-sized) problem
dimensions M =4, L =3, and N = 2.
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4.2.2 Loopy Belief Propagation

In this work, we aim to compute minimum mean-squared error (MMSE) estimates
of X and A, i.e., the means™ of the marginal posteriors p. ,v(-|Y) and pa,..;v(- | Y),
for all pairs (n,l) and (m,n). Although exact computation of these quantities is gen-
erally prohibitive, they can be efficiently approximated using loopy belief propagation
(LBP) [58].

In LBP, beliefs about the random variables (in the form of pdfs or log pdfs) are
propagated among the nodes of the factor graph until they converge. The standard
way to compute these beliefs, known as the sum-product algorithm (SPA) [14,15],
stipulates that the belief emitted by a variable node along a given edge of the graph
is computed as the product of the incoming beliefs from all other edges, whereas
the belief emitted by a factor node along a given edge is computed as the integral
of the product of the factor associated with that node and the incoming beliefs on
all other edges. The product of all beliefs impinging on a given variable node yields
the posterior pdf for that variable. In cases where the factor graph has no loops,
exact marginal posteriors result from two (i.e., forward and backward) passes of the
SPA [14,15]. For loopy factor graphs, exact inference is in general NP hard [69] and so
LBP does not guarantee correct posteriors. That said, LBP has shown state-of-the-
art performance in many applications, such as inference on Markov random fields [70],
turbo decoding [71], LDPC decoding [72], multiuser detection [73], and compressive
sensing [3,4, 6,59, 60].

1 Another worthwhile objective could be to compute the joint MAP estimate
argmaxx, A px,aly(X, A|Y); we leave this to future work.
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In high-dimensional inference problems, exact implementation of the SPA is im-
practical, motivating approximations of the SPA. A notable example is the generalized
approzimate message passing (GAMP) algorithm, developed in [6] and reviewed in
Chapter 2 to solve the generalized CS problem, which exploits the “blessings of di-
mensionality” that arise when A is a sufficiently large and dense and which was
rigorously analyzed in [60]. In the sequel, we derive an algorithm for the generalized
bilinear inference BiG-AMP algorithm that employs GAMP-like approximations to
the SPA on the factor graph in Fig. 4.1. As we shall see, the approximations are

primarily based on central-limit-theorem (CLT) and Taylor-series arguments.
4.2.3 Sum-product Algorithm

In our formulation of the SPA, messages take the form of log-pdfs with arbitrary
constant offsets. For example, the iteration-t (where ¢ € 7Z) message AX . (t,.)

m—nl

can be converted to the pdf &exp(AX,_ (t .)), where the choice of scale factor
C = fznl exp(AX, ., (t,z,)) ensures that the pdf integrates to one. Four types of
message will be used, as specified in Table 4.1. We also find it convenient to express
the (iteration-t SPA-approximated) posterior pdfs pc ,v(t,.|Y) and p,, . v(¢,.|Y) in

the log domain as AX,(¢,.) and A2 (t,.), respectively, again with arbitrary constant

offsets.
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A% i(t,.) | SPA message from node py |, . to node x,
AX . (t,.) | SPA message from node x,; to node Dy, 12
A7 (t,.) | SPA message from node p, .., to node a,,,

SPA-approximated log posterior pdf of x,,
SPA-approximated log posterior pdf of a,,,

)
)
)
t,.) | SPA message from node a,,, to node p, |, .
)
)

Table 4.1: SPA message definitions at iteration t € Z for BiG-AMP.

Applying the SPA to the factor graph in Fig. 4.1, we arrive at the following update

rules for the four messages in Table 4.1.

A;(n%nl (t7 x”l>

N

= 10g/ Py,.11zmi (yml Z amkxkl)
{amk}i\r 1 {xrl}r#n k=1

X HeXp ( merl t xrl ) Hexp ( lemk(t?a’mk)>

r#n
+ const (4.7)

Axmenl(t_l_l? Zlfnl)
= log px,, () + Z A u(t,xny) + const (4.8)

k#m
Alaamn (t7 am”)

N
= 10g/ Py,.i1zmi (yml Zamkxkl)
{am’r“}r#n {l‘kz}fj 1
N
H Xp( mekl t Tkl ) Hexp( lemr t amT))

+ const (4.9)
A?emn( +17 a’mn)
=108 Payn, (@mn) + Y Aj Ly (t, A ) + const, (4.10)
kel
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where const is an arbitrary constant (w.r.t z,;, in (4.7) and (4.8), and w.r.t @,
in (4.9) and (4.10)). In the sequel, we denote the mean and variance of the pdf

S exp(AX, i (t,.)) by T i(t) and 12, (L), respectively, and we denote the mean and

m<«nl m

variance of & exp(A7_, . (t,.)) by Gyma(t) and v, (t). For the log-posteriors, the SPA

l+~mn

implies

>7(Ll(t+1a xnl)
= logpy,, () + Z A (t ) + const (4.11)
m=1
A2 (t+1, amn) ;
= log pa,,, (Qmn) + Z A? L (t, ) + const, (4.12)

=1

and we denote the mean and variance of & exp(A¥,(¢,.)) by Z,(t) and v (t), and the

mean and variance of £ exp(A2 (t,.)) by Gy (t) and v5,,(2).
4.2.4 Approximated Factor-to-Variable Messages

We now apply AMP approximations to the SPA updates (4.7)-(4.12). As we
shall see, the approximations are based primarily on central-limit-theorem (CLT)
and Taylor-series arguments that become exact in the large-system limit, where
M, L, N — oo with fixed ratios M/N and L/N. (Due to the use of finite M, L, N in
practice, we still regard them as approximations.) In particular, our derivation will
neglect terms that vanish relative to others as N — oo, which requires that we estab-
lish certain scaling conventions. First, we assume w.l.o.g!? that E{z%,} and E{x?}
scale as O(1), i.e., that the magnitudes of these elements do not change as N — oo.
In this case, assuming that a,,, is zero mean, the relationship z,, = ZTZLVZI ArmnXni

implies that E{aZ, } must scale as O(1/N). These scalings are assumed to hold for

120ther scalings on E{z2,}, E{x2,}, and E{aZ,, } could be used as long as they are consistent with
the relationship z,,; = 25:1 AmnXnl-
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Zu(t) | O) || viu(®) [ OQ) || Znui(t) — Zui(t) | O( %)
T ()| OQ) || v u(®)| O(L) || T7, () — Z2(2) | O(75)
Zu(t) | OQ) | va®) | OQ) | vy () —vn(t) | O(J5)
At (1) | O(75) | Vi () | O(F) || Grmn (t) — mn () | O(57)
() |O(Z5) || Yin(t) | O(F) || @ un (8) = G (1) | O 372
Pra(t) | O) | vpy(t) | OQ) [ 1nn () = v (1) | O 5372
Poat(t) | O) || Vi ()| OQ) | Frna(t) = Fualt) | O(5)
Pu(t) | O) | vp(t) | OQ) | vy u(t) —vp(t) | O(3)
G () | O(F2) || V(D) | O(F) || Guamn(t) — G (8) | O(57)
Grn (1) | O(Z5) || Vi) | O(F) | W (£) = v (£) | O(52)
Smi(t) | O() || v(®) | O(1)

Table 4.2: BiG-AMP variable scalings in the large-system limit.

random variables z,,;, a;n, and X, distributed according to the prior pdfs, accord-
ing to the pdfs corresponding to the SPA messages (4.7)-(4.10), and according to
the pdfs corresponding to the SPA posterior approximations (4.11)-(4.12). These as-
sumptions lead straightforwardly to the scalings of Z,.(t), v7,(t), Zmmni(t), vy, (1),
Tt (t), Vi (8); @ (t); Vi (), G (1), and vy, (t) specified in Table 4.2. Furthermore,

because AX, . (t,-) and AX,(t,-) differ by only one term out of M, it is reasonable to

m—nl

assume [6, 16] that the corresponding difference in means Z, ,;(t) — T (t) and vari-

(t) — v (t) are both O(1/v/N), which then implies that 22, ,(t) — 22,(t) is

X
ances v, ol

m,nl

also O(1/+/N). Similarly, because A?

l—-mn

(t,-) and A2 (t,-) differ by only one term
out of N, where @y, (t) and G, (t) are O(1/+/N), it is reasonable to assume that
Qpnn (t) = G (t) is O(1/N) and that both v, (t) — v, (t) and @7, (t) — a7, (t) are

mn mn

O(1/N?3/?). The remaining entries in Table 4.2 will be explained below.
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.). Expanding (4.7), we find

manl(

We start by approximating the message A

:’(nanl (t7 x”l> ?I’&l
N ~N
= 10g/ DPy,ilzm <yml ‘ An Tl + Zamkxkl>
{amk}k 17{xrl}r#n k=1#n

N

X Hexp ( merl t Lyl ) Hexp (Alemk(t amk))
r#n k=1

+ const. (4.13)

For large N, the CLT motivates the treatment of z,,;, the random variable associated
with the z,,; identified in (4.13), conditioned on x,; = z,;, as Gaussian and thus com-
pletely characterized by a (conditional) mean and variance. Defining the zero-mean
TV.S B mn 2 A — Qgnn (1) a0 Kyt = Xt — Tt (t), Where agy ~ & exp(A2_ | (t,+))
and x, ~ & exp(A%, (¢, ), we can write

Zot = (@ (t) + B Xt + Y (G () Ton (1)

k#n
+ Qe (8) Kokt + Ak Tkt (8) + At Xom it (4.14)

after which it is straightforward to see that

E{Zml |an = xnl} = ZL\l,mn(t)'xnl + ﬁn,ml(ﬂ (415)

var{z, | Xn = T} = Vﬁmn(t)l’il + Vﬁ,ml(t) (4.16)
for

ﬁn,ml(t) = Z/a\l,mk (t)fm,kl(t) (4.17)
k#n

(1t £ Z (a?,mk(t)yrfz,kl(t) + Vla,mk(t)/x\%ukl(t)

v
k#n
+ Vﬁmk(t)yfn,kl(t)) . (4.18)

68



With this conditional-Gaussian approximation, (4.13) becomes

X ot ) & const + log/ Py sz Ymi | Zmi) (4.19)
Zml
X N(ZmU/a\l,mn(t)a?nl‘l'ﬁmml(t)a Vla,mn(t) l‘l' nml(t))
= 11y <al,mn (t>xnl + ﬁn,ml (t)u

Y (8) 0y + Yy (1); yml> + const (4.20)
in terms of the function

Ho (7,0 ) 2 log / Py o (4] 2) N (553, 9). (4.21)

Unlike the original SPA message (4.7), the approximation (4.20) requires only a
single integration. Still, additional simplifications are possible. First, notice that

Pnmi(t) and vy (t) differ from the corresponding n-invariant quantities

Pru(t) = ()T () (4.22)

A

@z k() Vi () + ngk(t)/x\gm,kl ()

,mk(t)’/fn,kl (t)) (4.23)

j— MZ ||M2

by one term. In the sequel, we will assume that p,, () and v” () are O(1) since these

quantities can be recognized as the mean and variance, respectively, of an estimate
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of z,,;, which is O(1). Writing the H,, term in (4.20) using (4.22)-(4.23),

Ht (@10 (01 + Bt (0 Vi ()72 + V8 (8); Y
= Hipt (@ (8) (201 = Fnt (1)) + B (),

Vi (D) (@m0 = Tyt (8)) = L ()5, (1)

V(O (8) + V2 (8); (4.24)
= ot (@un (1) (0t = F (1)) + B (£) + O(1/N),

Vo (0) (21 = F4(8)) + vy t) + O(L/NY; g (4.25)
where in (4.25) we used the facts that Gy (£) (Zni(t) = T (t)) and v, (E)(T2, (1) —
Toy(1))) =y OV i (8) = V' ()1, (£) are both O(1/N).

Rewriting (4.20) using a Taylor series expansion in x,; about the point Z,,(t), we

get

X
Amanl

(t, 1) ~ const
+ Hyt (Bt (8) + O(L/N), vy () + O(L/N); yut)
+ Ay () (21 — T (t))
X Hyy (B (t) + O(1/N), v, (£) + O(1/N); yt)
+ 20 (DT () (20 — T (1))
X Hyp (D () + O(1/N), v2,(t) + O(1/N); ymi)
() (2 — (1))
X Hypi (Bt (1) + O(L/N), 5y (1) + O(1/N); yma)
+ 53,0 (0) (20t = Fat(0)’
x Hyy (Bra(t) + O(1/N),v7,(8) + O(1/N); yt)
+O(1/N/?), (4.26)
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where H,, and H), are the first two derivatives of H,,, w.r.t its first argument
and H,, is the first derivative w.r.t its second argument. Note that, in (4.26) and
elsewhere, the higher-order terms in the Taylor’s expansion are written solely in terms
of their scaling dependence on N, which is what will eventually allow us to neglect
these terms (in the large-system limit).

We now approximate (4.26) by dropping terms that vanish, relative to the second-
to-last term in (4.26), as N — oco. Since this second-to-last term is O(1/N) due to
the scalings of @7, (), P (t), and 12, (t), we drop terms that are of order O(1/N%?),
such as the final term. We also replace vf, . (t) with vg,(t), and @7, (t) with @2, (),
since in both cases the difference is O(1/N?/?). Finally, we drop the O(1/N) terms
inside the H,,; derivatives, which can be justified by taking a Taylor series expansion
of these derivatives with respect to the O(1/N) perturbations and verifying that the
higher-order terms in this latter expansion are O(1/N?%/2). All of these approximations
are analogous to those made in previous AMP derivations, e.g., [4], [16], and [6].

Applying these approximations to (4.26) and absorbing x,;-invariant terms into

the const term, we obtain

ot (b Tnl) =~ [gml(t)al,mn(t> + Vrsnl(t>a$nn(t)§nl(t)]

X Ty — S [V () an, (1) =V, (1)

m mn mn

X (55, (t) — vsy,(t))] x2, + const, (4.27)
where we used the relationship
N 1 _ 2 -
Hu(@vy) = 5 |(Hi@v%y))" + Hiu @ v%y)| (4.28)
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and defined

So(t) = Hpy (Do (8), V2, (£); Yt ) (4.29)
qul( ) = _H” (ﬁml( )’ anl(t);yml)‘ (430)

Note that (4.27) is essentially a Gaussian approximation to the pdf £ exp(AX _ (¢, .)).

It was shown in Section 2.4 that

S (t) = —— (2 (t) — Do (¢ 4.31
S l() Vil@) (Z l() p l( )) ( 3 )
1 vz, (t)

s (t) = 1 — ol 4.32
vl = (10 432)

for the conditional mean and variance
Zmi (1) £ E{zmi | Py =P (1); VSzl (t)} (4.33)
Vi (t) £ var{zy | P =P (t); Vo, (6}, (4.34)

computed according to the (conditional) pdf

Danalp, (2ot | B (£);: V2, (1))

= épymllzml (yml | Zml) N(ZmU ﬁml(t)> Vil(t)), (435)

where here C = [ py o (Yt | 2)N (2 Do (), v2,()). In fact, (4.35) is BiG-AMP’s
iteration-¢ approximation to the true marginal posterior p, ,v(-|Y). We note that
(4.35) can also be interpreted as the (exact) posterior pdf for z,, given the likeli-
hood py_jz,.. (Ym|) from (4.3) and the prior z,,; ~ N (D(t), V5, (t)) that is implicitly
assumed by iteration-t BiG-AMP.

Since Z" = XTAT, the derivation of the BiG-AMP approximation of A3 (¢,.)

.). In particular, it starts with (similar to

closely follows the derivation for AX (t,
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(4.13))

lamn t7 amn Zml
/ pyml‘zml (yml AmnLnl + § AmkTEl >
{amp hstn Azr o

N
X Hexp( et T ) Hexp( Pt amk))
r=1

k#n
+ const, (4.36)
where again the CLT motivates the treatment of z,,;, conditioned on a,,, = am,, as

Gaussian. Eventually we arrive at the Taylor-series approximation (similar to (4.27))

(b @) (St (DTt (1) + ¥ (T2 (1)
X Gy, — 3 [V, (0) T (1) =2 (1)

nl nl

X (52,(t) — vy (1)) a?

ml ml mn

+ const. (4.37)
4.2.5 Approximated Variable-to-Factor Messages

We now turn to approximating the messages flowing from the variable nodes to

the factor nodes. Starting with (4.8) and plugging in (4.27) we obtain

menl(t_'_l 'r”l)

~ const + log py ,(Tn1) + Z ([Skl ay e (t
k#m

QRO ]a:nz— vi(t)ad,
~Vin (1) (§2l (t) — vt ) (4.38)

= const + log py ,(Tn) — xnl T nl(t)) 2 (4.39)

—  const + log (pxnl (xnl)/\/(xnl; P (1), yfml(t))> (4.40)
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for

%W@é(Ey&@%@wmm%w—%@D_ (4.41)

Vi, ( Zaz kn(8)S1a (1 (4.42)

Since a2,,(t) and v2,,(t) are O(1/N), and recalling 52 ,(¢) and v%,,(t) are O(1), we take
vy, (t) to be O(1). Meanwhile, since 7, ,,(f) is an estimate of x,;, we reason that it
is O(1).

The mean and variance of the pdf associated with the AX _ (#+1,.) approximation

n (4.40) are
Im nl t+1
2 0 [ D (ON (@3T8, (1) (443
= gxnz (Tm nl(t)> V:n,nl(t))
Vzl,nl(t—i_l)

s 1 . N .
=5 / }x — xm,nl(t—l—l)fpxnl (:B)./\/'(z7 Tmni(t), I/m,nl(t))

-

'

Vit (1) gxnl(rm nt()s Vit (1)) (4.44)
where here C' = [ pe, (2)N (25 P i(t), 17, () and g/ ; denotes the derivative of
0x,, With respect to the first argument. The fact that (4.43) and (4.44) are related
through a derivative was shown in [6].

We now derive approximations of 7, (t) and v, ,(t) that avoid the dependence

on the destination node m. For this, we introduce m-invariant versions of 7, ,;(t)
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vt 2 (Za;n<t>u;l<t>—v;n<t> (2.(0) vm)))_ (4.45)
Faa(t) 2 Zaa(0) (14 (1) D v (D2 = V(0]
U)o (8 (). (4.46)

Comparing (4.45)-(4.46) with (4.41)-(4.42) and applying previously established scal-
ings from Table 4.2 reveals that v ., (t) — v,(t) is O(1/N) and that 7,,,(t) =
Tt (6) =V () (£) S (1) + O(1/N), so that (4.43) implies

Ty (t+1)

= G (Tt (t) = V() (8) S, () + O(L/N),

vh,(t) + O(1/N)) (4.47)
= G (Pra(t) = vy (V) @n ()8 (), vy (1)) + O(1/N) (4.48)
= Geu (Fua(t), v (1)) (4.49)

—Up ()i ()3 () g, (P (1), v (8)) + O(1/N)

~ F(t+1) — G (O F (V5 (E41). (4.50)

Above, (4.48) follows from taking Taylor series expansions around each of the O(1/N)
perturbations in (4.47); (4.49) follows from a Taylor series expansion in the first
argument of (4.48) about the point 7,(¢); and (4.50) follows by neglecting the O(1/N)
term (which vanishes relative to the others in the large-system limit) and applying

the definitions

Tar(t+1) = gu, (Fua(t), vy (1)) (4.51)
v (t4+1) £ vl (0 g, (Fu(t), v (), (4.52)
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which match (4.43)-(4.44) sans the m dependence. Note that (4.50) confirms that the
difference T, () — T (t) is O(1/v/N), as was assumed at the start of the BiG-AMP
derivation. Likewise, taking Taylor series expansions of g, in (4.44) about the point
Tn(t) in the first argument and about the point v/,() in the second argument and
then comparing the result with (4.52) confirms that vy, ,(t) — vi(t) is O(1/V/N).

We then repeat the above procedure to derive an approximation to A t+1,.)

lemn(

analogous to (4.40), whose corresponding mean is then further approximated as

Uy (L+1) 22 Wy (E+1) = Tt (8)8,7 (L) Vg (£ 1), (4.53)
for
Uy (t41) £ o (G (1), V2, (1)) (4.54)
V(1) £ 02 ()5, (@ (1), v, (1)) (4.55)
amn ()N (a; q, V1
@) 2 B P LB ) (4.56)
where

i (1) 2 (Z%(wuﬁnl(w—uﬁl(t) (24(1) - anz(t))) ) (457)

V(0 Bt (D)3 (1) (4.58)

Arguments analogous to the discussion following (4.42) justify the remaining scalings

in Table 4.2.

4.2.6 Closing the Loop

The penultimate step in the derivation of BiG-AMP is to approximate earlier
steps that use @y ,,(t) and T, ,(t) in place of @, (t) and T, (t). For this, we start
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by plugging (4.50) and (4.53) into (4.22), which yields'?

= Dyu(t) .
P(t) = O(1/VN) + iamn(t)fnz(t) —Smu(t—1)
x i:l (Vi (Tt (Tt (1) + G () (t— 1075, (1) )
+52,(t—1) i&mn(t— D, (V5 () F(t—1) (4.59)
% Balt) = (1) i (v (072,(0) + 3, (D)),
L, (1) J (4.60)

where, for (4.60), we used @2,,(t) in place of Gy, ()@, (t—1), used 72,(t) in place of

T ()2 (t—1), and neglected terms that are O(1/v/N), since they vanish relative to

the remaining O(1) terms in the large-system limit.

Next we plug (4.50), (4.53), v2_,(t) = v24,(t) + O(1/V/N), and v, (t) = v&,,(t) +
O(1/N3/?) into (4.23), giving
Vot (8) = 7 (8) + é Vi (V5 (1) (4.61)
— 2 (t—1) i (Vi (Oann (D) (= D1
+ u;n(t)a;_(t— QEMOPAG)
+ B(t-1)? i (CROACRNAD
= u;n@)a%:(t—l)@zl(t))z) +O(1/V/N)
3 (4.62)

~Th(t) + Z Vi (Vi (1),

13Recall that the error of the approximation in (4.50) is O(1/N) and the error in (4.53) is

O(1/N3/2).
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where (4.62) retains only the O(1) terms from (4.61).

Similarly, we plug (4.53) into (4.46) and (4.50) into (4.58) to obtain

+ V(1) > G (8) St (1) (4.63)

where the approximations involve the use of 52 ,(¢) in place of 8, (t)Su(t — 1), of
Qmn (1) in place of @y, (t—1), of Z,,(t) in place of Z,,;(t — 1), and the dropping of terms

that vanish in the large-system limit. Finally, we make the approximations

) ~ (éaan<t>u;l<t>)_l (165)

i (t) (gfﬁil(wu;l(t))_l, (4.66)

by neglecting the 52 ,(t) — v2,(t) terms in (4.45) and (4.57).
Here we pause to explain the approximations (4.65)-(4.66). The term neglected

in going from (4.45) to (4.65) can be written using (4.31)-(4.32) as

D Vi) Goa(t) = v (1))

:i%(t)[@mm—ﬁmmt)fwal(t)_ ! ] (167)

m=1 Yy (1) VP (t)
_ = Vi (t) (Zomi — D ())? -
) mzzjl Vo () [E{ Yy (1) } 1] (4.68)

where the expectations are taken over z,; ~ p, o (- |Dau(t);v2,(t)) from (4.35).
For GAMP, [6, Sec. VI.D] clarifies that, in the large system limit, under i.i.d priors
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and scalar variances, the true z,, and the iterates p,,(t) converge empirically to a pair
of random variables (z,p) that satisfy p,|,(z|p(t)) = N(z;p(t),vP(t)). This result
leads us to believe that the expectation in (4.68) is approximately unit-valued when
averaged over m, and thus (4.68) is approximately zero-valued. Similar reasoning

applies to (4.66).
4.2.7 Approximated Posteriors

The final step in the BiG-AMP derivation is to approximate the SPA posterior
log-pdfs in (4.11) and (4.12). Plugging (4.27) and (4.37) into those expressions, we

get

~ const + log (pxnl(xnl) N (o P (1), u;l(t))> (4.69)
A2 (t+1, amn)

~ const + 10 (Pa(mn) N (@i G (1), Vi (1)) ) (4.70)

using steps similar to (4.40). The associated pdfs are

é CLz Px, (xnl) N(xnla ?nl(t>7 V:Ll(t)) (471)
pamn‘q'mn (amn | Z]\mn(t)’ Vz"m (t))

£ 2 Pa (@n) N (@ G (1), Vi () (4.72)

for Co £ [ pey(@)N (z;7u(t), v (1) and Co £ [ pa. (N (@ Gun(t), V2, (1)),
which are iteration-t BiG-AMP’s approximations to the true marginal posteriors

Pl (Tt | YY) and pa, v (@mn | Y), Tespectively.
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Note that Z,;(t+1) and v¥,(t+1) from (4.51)-(4.52) are the mean and variance,
respectively, of the posterior pdfin (4.71). Note also that (4.71) can be interpreted as
the (exact) posterior pdf of x,,; given the observation r,; = 7,,;(¢) under the prior model
Xnl ~ Dx,, and the likelihood model py ., (Fri(t) | s v (1) = N (Fur(t); 2, 5 ()
implicitly assumed by iteration-t BiG-AMP. Analogous statements can be made about
the posterior pdf of a,, in (4.72).

This completes the derivation of BiG-AMP.
4.2.8 Algorithm Summary

The BiG-AMP algorithm derived in Sections 4.2.3 to 4.2.7 is summarized in Ta-
ble 4.3. There, we have included a maximum number of iterations, T},., and a stop-
ping condition (R17) based on the (normalized) change in the residual and a user-
defined parameter mgic.amp. We have also written the algorithm in a more general
form that allows the use of complex-valued quantities [note the complex conjugates
in (R10) and (R12)], in which case A in (D1)-(D3) would be circular complex Gaus-
sian. For ease of interpretation, Table 4.3 does not include the important damping
modifications that will be detailed in Section 4.4.1. Suggestions for the initializations
in (I2) will be given in the sequel.

We note that BiG-AMP avoids the use of SVD or QR decompositions, lend-
ing itself to simple and potentially parallel implementations. Its complexity order
is dominated' by ten matrix multiplications per iteration [in steps (R1)-(R3) and
(R9)-(R12)], each requiring M N L multiplications, although simplifications will be

discussed in Section 4.3.

“The computations in steps (R4)-(R8) are O(ML), while the remainder of the algorithm is
O(MN + NL). Thus, as N grows, the matrix multiplies dominate the complexity.
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definitions:
Pz 1P (Z‘ﬁ; Vp)

Pxpylrn (z|7307)

Parnldmn ([l|{j; Vq)
initialization:

vm, 1l : 5,1(0)

Vm,n,l : choose
fort =1,... Tmax

vm,l: 7P (t)

vm, 1l : D, (t)

vm, 1 : I/f;l(t)

VYm, 1 : Py ()

vm, 1 vz (t)

vm,l: Zp(t)

vm, v (t)

vm,l: Sy (t)

vn,l vy (t)

Vn,l: T ()

Ym,n : Vikn(t)
Ym,n : Gmn (t)

Vn,l: vl (t41)
vn,l : mnl(t—i-l)
vYm,n: v, (t+1)
VYm,n : amn(t—i-l)

if Zm,l Ipml (t) -

end

‘II

/-\

otz Ymi|2) N (255,07

;/ppyml\zwl(jymz\z;)l\f(: PvP) (D1)
T o (a7 NG (D2)
fa,p;lffi?; G (D3)
0 (11)
o (1), 201 (1), v, (1), @mn (1) (12)
SN @ (8)202, (1) + v, (8) [ ()] (R1)
SN Gn () F 1 (1) (R2)
7P () + N v, (v (t) (R3)
ﬁml (t) - jg\ml (t_ 1)vfnl (t) (R4)
var{zmi | Py =Pmi(t); V2, (1)} (R5)
E{zini | Pt =Dt (); V}z(t)} (R6)
(1= vz, W)/ () /vE, @) (R7)
Zm(t) = P (1)) /VF (t) (R8)
(St [amn (P (1)~ (R9)

T () (1 =7 (1) 3=t Vinn OV, (1))
vy, () Zm:1 mn(t)smi (t) (R10)
(i B @), )7 (R11)

A (t)(1 — an( )Zl 1 nl(t) ml( )
AV (8) 31y By (8) S (1) (R12)
V&I‘{an | nl _Tnl (t) Ll (t)} (R13)
E{an | I'nl _rnl (t) (t)} (R14)
Var{amn Iqmn —an( ) an(t)} (R15)
E{amn | dyn = Tmn (); Vin (8)} (R16)
—1)|? < 7BiG-AMP 2, ; [Pt (]2, stop  (R17)

Table 4.3: The BiG-AMP Algorithm

81




The steps in Table 4.3 can be interpreted as follows. (R1)-(R2) compute a “plug-
in” estimate P of the matrix product Z = AX and a corresponding set of element-
wise variances {7 }. (R3)-(R4) then apply “Onsager” correction (see [16] and [6]
for discussions in the contexts of AMP and GAMP, respectively) to obtain the cor-
responding quantities P and {v?,}. Using these quantities, (R5)-(R6) compute the
(approximate) marginal posterior means Z and variances {vz,} of Z. Steps (R7)-
(R8) then use these posterior moments to compute the scaled residual S and a set
of inverse-residual-variances {v2,}. This interpretation becomes clear in the case of

AWGN observations with noise variance ", where

p)’ml‘zml (yml | Zml) = N(yml7 Zmla Vw)‘ (473)
and hence
— L and = Yont = Pt (4.74)
R Ve e 7

Steps (R9)-(R10) then use the residual terms S and {v2,} to compute R and {v,},
where 7,,; can be interpreted as a v ,-variance-AWGN corrupted observation of the
true x,;. Similarly, (R11)-(R12) compute @ and {v4, }, where g, can be interpreted
as a vl -variance-AWGN corrupted observation of the true a,,,. Finally, (R13)-
(R14) merge these AWGN-corrupted observations with the priors {py ,} to produce
the posterior means X and variances {v%}; (R15)-(R16) do the same for the a,;,
quantities.

The BiG-AMP algorithm in Table 4.3 is a direct (although non-trivial) extension
of the GAMP algorithm for compressive sensing [6] described in Chapter 2, which

estimates X assuming perfectly known A, and bears even stronger similarities to the
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MU-GAMP [7] algorithm described in Chapter 3, which estimates X assuming knowl-
edge of the marginal means and variances of unknown random A, but which makes
no attempt to estimate A itself. In Section 4.3.2, a simplified version of BiG-AMP
will be developed that is similar to the Bayesian-AMP algorithm [4] for compressive

sensing.
4.3 BiG-AMP Simplifications

We now describe simplifications of the BiG-AMP algorithm from Table 4.3 that
result from additional approximations and from the use of specific priors py |2, Px..s

and p,  that arise in practical applications of interest.
4.3.1 Scalar Variances

The BiG-AMP algorithm in Table 4.3 stores and processes a number of element-
wise variance terms whose values vary across the elements (e.g., ¥, can vary across n
and ). The use of scalar variances (i.e., uniform across m,n,[) significantly reduces
the memory and complexity of the algorithm.

To derive scalar-variance BiG-AMP, we first assume Vn,l : v%(t) ~ v*(t) =

ﬁ ZQT:I Elel vi(t) and Ym,n @ vg, (t) = v (t) £ ﬁ Z,]:le 7]:[:1 v (t), so from

(R1)
Tha(t) = V5 (8) D (G (D) +0(1) Y [Zua(0) ] (4.75)

R a(t) & pP(t). (4.76)
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Note that using (4.76) in place of (R1) avoids two matrix multiplies. Plugging these

approximations into (R3) gives

VP (1) = TP (t) + Nv () ' (t) = VP () (4.77)

ml

which, when used in place of (R3), avoids another matrix multiply. Even with the
above scalar-variance approximations, {v2,(t)} from (R5) are not guaranteed to be
equal (except in special cases like AWGN p, |, ). Still, they can be approximated

as such using () = ¢ Z%:l Zle ve,(t), in which case

1 N
v (t) =~ T R~ — = 4.78
A T P~ rwlAaon Y )
VI () ~ ! v N s, (4.79)

v (0) iy B v @ IX ()3
Using (4.78) in place of (R9) and (4.79) in place of (R11) avoids two matrix multiplies
and NL+MN —2 scalar divisions, and furthermore allows (R10) and (R12) to be

implemented as

Fut) =7 _MNCWON ST s
Ault) = 70 1 e ) OY a5 (450

aq, = _M i N 3
Gn(t) = mn(t)(l ||)?(t>’|%)+ (t); (D)8 (1), (4.81)

saving two more matrix multiplies, and leaving a total of only three matrix multiplies

per iteration.
4.3.2 Possibly Incomplete AWGN Observations

We now consider a particular observation model wherein the elements of Z=AX
are AWGN-corrupted at a subset of indices 2 C (1...M)x(1...L) and unobserved

at the remaining indices, noting that the standard AWGN model (4.73) is the special
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case where [Q2] = M L. This “possibly incomplete AWGN” (PIAWGN) model arises
in a number of important applications, such as matrix completion and dictionary

learning.

We can state the PTAWGN model probabilistically as

N(yml7 Zmls Vw) (m, l) cQ

1yml (m7 l) ¢ Qv (482)

Py, ilzmi (yml | Zml) = {

where " is the noise variance on the non-missing observations and 1, denotes a
point mass at y=0. Thus, at the observed entries (m, 1) € 2, the quantities s,,; and

s
Vi

calculated using the AWGN expressions (4.74), while at the “missing” entries
(m,1) ¢ Q, where y,, is invariant to z,;, we have E{z,; | p,yy = Dt V2 } = Do and

7 .q.,P __,,pb o —
Var{zm; | Py =DPmi; Vi } =Viy» S0 that S, =0 and v/},

,=0. This is expected, given that
v*® can be interpreted as an inverse residual variance and s as a v®-scaled residual. In

summary, the PIAWGN model yields

R yr;l_ﬁml(i) (m, l) Q_f 0
S 1 = le(t)—l—y .
mi(t) {o (m.1) ¢ O (4.83)
- (m,l) ¢ Q
]/8 g le(t)+'/ . .

When the PIAWGN model is combined with the scalar-variance approximations
from Section 4.3.1, BiG-AMP simplifies considerably. To see this, we start by using

VP (t) from (4.77) in place of V¥, (t) in (4.83)-(4.84), resulting in

§@:R(ZL£@) (4.85)

vP(t) + v
Vi(t) = —— (4.86)
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where § = % denotes the fraction of observed entries and Py, : RM*l — RM*L g

the projection operator defined by

[Po(Z)],, = {g"” Em, l; s (4.87)

We can then write (R10) and (R12) as

S o MN() N o o
R(t) = X(t) (1 HX(t)H% ) + 5“2(1&)H%A )V (t) (4.88)
o NLv*(¢) N o e

t) = A(t 1 — —— S— V)X (t 4.89
Q=40 < ||X<t>r|%> EeR Ox 459

using (4.80)-(4.81) and (4.85)-(4.87) with

V(t) £ Po(Y — P(t)) (4.90)
= Po(Y — P(t)) + 7" (1)S(t 1) (4.91)
= Po(Y — P(1)) + 7(t) V(t—1), (4.92)

since Py, is a projection operator, and using (R4) and (4.85).

Scalar-variance BiG-AMP under PIAWGN observations is summarized in Ta-
ble 4.4. Note that the residual matrix U(t) £ Po(Y — A(t)jf\(t)) needs to be
computed and stored only at the observed entries (m,[) € €, leading to significant
savings'® when the observations are highly incomplete (i.e., || < ML). The same
is true for the Onsager-corrected residual, V(t) Thus, the algorithm in Table 4.4
involves only three (partial) matrix multiplies [in steps (R3p), (R8p), and (R10p),
respectively|, each of which can be computed using only N|Q| scalar multiplies.

We note that Krzakala, Mézard, and Zdeborova recently proposed an AMP-based

approach to blind calibration and dictionary learning [68] that bears close similarity!®

15Similar computational savings also occur with incomplete non-Gaussian observations.

6The approach in [68] does not compute (or use) v”(t) as given in lines (R4p)-(R5p) of Table 4.4,
but rather uses an empirical average of the squared Onsager-corrected residual in place of our
VP(t) + v* throughout their algorithm.
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initialization: R
Vo) = o R (11p)
choose v*(1), X(1),r%(1), A(1) (I2p)

fort =1,...Tmax

_ N
Ga(t) = W (Rlp)
Gj(t) mA R (R2p)
00 = Po(Y - AOX(1) (R3p)
vP(t) = (erlciit()t) L’/Gggt()t) )5 (Rdp)
Vf(t) = ZZ’(t) + Nl/jp(t)l/z (tl (R5p)
V() = U0+ rpidos V(E-1) (R6p)
V() = Ga®)(vr) +vP) ~ (r7p)
R(t) = (1-Mov*()Ga(1)X(t) + Ga(t)A"()V (t) (R8p)
v = Ga(P ) + ) ) (R9p)
Q1) = (1-Lév*(t)Ga(t)A(t) + G2 () V() XH(t) (R10p)
VI = FE s X var{xn | ViR (1), v (1)} (R11p)
Vn,l:Z(t+) = E{xy | Y;7u@), 0" (1)} (R12p)
ve(t+) = ﬁZ%:l flevar{amn\Y;ﬁmn(t), vi(t)} (R13p)
Vm, n: amn (t+1) = E{a'mn I Y; Zl\mn(t)v 2 (t)} (R14p)
if |O() - UE—1)|3 < msic-amel[U(6)]3., stop (R15p)
end

Table 4.4: Scalar-variance BiG-AMP with PIAWGN p,|,

to BiG-AMP under the special case of AWGN-corrupted observations (i.e., |2 = ML)
and scalar variances. Their derivation differs significantly from that in Section 4.2

due to the many simplifications offered by this special case.
4.3.3 Zero-mean iid Gaussian Priors on A and X

In this section we will investigate the simplifications that result in the case that

both p,,, and p, , are zero-mean iid Gaussian, i.e.,

pamn (a) = N(CL, 07 V([)l) vm7 n7 (494)
which, as will be discussed later, is appropriate for matrix completion. In this

case, straightforward calculations reveal that E{x,; | ry ="u; v} = rard /(v + VE)
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initialization:
Vo) = 0 R (1)
choose v*(1), X(1),r%(1), A(1) (121)
fort =1,...Tmax
— N .
Galt) = AT (R1i)
Gj ) = mA B (R2i)
Ut) = Po(Y -A@®X() (R3i)
vP@t) = (MVT% + Lycit()t))% (R4i)
VP(t) = TP(t) + Nva(t)v®(t) (R51)
V) = U0+ = VE-1) (R6i)
Vi(t) = Ga(t)(vP(t) + ) (R71)
va(t) = Gal(t)(vP(t) + ™) (R8i)
vi(1) = (g + k) (R9i)
X(t+1) = LD (1 - Move(t)Ga ()X (1)

+ Ga(H) AR () V (1)) (R10i)
va(t+1) = (gim + %)*1 (R11i)
A1) = 28D ((1- Love ()G (1) At)

- - + GV () XH ®) (R12i)
if |U®#) —Ut—1)[% < mBic-amp |[U(#)[|3, stop  (R13i)
end

Table 4.5: BiG-AMP-Lite: Scalar-variance, PIAWGN, Gaussian p, and p,

and var{x,; | ru = ru; v }) = vl /(vh, + v5) and, similarly, that E{a.. | d,., =
Gmns Vi Y = Qs (Vi + 16) and var{amn | Qo = Gns Vint = VoVin/ (W + 16)-
Combining these iid Gaussian simplifications with the scalar-variance simplifications
from Section 4.3.1 yields an algorithm whose computational cost is dominated by
three matrix multiplies per iteration, each with a cost of M N L scalar multiplies. The
precise number of multiplies it consumes depends on the assumed likelihood model
that determines steps (R7g)-(R8g).

Additionally incorporating the PIAWGN observations from Section 4.3.2 reduces
the cost of the three matrix multiplies to only N|Q| scalar multiplies each, and yields
the “BiG-AMP-Lite” algorithm summarized in Table 4.5, consuming (3N + 5)|Q| +

3(MN + NL)+ 29 multiplies per iteration.
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4.4 Adaptive Damping

The approximations made in the BiG-AMP derivation presented in Section 4.2
were well-justified in the large system limit, i.e., the case where M, N, L — oo with
fixed % and % In practical applications, however, these dimensions (especially N)
are finite, and hence the algorithm presented in Section 4.2 may diverge. In case of
compressive sensing, the use of “damping” with GAMP yields provable convergence
guarantees with arbitrary matrices [18]. Here, we propose to incorporate damping into
BiG-AMP. Moreover, we propose to adapt the damping of these variables to ensure
that a particular cost criterion decreases monotonically (or near-monotonically), as
described in the sequel. The specific damping strategy that we adopt is similar to

that described in [74] and coded in [19].
4.4.1 Damping

In BiG-AMP, the iteration-t damping factor 5(t) € (0,1] is used to slow the

P

evolution of certain variables, namely 7% ., v”

1%

Py Uty Smis Ty, and Qpy,. To do this,
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steps (R1), (R3), (R7), and (R8) in Table 4.3 are replaced with

7 () = (1) ( S [ (B2 (0) + u;n<t>|fn,<t>\2)

+ (1= A7t =1) (4.95)
Vo (8) = B(2) (ﬁiﬂ(t) + nf:l me(t%(t))

+ (1= Bt - 1) (4.96)
vra(t) = B (1= v (t)/vyu(8) /v (#)

+ (1= B))way(t=1) (4.97)
Smi(t) = BE) (B (t) = Dt (1)) /17, (1))

+ (1= B(t)Sm(t—1), (4.98)

and the following are inserted between (R8) and (R9):

Tu(t) = )T (t) + (1 = B(1))Tu(t — 1) (4.99)

Qo () = B(t)Amn(t) + (1 = B(t)) G (t — 1). (4.100)

The newly defined state variables T,,;(t) and @,,,(t) are then used in place of T, (t)
and Gy, (t) in steps (R9)-(R12) [but not (R1)-(R2)] of Table 4.3. A similar approach
can be used for the algorithm in Table 4.4 (with the damping applied to ‘A/(t) instead
of S(t)) and those in Table 4.5. Notice that, when 8(¢) = 1, the damping has no

effect, whereas when §(¢) =0, all quantities become frozen in t.
4.4.2 Adaptive Damping

The idea behind adaptive damping is to monitor a chosen cost criterion J(¢) and

decrease 3(t) when the cost has not decreased sufficiently!” relative to {J(7)}.2} |

"The following adaptation procedure is borrowed from GAMPmatlab [19], where it has been
established to work well in the context of GAMP-based compressive sensing. When the current
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for some “step window” 71" > 0. This mechanism allows the cost criterion to increase
over short intervals of T iterations and in this sense is similar to the procedure used
by SpaRSA [75]. We now describe how the cost criterion .J(t) is constructed, building
on ideas in [20] that were reviewed in Section 2.8.

Notice that, for fixed observations Y, the joint posterior pdf solves the (trivial)

KL-divergence minimization problem

px.a)y = argmin D(bx,allpxajv)- (4.101)

bx,a

The factorized form (4.5) of the posterior allows us to write

D(bx,allpx.ay) —logpy(Y)

bxa(A, X)

= bx a(A, X)log ’ 4.102

A X o e

— Ditxallnr) ~ [ bxal4.X)logpvz(Y | AX) (4.103)

AX
Equations (4.101) and (4.103) then imply that
DXAY = ar% min .J(bx a) (4.104)
X,A
J(bx’A) = D(bx7A||pApx) — be,A { lngy|z(Y | AX)} (4105)

To judge whether a given time-t BiG-AMP approximation “bx a(f)” of the joint
posterior px ajy is better than the previous approximation bx a(t—1), one could in
principle plug the posterior approximation expressions (4.71)-(4.72) into (4.105) and
then check whether J(bxa(t)) < J(bxa(t—1)). But, since the expectation in (4.105)

cost J(t) is not smaller than the largest cost in the most recent stepWindow iterations, then the
“step” is deemed unsuccessful, the damping factor §(t) is reduced by the factor stepDec, and the
step is attempted again. These attempts continue until either the cost criterion decreases or the
damping factor reaches stepMin, at which point the step is considered successful, or the iteration
count exceeds Tiax or the damping factor reaches stepTol, at which point the algorithm terminates.
When a step is deemed successful, the damping factor is increased by the factor stepInc, up to the
allowed maximum value stepMax.
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is difficult to evaluate, we approximate the cost (4.105) by using, in place of AX, an
independent Gaussian matrix'® whose component means and variances are matched
to those of AX. Taking the joint BiG-AMP posterior approximation bx a(t) to be
the product of the marginals from (4.71)-(4.72), the resulting component means and

variances are

B a {AXm} = > i {2mn} Boyao X} (4.106)

= Y G (OFu(t) =Bu(t) (4.107)

n

vty po (AL} = Y @, (V) + v (DT (8)

+ V()17 (1) (4.108)
= V(1) (4.109)

In this way, the approximate iteration-¢ cost becomes

T(t) =3 D (Dt (- |78 1) || 22 () (4.110)
n,l

+ 5 Do (- 070 0) 1)

- Z Ezml"’N(ﬁml(t)Vf;L (t)) { ].Og mellzml (yml ‘ Zml)}'
m,l
Intuitively, the first term in (4.110) penalizes the deviation between the (BiG-AMP
approximated) posterior and the assumed prior on X, the second penalizes the devi-
ation between the (BiG-AMP approximated) posterior and the assumed prior on A,

and the third term rewards highly likely estimates Z.

18The GAMP work [20] uses a similar approximation.
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4.5 Parameter Tuning and Rank Selection

4.5.1 Parameter Tuning via Expectation Maximization

Recall that BiG-AMP requires the specification of priors px(X) = [, ; px,, (Tu1),
pa(A) = I, Pamn(@mn), and pyiz(Y|Z) = I1,., Py,lzm (Ymi|zm). In practice, al-
though one may know appropriate families for these distributions, the exact param-
eters that govern them are generally unknown. For example, one may have good
reason to believe apriori that the observations are AWGN corrupted, justifying the
choice py, 2. (Ymi|Zmi) = N (Ymi; 2mi, ), but the noise variance v may be unknown.
In this section, we outline a methodology that takes a given set of BiG-AMP param-
eterized priors {py,,(+:0), Pan.. (10), Dy, 120 Ymil; @) Yvmny and tunes the parameter
vector @ using an expectation-maximization (EM) [61] based approach, with the goal
of maximizing the likelihood, i.e., finding 02 arg maxy py(Y';0). The approach pre-
sented here can be considered as a generalization of the GAMP-based work [62] to
BiG-AMP.

Taking X, A, and Z to be the hidden variables, the EM recursion can be written
as [61]
§k+1 = arg;naxE { log pxazvy(X,A,Z,Y;0) ‘ Y; é\k}

:argmax{ZE{logpxnl(xnl;H) ’Y;ak} (4.111)
o iy
+ Z E { log pa,... (amn; @) ‘ Y; 5’“}

~k
+ E E { logpyml|zml(yml | Zml; 0) ‘ }/'7 0 }}
m,l

where  for  (4.111) we used the fact pxazv(X,A,ZY:0) =

Px(X; 0)pa(A; 0)pyz(Y|Z; 0) 1z_ax and the factorizability of px, pa, and py|z. As can
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be seen from (4.111), knowledge of the marginal posteriors {py.,|¥, Payun|Ys Pzl ¥ Fvmn,i
is sufficient to compute the EM update. Since the exact marginal posteriors are
unknown, we employ BiG-AMP’s approximations from (4.71), (4.72), and (4.35) for
approximate EM. In addition, we adopt the “incremental” update strategy from [76],
where the maximization over 6 is performed one element at a time while holding the
others fixed.

As a concrete example, consider updating the noise variance v* under the PI-

AWGN model (4.82). Equation (4.111) suggests

Vs —argmax Z / Dz ¥ (2t Y)

(m,l)eQ ¥ #mi
X 10g N (Yt 21, V"), (4.112)
where the true marginal posterior p, ,v(-|Y’) is replaced with the most recent BiG-
i
AMP approximation p,, o (*|Pmi(Timax); Vi (Tmax), @), where “most recent” is with
respect to both EM and BiG-AMP iterations. Zeroing the derivative of the sum in

(4.112) with respect to ",

2 z
(V k+1 Z yml Zml max)) + le(Tmax)> (4113)
m,l)eQ

where 2, (t) and 2, (t) are the BiG-AMP approximated posterior mean and variance
from (4.33)-(4.34).

The overall procedure can be summarized as follows. From a suitable initialization
6", BIG-AMP is run using the priors {pe, (18"}, o (6 ): By, e il 10 ) Fomons
and iterated to completion, yielding approximate marginal posteriors on
{Xnt, amns Zmi pymni. These posteriors are used in (4.111) to update the parame-
ters @ one element at a time, yielding 51. BiG-AMP is then run using the priors

~1 ~1

{9 (530 ), D2 (10 ), 0y 120 (Y| 5 )}anl, and so on. A detailed discussion in
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the context of GAMP, along with explicit update equations for the parameters of

Bernoulli-Gaussian-mixture pdfs, can be found in [62].

4.5.2 Rank Selection

BiG-AMP and EM-BiG-AMP, as described up to this point, require the specifi-
cation of the rank N, i.e., the number of columns in A (and rows in X) in the matrix
factorization Z = AX. Since, in many applications, the best choice of N is difficult
to specify in advance, we now describe two procedures to estimate N from the data

Y, building on well-known rank-selection procedures.

Penalized log-likelihood maximization

Consider a set of possible models {Hy}N_, for the observation Y where, under
Hy, EM-BiG-AMP estimates @y = {Ay, Xy, 0}. Here, the subscripts on Ay and
Xy indicate the restriction to N columns and rows, @ refers to the vector of parameters
defined in Section 4.5.1, and the subscript on @y indicates the dependence of the
overall number of parameters in @y with the rank N. Because the selection rule
N = argmax  py(Y;Hy) is typically intractable, several well-known rules of the

form

N = arg max 2log pyje, (Y | Oy) — n(N) (4.114)

N=1,...N

have been developed, such as the Bayesian Information Criterion (BIC) and Akaike’s
Information Criterion (AIC) [77]. In (4.114), Oy is the ML estimate of ®y under
Y, and 7(-) is a penalty function that depends on the effective number of scalar
parameters Neg estimated under model Hy (which depends on N) and possibly on

the number of scalar parameters |Q2] that make up the observation Y .

95



Applying this methodology to EM-BiG-AMP, where pyje,(Y |®Oy) =

pyiz(Y | Ay X n;0), we obtain the rank-selection rule

N = argmax 2log pyjz(Y | AxX n;0) — (). (4.115)

N=1,...N

Since N.g depends on the application (e.g., matrix completion, robust PCA, dictio-
nary learning), detailed descriptions of 7(-) are deferred to the discussions of specific
examples, such as in Section 4.6.5.

To perform the maximization over N in (4.115), we start with a small hypothe-
sis N1 and run EM-BiG-AMP to completion, generating the (approximate) MMSE
estimates fINl, X ~, and ML estimate 5, which are then used to evaluate!® the pe-
nalized log-likelihood in (4.115). The N hypothesis is then increased by a fixed value
(i.e., Ny = N; + rankStep), initializations of (Ay,, X n,, @) are chosen based on the
previously computed (ENI, b'e Nis é), and EM-BiG-AMP is run to completion, yield-
ing estimates (XN2, X Nos 5) with which the penalized likelihood is again evaluated.
This process continues until either the value of the penalized log-likelihood decreases,
in which case N is set at the previous (i.e., maximizing) hypothesis of N, or the

maximum-allowed rank N is reached.

Rank contraction

We now describe an alternative rank-selection procedure that is appropriate when
Z has a “cliff” in its singular value profile and which is reminiscent of that used
in LMaFit [42]. In this approach, EM-BiG-AMP is initially configured to use the
maximum-allowed rank, i.e., N = N. After the first EM iteration, the singular

values {0, } of the estimate X and the corresponding pairwise ratios R, = 0,/0,11

19Since we compute approximate MMSE estimates rather than ML estimates, we are in fact
evaluating a lower bound on the penalized log-likelihood.
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are computed,? from which a candidate rank estimate N = arg max,, 2, is identified,
corresponding to the largest gap in successive singular values. However, this candidate
is accepted only if this maximizing ratio exceeds the average ratio by the user-specified

parameter Tyos (e.g., Tmos = D), i.e., if

Ry > %Mfz Z R, (4.116)
i#N

and if N /N is sufficiently small. Increasing myos makes the approach less prone to
selecting an erroneous rank during the first few iterations, but making the value too
large prevents the algorithm from detecting small gaps between the singular values.
If N is accepted, then the matrices A and X are pruned to size N and EM-BiG-AMP
is run to convergence. If not, EM-BiG-AMP is run for one more iteration, after which
a new candidate N is identified and checked for acceptance, and so on.

In many cases, a rank candidate is accepted after a small number of iterations,
and thus only a few SVDs need be computed. This procedure has the advantage
of running EM-BiG-AMP to convergence only once, rather than several times under

different hypothesized ranks. However, when the singular values of Z decay smoothly,

this procedure can mis-estimate the rank, as discussed in [42].

4.6 Matrix Completion

In this and the next two sections, we detail the application of BiG-AMP to the
problems of matrix completion (MC), robust principle components analysis (RPCA),
and dictionary learning (DL), respectively. For each application, we discuss the
BiG-AMP’s choice of matrix representation, priors, likelihood, initialization, adap-

tive damping, EM-driven parameter learning, and rank-selection. Also, for each

20In some cases the singular values of A could be used instead.
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application, we provide an extensive empirical study comparing BiG-AMP to state-
of-the-art solvers on both synthetic and real-world datasets. These results demon-
strate that BiG-AMP yields excellent reconstruction performance (often best in class)
while maintaining competitive runtimes. For each application of BiG-AMP discussed
in the sequel, we recommend numerical settings for necessary parameter values, as
well as initialization strategies when appropriate. Although we cannot guarantee
that our recommendations are universally optimal, they worked well for the range
of problems considered in this chapter, and we conjecture that they offer a useful
starting point for further experimentation. Nevertheless, modifications may be ap-
propriate when applying BiG-AMP outside the range of problems considered here.
Our BiG-AMP Matlab code can be found as part of the GAMPmatlab package at
https://sourceforge.net/projects/gampmatlab/, including examples of BiG-AMP

applied to the MC, RPCA, and DL problems.
4.6.1 Problem setup

In matrix completion (MC) [78], one seeks to recover a rank-N < min(M, L)

RM*L after observing a fraction & = 1= of its (possibly noise-corrupted)

matrix Z €
entries, where () denotes the set of observations.

BiG-AMP approaches the MC problem by modeling the complete matrix Z as
the product Z = AX of random matrices A € RM*N and X € R¥*L with priors of
the decoupled form in (4.1)-(4.2), where Z is probabilistically related to the observed

matrix Y through a likelihood py|z(Y | Z) of the decoupled form in (4.3). To finally
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perform MC, BiG-AMP infers A and X from Y under the above model. The corre-
sponding estimates A and X can then be multiplied to yield an estimate Z = AX
of the noiseless complete matrix Z.

As in several existing Bayesian approaches to matrix completion (e.g., [52,79-81]),
we choose Gaussian priors for the factors A and X. Although EM-BiG-AMP readily
supports the use of priors with row- and/or column-dependent parameters, we focus

on simple iid priors of the form

Pana (@) = N'(a;0,1) Ym,n (4.117)

P () = N (23T, 155) Y, 1, (4.118)

where the mean and variance in (4.118) can be tuned using EM-BiG-AMP, as de-
scribed in the sequel, and where the variance in (4.117) is fixed to avoid a scaling
ambiguity between A and X. Section 4.6.6 demonstrates that this simple approach
is effective in attacking several MC problems of interest. Assuming the observation
noise to be additive and Gaussian, we then choose the PIAWGN model from (4.82)

for the likelihood pyz given by

N(yml7 Zmly Vw) (m, l) e )

D) &0, (4.119)

Ymi

pyml‘zml (yml | Zml) = {

Note that, by using (4.117)-(4.118) with Zy = 0 and the scalar-variance approximation
from Section 4.3.1, the BiG-AMP algorithm from Table 4.3 reduces to the simpler

BiG-AMP-Lite algorithm from Table 4.5 with v§ = 1.
4.6.2 Initialization

In most cases we advocate initializing the BiG-AMP quantities X | (1) and A(1)
using random draws from the priors px and pa, although setting either X (1) or A(1)
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at zero also seems to perform well in the MC application. Although it is also possible
to use SVD-based initializations of X\(l) and A(1) (ie., for SVD Y = ULD,
set A(1) = USY? and 5(\(1) — »'2DT) as done in LMaFit [42] and VSBL [53],
experiments suggest that the extra computation required is rarely worthwhile for
BiG-AMP.

As for the initializations v%,(1) and v2,, (1), we advocate setting them at 10 times
the prior variances in (4.117)-(4.118), which has the effect of weighting the measure-

ments Y more than the priors px, pa during the first few iterations.

4.6.3 Adaptive damping

For the assumed likelihood (4.119) and priors (4.117)-(4.118), the adaptive-

~

damping cost criterion J(¢) described in Section 4.4.2 reduces to

0 sy (500) 2

#53 lrgag + (0 -1) wa0)
(3 X - ma0) +0)

pw
(m,l)eQ

+ Q] log V27w, (4.120)

To derive (4.120), one can start with the first term in (4.110) and leverage the Gaus-

sianity of the approximated posterior on x,,;:

pxnl(-)> (4.121)

~ T N(Inla 1’\nl (t)? Vﬁl(t))
= nls Tni(t), v (1)) 1 —
> [ N s v o

S D (B (- [P0 72(0)
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which then directly yields the first term in (4.120). The second term in (4.120) follows
using a similar procedure, and the third and fourth terms follow directly from the
PTAWGN model.

In the noise free setting (i.e., v — 0), the third term in (4.120) dominates,

avoiding the need to compute the other terms.

4.6.4 EM-BiG-AMP

For the likelihood (4.119) and priors (4.117)-(4.118), the distributional parameters
0 = [v°, Ty, §]" can be tuned using the EM approach from Section 4.5.1.*' To
initialize @ for EM-BiG-AMP, we adapt the procedure outlined in [62] to our matrix-

completion problem, giving the EM initializations Zy = 0 and

w_ _Pa(Y)|%
~ (SNR" + 1)|9| (4.122)
IR

where SNR? is an initial estimate of the signal-to-noise ratio that, in the absence of

other knowledge, can be set at 100.
4.6.5 Rank selection

For MC rank-selection under the penalized log-likelihood strategy (4.115), we
recommend using the small sample corrected AIC (AICc) [77] penalty n(N) =
25— Ner. For the MC problem, Neg = df + 3, where df £ N(M+L—N)
counts the degrees-of-freedom in a rank-N real-valued M x L matrix [78] and the

three additional parameters come from 6. Based on the PIAWGN likelihood (4.119)

21For the first EM iteration, we recommend initializing BiG-AMP using v/%,(1) = v%, Z,(1) = Zo,
ve (1) =1, and Gy (1) drawn randomly from p, . After the first iteration, we recommend warm-
starting BiG-AMP using the values from the previous EM iteration.
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and the standard form of the ML estimate of v" (see, e.g., [77, eq. (7)]), the update

rule (4.115) becomes

W = argmax {—|Q| log (ﬁ > (Y — 2mz(t))Q)

N=1,...N (m,1)EQ
|Q(N(M + L — N) +3)
Q) —NM+L—-N)—4]

(4.124)

We note that a similar rule (but based on BIC rather than AICc) was used for rank-
selection in [44].

MC rank selection can also be performed using the rank contraction scheme de-
scribed in Section 4.5.2. We recommend choosing the maximum rank N to be the
largest value such that N(M+L—N) < |Q| and setting myios = 1.5. Since the first EM
iteration runs BiG-AMP with the large value N = N, we suggest limiting the number
of allowed BiG-AMP iterations during this first EM iteration to nitFirstEM = 50. In
many cases, the rank learning procedure will correctly reduce the rank after these first

few iterations, reducing the added computational cost of the rank selection procedure.
4.6.6 Matrix Completion Experiments

We now present the results of experiments used to ascertain the performance
of BiG-AMP relative to existing state-of-the-art algorithms for matrix completion.
For these experiments, we considered IALM [38], a nuclear-norm based convex-
optimization method; LMaFit [42], a non-convex optimization-based approach using
non-linear successive over-relaxation; GROUSE [46], which performs gradient de-
scent on the Grassmanian manifold; Matrix-ALPS [43], a greedy hard-thresholding

approach; and VSBL [53], a variational Bayes approach. In general, we configured
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BiG-AMP as described in Section 4.6? and made our best attempt to configure the
competing algorithms for maximum performance. That said, the different experi-
ments that we ran required somewhat different parameter settings, as we detail in

the sequel.

Low-rank matrices

We first investigate recovery of rank-N matrices Z € RM*% from noiseless in-

complete observations {Zml}(mJ)eQ with indices 2 chosen uniformly at random. To

1Z2-2|1%

1z of the esti-

do this, we evaluated the normalized mean square error (NMSE)
mate Z returned by the various algorithms under test, examining 10 realizations of
(Z,Q) at each problem size (M, L, N). Here, each realization of Z was constructed

as Z = AX for A and X with iid AV(0,1) elements.?® All algorithms were forced®*

to use the true rank N, run under default settings with very minor modifications,?®

and terminated when the normalized change in either Z or Pg(z ) across iterations
fell below the tolerance value of 1075,

Defining “successful” matrix completion as NMSE < —100 dB, Fig. 4.2 shows the

success rate of each algorithm over a grid of sampling ratios ¢ = {77 and ranks N.

22Unless otherwise noted, we used the BiG-AMP parameters Ti,ax = 1500 (see Section 4.2.8 for
descriptions) and the adaptive damping parameters stepInc = 1.1, stepDec = 0.5, stepMin = 0.05,
stepMax = 0.5, stepWindow = 1, and 5(1) = stepMin. (See Section 4.4.2 for descriptions).

23We chose the i.i.d Gaussian construction due to its frequent appearance in the matrix-completion
literature. Similar performance was observed when the low-rank factors A and X were generated
in other ways, such as from the left and right singular vectors of an i.i.d Gaussian matrix.

24This restriction always improved the performance of the tested algorithms.

2GROUSE was run with maxCycles = 600 and step_size = 0.5, where the latter was chosen
as a good compromise between phase-transition performance and runtime. VSBL was run under
MAXITER = 2000 and fixed 8 = 10%; adaptive selection of 3 was found to produce a significant
degradation in the observed phase transition. LMaFit was run from the same random initialization
as BiG-AMP and permitted at most maxit = 6000 iterations. TALM was allowed at most 2000
iterations. A maximum runtime of one hour per realization was enforced for all algorithms.
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As a reference, the solid line superimposed on each subplot delineates the problem
feasibility boundary, i.e., the values of (0, N) yielding |2 = df, where df = N(M +
L — N) is the degrees-of-freedom in a rank-N real-valued M x L matrix; successful

recovery above this line is impossible by any method.
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Figure 4.2: Empirical success rates for noiseless completion of an M x L matrix
sampled uniformly at random, as a function of sampling ratio 6 = % and rank N.
Here, “success” is defined as NMSE < —100 dB, success rates were computed from 10
random realizations, and M = L = 1000. Points above the red curve are infeasible,

as described in the text.

Figure 4.2 shows that each algorithm exhibits a sharp phase-transition separating
near-certain success from near-certain failure. There we see that BiG-AMP yields

the best PTC. Moreover, BiG-AMP’s PTC is near optimal in the sense of coming
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very close to the feasibility boundary for all tested 6 and N. In addition, Fig. 4.2
shows that BiG-AMP-Lite yields the second-best PTC, which matches that of BiG-
AMP except under very low sampling rates (e.g., § < 0.03). Recall that the only
difference between the two algorithms is that BiG-AMP-Lite uses the scalar-variance
simplification from Section 4.3.1.

Figure 4.3 plots median runtime®® to NMSE = —100 dB versus rank N for several
sampling ratios ¢, uncovering orders-of-magnitude differences among algorithms. For
most values of 6 and N, LMakFit was the fastest algorithm and BiG-AMP-Lite was
the second fastest, although BiG-AMP-Lite was faster than LMaFit at small § and
relatively large N, while BiG-AMP-Lite was slower than GROUSE at large ¢ and very
small N. In all cases, BiG-AMP-Lite was faster than IALM and VSBL, with several
orders-of-magnitude difference at high rank. Meanwhile, EM-BiG-AMP was about 3
to 5 times slower than BiG-AMP-Lite. Although none of the algorithm implemen-
tations were fully optimized, we believe that the reported runtimes are insightful,

especially with regard to the scaling of runtime with rank N.

Approximately low-rank matrices

Next we evaluate the performance of recovering approximately low-rank matrices
by repeating an experiment from the LMaFit paper [42]. For this, we constructed the
complete matrix as Z = UXV' € R0 where U,V were orthogonal matrices
(built by orthogonalizing iid A(0, 1) matrices using MATLAB’s orth command) and
3} was a positive diagonal matrix containing the singular values of Z. Two versions of

26The reported runtimes do not include the computations used for initialization nor those used
for runtime evaluation.
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Figure 4.3: Runtime to NMSE= —100 dB for noiseless completion of an M x L

matrix sampled uniformly at random, versus rank N, at M = L = 1000 and several
. . 9 . .
sampling ratios § = §7. All results represent median performance over 10 trials.

Missing values indicate that the algorithm did not achieve the required NMSE before
termination and correspond to the black regions in Fig. 4.2.

3 were considered: one with exponentially decaying singular values [X],, ,, = e” 3™

and one with the power-law decay [X],,,, = m™>.

As in [42], we first tried to recover Z from the noiseless incomplete observations
{2mi} mpeq, with € chosen uniformly at random. Figure 4.4 shows the performance
of several algorithms that are able to learn the underlying rank: LMaFit,?” VSBL,?
and EM-BiG-AMP under the penalized log-likelihood rank selection strategy from
Section 4.5.2.% All three algorithms were allowed a maximum rank of N = 30.
The figure shows that the NMSE performance of BiG-AMP and LMaF'it are similar,
although BiG-AMP tends to find solutions with lower rank but comparable NMSE
at low sampling ratios . For this noiseless experiment, VSBL consistently estimates

ranks that are too low, leading