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Abstract  There are currently several wide area search munitions in the research
and development phase within the Department of Defense. While the
work on the airframes, sensors, target recognition algorithms and nav-
igation schemes is promising, there are insufficient analytical tools for
evaluating the effectiveness of these concept munitions. Simulation can
be used effectively for this purpose, but analytical results are necessary
for validating the simulations and facilitating the design trades early
in the development process. Recent research into cooperative behav-
ior for autonomous munitions has further highlighted the importance
of fundamental analysis to steer the direction of this new research ven-
ture. This paper presents extensions to some classic work in the area
of search and detection. The unique aspect of the munition problem is
that a search agent is lost whenever an attack is executed. This sig-
nificantly impacts the overall effectiveness in a multi-target/false target
environment. While the analytic development here will concentrate on
the single munition case, extensions to the multi-munition will be dis-
cussed to include the potential benefit from cooperative classification
and engagement.

*The views expressed in this article are those of the authors and do not reflect the official
policy of the U.S. Air Force, Department of Defense, or the U.S. Government.
*Asst. Prof., Dept. of Aeronautics and Astronautics



1. Introduction

Several types of wide area search munitions are currently being in-
vestigated within the U.S. Department of Defense research labs. These
munitions are being designed to autonomously search, detect, recognize
and attack mobile and relocatable targets. Additional work at the basic
research level is investigating the possibility of having these autonomous
munitions share information and act in a cooperative fashion[1][2][3].
While some of the research is promising, most of it is relying heavily on
simulation to evaluate the performance of the multi-munition system.
Analysis appears to be lacking with regards to the fundamental nature
of the wide area search munition problem, to include identification of the
critical munition and target environment parameters that must be ade-
quately modeled for a valid simulation. Some classic work has been done
in the area of optimal search [4][5][6], but this work does not address ad-
dress the multi-target/false target scenario where an engagement comes
at the expense of a search agent. Further, this work needs to be extended
for application in cooperative behavior algorithms. This paper presents
extensions to some of this classic work in the area of search and detec-
tion. Section 2 will present the basic method of analysis for the single
munition/single target case. A uniform target distribution in a Poisson
field of false targets will be considered. Section 3 will essentially repeat
this analysis for the multiple target case, where a Poisson distribution
will be assumed for both real and false targets. Section 4 will provide
some analytic extensions for the multiple munition case and establish a
basis for comparison with cooperative behavior approaches. Section 5
will use the analytical approaches to suggest methods and performance
limitations for both cooperative engagement and classification. While
the scenarios being considered are somewhat simplistic, the goal is to
obtain closed form analytic results that can provide insight as to the
fundamental nature of the wide area search munition problem.

2. The Single Munition/Single Target Case

A formula describing the probability of mission success for the single
munition/single target scenario is as follows:

Pys = Pk -Prr-Pros- Pr (1)
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where
Pg = probability of target kill given Target Report (TR)
Prr = prob. of Target Report given clear Line of Sight to target
Pros = prob. of clear LOS given target in Field of Regard (FOR)
P = prob. the target will appear in the FOR

The expression in (1) is not the most general, but is easily shown to be
equivalent to the more general equations. For example, Pk represents
the product of guidance, hit, and kill probabilities. Prg represents the
product of detection and confirmation probabilities, where confirmation
could be either classification or identification depending upon the level of
discrimination being employed by the munition being considered. Prog
could also be included in Prg, and that is the convention that will be
followed for the remainder of the development.

With the exception of Pg, the other probabilities are expressed as
either single numerical values, or, in the case of Prg, a table of values
sometimes referred to as a confusion matrix. The term confusion matrix
stems from the fact that it represents the probability of both correct and
incorrect target reports. Pg is a function of the area to be searched, the
density function describing the probable target location, and the order-
ing of the search process. Consider an autonomous munition looking
for a single target (see Figure 1.1). For now we shall assume a single
target is uniformly distributed amongst a Poisson field of false targets
in the area Ag. A false target is considered to be something that has
the potential for fooling the autonomous target recognition (ATR) al-
gorithm (e.g., similar size, shape). Because we are considering single
shot munitions, the probability of successfully engaging a target in the
incremental area AA is conditioned on not engaging a false target prior
to arriving at AA. The incremental probability of encountering a target
in AA can be expressed as:

AA

— 2
A (2)
where Pp7—(A) is the probability of having no false target attacks while

searching the area A leading up to AA. A closed form expression Pr(Ag)
can be obtained as follows. Let

APy = Par(A) -

7 = false target probability density

Prppapr = probability of false target attack given encounter

« = False Target Attack Rate (FTAR), a =17 Pprarr
Prr; 4 = false target attack probability distribution

Ppr; , represents the distribution of j, the expected number of false
target attacks which would be reported by the seeker in a non-commit
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Figure 1.1. Single Target Search

mode, as a function of the area searched, A. It is a Poisson distribution
with parameter Ayqse = @A.

(@A) e—A
Prry 4 = — (3)
The probability of searching A without executing a false target attack is
Prx(A) = Ppp,, = e (4)

We can now formulate and solve an expression for the probability of
encountering a target within Ag.

Ag efaA 1— e*OéAS

Pu(As) = /0 A = (5)

Note that the expression above assumes that the target is contained

within Ag with probability one. For the case of uniform target/Poisson

false target distribution, P (Ag) can simply be multiplied by the prob-

ability that the target is contained within Ag. For cases of non-uniform

target distributions a simple multiplication factor is no longer sufficient

because the order of the search affects the probability of encountering
the target.

Figure 1.2 shows the sensitivity of mission success to the FTAR («)

and probability of correct target report (Ppg) for P, = 0.8 and Ag =
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Figure 1.2. Single Target - Uniform Distribution

50 km?. As shown, the probability of success begins to drop off rapidly
for a > .01/ km?. The problem is more sensitive to Prp for low values
of « than it is for higher values. While the probability of success may
seem low, it can be improved by assigning multiple munitions to the
same search area as will be discussed later.

3. The Single Munition/Multiple Target Case

There are several ways of looking at the multiple target case. If the
objective is to find a specific target within a field of other targets, this
could be treated in the same manner as the single target case; the other
targets merely serve to increase the density of false targets. If any of
the targets is considered valid then we need to be able to evaluate the
probability of a successful encounter with any one of the targets. The
single target case allowed us to determine the probability of finding and
recognizing a target within a searchable area as

Prr(As) = Prg Pp(As) (6)

For that case Prp did not appear in the formulation for Py (Ag). For the
multiple target case we will formulate it in a slightly different fashion.
Referring back to Figure 1.1, the ability to find and recognize a target in
the element of area A A is now conditioned on no false target attacks and
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no real target declarations/attacks prior to getting to AA. Assuming a
Poisson distribution for both real and false targets (with Area; # Afaise)s
our new formulation for the elemental probability of recognizing the
target is
APrr(A) = Prr Prrz(A) Prr(A) nr AA (7)
where 77 is the uniform target probability density. Implicit in this for-
mulation is the assumption that nrA A, loosely interpreted as the prob-
ability of finding a target in the elemental area AA, is sufficiently less
than one. This assumption is typically met for munitions with relatively
small instantaneous sensor footprints relative to the average target den-
sity in the area. Pp=(A), the probability of not having recognized a real
target after searching A, is obtained in the same manner as Prr7(A).
Specifically, Pgr;, , represents the distribution of k, the number of tar-
get recognitions that would be reported by the seeker in a non-commit
mode, as a function of the area searched, A. It is a Poisson distribution
with parameter \..q; = Prgr nr A.
ko—Prr nr A
Pa , = 0 s BN ®)
The probability of searching A without executing a real or false target
attack is

Pm(A) = Prry o Prry s = o~ (Prr 7 + a) A )

We can now formulate and solve an expression for the probability of
recognizing a target within Ag.

As
Prr,,(As) = Prp np e renr +0) A g (10)
= T (e 0 1)

Figure 1.3 shows Ppss vs. « for the Poisson distributed multi-target
case, with 7 = .1/km?, Prp = 0.8 and P, = 0.8. As one would antici-
pate, it is far less sensitive to « than the single target case. Of greater
interest is that the sensitivity to Prp is greater for low values of « than
it is for higher values; the opposite of the trend for the single target
case. The reason for this is that a missed target is no longer a failed
mission because there are other targets to be found. Further, the prob-
ability that these other targets will be encountered is high if the FTAR
is sufficiently low.

4. Analytic Multi-Munition Extensions

The single target scenario can be extended to the multi-munition
case in several ways. The easiest way is to divide the total search area
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Figure 1.3. Multi Target - Uniform Distribution

by the number of munitions, and determine the Pp;g for the munition
searching the subarea that the target appears in. All other munitions
find nothing for the single target case. Pp;g will increase because Ag
will decrease for all munitions, including the munition searching the
subarea where the target happens to be. However, because this method
assumes zero overlap in the subareas being searched, the probability of
mission success is ultimately limited by the Py for the single munition.
If the warhead is not lethal enough to provide the desired probability of
mission success from a single munition-target engagement, then overlap-
ping search areas and multi-munition engagements must be considered.
It should also be noted that unnecessarily limiting the area over which
the munitions can search is not an efficient use of valuable search assets.

Extending expressions (1) and (5) above for multiple munitions be-
comes quickly complicated by path considerations and the degree of
correlation assumed for the behavior of the munitions as they encounter
either real or false targets. Considering only the terminal engagement
for the time being, we can assume independent events for each warhead

shot yielding an expression for PI[(N}, the probability of kill for the case
of N munitions engaging the target.

PM =1 - (1-PgV (11)
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One could (incorrectly) assume a similar roll-up of Pysg for the case of
N munitions all searching the same area for a single target

PR = P - (1= D5y (12)

C

where P refers to the probability that the target is located within the
area being searched. The reason this formulation is incorrect is because
it assumes the placement of clutter, non-targets and the real target is
re-randomized for each munition. This can never be true for the case of
several munitions looking for the same target in the same location. To
address the problem correctly requires some consideration of the search
path followed by the individual munitions.

The analysis in this section will be limited to the single target/multi-
munition scenario. It is based on some unpublished results from Hen-
derson[7] and some previous analysis by this author[8]. For this analysis,
we not only need the probability of kill given access by N munitions,
but we also need the probability that n munitions will encounter the
target, P}[En}. For N munitions searching for the target, we can set up an
expression for the probability of killing the target contained within the
area Ag.

N
Pihi(As) = S P Pl(As) (13)
n=1

While this expression appears simple, the complication arises when we
attempt to define sz ] (Ag). For this, we will consider the cases of mu-
nitions searching over the same path and over opposing paths. For both
cases we will limit the analysis to uncorrelated behavior on the part of
the munitions. Certainly the assumption of uncorrelated behavior of
homogeneous munitions searching over the same path is not valid, but
it simplifies the development. For munitions searching over opposing
paths there should be much less correlation because the munitions are
seeing the targets, and false targets, at very different aspect angles.

4.1. Multi-Munition, Same Path Formulation

Consider the case of two munitions searching identical paths for a
uniformly distributed single target, with a Poisson distribution of false
targets in the area Ag. Equation 5 provides the expression for the prob-
ability that any given munition will have access to the target, but we
need the probability that any combination of the munitions will have
access to the target. The probability that one of the two munitions will

have access is
PHl(4) = 2e797(1 — e~ (14)
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and the probability that both will have access is
PEA) = e (15)

The probability of kill given access by n weapons is (1— (1 — Px Prg)™).
The two-weapon formula can now be expressed as

2 As —aA —aA
P (As) = PC/O (PicPraze=(1 - e=)
_ dA
+ (1= (1= PgPrg)?) e7204) 2. U9
2 N Pg Prp(1 — e=204s)
= PoPgPrp| ——(1 —e ®4s) — .
CTRITR (OJAS( ¢ ) ZOJAS
(17)

The more general expression for N munitions traversing the same search
path can be expressed as

[N] 1 & n N!
Prrs (As) = Az [(1—(1—PKPTR) )m
n=1 ' '

As
ey e e maal . )

4.2, Multi-Munition, Opposing Path
Formulation

Now consider the case of two munitions searching opposing paths for
a uniformly distributed single target, again with a Poisson distribution
of false targets in the area Ag. The probability that the munition con-
ducting the forward search will have access to the target is

Pg,(A) = e 4 (19)

and the probability that the munition conducting the reverse search will
have access to the target is

Pg,(A) = e o), (20)
The probability that both munitions will have access to the target is
PE}(A) — efozA efa(Asz) _ efaAs (21)

and we note that it is constant! With these expressions, we can now lay
out the expression for two munitions searching opposing paths.
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Figure 1.4. Path Considerations for Multi-Munition Case

As
P, = Po /0 Py Prp (e7" 4 e7o4s=4)
dA
— 26_0“45 + (2 —PKPTR)G_QAS) A_
S
2 —aAg —aAg
= PcPrPrgr m(l —e ) — PxPrgr e (22)

Similar expressions have been derived for four munitions (two searching
each direction) and six munitions (three searching each direction) but a
general formula for N munitions has yet to be defined.

For the same total number of munitions, the opposing path case will
produce the highest mission success value, the same path case will pro-
duce the lowest mission success value, and the simple multi-munition
roll-up will produce a value in between the other two. The graph shown
in Figure 1.4 is for two munitions, but it should be noted that the differ-
ences between the curves increases with the number of munitions used
in the analysis.

It is worth repeating that the assumption of uncorrelated behavior (at
either a real or false target) is not strictly valid, and we should expect a
high degree of correlation for the case where the munitions are traversing
the same path in the same direction. For scenarios where the potential
false targets greatly outnumber the real targets, correlated behavior will
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degrade the overall mission success rate. For this reason, search patterns
should be planned which decrease the degree of correlated behavior at
false targets. This can be done through the use of lateral offsets between
munitions and/or different approach vectors. While this does not make
the assumption of uncorrelated behavior valid, it can reduce the degree
of correlation at both targets and false targets. Analytically it becomes
intractable to define an expression for arbitrary numbers of munitions
executing arbitrarily specified search patterns and degrees of correlation.
However, for any realistic effectiveness analysis these are the cases we
are most interested in. A numerical simulation with Monte-Carlo runs
is the only practical way of performing this more general analysis, and
work is currently being done in this area.

5. Implications for Cooperative Behavior
5.1. Cooperative Engagement of Targets

The analysis above indicates that munition success is quite sensitive
to FTAR and the target location probability distribution. Cooperative
behavior and control has recently become an active area of research, and
one of the objectives of the research is to reduce the sensitivity to FTAR
and target location error. While there are many aspects of cooperative
behavior and control, the two most applicable to the wide area search
munition problem are cooperative engagement and cooperative classifi-
cation. Cooperative engagement is defined as a munition initiating an
attack on a target that a second munition has declared. Cooperative
classification involves using multiple looks from one or more munitions
in order to improve the probability of making a correct target declara-
tion.

Cooperative engagement has potential benefits in several areas. For
a target that has been correctly identified, it increases the probability
of kill for that target by virtue of multiple warhead events. This in-
crease was described earlier in equation (11). If munitions are chosen
for cooperative engagement that are unlikely to find additional targets
through continued search, the probability of kill for found targets could
be increased without significantly degrading the probability of finding
additional targets. Complications arise due to the possibility that de-
clared targets are not real targets (incorrect classification), thus divert-
ing valuable resources for no real gain. Ultimately what is required is
a way to compare the probability of success from continued search with
the probability of success from attacking a found target. Figure 1.5 de-
picts all the possible events from searching a Poisson field of targets and
non-targets. Starting from the top, the munition can either encounter a
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target, incorrectly declare (and attack) a false target, or run out of gas
prior to the occurrence of either a target encounter or false target at-
tack. For a given target encounter the munition may recognize it as such
or incorrectly bypass it. A recognized target will be attacked with an
uncertain outcome of the warhead event. A incorrectly bypassed target
essentially means that the munition is still in a search mode, but the time
remaining for search will be decreased by (on average) the expected time
to next target encounter, E[tg] = (npVW)~!. The basic tree structure
repeats at each occurrence of the search state. If we define success as a
lethal warhead event on any one of the real targets appearing within the
search area, the entire tree can be collapsed to a single level, with the
probability of real target attack, false target attack, and running out of
gas given as a function of search time remaining,

P —
PRT(tr) = %(1 —e (OH‘PTR??T)VtTW) (23)
a —
PFTA(tr) = m(l —e (OH‘PTR??T)VtTW) (24)
Poog(t,) = e (etPrrnm)Vi:W (25)

respectively. The term V¢, W represents the area that can be searched in
the time remaining ¢, for a given munition velocity V and search width
W. The probability for success in search is simply

ng(tr) = PK'PRT(tr) (26)

Figure 1.6 shows a similar tree structure for the event of a declared
target to be attacked. Any declared target may or may not be a real
target, and any real declared target may or may not be recognized by a
second munition being sent to engage it. A correctly found real target
again results in a warhead event with uncertain outcome. If the declared
target is actually a false target, a second munition may or may not make
the same mistake as the first munition making the initial declaration. If
it correctly identifies it as a false target it resumes search with the time
remaining decreased by the time to arrive at the initially declared target.
The analysis in this paper assumes independent events for target/false
target declarations, so the probabilities for all individual munitions are
the same without regard to order of occurrence. The probability of a real
target given that a target declaration has been made can be expressed
as
Prrnr

Prrnr + Prrajrrn

Prrirr = (27)
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Figure 1.5. Possible Search Outcomes

With this, we can now define the probability of success from engaging a
declared target.

Psa = PgPrePrrirr + Pss(tr —tera) - (1= Prr) - Prrjrr
+ Pss(tr —tera) - (1 — Pprajrr) - (1 — Prrjrr) (28)

Note that this expression includes success increments from continued
search after either missing a real target or bypassing false targets ini-
tially declared as real. It should also be noted that once a munition has
declared a target, the probability of success in attacking it is

Psarr = Pk Prrire- (29)
Further note that Pg 47 will always be greater than Pgs(t,), regardless
of the amount of search time remaining.

Equations (28) and (29) apply to the case where the target has not
yet been attacked by a previous munition. For the case where one or
more attacks on the target have previously taken place, the value of at-
tacking the target again should be decreased due to the chance of the
target being previously killed. With the assumption of independent war-
head events, the probability of a live target (1 — Py )" given N previous
attacks can be used as a multiplying factor with equation (29) or the
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Figure 1.6. Possible Engagement Outcomes

first term in (28). Equations (28), (29) with the appropriate multiplying
factor for multiple attacks, and equation (26) are quantitative measures
of the value associated with either attacking a target or continuing to
search, respectively. Although the situation gets quickly complicated
when one considers multiple target types of differing priorities, these
basic measures can serve as a basis for making decisions on cooperative
engagement. Work is progressing to incorporate these quantitative mea-
sures into overall schemes for cooperative engagement, and simulation
based analysis is being used to evaluate the schemes under more general
multi-target scenarios.

5.2. Cooperative Classification of Targets

Cooperative engagement has proven effective in increasing the proba-
bility of success for cases where FTAR is low, but it provides no benefit,
and is possibly detrimental, for cases where FTAR is higher[2]. The
reason for this is that cooperative engagement increases the chance that
additional munitions will be lost due to false target attacks. Cooper-
ative classification may provide some help for this problem because it
can effectively reduce the false target attack rate; however, cooperative
classification can potentially increase the chance of missing real targets.
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For the case of independent classification events, a simple analysis can
provide some insight into the potential strengths and weaknesses of co-
operative classification. While independent events may not be a realistic
assumption, it can be used to provide a first-cut sensitivity analysis.

Figure 1.7 shows a surface plot of Py;g vs. FTAR and Prg for two
munitions conducting a non-cooperative, opposing path search for a sin-
gle target in a 100 km? area. The extreme sensitivity to FTAR is clearly
evident (note the log scale for FTAR), as well as the general insensitiv-
ity to Prr. The most basic implementation of cooperative classification
would require two subsequent looks with the same classification prior to
declaring a real target. For this simple two look scenario the effective
probability of false target attack given false target encounter is now the
square of the value for non-cooperative classification. This yields an ef-
fective FTAR of a = (Pprp 4 FT)277 which is obviously reduced from the
non-cooperative case. The downside of this approach is that the effective
probability of correct target report is also the square of the value for the
non-cooperative case, thus reducing a value that you would like to keep
as close to unity as possible. Figure 1.8 shows a similar surface plot
for two munitions conducting a cooperative search along parallel paths.
Each munition is responsible for searching the total area along the same
path, and each can cooperatively classify and attack targets without de-
lay. The sensitivity to FTAR is reduced using cooperative classification,
but there is obviously an increase in the sensitivity to Prgr. Of great
interest is the difference between the two surfaces, thus indicating where
cooperative classification improves or degrades the overall probability of
success. Figures 1.9 and 1.10 show the difference between the two sur-
face plots, and clearly there are regions where cooperative classification
can help (APys > 0) and hurt (AP s < 0). For low single munition
FTAR, the decrease in Prgr? clearly outweighs any benefit from further
decreasing FTAR through cooperative behavior.

A better implementation of cooperative behavior might be to attempt
an opposing path formulation. In order to keep the assumption of zero
delay for cooperative classification and engagement, we need to assume
that each munition is on a parallel track covering half the total area, and
at the end of the track they switch lanes and reverse direction. We can
add the probability of success for this second pass conditioned on not
having engaged the target or any false target on the first pass. Assuming
independent passes (not completely unreasonable because of the reversed
direction), we can assume that the conditional probability of success for
the second pass is the same as the unconditional probability of success
for the first pass. The probability of not having engaged the target or a
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Delta Pus’ Complementary Opposing Paths vs.
Cooperative Duplicative Paths
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Delta PMS, Complementary Opposing Paths vs.
Cooperative Opposing Paths

Figure 1.11. Difference of Cooperative and Complementary Behavior

false target on the first pass is
Pp = ¢ frrarris (1= prp?) (30)

Figures 1.11 and 1.12 show the APss for the complementary (non-
cooperating) opposing path vs. the cooperative opposing path scenarios.
Once again, a positive APyg indicates the cooperative scheme outper-
forms the non-cooperating scheme. While the situation is improved over
the cooperative, same path scheme, there is still a significant operating
region for low FTAR’s where it is no longer beneficial to employ cooper-
ation. It should be noted that these results are for a very limited single
target, two munition scenario, but they highlight some important con-
siderations for the more complex multi-target/multi-munition scenarios
we would like to address. Mobile targets will make cooperative classi-
fication even more difficult because the target may not be in the same
location when the second munition arrives for its confirming look. Ul-
timately the benefit of analysis such as this may be to provide desired
operating regions for the operating characteristic of the ATR algorithm.
Prr and Ppr g pr are competing objectives, so system trades will need
to be made.
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6. Conclusions

This paper has presented some fundamental analysis of the wide area
search munition problem. False target attack rate and the distribution
of targets have been identified as critical factors in this problem. Exten-
sions to existing search theory have been presented, specifically in the
area of multiple target/false target scenarios. Finally, the implication
of this analysis for cooperative behavior has been discussed. Decision
factors for cooperative engagement were developed, and the strengths
and limitations of cooperative classification were highlighted. Overall,
cooperative behavior holds promise for the autonomous wide area search
munition problem, but analysis such as has been presented here is re-
quired in order to develop behavior algorithms that degrade gracefully
in the presence of uncertain target location and/or false targets.
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