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Swarms

➙ Biological swarms... foraging, seeking protection, etc.

➙ Science: “Emergent behaviors/intelligence,” etc.
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➙ Vehicular swarms... formation/pattern/group

(satellites, aircraft, ground/undersea vehicles).

Manufacturing facility Goal
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Engineering, Computer Science

Modeling/analysis

Intelligent vehicle swarms

Social foraging

Biomimicry for solving
technological problems
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Philosophy...

➙ Biomimicry: Organisms designed (evolved) to solve

technological problems?

➙ Mathematics/Physics: Models not perfect, analysis

limited, need ideas?

➙ Exploit best of both!

★ Contributions? Technology? Science?
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Foraging Theory

• Animals search for and obtain nutrients to maximize

E

T

where E is energy obtained per time T

• Foraging constraints: Physiology, predators/prey,

environment

➙ Evolution optimizes foraging
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Group of 
predators

Forager

Nutient patch

➙ Search/foraging strategies, use dynamic

programming to find “optimal policies.”

➙ Social foraging: Costs, but get “collective

intelligence”
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Chemotactic Behavior of E. coli

• E. coli: Diameter: 1µm, Length: 2µm

Figure 1: E. coli bacterium.

• Sensors/actuators/controller, an autonomous

underwater vehicle – “nanotechnologist’s dream”!
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Clockwise rotation of flagella, tumble

Counterclockwise rotation of flagella, swim
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Swarms

➙ E. coli and S. typhimurium can form intricate stable

spatio-temporal patterns in certain semi-solid

nutrient media

• Eat radially, cell-to-cell attractant signals.
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Bacterial Swarm Foraging as

Optimization

• Find the minimum of

J(θ), θ ∈ �p

when we do not have ∇J(θ).

➙ Suppose θ is the position of a bacterium, and J(θ)

represents an attractant-repellant profile so:

1. J > 0 ⇒ noxious

2. J = 0 ⇒ neutral

3. J < 0 ⇒ food
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➙ Set of bacteria (positions):

P (j, k, �) =
{
θi(j, k, �)|i = 1, 2, . . . , S

}
at the jth chemotactic step, kth reproduction step,

and �th elimination-dispersal event.

• Let J(i, j, k, �) denote the cost at the location of the

ith bacterium θi(j, k, �) ∈ �p.

• Let φ(j) be a random vector of unit length and C(i)

be a step size, then

θi(j + 1, k, �) = θi(j, k, �) + C(i)φ(j)

➙ If go down then continue for a few steps, if not then

generate random vector
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➙ Swarming: Add on inter-bacterial nutrient profiles

for each bacterium

➙ Optimization model:

– Chemotaxis for stochastic gradient climbing

– Attraction/repulsion for social aspect, inter-agent

effects → parallel optimization characteristics

– Elimination/dispersion, evolution

➙ Biologically valid model?

➙ A good engineering optimization method?

• See: “Biomimicry of Bacterial Foraging for

Distributed Optimization and Control” [5]
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Other Social Foraging Models...
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➙ M. xanthus: Optimization on noisy surfaces, cellular

automaton approach [3]

➙ Ant colony optimization methods (e.g. shortest path)

➙ Social foraging of honey bees: Optimal resource

allocation model
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Intelligent Social Foraging

➙ Learning/attentional/planning/“social” approach:

– Construct representation as “cognitive maps”

(learn)

– Focus on parts of the map (attention)

– Predict using these (plan)

– Share the maps (communications → “social”)
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Stable “Dumb” Foraging Swarms:

Concepts & Challenges
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➙ Literature: Biology, physics, autonomous vehicles

(Beni, Leonard, Murray, Morse, ...),

➙ Here: Lyapunov stability anlaysis of cohesion

• N “agents:”

ẋi = vi

v̇i =
1

Mi
ui

• Agent to agent interactions – “attract-repel” to seek

“comfortable” inter-agent distances.
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➙ Attract: Term in ui like −ka (xi − xj), ka > 0

➙ Repel: Term in ui like

kr exp

(−1
2
‖xi − xj‖2

r2
s

) (
xi − xj

)

kr > 0, rs > 0

➙ An “equilibrium” inter-agent distance?
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Environment Model

➙ Move along negative gradient of a “resource profile”

(e.g., nutrient profile) J(x), x ∈ �n.

• Plane: J(x) = Jp(x) = R�x + ro

• Quadratic: J(x) = Jq(x) = rm

2
‖x − Rc‖2 + ro

➙ Sensor noise ↔ noise on profile
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Stability Analysis of

Swarm Cohesion Properties

➙ Swarm center, velocity:

x̄ =
1

N

N∑
i=1

xi v̄ =
1

N

N∑
i=1

vi

➙ Agent objective: Move to x̄ and v̄ (time-varying)

➙ Error system: ei
p = xi − x̄, ei

v = vi − v̄

ėi
p = ei

v

ėi
v =

1

Mi
ui − 1

N

N∑
j=1

1

Mj
uj
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Cohesive Social Foraging in Noise:

Constant Noise Bounds

➙ Noise: ‖di
p‖ ≤ Dp, ‖di

v‖ ≤ Dv, ‖di
f‖ ≤ Df

➙ Agents can sense: vi and...

êi
p = ei

p − di
p

êi
v = ei

v − di
v

∇Jp

(
xi

)
− di

f
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➙ Agents steer themselves (use Jp):

ui = −Mikaê
i
p − Mikaê

i
v − Mikvv

i

+ Mikr

N∑
j=1,j �=i

exp

(−1
2
‖êi

p − êj
p‖2

r2
s

) (
êi

p − êj
p

)

− Mikf

(
∇Jp

(
xi

)
− di

f

)

➙ Effects on error: êi
p − êj

p = (xi − xj) −
(
di

p − dj
p

)
➙ What are the effects of noise?

➙ Stability/cohesion possible?
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➙ Consider terms of: ėi
v = v̇i − ˙̄v

• Symmetry gives repel term in ˙̄v as zero, and:

˙̄v = −kvv̄ + kad̄p + kad̄v + kf d̄f − kfR︸ ︷︷ ︸
z(t)

‖z(t)‖ ≤
∥∥∥kad̄p

∥∥∥ +
∥∥∥kad̄v

∥∥∥ +
∥∥∥kf d̄f

∥∥∥ + ‖kfR‖ ≤ δ

δ = kaDp + kaDv + kfDf + kf‖R‖
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➙ Exponentially stable system with a time-varying but

bounded input z(t) → v̄(t) is bounded:

1. For some positive constant 0 < θ < 1 and some

finite T we have

‖v̄(t)‖ ≤ exp [−(1 − θ)kvt] ‖v̄(0)‖ , ∀ 0 ≤ t < T

2. Also, we have the bound

‖v̄(t)‖ ≤ δ

kvθ
, ∀ t ≥ T
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Remarks:

• Fix δ, θ: kv ↑ ⇒ (faster, smaller bound)

• Dp + Dv + Df ↑ ⇒ δ ↑ ⇒ bound ↑ (e.g., the average

velocity could oscillate).

• Average sensing errors change direction of the

group’s movement relative to nutrients (can get lost).

➙ N → ∞ ⇒ could have d̄p ≈ d̄v ≈ d̄f ≈ 0 →
“Grunbaum’s principle” of social foraging (compare

to N = 1 case). Groups can climb noisy gradients

better.

➙ Sensor noise leads to “group inertia” (e.g., bee

swarms)
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• Let Ei = [ei
p
�
, ei

v
�
]
�

and E = [E1�, E2�, . . . , EN�
]
�

Theorem 1: Swarm trajectories will converge (in finite

time) to the compact set

Ωb =

{
E :

∥∥∥Ei
∥∥∥ ≤ 2

λmax(P )

λmin(Q)
β, i = 1, 2, . . . , N

}

β = 2ka (Dp + Dv) + 2kfDf + krrs(N − 1) exp
(
−1

2

)
• Proof outline:

1. Lyapunov function V (E) =
∑N

i=1 Vi (E
i),

Vi (E
i) = Ei�PEi
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2. We have λmax(P ), the maximum eigenvalue of P ,

V̇i ≤ −λmin(Q)

(∥∥∥Ei
∥∥∥ − 2λmax(P )

λmin(Q)
‖gi(E)‖

) ∥∥∥Ei
∥∥∥

3. ‖gi(E)‖ < β? Finite repel!
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➙ Remarks: Effect of parameters on |Ωb|?
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➙ No sensing errors (Dp = Dv = Df = 0), choose
Q = kaI:

Ωb =

{
E :

∥∥Ei
∥∥ ≤ 2krrs(N − 1)

λmax(P )

λmin(Q)
exp

(
−1

2

)
, i = 1, 2, . . . , N

}
– N , kr, rs fixed: ka ↑ ⇒ |Ωb| ↓, up to a point

(collisions).

– Fixed N , ka, and kr: rs ↑ ⇒ |Ωb| ↑.
– Fixed kr, ka, and rs: N → ∞ ⇒ |Ωb| → ∞ (line),

but average errors could be small.
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➙ Sensing errors:

– Dp ↑ Dv ↑ Df ↑ ⇒ |Ωb| ↑ (no R effect)

– Fix noise at some level, effect of ka?

– Choose Q = kaI, let Ds = Dp + Dv.

➙ Let J = 1
2
|Ωb| and suppose that parameters are

chosen (by evolution) to minimize this.
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Cohesive Social Foraging in Noise: Extensions

➙ More general noise (work with Yanfei Liu):

‖df‖ ≤ Df

‖di
p‖ ≤ Dp1

∥∥∥Ei
∥∥∥ + Dp2

‖di
v‖ ≤ Dv1

∥∥∥Ei
∥∥∥ + Dv2

➙ Geometric meaning?

➙ Conditions for swarm cohesion?

➙ Non-identical agents

➙ Trajectory tracking



33

OHIO
STATE

T . H . E

UNIVERSITY

Cohesive Social Foraging, No Noise

➙ Goal: Show connections to optimization perspective

➙ Modify above theory to get:

Ω′
b =

{
E :

∥∥∥Ei
∥∥∥ ≤ 2krrs(N − 1)

ka
exp

(
−1

2

)
, i = 1, 2, . . . , N

}

➙ Choose V o(E) =
∑N

i=1 V o
i (Ei)

V o
i

(
Ei

)
=

1

2
kaei

p
�

ei
p +

1

2
kaei

v
�

ei
v + krr2

s

N∑
j=1,j �=i

exp

(
− 1

2
‖ei

p − ej
p‖2

r2
s

)

• Not a standard Lyapunov function

➙ View ui as being chosen to minimize V o(E)
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➙ LaSalle’s Invariance Principle: If E(0) ∈ Ω (invariant

set) then E(t) will converge to the largest invariant

subset of

Ωe = {E : ei
v = 0, i = 1, 2, . . . , N} ⊂ Ω

➙ Hence ei
v(t) → 0 as t → ∞.

➙ Follow profile? v̄(t) → −kf

kv
R and vi(t) → −kf

kv
R for

all i as t → ∞ (group follows the profile)
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Additional work...

• “Stability Analysis of Swarms,” [1]

• “Stability Analysis of M -Dimensional Asynchronous

Swarms with a Fixed Communication Topology,” [4]

• Model/analyze bee swarms, [2]

★ Current work with Yanfei Liu (CDC/TAC):

– General noise conditions

– Network effects (delays, topology, reconfiguration)

– Why should we be able to get a result?
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Biology: Cooperative Foraging?

★ Groups can climb noisy gradients better than

individuals (some organisms can forage more

successfully in groups than by

themselves–Grunbaum)

★ In getting your next meal it is best to cooperate!

➙ Why cooperate?

1. Gain since individuals exploit group information

about best direction to go

2. Lose since group moves slower to better sources

3. Overall is there a gain? Apparently so...
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Figure 3: Linear noise bounds case, plane profile (N = 1).
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What about group climbing of more

interesting surfaces? Mountains?
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Social Coffee Foraging

➙ Arabica coffee bean grows best at elevations of about

1000 to 1800 meters

➙ Topographical data for Colombia:

– National Geophysical Data Base, 5 minute data

– Use linear interpolation for points in between

available data
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➙ Given an altimeter can agents socially climb

mountains to find all coffee growing regions in

Colombia?

1. Avoid each other

2. But try to stay together (helps each other)

3. Use modified terrain map...

➙ Cost function: Gaussian function of elevation,

centered at 1400 meters

➙ Movie: Due to Yanfei Liu...
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Movie...
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Application: Robotic Swarms

Manufacturing facility Goal
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“Potential fields approach” to autonomous vechicle

guidance, no noise...
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With noise...
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Intelligent Vehicle Swarms

Use ideas from intelligent social foraging?

➙ Planning, attention, learning, etc. How?

➙ What are network effects (delays, topology)?

Mathematical analysis possible? Important? Yes!

(verification and validation)

➙ What can we achieve via cooperative robotic

systems?

➙ Many challenges!
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Concluding Remarks

✔ Foraging swarms:

1. Bio-inspiration, optimization models

2. Mathematical stability analysis of swarm cohesion

3. Application: Robotic swarms in manufacturing

★ Book: “Biomimicry for Optimization, Control, and

Automation,” to appear

★ http://eewww.eng.ohio-state.edu/˜passino/ciiee03.html
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