Biomimicry of Foraging for Optimization, Control, and Automation

Kevin M. Passino

Dept. Electrical Engineering The Ohio State University 2015 Neil Avenue Columbus, OH 43210-1272 (614) 292-5716, k.passino@osu.edu http://eewww.eng.ohio-state.edu/~passino

Outline

- Philosophy, foraging theory
- Chemotactic behavior (foraging strategy) of *E. coli*
- Bacterial foraging for distributed optimization
- Bacterial foraging for adaptive control
- Automation: Cooperative intelligent control for groups of mobile robots, stable foraging swarms
- Concluding remarks

Philosophy

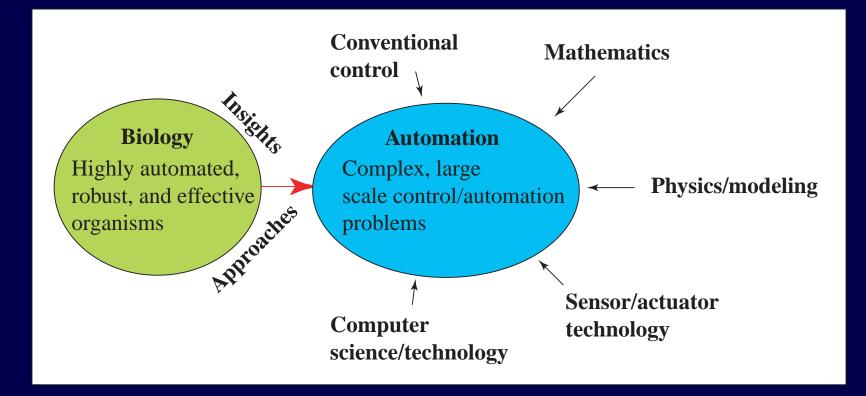


Figure 1: Basic philosophy for this approach.

Foraging Theory

• Animals search for and obtain nutrients to maximize

E

 \overline{T}

where E is energy obtained per time T

- Foraging constraints: Physiology, predators/prey, environment
- Evolution optimizes foraging
 - Foraging strategy: Find patch, decide whether to enter it and search for food, when to leave patch?

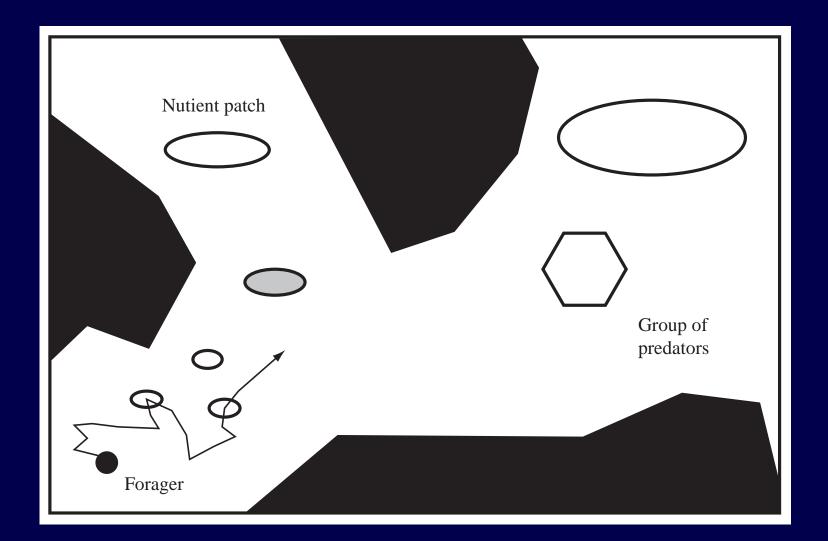


Figure 2: Foraging landscape and scenario.

- Use dynamic programming to find "optimal policies."
- Search strategies for foraging: cruise (tuna fish), saltatory (birds, fish, insects), and ambush (snakes)
- Social foraging: Need communications but individuals can gain advantages (more sensors, "gang-up" on large prey, protection, collective intelligence).
 - Examples: Bees, ants, fish, birds, wolves, humans

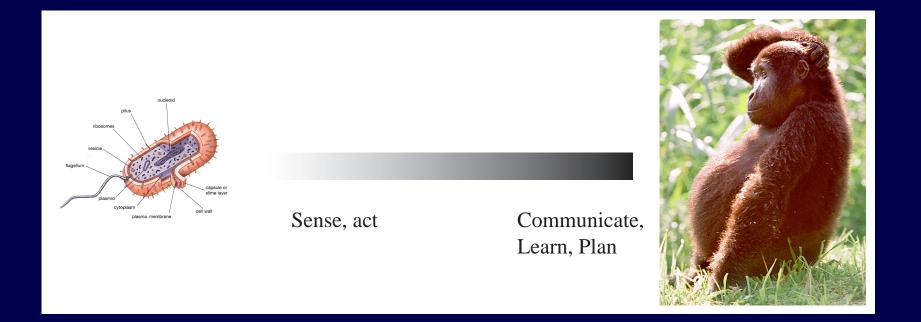


Figure 3: Cognitive spectrum for foraging.

- Entire spectrum interesting from an engineering perspective.
- Let's start at the bottom...

Chemotactic (Foraging) Behavior of E. coli

• *E. coli*: Diameter: $1\mu m$, Length: $2\mu m$

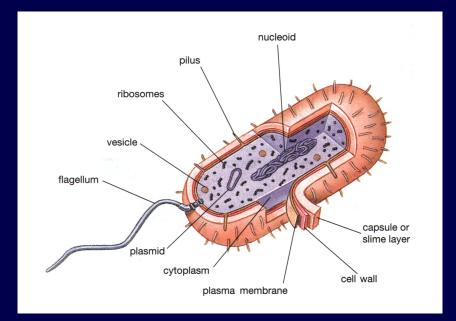


Figure 4: *E. coli* bacterium (from [2]).

• Can reproduce (split) in 20 min.

E. coli in action... (from C. Morton-Firth, Cambridge Univ.)

Motility and Chemotaxis

• Motility via reversible rigid 100 - 200 rps spinning flagella each driven by a biological "motor"

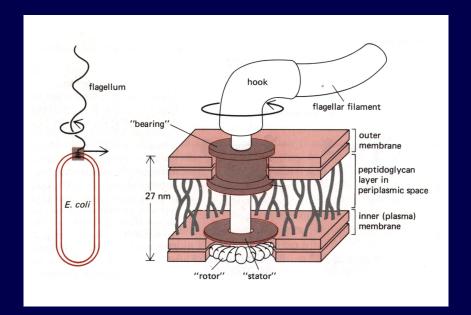


Figure 5: *E. coli* biological "motor" (from [1]).

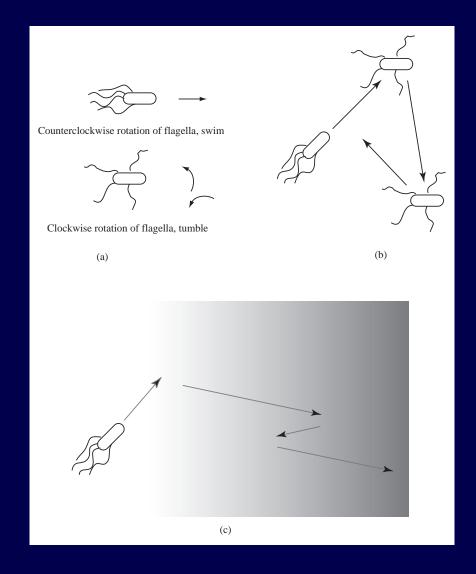


Figure 6: Chemotactic behavior.

Decision Making in Foraging

- 1. If in neutral medium alternate tumbles and runs \Rightarrow Search
- If swimming up nutrient gradient (or out of noxious substances) swim longer (climb up nutrient gradient or down noxious gradient)

 \Rightarrow Seek increasingly favorable environments

3. If swimming down nutrient gradient (or up noxious substance gradient), then search
 ⇒ Avoid unfavorable environments

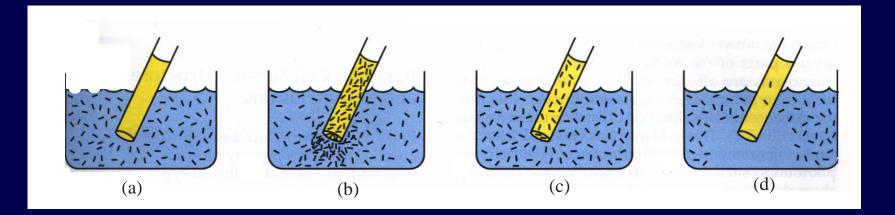


Figure 7: Capillary experiment (from [5]).

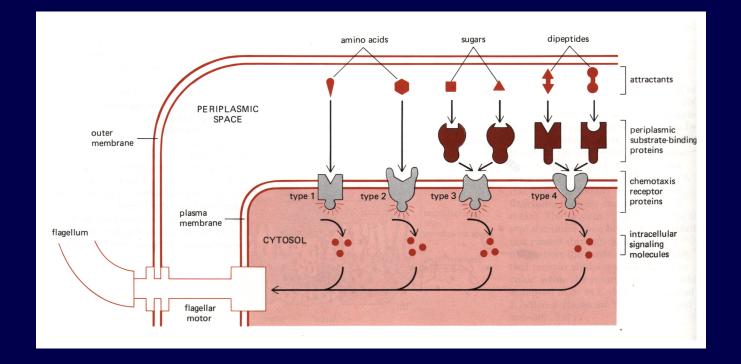


Figure 8: Sensing and control in *E. coli* (from [1]).

- The sensors are very sensitive, and overall there is a "high gain."
- Averages sensed concentrations and computes an approximation to a *time* derivative.
- Probably the best understood sensory and decision-making system in biology (understood/simulated at molecular level).

Elimination/Dispersal and Evolution

- Bacteria often killed and dispersed (can be viewed as part of their motility)
 - Mutations in *E. coli* affect, e.g., reproductive efficiency at different temperatures, and occur at a rate of about 10^{-7} per gene, per generation.
 - *E. coli* occasionally engage in a type of "sex" called "conjugation" (Figure 9)

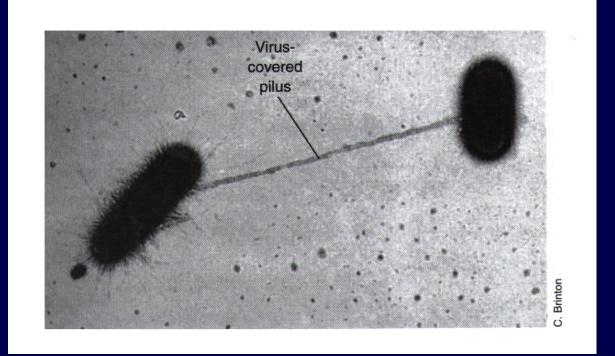


Figure 9: Conjugation in *E. coli* (from [5]).

Other Taxes

- 1. Change cell shape and number of flagella based on medium!
- Oxygen (aerotaxis), light (phototaxis), temperature (thermotaxis), magnetic flux lines (magnetotaxis)

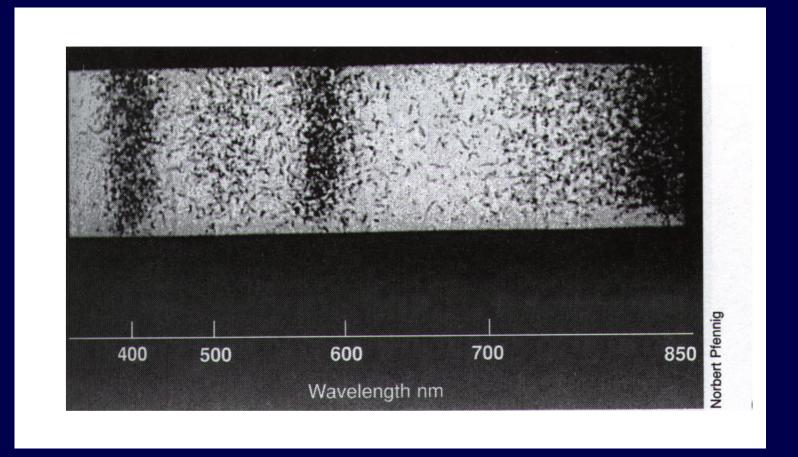


Figure 10: Phototaxis behavior of the phototropic bacterium *Thiospirillum jenense* (from [5]).

Swarms

- *E. coli* and *S. typhimurium* can form intricate stable
 spatio-temporal patterns in certain semi-solid
 nutrient media
 - Radially eat their way through the medium.
 - Cell-to-cell attractant signals.
 - The bacteria protect each other.

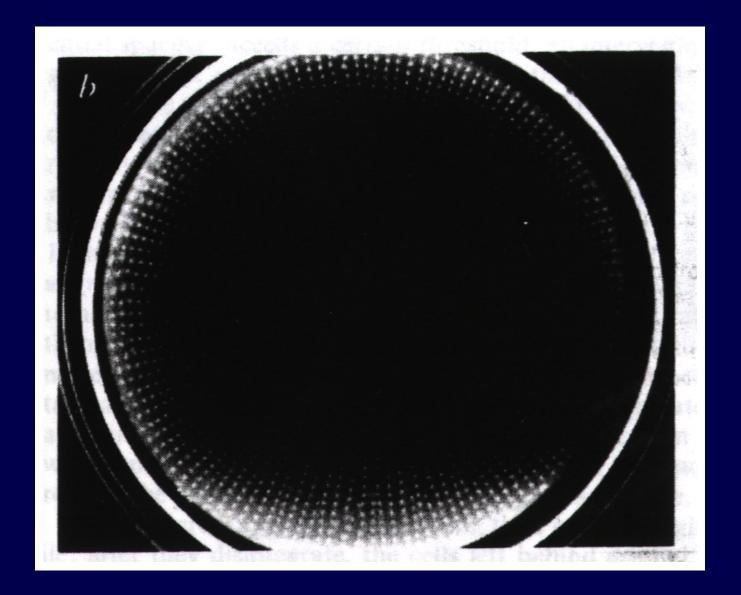


Figure 11: Swarm pattern of *E. coli* (from [3]).

Bacterial Swarm Foraging for Optimization

• Find the minimum of

 $J(\theta), \ \theta \in \Re^p$

when we do not have $\nabla J(\theta)$.

Suppose θ is the position of a bacterium, and $J(\theta)$ represents an attractant-repellant profile so:

1. $J > 0 \Rightarrow$ noxious

2. $J = 0 \Rightarrow$ neutral

3. $J < 0 \Rightarrow \text{food}$

$$P(j,k,\ell) = \left\{ \theta^i(j,k,\ell) | i = 1, 2, \dots, S \right\}$$

be the set of all S bacterial positions at the j^{th} chemotactic step, k^{th} reproduction step, and ℓ^{th} elimination-dispersal event.

- Let $J(i, j, k, \ell)$ denote the cost at the location of the i^{th} bacterium $\theta^i(j, k, \ell) \in \Re^p$.
- Let N_c be the length of the lifetime of the bacteria as measured by the number of chemotactic steps.

To represent a tumble, a unit length random direction, say $\phi(j)$, is generated; then we let $\theta^{i}(j+1,k,\ell) = \overline{\theta^{i}(j,k,\ell)} + C(i)\phi(j)$ so C(i) > 0 is the size of the step taken in the random direction specified by the tumble. \rightarrow If at $\theta^i(j+1,k,\ell)$ the cost $J(i,j+1,k,\ell)$ is better (lower) than at $\theta^i(j,k,\ell)$, then another chemotactic step of size C(i) in this same direction will be taken, and repeat that up to a maximum number of steps, N_s .

- Attractants are essentially "food" for other cells (chemotactically attracted to it)
- 2. Use $J_{cc}^{i}(\theta)$, i = 1, 2, ..., S, to represent locally secreted food.
- Repel? Via local consumption, and cells are not food for each other. Again, use $J_{cc}^{i}(\theta)$.
- Example: Consider the S = 2 case...

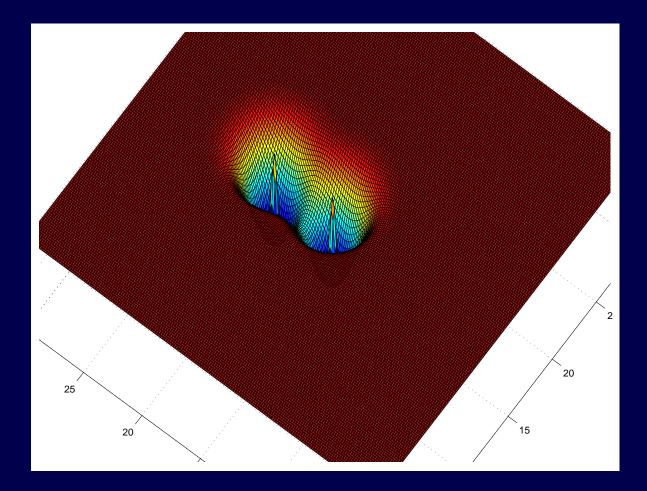


Figure 12: Example cell-to-cell attractant model, S = 2.

 $J(i, j, k, \ell) + J_{cc}(\theta)$

so cells try to find nutrients, avoid noxious substances, and try to move towards other cells, but not too close to them.

• Take N_{re} reproduction steps.

- For reproduction, healthiest bacteria (ones that have lowest accumulated cost over their lifetime) split, and then kill other unhealthy half of population.
- Let N_{ed} be the number of elimination-dispersal events (for each one, each bacterium is subjected to elimination-dispersal with probability p_{ed}).
- Biologically valid model? Capturing gross
 characteristics of chemotactic hill-climbing and swarming.

Example: Function Optimization

- Find minimum of function in Figure 13 ($[15, 5]^{ op}$ is the global minimum point, $[20, 15]^{ op}$ is a local minimum).
- Standard ideas from optimization theory can be used to set the algorithm parameters.

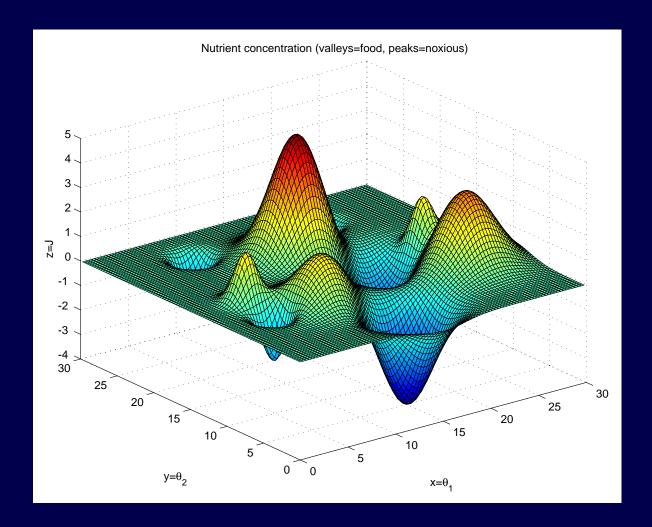


Figure 13: Function with multiple extremum points.

→ No swarming:

- S = 50, $N_c = 100$, C(i) = 0.1, i = 1, 2, ..., S, $N_s = 4$ (a biologically-motivated choice)
- $N_{re} = 4$, $N_{ed} = 2$, $p_{ed} = 0.25$,
- Random initial bacteria distribution.

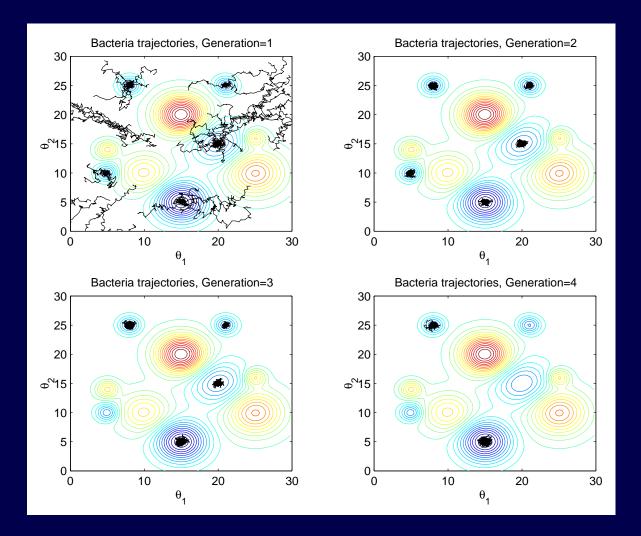


Figure 14: Bacterial motion trajectories, generations 1-4.

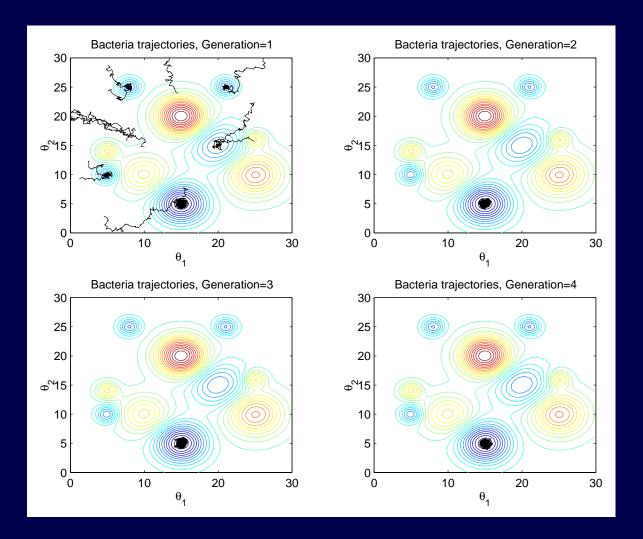


Figure 15: Bacterial motion trajectories, generations 1-4, after an elimination-dispersal event.

- Emulate Figure 11 by considering optimization over Figure 16.
- Initially, place all cells at the peak $[15, 15]^{\top}$.

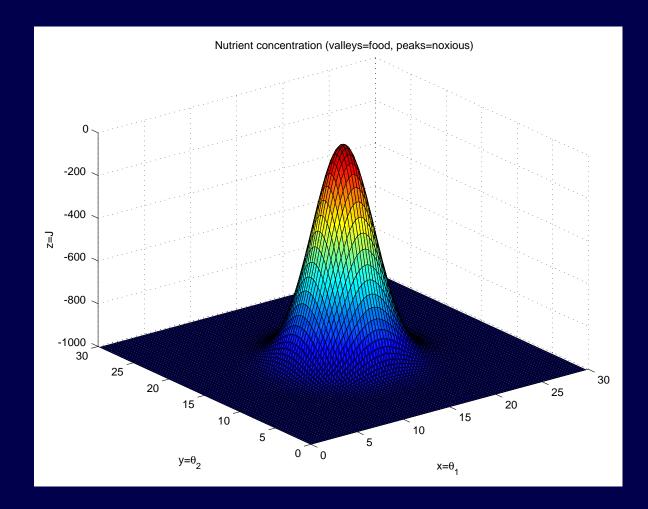


Figure 16: A nutrient surface for testing swarming.

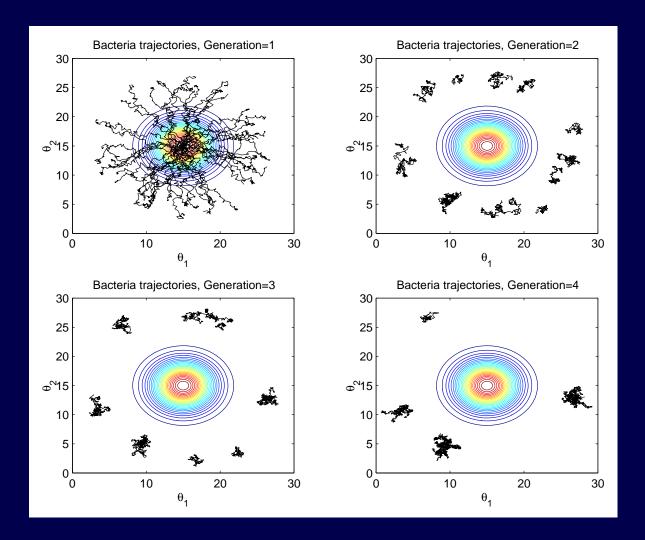


Figure 17: Swarm behavior of *E. coli* on a test function.

Take a Step Up the Cognitive Spectrum for Foraging

 Archangium violaceum foraging for Sarcina (Myxobacteria web page, M. Dworkin, Univ. Minnesota).

M. xanthus: Social and adventurous swarming (web page of Dale Kaiser, Stanford Univ.)

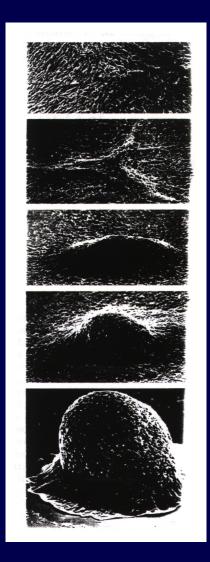


Figure 18: *M. xanthus* mound formation (from [4]).

- Cellular automata-based optimization
- Resulting swarm dynamics "emerge":
 - 1. Formation (aggregation) events
 - 2. Size
 - 3. Location
 - Motility (move faster as individuals than in groups)
- Balance between desire to individually forage and to form swarm aggregates is delicate.

Discussion

- Optimization methods: Related to stochastic approximation, genetic algorithms. Comparative analysis important! (J. Spall)
- Evolution made foraging search strategies "optimal" for the environment of the bacteria (class of cost functions)—perhaps not our engineering problems!
- What is the value? To be determined, but for now:
 Science, metaphor for control and automation?

Bacterial Foraging for Adaptive Control

- On-line function approximation view: learn a nonlinear plant mapping (indirect) or controller mapping (direct)
- View learning as foraging for good information
 - Social foraging ⇒ foragers share information and give hints to each other about how to find good information
- → Foraging = on-line optimization ⇒ can use it for on-line parameter adjustments in adaptive control

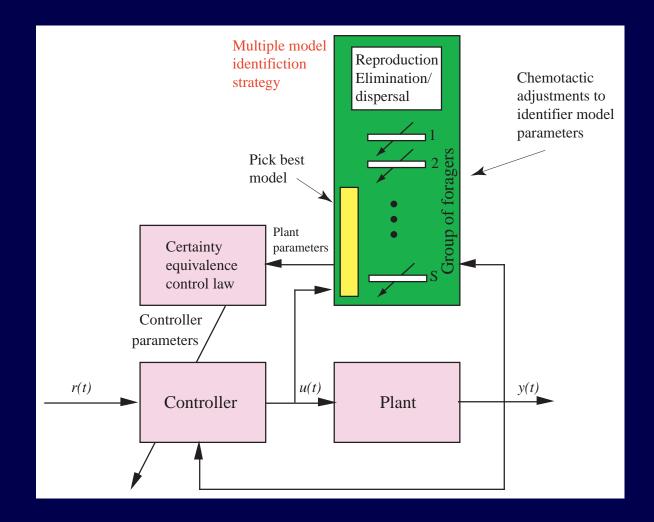


Figure 19: Swarm foraging in adaptive control.

- Adaptive model predictive control is also possible.
 - Process control application: Simple "surge tank" liquid level control (just to illustrate the idea)

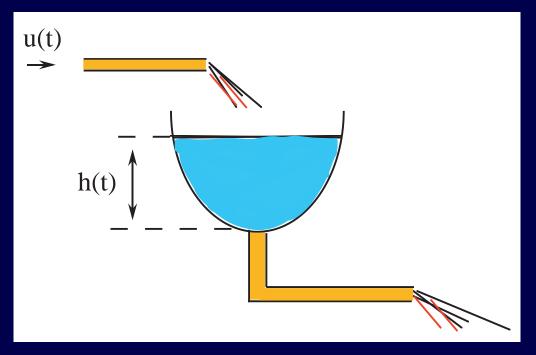


Figure 20: Surge tank.

$$\frac{dh(t)}{dt} = \frac{-\bar{d}\sqrt{2gh(t)}}{A(h(t))} + \frac{\bar{c}}{A(h(t))}u(t)$$

- u(t), input (saturated); h(t) is liquid level (saturated), r(t) be the desired level, e(t) = r(t) - h(t)
- $A(h(t)) = |\bar{a}h(t) + \bar{b}|$ is the (unknown) tank cross-sectional area

- Approach: Tune a set of (affine) approximators to match plant nonlinearities (p = 2).
 - Forager's position: $\theta^i = [\theta^i_{\alpha}, \theta^i_{\beta}]^{\top}$, i = 1, 2, ..., S(S = 10)
 - Cost: Sum of squares of N = 100 past values for each model.
 - Parameter adjustment: *E. coli* chemotactic (interleaved with time steps), but no forager-forager communications.

Tracking performance:

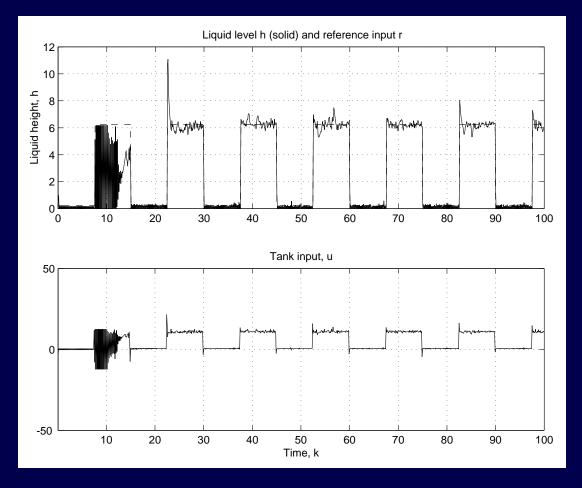


Figure 21: Closed-loop response.

★ Estimator performance:

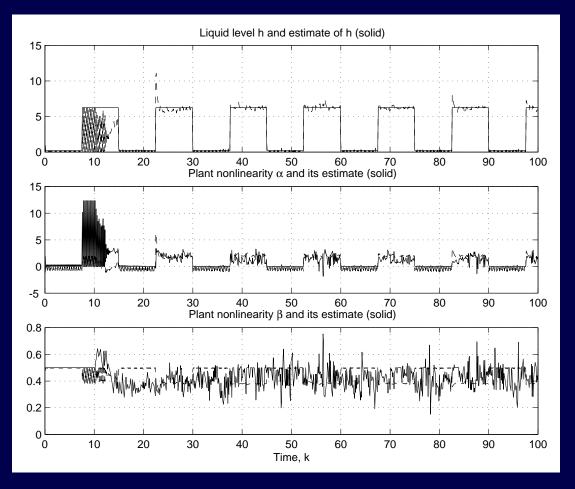


Figure 22: Estimates of liquid level and nonlinearities.

★ Best forager:

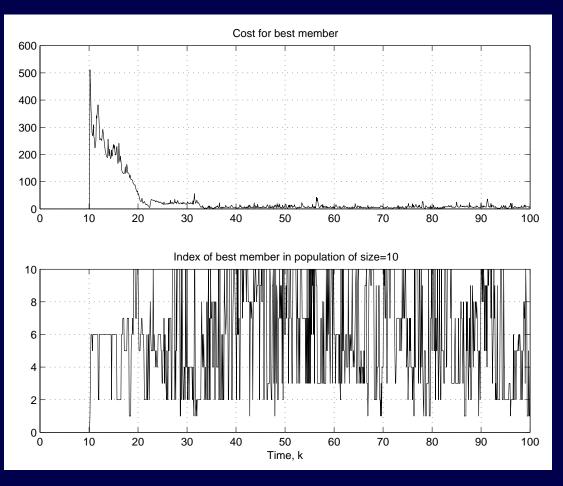


Figure 23: Best cost, index of best forager.

Autonomous Robots: Pollution Clean-Up (M. Polycarpou)

- Robots for search/removal of dispersed pollutant.
- → Use many simple inexpensive robots (why?).
 - Communication constraints: Locality, bandwidth, and delays
 - On-board functionality: Computer, signal processing, control, fuel. How much?
 - Risks: Avoid certain locations.

E. *coli* "vehicles"—a nanotechnologist's dream!

- Use an *E. coli* (*M. xanthus*) search strategy?
- Bacterial sensing, locomotion, and decision-making strategies are limited.
- Their foraging is optimized for a certain environment, probably not this one!
- ★ Foraging principle: Optimization/search is a central concept.
- Evolutionary principle: Vehicle and environment dictate cooperative strategy.

Intelligent Group Foraging (M. Baum)

- What if our forager has capabilities for planning, attention, learning, and sophisticated communications?
- Learning/planning approach: construct cognitive maps, predict using these, and share the maps
 - Relevant optimization theory: Real-time "surrogate model methods."
 - Suppose we think of the density of a pollutant in a region as an unknown map.

Distributed Map Learning

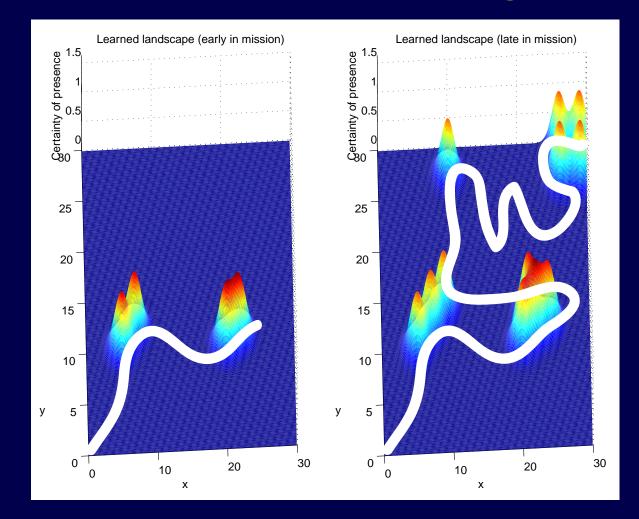


Figure 24: Robot learning a landscape.

- Other maps: Importance of various pollutants, where can get stuck
- Distributed Learning and Coordination: How to coordinate learning via sharing of maps? When to seek more information (risky) vs. when to focus on gathering more information in a previously visited area?
- Distributed Planning: On shared maps.
- Research Challenges: Guaranteed performance, stability, convergence, robustness

Stable Foraging Vehicular Swarms (Y. Liu)

- Need underlying mechanisms for group cohesion (stability) for goal-directed behavior that cope with vehicular/communication constraints.
- Cohesive swarm behavior:

Concluding Remarks

- Foraging = optimization/search \Rightarrow methods for control/automation.
- Adaptive control (but need stability/convergence analysis).
- Biomimicry of intelligent foraging for distributed cooperative control of groups of mobile robots.
- Engineering applications... and many research directions.

References

- B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson. *Molecular Biology of the Cell*. Garland Publishing, NY, 2nd edition, 1989.
- [2] T. Audesirk and G. Audesirk. *Biology: Life on Earth*. Prentice Hall, NJ, 5 edition, 1999.
- [3] E.O. Budrene and H.C. Berg. Dynamics of formation of symmetrical patterns by chemotactic bacteria. *Nature*, 376:49–53, 1995.
- [4] R. Losick and D. Kaiser. Why and how bacteria communicate. *Scientific American*, 276(2):68–73, 1997.
- [5] M.T. Madigan, J.M. Martinko, and J. Parker. *Biology of Microorganisms*. Prentice Hall, NJ, 8 edition, 1997.
 - Paper submitted to IEEE Control Systems Magazine.
 - Also, in book to appear: "Intelligent Control: Biomimicry for Optimization,
 Adaptation, and Decision-Making in Computer Control and Automation"

