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Outline

• Philosophy, foraging theory

• Chemotactic behavior (foraging strategy) of E. coli

• Bacterial foraging for distributed optimization

• Bacterial foraging for adaptive control

• Automation: Cooperative intelligent control for

groups of mobile robots, stable foraging swarms

• Concluding remarks
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Figure 1: Basic philosophy for this approach.
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Foraging Theory

• Animals search for and obtain nutrients to maximize

E

T

where E is energy obtained per time T

• Foraging constraints: Physiology, predators/prey,

environment

➙ Evolution optimizes foraging

• Foraging strategy: Find patch, decide whether to

enter it and search for food, when to leave patch?
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Figure 2: Foraging landscape and scenario.
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• Use dynamic programming to find “optimal policies.”

• Search strategies for foraging: cruise (tuna fish),

saltatory (birds, fish, insects), and ambush (snakes)

➙ Social foraging: Need communications but

individuals can gain advantages (more sensors,

“gang-up” on large prey, protection, collective

intelligence).

• Examples: Bees, ants, fish, birds, wolves, humans
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Sense, act Communicate,
Learn, Plan

Figure 3: Cognitive spectrum for foraging.

• Entire spectrum interesting from an engineering

perspective.

• Let’s start at the bottom...
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Chemotactic (Foraging) Behavior of E. coli

• E. coli: Diameter: 1µm, Length: 2µm

Figure 4: E. coli bacterium (from [2]).

• Can reproduce (split) in 20 min.
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★ E. coli in action... (from C. Morton-Firth, Cambridge

Univ.)
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Motility and Chemotaxis

• Motility via reversible rigid 100 − 200 rps spinning

flagella each driven by a biological “motor”

Figure 5: E. coli biological “motor” (from [1]).
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Clockwise rotation of flagella, tumble

Counterclockwise rotation of flagella, swim

(a) (b)

(c)

Figure 6: Chemotactic behavior.
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Decision Making in Foraging

1. If in neutral medium alternate tumbles and runs

⇒ Search

2. If swimming up nutrient gradient (or out of noxious

substances) swim longer (climb up nutrient gradient

or down noxious gradient)

⇒ Seek increasingly favorable environments

3. If swimming down nutrient gradient (or up noxious

substance gradient), then search

⇒ Avoid unfavorable environments
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(a) (b) (c) (d)

Figure 7: Capillary experiment (from [5]).
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Figure 8: Sensing and control in E. coli (from [1]).
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• The sensors are very sensitive, and overall there is a

“high gain.”

• Averages sensed concentrations and computes an

approximation to a time derivative.

➙ Probably the best understood sensory and

decision-making system in biology

(understood/simulated at molecular level).
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Elimination/Dispersal and Evolution

➙ Bacteria often killed and dispersed (can be viewed

as part of their motility)

• Mutations in E. coli affect, e.g., reproductive

efficiency at different temperatures, and occur at a

rate of about 10−7 per gene, per generation.

• E. coli occasionally engage in a type of “sex” called

“conjugation” (Figure 9)
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Figure 9: Conjugation in E. coli (from [5]).
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Other Taxes

1. Change cell shape and number of flagella based on

medium!

2. Oxygen (aerotaxis), light (phototaxis), temperature

(thermotaxis), magnetic flux lines (magnetotaxis)
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Figure 10: Phototaxis behavior of the phototropic bac-

terium Thiospirillum jenense (from [5]).
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Swarms

➙ E. coli and S. typhimurium can form intricate stable

spatio-temporal patterns in certain semi-solid

nutrient media

• Radially eat their way through the medium.

• Cell-to-cell attractant signals.

• The bacteria protect each other.
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Figure 11: Swarm pattern of E. coli (from [3]).
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Bacterial Swarm Foraging for Optimization

• Find the minimum of

J(θ), θ ∈ �p

when we do not have ∇J(θ).

➙ Suppose θ is the position of a bacterium, and J(θ)

represents an attractant-repellant profile so:

1. J > 0 ⇒ noxious

2. J = 0 ⇒ neutral

3. J < 0 ⇒ food
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➙ Let

P (j, k, ) =
{
θi(j, k, )|i = 1, 2, . . . , S

}

be the set of all S bacterial positions at the j th

chemotactic step, kth reproduction step, and th

elimination-dispersal event.

• Let J(i, j, k, ) denote the cost at the location of

the ith bacterium θi(j, k, ) ∈ �p.

• Let Nc be the length of the lifetime of the bacteria as

measured by the number of chemotactic steps.
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➙ To represent a tumble, a unit length random

direction, say φ(j), is generated; then we let

θi(j + 1, k, ) = θi(j, k, ) + C(i)φ(j)

so C(i) > 0 is the size of the step taken in the

random direction specified by the tumble.

➙ If at θi(j + 1, k, ) the cost J(i, j + 1, k, ) is

better (lower) than at θi(j, k, ), then another

chemotactic step of size C(i) in this same direction

will be taken, and repeat that up to a maximum

number of steps, Ns.
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➙ Cell-to-cell signaling via an attractant:

1. Attractants are essentially “food” for other cells

(chemotactically attracted to it)

2. Use J i
cc(θ), i = 1, 2, . . . , S, to represent locally

secreted food.

• Repel? Via local consumption, and cells are not food

for each other. Again, use J i
cc(θ).

• Example: Consider the S = 2 case...
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Figure 12: Example cell-to-cell attractant model, S = 2.



27

OHIO
STATE

T . H . E

UNIVERSITY

➙ For swarming consider minimization of

J(i, j, k, ) + Jcc(θ)

so cells try to find nutrients, avoid noxious

substances, and try to move towards other cells, but

not too close to them.

➙ The Jcc(θ) function dynamically deforms the search

landscape to represent the desire to swarm.

• Take Nre reproduction steps.
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➙ For reproduction, healthiest bacteria (ones that have

lowest accumulated cost over their lifetime) split, and

then kill other unhealthy half of population.

➙ Let Ned be the number of elimination-dispersal

events (for each one, each bacterium is subjected to

elimination-dispersal with probability ped).

➙ Biologically valid model? Capturing gross

characteristics of chemotactic hill-climbing and

swarming.
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Example: Function Optimization

• Find minimum of function in Figure 13 ([15, 5]� is

the global minimum point, [20, 15]� is a local

minimum).

• Standard ideas from optimization theory can be

used to set the algorithm parameters.



30

OHIO
STATE

T . H . E

UNIVERSITY

0
5

10
15

20
25

30

0

5

10

15

20

25

30
-4

-3

-2

-1

0

1

2

3

4

5

x=θ
1

Nutrient concentration (valleys=food, peaks=noxious)

y=θ
2

z=
J

Figure 13: Function with multiple extremum points.
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➙ No swarming:

• S = 50, Nc = 100, C(i) = 0.1, i = 1, 2, . . . , S,

Ns = 4 (a biologically-motivated choice)

• Nre = 4, Ned = 2, ped = 0.25,

• Random initial bacteria distribution.
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Figure 14: Bacterial motion trajectories, generations 1-4.
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Figure 15: Bacterial motion trajectories, generations 1-4,

after an elimination-dispersal event.
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➙ Swarm effects:

• Emulate Figure 11 by considering optimization over

Figure 16.

• Initially, place all cells at the peak [15, 15]�.
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Figure 16: A nutrient surface for testing swarming.
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Figure 17: Swarm behavior of E. coli on a test function.
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Take a Step Up the Cognitive Spectrum for Foraging

★ Archangium violaceum foraging for Sarcina

(Myxobacteria web page, M. Dworkin, Univ.

Minnesota).
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★ M. xanthus: Social and adventurous swarming (web

page of Dale Kaiser, Stanford Univ.)
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Figure 18: M. xanthus mound formation (from [4]).
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• Cellular automata-based optimization

• Resulting swarm dynamics “emerge”:

1. Formation (aggregation) events

2. Size

3. Location

4. Motility (move faster as individuals than in

groups)

➙ Balance between desire to individually forage and to

form swarm aggregates is delicate.



41

OHIO
STATE

T . H . E

UNIVERSITY

Discussion

• Optimization methods: Related to stochastic

approximation, genetic algorithms. Comparative

analysis important! (J. Spall)

➙ Evolution made foraging search strategies "optimal"

for the environment of the bacteria (class of cost

functions)—perhaps not our engineering problems!

★ What is the value? To be determined, but for now:

Science, metaphor for control and automation?
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Bacterial Foraging for Adaptive Control

• On-line function approximation view: learn a

nonlinear plant mapping (indirect) or controller

mapping (direct)

➙ View learning as foraging for good information

• Social foraging ⇒ foragers share information and

give hints to each other about how to find good

information

➙ Foraging = on-line optimization ⇒ can use it for

on-line parameter adjustments in adaptive control
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Figure 19: Swarm foraging in adaptive control.
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➙ Adaptive model predictive control is also possible.

• Process control application: Simple “surge tank”

liquid level control (just to illustrate the idea)

u(t)

h(t)

Figure 20: Surge tank.
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• Discretize:

dh(t)

dt
=

−d̄
√

2gh(t)

A(h(t))
+

c̄

A(h(t))
u(t)

• u(t), input (saturated); h(t) is liquid level

(saturated), r(t) be the desired level,

e(t) = r(t) − h(t)

• A(h(t)) = |āh(t) + b̄| is the (unknown) tank

cross-sectional area
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★ Approach: Tune a set of (affine) approximators to

match plant nonlinearities (p = 2).

• Forager’s position: θi = [θi
α, θi

β]
�, i = 1, 2, . . . , S

(S = 10)

• Cost: Sum of squares of N = 100 past values for

each model.

• Parameter adjustment: E. coli chemotactic

(interleaved with time steps), but no forager-forager

communications.
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★ Tracking performance:
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Figure 21: Closed-loop response.
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★ Estimator performance:
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Figure 22: Estimates of liquid level and nonlinearities.



49

OHIO
STATE

T . H . E

UNIVERSITY

★ Best forager:
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Figure 23: Best cost, index of best forager.
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Autonomous Robots: Pollution Clean-Up

(M. Polycarpou)

➙ Robots for search/removal of dispersed pollutant.

➙ Use many simple inexpensive robots (why?).

• Communication constraints: Locality, bandwidth, and

delays

• On-board functionality: Computer, signal processing,

control, fuel. How much?

• Risks: Avoid certain locations.
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★ E. coli “vehicles”—a nanotechnologist’s dream!
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• Use an E. coli (M. xanthus) search strategy?

• Bacterial sensing, locomotion, and decision-making

strategies are limited.

• Their foraging is optimized for a certain environment,

probably not this one!

★ Foraging principle: Optimization/search is a central

concept.

★ Evolutionary principle: Vehicle and environment

dictate cooperative strategy.
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Intelligent Group Foraging (M. Baum)

➙ What if our forager has capabilities for planning,

attention, learning, and sophisticated

communications?

➙ Learning/planning approach: construct cognitive

maps, predict using these, and share the maps

• Relevant optimization theory: Real-time “surrogate

model methods.”

• Suppose we think of the density of a pollutant in a

region as an unknown map.
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Distributed Map Learning
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Figure 24: Robot learning a landscape.
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• Other maps: Importance of various pollutants, where

can get stuck

• Distributed Learning and Coordination: How to

coordinate learning via sharing of maps? When to

seek more information (risky) vs. when to focus on

gathering more information in a previously visited

area?

• Distributed Planning: On shared maps.

➙ Research Challenges: Guaranteed performance,

stability, convergence, robustness
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Stable Foraging Vehicular Swarms (Y. Liu)

• Need underlying mechanisms for group cohesion

(stability) for goal-directed behavior that cope with

vehicular/communication constraints.

★ Cohesive swarm behavior:
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Concluding Remarks

✔ Foraging = optimization/search ⇒ methods for

control/automation.

✔ Adaptive control (but need stability/convergence

analysis).

✔ Biomimicry of intelligent foraging for distributed

cooperative control of groups of mobile robots.

✔ Engineering applications... and many research

directions.
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➙ Paper submitted to IEEE Control Systems Magazine.

➙ Also, in book to appear: “Intelligent Control: Biomimicry for Optimization,

Adaptation, and Decision-Making in Computer Control and Automation”


