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INT. 1. CONTROL, 1990, VOL. 52, No.6, 1489-1506

Decidability for a temporal logic used in discrete-event system analysis

1. F. KNIGHTt and K. M. PASSINOt

The type of plant considered is one that can be modelled by a non-deterministic
finite state machine P. The regulator is a deterministic finite state machine R. The
closed loop system is formed by connecting P and R in a 'regulator configuration'.
Formulae in a propositional temporal language are used to describe the behaviour
of the closed-loop system. It is shown that there is a mechanical procedure which,
for a given P and R, and a temporal formula '1', will determine in a finite number
of steps whether or not 'I' must be true. This 'decidability' result could be proven
using other known results on temporal logic. The proof given here shows that the
behaviour of the closed-loop system may safely be assumed to be ultimately peri­
odic. Formulae of a given complexity, say n, will be true in all possible 'runs' of the
system just in case they are true in all ultimately periodic runs, with the period and
the onset of periodicity bounded by a certain function of n. A 'synthesis' result
follows immediately from the decidability result. The interpretation of time is dis­
cussed at some length. The results are illustrated on two discrete-event system
examples. This paper is an expanded version of Knight and Passino (1987).

1. Introduction
We imagine a plant P in which the information about current conditions and the

mechanisms for control are limited, and there are significant unpredictable, uncontrol­
lable forces at work. Time is discrete. We assume that the plant P acts as a non­
deterministic finite state machine. The regulator will be a deterministic finite state
machine. For simplicity, we consider only 'full-state feedback' regulator systems here,
leaving 'output-feedback' systems for a later paper. Thus, the output of the plant,
which is the input to the regulator, is the full plant state; and the output from the
regulator, which is the input to the plant, is the full regulator state. Let X denote the
set of plant states and Q denote the set of regulator states, both finite. The plant and
regulator models have the following form:

(a) P = (X, Q, D, X0)' where D: Q x X ->IP(X) - {0l is the plant transition func­
tion, and X 0 £; X is the non-empty set of possible initial plant states; and

(b) R = (Q, X, ~, qo), where ~: X x Q -> Q is the regulator transition function, and
qo E Q is the initial regulator state.

The closed-loop system is formed by connecting Rand P in the regulator con­
figuration shown in Fig. 1. The regulator system may be thought of as a non­
deterministic 'generator', whose output is the output of the plant. There is no regulator
system input ('reference input'). As the system runs it generates an infinite string of
elements of X. Because of the non-deterministic nature of P there are, in general, many
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1490 J. F. Knight and K. M. Passino

~
Figure I. Regulator system.

(up to 2M
, ) different infinite 'strings of plant states that could be generated by P

together with R. We shall refer to these as R-allowable strings. (The reason for
attaching R here is that we shall consider different possible regulators R for a
fixed plant P.)

As a simple example, consider a liquid-holding surge tank with sensors distin­
guishing among five liquid levels (empty, low, normal, high, and full) and with a fill
valve that can be closed, or open. Unpredictable users operate another valve to take
liquid from the tank. In modelling this system we let X be the set of five distinguish­
able liquid levels and let Q represent the two settings of the fill valve. When it is
time to act, the regulator computes the next setting for the fill valve by applying the
transition function ~ to the current liquid level and the current setting of the fill valve.
The fill valve influences the liquid level but does not determine it completely. The
unpredictable users determine which one of the set of possible next water levels will
actually be the next plant output.

We use a propositional temporal language to describe the behaviour of the c1osed­
loop system in terms of the plant and regulator states. The symbols of the language
will be as follows: propositional variables (these will be the elements of Q u X), the
usual propositional connectives (&, -', etc.), temporal 'modal' operators 0 (next
time), 0 (for all times, now and later), 0 (for some time now or later) and parentheses.
The language is determined by the pair of sets Q and X.

We assume that a fixed plant P is given. We shall define what it means for a
temporal formula if! to be satisfied by a pair (R, ex), where R is a possible regulator
for P and ex is an R-allowable string. We say that R makes the formula if! valid if
(R, ex) satisfies if! for all R-allowable strings ex. Saying that the regulator R makes the
specification if! valid is a way of saying that the regulator guarantees that the speci­
fication will be met.

Our first main result says that for any R-allowable string ex there is an 'ultimately
periodic' string fl, also R-allowable, such that (R, ex) satisfies if! if and only if (R, (3)
does. Using this, we show that there is a mechanical procedure for deciding in a finite
number of steps whether a given regulator R makes a given formula if! valid. From
this decidability result we obtain a synthesis result, which says that for a given formula
if! we can effectively either find a regulator R making if! valid, or else say for sure that
no such R exists. Our decision procedure is not computationally practical, in general.
A 'tableau' method would be more efficient (Manna and Wolper 1981). However,
most specifications of real interest seem to have a simple form (low 'rank'), and if we
carried out a certain part of the decision procedure we could then easily examine a
whole family of low-rank specifications.

Temporal logic has been widely utilized in computer science for such purposes as
concurrent and sequential program verification, hardware verification and design,
and computer communication protocol verification. A good introduction to temporal
logic can be found in the work of Manna and Pnueli (1983), and a wide variety of
temporal logics and their applications are discussed in Galton (1987) and the refer­
ences therein. More recently, temporal logic has been utilized in a control theoretic
framework (Fusaoka et al. 1983, Ostroff and Wonham 1985, Thistle and Wonham
1986, Ostroff 1987, Knight and Passino 1987, Ostroff and Wonham 1987, and Passino
and Antsaklis 1988).
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Decidability using temporal logic in system analysis 1491

The propositional temporal language we use is like that in Manna and Wolper
(1981) except that we do not include the 'until' operator. Manna and Wolper obtain
decidability and synthesis results using the method of semantic tableaus. Our proof
is closer in spirit to the work of Buchi (1962). Thistle and Wonham (1986) use a
language with a slightly different syntax. They also allow a more general sort of plant
and regulator than we do (in particular, the set of regulator states may be infinite).
They do not prove decidability. Instead, they describe a system of rules of proof, and
illustrate its use by proving closed-loop specification formulae from axioms for the
plant and controller in various specific examples. Our work is also related to recent
work by Ostroff (1987), who extended Thistle and Wonham's work and obtained
computationally practical decision procedures for a special class of formulae in his
language. In our treatment, the plant P and the regulator R are incorporated in a
natural way into the semantics of the language. Our decidability proof, based on the
fact that an arbitrary string can be replaced by an ultimately periodic one, seems to
be new. It is completely elementary and self-contained.

In § 2 we say more about our model and discuss the way that time advances. In
§ 3 we describe precisely the syntax and semantics of our language and we define a
notion of 'rank', which quantifies the complexity of a temporal formula. In § 4 we
give the decidability and synthesis results. Section 5 contains examples of regulator
system analysis and synthesis, illustrating the various notions and results from the
earlier sections.

2. Modelling
Recall that in our model the regulator system is a pair of finite state machines.
Let ill denote the set of natural numbers. A 'run' of the regulator system yields

an infinite sequence of pairs (qi, Xi)i."" where qi is the regulator state at step i and Xi

is the state of the plant at step i. Formally, a run is defined to be a sequence of pairs
((qi' Xi))i.", such that qo is the initial state of the regulator, X o E X o is a possible initial
state for the plant, and for each i, qi , 1 = ~(Xi' qi)' and x i + 1 E (;(~(Xio qi), X;). The plant
output sequence derived from the run is (X;)i.",. Note that if we know ~ and qo, then
we can recover the run from the output sequence.

There is a slight asymmetry in the definition of 'run', If we wished, we could have
thought of our plant transition function differently, so that Xi+ 1 would be the value
of this function at (qi, x;) rather than at (qi+ 1, x.], In our formulation, if Xi is the input
to the regulator, what comes out will be qi+ i - If qi+ 1 is the input to the plant, what
comes out will be x i + i- We can compute qi+ 1 as soon as we know Xi and qi' but in
general we have to wait to find out what Xi+ 1 will be.

In our model of the regulator system, it is clear how time advances. 'Next time'
means 'for the next pair of states (qi, x.)' (in a run produced by the pair of finite state
machines), We shall define satisfaction of temporal formulae in terms of our model.
Suppose that we have in mind a real plant and regulator. Our hope is that the
temporal formulae say something meaningful about the real system. This means that
when we choose a pair of finite state machines to serve as a model we have to think
about the way time advances in the real system, We must try to answer the following
questions, if we are to arrive at a useful model.

(a) When does the regulator act?

(b) When do we measure the resulting plant state?

There must be some mechanism in the plant that provides a measurement of the
current plant state Xi and triggers the computation of the next regulator state qi; i -
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1492 J. F. Knight and K. M. Passino

We consider briefly here two versions of the surge tank example, which lead to
different models. (We shall discuss these surge tanks more fully in § 5.)

Schedule I
Suppose that there is a clock in the plant, and each hour, on the hour, there is a

fresh reading of the liquid level, after which the regulator adjusts the fill valve to the
position it will maintain during the next hour.

Schedule 2
Suppose that regulator activity is tied to changes in the liquid level. Whenever

the liquid goes from one level to another a device in the plant alerts the regulator.
The regulator then adjusts the fill valve to the position it will maintain until the
liquid level changes again.

For the surge tank that operates on Schedule I, 'next time' means 'next hour'.
For the surge tank that operates on Schedule 2, 'next time' means 'next time some­
thing happens'. Not surprisingly, the two versions of the surge tank give rise to
different models. For Schedule I, the plant transition function would certainly allow
the possibility that if the tank is currently high, and the regulator closes the fill valve,
then the tank will next be high again. For the surge tank operating on Schedule 2,
the plant transition function would not allow this.

We could have more complicated schedules. There might be one reading and
regulator adjustment per minute during certain peak hours and one per hour the rest
of the day. Here the model for the plant would require more states. The plant
transition might indicate that the plant state '2 a.m. and empty', could be followed,
if the fill valve has been opened, by '3 a.m. and full', while '7.02 a.m. and empty', with
the fill valve open, could not be followed by '7.03 a.m. and full'. Here 'next time'
means 'next minute' for part of the day and 'next hour' the rest of the day. Always
'next time' means 'the next time the regulator has acted and the resulting plant state
has been recorded'.

3. Formal language
In this section we describe precisely the syntax and semantics of our propositional

temporal language. Actually there are different languages for different plants or, more
precisely, for different pairs of sets X and Q. As we said earlier, the symbols are of
the following forms. First, there are the propositional variables, which we are taking
to be the elements of Qu X. Next, there are the usual logical connectives ---, (not), &
(and), v (or), -- (implies), and <-> (if and only if). Then there are the temporal
operators 0, 0 and O. Finally, there are parentheses. Now, we turn to the syntax.

The rules for forming formulae are as follows.

(a) A single propositional varibable q for q E Q, or x for x E X is a formula.

(b) If cp is a formula, then so is ---, cp.

(c) If cp and t/J are formulae, then so are (cp&t/J), (cp v t/J), (cp--t/J) and (cp<->t/J).

(d) If cp is a formula, then so are °ip, 0 ip, and 0 tp,

(e) Nothing is a formula unless it can be obtained by finitely many applications
of (a)-(d) above.
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Decidability using temporal logic in system analysis 1493

The temporal formulae can, for instance, be used to quantify various control­
theoretic design objectives (see, for instance, Fusaoka et al. 1983). Let X s !:; X.
Let rp,= (x, V Xl v ... V x.) where x, E X,. Let rpo = (xo, V Xoz v ... v xo.l where
the possible initial plant states are XOi' for I "" i "" n. Let Qbc Q and CPb =
(q, V qz v ... v q.) where qj E Qb' The formula CPo -+ Orp, can be thought of as
characterizing a 'reachability' requirement. The formulae

(i) CPo -+ 0 0 CPs>

(ii) rpo -+ 0 0 rps> and

(iii) 0 rpb -+ 0 rp,

characterize properties that can be thought of as analogous to 'stability' requirements
in conventional control theory. The first says that if the plant starts in one of its
initial states, then after some point in time the state will always be in X,. The second
says that if the plant starts in one of its initial states it will visit X, infinitely often.
The third states that if the plant inputs always remain in one set Qb then the plant
states will always remain in set X,.

Recall the example of the surge tank. Let X have elements x" ..., xs, representing
levels of liquid in the tank (from empty to full). Let Q have elements qo and q"
indicating that the fill valve is closed, open, respectively. Here are some sample
formulae of the language.

(I) Xs -+ O(X4 v X3)

(2) x3-+DOx3

(3) D«xz v x 4 ) -+ Ox 3 )

(4) (D(XI -+ Oqd-+ D(x, -+ OXl))

Formula I says that if the tank is initially full, then eventually it will become high or
normal. Formula 2 says that if the liquid level is initially normal it will be normal
infinitely often (it may in addition be infinitely often in each of the other states).
Formula 3 says that any time the level is low or high, it will next be normal. Formula
4 says that if the fill valve opens whenever the tank is empty, then each time the tank
becomes empty, it will eventually reach low again.

We next define the rank of a formula cP, denoted by r(cp). The definition proceeds
by induction on cp.

(a) r(cp) = 0, if cp consists of a single propositional variable,

(b) r(-' rp) = r(rp),

(c) r«rp&t/f)) = r«rp v t/f)) = r«rp-+t/f)) = r«rp<-tt/f)) = sup {r(cp), r(t/f)),

(d) r(Orp) = r(Drp) = r(Orp) = r(rp)+ I

The formulae characterizing reachability and stability and the four sample formu­
lae for the surge tank given above all have a rank less than or equal to two, and, in
fact, the specifications that we have thought of in various natural examples all seem
to have rank one or two. The temporal operators 0 and 0 resemble the quantifiers
3 and V from first-order predicate logic in some respects. For predictate logic we can
put any formula in 'prenex normal form'. That is, we can find an equivalent formula
with all the quantifiers at the front. Then the number of alternations of quantifiers
provides a useful measure of complexity. There is nothing like prenex normal form
for temporal logic. In fact, what we have expressed by Formula 3 above could not
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1494 J. F. Knight and K. M. Passino

be expressed by any formula in which all the temporal operators occurred at the
front. Our notion of rank measures the complexity of a formula by counting the
number of nested temporal operators without bringing them to the front.

Rank does not go up when we form complicated boolean combinations (putting
formulae together with I, &, V, ->, and .....). The formulae of rank 0 are the ones
with no occurrences of temporal operators. Let Bo be the set of all formulae of rank
O. If n > 0 and B; is the set of formulae of the forms Ocp, Dcp and Ocp, where cp has
rank n - I, then all formulae of rank n are obtained as boolean combinations of
formulae from B; and formulae of lower rank.

Above we described the syntax of the language; we now turn to the semantics. It
will be helpful to introduce some notation. For any set Z, let ZW denote the set of all
infinite strings of elements of Z. (Formally, these are sequences of length w.) If
Z E ZW we shall write z, for the ith term in the sequence (an element of Z). We let z'
denote the result of dropping the first i terms from z (this is an element of ZW). The
plant P = (X, Q, b, X o) is fixed. Let R be a regulator, with initial state qo and transition
function ~. If a E X W

, a is said to be R-allowable if it is the output sequence derived
from a run of the regulator system that consists of Rand P.

Let a be an R-allowable string, and let ((u" a;))iEW be the corresponding run. (As
we mentioned earlier, we can recover the run from the output sequence.) Let qR.o.i

denote the state a, reached by Rafter i steps in the run from which a is derived.
When we define satisfaction we shall consider families of regulators, all having the
same transition function as R, but with different initial states. Let RO

. ' denote the
regulator whose transition function is the same as that of R and whose initial state
is qR.o.i. Note that R O

•
o is just R.

We fix the plant P. This fixes the sets Q and X. If R is a regulator for P, and a is
an R-allowable string, we shall use the notation (R, a) F cp to indicate that the formula
cp is satisfied by (R, a). The definition of satisfaction proceeds by induction on sp,

(i) (R, a) F p if p E Q and p = qo or if p E X and p = ao,

(ii) (R, a) F1 cp if it is not the case that (R, a) Ftp,

(iii) (R, a) F(cp&IjI) if (R, a) FCP and (R, a) Fiji,

(iv) (R,a)F(cp v IjI) if(R,a)Fcp or (R,a)FIjI,

(v) (R,a)F(cp->IjI) if(R,a)Fcp implies (R,a)FIjI,

(vi) (R, a) F(cp.....IjI) provided that (R, a) Fcp if and only if (R, a) FIjI,

(vii) (R,a)FOcp if(Ro",a')Fcp,

(viii) (R, a) FD cp if for all i;' 0, (Ro. i, ail Fcp,

(ix) (R, a) F 0 cp if for some i;. 0, (Ro." a') Fcp.

From the definition of satisfaction it is clear that for any formula ip, Ocp is
equivalent to I(D(,cp)), so we could have omitted 0 from the language. Similarly,
we could have omitted v, ->, and ......

An equivalence relation on a set Z is a two-place relation - (on Z) that is reflexive,
symmetric, and transitive. If z E Z, then the - -equivalence class of z is the set
{y E Z: y - z}. We may speak of -s--equivalence classes in general (without naming
elements). We define a family of equivalence relations - n.R on the set of R-allowable
strings, such that - n.R-equivalence implies satisfaction of the same formulae of rank
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at most n. Suppose that a and pare R-allowable. Then

1495

(a) a ~O.RP if ao = Po, and

(b) a ~ n+1.RP if

(i) a ~ n.RP,
(ii) qR.a,l =qR.P.l and a' ~n,R"'P" and

(iii) for all i there exists a j (and for all j there exists an i) such that
qR.CI,i = qR.fJ.i and rx i ""'-' n.Ra.ipi.

Note that a ~O.RP if and only if a and Phave the same first symbol; a ~ 1.RP if
and only if a and Phave the same first symbol and the same second symbol, and the
set of pairs representing a current regulator state and plant state is the same when
the regulator R is applied to a and to p. It is easy to see that if m < n and a ~ n.R P,
then a ~m,RP' In general, each ~m,R-ciass will contain many ~ nxclasses. For ex­
ample, consider the strings a = X2X,X,X2X3X3X3 ... and P= X2X,X2X3X3X3 .... Sup­
pose that these are both R-allowable, and let ~(Xi> qo) = qo for i = 1,2, 3 (where ~ is
the transition function for R). Then a ~ O,RP and a ~ "RP, but not a ~ 2,RP,

4. Decidability and synthesis results
The decidability and synthesis results are given in this section. The proofs are

based on three lemmas, The first lemma says that strings that are ~ n,R-equivalent
will satisfy the same formulae of rank at most n.

Lemma 1

Let cp be a formula such that r(cp) .,; n, and let a and Pbe R-allowable strings such
that a ~ n,RP' Then (R, a) F cp ifand only if(R, Jl) F ip,

Proof

We use induction on n. Note that for any regulator R and any R-allowable strings
a, P, the set of formulae cp such that (R, a) F cp if and only if (R, P) F cp is closed under
boolean combinations. Hence, the only rank n formulae we really need to look at are
the basic ones; that is, the elements of Bn• Moreover, by symmetry it is enough to
show that ifa ~ n.RP and (R, a) F sp, where cp E Bn, then (R, P) F cpo

We start with n = O. Suppose IX ~O.RP and (R, IX) F p, where p E XuQ. Ifp E X, then
by the definition of satisfaction, p = IXo. By ~ oxequivalence, ao = Po, so (R, P) F p. If
p E Q, then by the definition of satisfaction, p = qo, and then (R, P) F p. Therefore the
lemma holds for n = O. Supposing that the lemma holds for n, consider n + 1. Let tp

have rank n and suppose that a ~n+ ',RP, If (R, a) F Ocp, then by the definition of
satisfaction, (Ra." IX') F cpo By ~n+',R-equivalence,qR,a,' = qR,P,' and e ' ~".R"'P', Then
by the induction hypothesis, we have (RP,l, P') F cp, so (R, P) F Ocp.Let(R, a) F D cpo By
the definition of satisfaction, for all i ;;;, 0, (Ra<IXi) F cpo By ~ n+' xequivalence, for each
j;;;' 0 there is some i ;;;, 0 such that qR,a,i = qR.P,i and IXi ~"R,."pi. Then by the induction
hypothesis, (RP,i, Pi) Fcp, so (R, P)F D cpo Finally, let (R, ~) F0 cpo There is some i;;;' 0
such that (Ra.i, ai) Fcpo Then for some j;;;' 0, qR,a,i = qR.P,i and IXi ~ n.W.,pi, so by the
induction hypothesis, (RP,i, Pi) F tp, Therefore, (R, f3) F 0 tp, This completes the proof.

D



D
ow

nl
oa

de
d 

B
y:

 [O
hi

o 
S

ta
te

 U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 A
t: 

18
:2

4 
10

 O
ct

ob
er

 2
00

7 

1496 J. F. Knight and K. M. Passino

A string a E X"', is said to be ultimately periodic, with period n2 and onset of
periodicity n" if a has the form v'r'r'r' ... , where v and r are finite strings of
lengths n, and n2' respectively. We say that a is determined by the pair (v, r), Then v
gives the transient behaviour and r gives the behaviour during one period. (It is
possible for different pairs (v, r) to determine the same a. If we wished, we could avoid
this by choosing v and r to minimize first n1 and then n2') For ultimately periodic
strings it is relatively easy to answer questions about satisfaction.

Lemma 2
We can effectively decide, given a formula rp, a regulator R and a pair of finite

strings (v, r) determining a string a E X"', whether (R, a) to rp.

Proof
First of all, note that we can tell whether the ultimately periodic string a deter­

mined by (u, r) is R-allowable. Now we proceed by induction on formulae rp, describ­
ing a method for deciding whether (R, a) to rp if a is an R-allowable string determined
by (v, f). We start with rp of the form p for p E XU Q. Let a be determined by (v, f).
If p E X, then (R, a) to p if and only if p = ao, where ao is the first symbol of v 1\ f. If
p E Q, then (R, a) to p if and only if p = qo. There is no difficulty in deciding satisfaction
for boolean combinations of formulae that we can deal with, so let us turn to the
temporal operators.

Suppose that we have a procedure for deciding satisfaction for rp. We must say
how to deal with 0 rp, D rp and 0 rp; we consider 0 rp first. If a is the ultimately
periodic string determined by (u, r), then a! is also ultimately periodic, determined
by (vl , f), where Vi is the result of dropping the first term of v if v "p 8 and of r if v =

8 (8 denotes the empty string). We have qR.e , l = ~(ao, qo). By the definition of satisfac­
tion, (R, a) to 0 cp if and only if (R"', a') to rp, and we know how to decide this. Next,
consider D rp. Let m = n, + IQI . n2' By the definition of satisfaction, (R, a) to D rp if and
only if for all i;;, 0, (R".i, ai

) to rp. For each i;;, 0, there is some j < m such that
qR.... = qR".i and a i = «', so it is enough to check that (R",i, ai ) to rp for all j < m. In
terms of R and (v, r), we can figure out what qR.a,i is, and we can also find a variant
lJ of v such that (~, f) determines ai. By our induction hypothesis, we can decide
whether rp is satisfied by the pairs (R··i, ai ) for allj < m. Finally, consider Orp. Letting
m be as above, we have (R, a) to Orp ifand only if (R··i, (Xi) to cp for somej < m, and we
can check this. This completes the proof of the lemma. D

If R is a regulator and rp is a formula, then R is said to make rp valid if (R, (X) to rp
for all R-allowable strings (x. There may in general be 2Mo R-allowable strings. Only
countably many are ultimately periodic. The next lemma is our first main result. It
implies that to decide whether R makes rp valid, we need not look at all R-allowable
(x, or even at all ultimately periodic (x. It is enough to consider a particular finite
collection with bounded period and onset of periodicity.

Lemma 3
For any regulator R, any nEW, and any R-allowable string (x, there is an ultimately

periodic string fJ such that (X ~ .,RfJ. Moreover, given n (and IQI and lXI), we can
compute bounds on the onset and period.
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Decidability using temporal logic in system analysis 1497

Proof
We shall define L. and K. for nEW such that K. is an upper bound on the number

of ~ .xclasses (for any regulator R), and for any R-allowable string IX, there exist v
and, such that v', has length at most L. and (v, r) determines an R-allowable
string 13 such that 13 ~ ••RIX. For n = 0, we can take Ko to be IXI (since the ~ oxclass
of IX is determined by the first symbol of IX). We must say what Lo is. For any R­
allowable string IX, there exist i <j ,;;; IQI 0 IXI such that qR.•.• = qR.e. j and IX. = IX j. Let
ex rk denote the finite string consisting of the first k symbols of ct. If v = (X ri and
v', = IXrj, then (IJ, r) determines an ultimately periodic R-allowable 13 such that
13 ~O.RIX. Therefore, we can take Lo to be IQI'IXI.

Suppose that for k ,;;; n, the lemma holds and we have determined K. and L•. If
IX is R-allowable, we write q.i for the ~ '.Ro.,-class of (x'. We may refer to the pair
(qR .a.'. q.j) as the k-class of the term IX•. Note that for two R-allowable strings IX and
13, ex ~.+I.Rp if and only if the following three conditions hold:

(a) C:·o = C~·o

(b) C:· I = C~'l, and

(c) {(qR .•.•, C:·i) : i E w} = {(qR.P.i, C~·i): i E w}.

Condition (a) says that ex ~ .,Rp, and this implies that qR.a, I = qR.P.I. If
qR.a, I = qR.P.I, then condition (b) says that (XI ~ nRO"P'. Condition (c) says that for each
i there is some j (and also for each j there is' some i) such that qR.a, i = qR.P.j and
(Xi~ n,R'.,pj. This analysis shows that we can take K.+ I to be K;' 2', where r =
K. 'IQI- 1.

Next, we describe a method for finding an ultimately periodic string 13 that is
~.+ I.R-equivalent to a given string (x. Having done this, we shall be able to say what
L.+ I is. There are at most IQI ' K. different n-classes. We mark any term IXi such that
there is no j < i with IXi and (Xj representing the same n-classes. It may be that some
n-classes only occur finitely many times, but at least one n-class occurs infinitely often
in IX. Let IX, be the first term representing an n-class that occurs infinitely often. Of
course, (x, is marked. Let (x, be the first term, after all of the marked ones, such that
IX, represents the same n-class as IX,.

If we choose IJ and r such that IJ = IX rr, IJ' r = (X rs, and let )' be the ultimately
periodic string determined by (IJ, r), we could show (with effort) that )' ~.+I.Rp,
However, IJ'r might be very long. We now reduce the length. Suppose that we have
IX. and (Xj representing the same n-class, where i <i < s, and for all k such that i ,;;; k «i.
(x. is not marked. Then we close up the interval, leaving out of IJ'r all terms IX. for
i < k ';;;j. When we have closed up as much as possible in this way, v', will consist
of at most IQI 0 K. marked terms plus at most IQI ' K. additional symbols after each
marked one. We take L.+ I to be IQI ' K. + (IQI 0 K.)2.

Let 13 be the ultimately periodic string determined by (u, r) (after the shortening
process). All that remains to be done is to prove that IX~.+I.Rp, Each term 13m of 13
corresponds to a particular term IX i from IX (one that was included in IJ or r],

Proposition
If 13m corresponds to (x" then (I) qR.a,i = qR.P.m, and (2) for each k s; n
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1498 J. F. Knight and K. M. Passino

Suppose for the moment that the proposition is true. Then we can easily show
that 13 -.+ [.RO(' Recall the three conditions above. Condition (a) will hold because
130 corresponds to 0(0' If we only marked one term, then 0( is constant (it consists of
infinitely many repetitions of a single symbol) and 13 = 0(. If there is more than one
term marked, then we saved 0(1 (whether or not we marked it) and 131 corresponds
to 0([; therefore condition (b) holds. Condition (c) holds because we marked represent­
atives of all n-c1asses in 0(. Therefore, if the claim is true, then 13 -.+ I.RO(, and to
complete the proof of the lemma, all that remains is to prove the proposition.

Proof

Suppose 13m corresponds to 0(, and 13m + I corresponds to O(j' There are three cases:
(i) j = i + I, (ii) j > i + I, and (iii) j < i. Case (ii) indicates that we closed up the interval
between 0(, and O(j' Then O(i and O(j_1 represent the same (n - I) class. Case (iii) indicates
that O(i is the last term of, and O(j is the first (i.e. i = sand j = r). Then O(i+ I and O(j

represen t the same n-class,
It is easy to check that if 13m corresponds to 0(" then qR .a, i = qR.P.m, and the terms

13m and 0(, match. Therefore we have part (I) of the proposition in general, and part
(2) for k = O. We continue with the proof of part (2) by induction on k. We show that
if (2) holds for k, where k < n, then it also holds for k + 1. Let 13m correspond to 0(,.

To show that 13m and 0(, represent the same k + I-class, we verify the three conditions
given earlier. By the induction hypothesis, 13m and O(i represent the same k-c1ass. This
is condition (a).

To verify the condition (b), we consider 13m + I and show that in the three cases (i),
(ii) and (iii) above, 13m + 1 and 0(,+ I represent the same k-c1ass. Suppose 13m + 1 corre­
sponds to O(j' By the Induction Hypothesis, 13m + I and O(j represent the same k-c1ass,
so we will be done if we can show that O(j and O(i+ I represent the same k-c1ass; this is
trivially true if j = i + 1. If j > i + I, then we are in case (ii) described above, and
O(i + 1 and O(j represent the same n-I-class. Since k :s;; n - I, it follows that 0(, + 1 and O(j

represent the same k-c1ass. Finally, if j < i, we are in case (iii), and again 0(,+ I and O(j

represent the same n-c1ass. We have shown that in all cases 13m + I and O(i+ 1 represent
the same k-c1ass.

To prove the condition (c) we must show that the k-c1asses represented by 13m' for
m' > m are the same as the k-c1asses represented by 0(,. for i' ;?: i. First, take i' ;?: i. If,
includes some O(j representing the same k-c1ass as 0(" then we have 13m' representing
this k-c1ass for arbitrarily large m'. Suppose that, does not include any such O(j' It
will follow that the k-c1ass of 0(, is represented only finitely many times in 0(; the reason
for this is as follows. If the k-c1ass were represented infinitely often, then some n-c1ass
in the k-c1ass would be represented infinitely often. Let O(t· be the first representative
of this k-c1ass. By our choice of r, we have r :s;; i", and the k-c1ass is represented in T,

a contradiction. Since the k-c1ass of O(i' is represented only finitely many times in 0(,

there is a largest j such that O(j represents the k-c1ass. If j ;?: r, then for each of the
infinitely many r' > r such that 0(" represents the same n-class as 0(" there would be
j' ;?: r' representing the same n - l-class, and, hence, the same k-c1ass, as O(j' This
cannot happen, so we have j < r.

Since O(j is the last representative of its k-c1ass it is also the last representative of
its (n - I)-class. Then it is easy to check that O(j+ 1 is the first representative of its n­
class. This means that O(j+ I is marked and corresponds to some (first) element of 13,
which we call 13m' + 1 • (There cannot be more than one element of 13 corresponding to
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Decidability using temporal logic in system analysis 1499

OCj+ 1 unless j + I = r.) The symbol Pm'+ 1 has an immediate predecessor, which we call
Pm" We have i";; i' ";;j <j + I ,,;; r, and Pm' corresponds to some ocr where i ";;j' <i (see
Fig. 2).

O<.i' <X.j'
I I I I

~
I I

Figure 2.

We may be lucky and have j' =j. If j' < j, then we close up the interval between
ocr and IXj+ i - Then ocr and OCj represent the same n-class, and, hence, the same k-class.

Now, take m' ;" m. We must find i';" i such that Pm' and OCr represent the same k­
class, Let Pm' correspond to OCj' Then Pm' and ocj represent the same k-class. If j;" i,
then we are done. Suppose j < i. This means that Pm and Pm' lie in different copies of
r, and r ,,;;j< i < s. Since IX, and OCs represent the same n-class, there must be an i' ;" s
such that ocj and oc.' represent the same k-class (the same (n - I)-class, in fact). We have
now verified the condition (c), completing the proof that if Pm corresponds to IX., then
the k + I-classes match. This was all that remained to prove to lemma. 0

Theorem I: Decidability
Given a plant P, a formula sp, and a regulator R for P, we can effectively decide

whether an R makes cp valid.

Proof

The decision procedure is as follows. First, compute r(cp): say this is n. Next, list
the pairs (v, r) such that

(a) v'r has length at most L; (where L; is as in the proof of Lemma 3), and

(b) the ultimately periodic string determined by (v, r] is R-allowable.

Then test whether (R,oc) F cp for the strings oc determined by the pairs on the list, using
the procedure from Lemma 2. By Lemmas I and 3, R makes cp valid if and only if
(R, oc) F cp for these strings.

Recall that P = (X, Q, D, X 0)' Suppose we wish to meet a particular specification
sp, Theorem I says that for a given regulator R = (Q, X,~, qo) we can determine
whether R makes cp valid. If R does not make cp valid, then we may try a different
regulator. In fact, since there are only finitely many regulators altogether (differing
only in transition function and initial state), we can try them all. By doing so, we will
either find one that works or else determine that they all fail. We have established
the following.

Theorem 2: Synthesis

Given a formula ip, we can effectivcely either find a regulator R making cp valid,
or else say for that that no such R exists.

The theorems above say that we can, in principle, do a really thorough job of
regulator system analysis and also mechanically carry out regulator synthesis for the
type of plant that we have described.
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1500 J. F. Knight and K. M. Passino

5. Examples
In this section we describe in detail some examples and determine what the

results of the previous section mean for these examples. The first two examples, from
chemical process control, are versions of the surge tank described briefly in §§ I and
2. In both versions the surge tank, shown in Fig. 3, has sensors distinguishing five
liquid levels (empty, low, normal, high, and full). The regulator can only open or close
a fill valve. Users operate an empty valve to take liquid from the tank.

Fill Valve Empty Valve

Uquid
otiItt' Level

Low
Empty -l...__.I=l.I

Figure 3. Surge tank.

The first version of the surge tank follows the first schedule described in § 2. Once
an hour there is a reading of the liquid level, followed by an adjustment of the fill
valve. We assume that in one hour, if the empty valve remains closed and the fill
valve is open the liquid level will rise just one level, except that if the tank is full, the
level cannot rise. With both fill and empty valves open, the liquid level stays constant,
except that if the fill valve is open, so that liquid is coming in, the level will be read
as low rather than empty, even when the depth of the liquid is essentially zero.

The set of plant states is X = {XI> X" X3' X4, xs}, where Xi is the ith liquid level,
from lowest to highest. The set of regulator states is Q = {qo, q,}, where qo and q,
stand for 'fill valve closed', and 'fill valve open', respectively. The non-deterministic
finite state machine representing the plant is P = (X, Q, 8, X 0), where the set of initial
states is X 0 = {x" X3} and the transition function <> may be read from the graph in
Fig.4(a).

The graph has nodes representing the plant states. The arrows, labelled by regu­
lator states q, that emanate from a node X lead to the possible next states; i.e. the
elements of <>(x, q). For example, if the plant state is X3 (normal liquid level) and the

Q, '\l Q,

'!j, Qo

Q
I Qo

q,

Qo Qo

(a) (b)

Figure 4. Surge tank state transition graphs.
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Decidability using temporal logic in system analysis 1501

regulator responds with ql (fill valve open), then by the next hour the plant state may
still be X3 (if, for instance, users are drawing liquid from the tank), or the output may
be X4 (high).

One possible regulator is R = (Q, X, ~, qo), where the initial state is qo (fill valve
closed), and the transition function ~ is given in Fig. 5.

Figure5. Regulator state transition graph

This graph is interpreted much like the one for the plant transition function. The
nodes represent the regulator states. The arrow that comes from node q and is labelled
by the plant state x leads to ~(x, q), the next regulator state. For example, if the
regulator state has been qo (fill valve closed) and the plant has been in state X2 (low),
then the next regulator state is ql (fill valve open).

Let us see what our results mean for rank I formulae. By Lemma 3, for any R­
allowable string ex there is some R-allowable string fJ - l.Rex such that fJ is ultimately
periodic, and by Lemma I, for any rank I formula sp, (R, ex) F rp ifand only if (R, fJ) F cpo
The R-allowable string ex = XI X2X3X4X3X3X4X3X3X3X4X3 ... , with the symbol
X3 repeating, once, twice, three times, etc., is not ultimately periodic. If fJ =
XIX2X3X4X3X4X3X4X3"" then fJ is ultimately periodic-it is determined by the
pair (v,r), where V=XIX2 and r=x3x4 • It is easy to see that fJ-I,Rex.

A list of pairs is said to be n-complete (for R) if each R-allowablc string is - n,R­
equivalent to the string determined by one of the pairs (v, r) on the list. The proof of
Lemma 3 tells us that we can obtain an n-complete list by looking at all pairs (v, r)
such that v'r has length at most Ln , and taking those which determine R-allowable
strings. Since L I = 110, even the l-complete list obtained by this method would be
quite long, and some of the pairs on the list would be complicated. Here is a simpler
list which is I-complete: (Xl' X 2), (XI X2 , X 3), (X1X2 , X 3X4), (X IX2X3X4, X 4X3),

(XIX2X3, x4 ) , (0, X3), (X 3, X 3X4), (X3 X3, x4 ) , (X 3X4, X3)' (X 3, X4), (X3 X4 X3 X3, X 4),

(s, X 3 x4 ) . This list has the feature that distinct pairs determine - I.R -inequivalent
strings.

One particular closed-loop specification that we should like to meet is the formula,
rp = X3 .... D(,(xl V xs)), which says that if the liquid level is normal initially, then it
will never be empty or full. Note that r(rp) = 1. Therefore, to decide whether the
regulator R makes rp valid it is enough to decide whether (R, <X) F rp for the strings <X

determined by the 12 pairs on the l-complete list above. Suppose (v, r) determines
the string ex. Let n1 be the length of v, let n2 be the length of r, and let m = nl + 2n2'
Looking at the form of rp, and using the definition of satisfaction and the proof of
Lemma 2,we see that (R, ex) F rp if and only iffor each i ;;, 0, (RO

•
i
, exi ) F ,(x I v xs) if and

only if for each i';;; m, (RO", ex i
) F ,(XI v x s) for all i,;;; m if and only if for each i';;; m,
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1502 J. F. Knight and K. M. Passino

neither (RO,O, lX i ) FXI nor (RO", IX') FXs. For all the pairs (u, r) above, m':; 8, and there
are no occurrences of XI or Xs' Hence, R makes tp valid.

Another specification is the formula i{! = (XI -+ 0 D(x3 v X4)), which says that if
the liquid level is initially empty, then after some point in time the level will always
be normal or high. Note that r(i{!) = 2. Certain strings which are ~ I,R-equivalent are
not ~ 2,R-equivalent. For example, the string determined by (X3X3, x4) is ~ "R-equiv­
alent, but not ~ 2,R-equivalent, to the string determined by (X3X3X3, X4)' The strings
determined by (X3X3' X4X3X3) and (X3X3X3, X4X3X3) are both ~ '.R-equivalent to the
one determined by (X3, X3X4), but no two of these three are ~ 2.R-equivalent. We
could form a minimal 2-complete list, starting with the members of the I-complete
list above, and adding, for each of these pairs, just enough new pairs to represent all
of the ~ 2.R-c1asses in the ~,xclass. In general, using higher-rank formulae, we can
describe more subtle features of plant behaviour, and for larger n, we should not be
surprised that even the shortest and simplest n-complete lists become unmanageable.

The regulator R makes the formula i{! = XI -+ 0 D(x3 v X4) valid if and only if
(R, IX) F i{! for all IX determined by the pairs on a 2-complete list. By the definition of
satisfaction, and the proof of Lemma 2, we see that if IX is an R-allowable string
determined by the pair (u, r), then (R, IX) F i{! if and only if either the first symbol of IX

is not Xl or else (R, IX) F 0 D(x3 v x4 ) , and this holds if and only if either the first
symbol of u-r is not Xl or else r has no other symbols than X3 and X4. When we
come to the pair (x" X2), we find that for the string IX = XIX2X2X2X2 ... , determined
by this pair (R, IX) fails to satisfy i{!. The string IX represents a possible output string
for the system in which the specification is not met.

We have seen that the regulator R above does not make the formula i{! =
X, -+ 0 0 (X3 v x 4 ) valid. If we apply the method of Theorem 2 (testing all possible
regulators), we shall either find a regulator that makes i{! valid, or else know for sure
that no regulator does this. Even for this relatively simple example that mechanical
procedure is long. Allowing ourselves to think about the reason for the failure of the
first regulator, we arrive more quickly at the conclusion that no regulator works.
Consider the various possibilities for the initial regulator state and for the value of
the regulator transition function on (XI' qo), (XI' q.), (X2' qo), and (X2, q2)' With just
this information, we can check that for each regulator R', at least one of the following
pairs determines an R'-allowabJe string: (x.; X2), (6, X.), (XIX" X2), (XI' XIX2)' If Pis
an R'-allowable string determined by one of these pairs, then, by the reasoning above,
(R', P) fails to satisfy i{!.

As another regulator synthesis example suppose that we wish to satisfy tp' =
X, -+ 0 D(x2 v X3), i.e. 'if initially the tank is empty, then eventually there will be a
time such that from then on, the liquid level will be low or normal', This rank 2
formula is invalid for the regulator R above, with a counter-example determined by
the pair (X,X2X3X4' X4)' Theorem 2 says that an exhaustive search will produce a
regulator to make tp' valid if one exists. As a synthesis heuristic, we examine some of
the (u, r) pairs used in the above analysis. For the string (XIX2X3X4, X4), the sequence
of associated states is qoqlqlqlqoqoqoqo .... With this and the plant model P, we see
that if we changed ~ so that the regulator responsed to the plant output symbol X3
with a qo rather than a q" the specification might be met. Name this new regulator
transition function ~' and the corresponding regulator R'. For R' with initial state qo
as above, some of the (o, r) pairs representing different ~ 2xequivalence classes are:
(x, X2), (x" X2X3X3X2), (x" X2X2X3X2), (x, X2X3, X3), (x, X2X2, x 3). Examining (u, r]
pairs representing all ~ 2.w-equivalence classes would show that the synthesized
regulator R' makes the formula tp' valid.
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Decidability using temporal logic in system analysis 1503

We now consider briefly a second version of the surge tank. The plant states and
the regulator states are the same as in the first version, so the possible regulators are
the same. However, the schedule is different, and this difference is reflected in the
plant transition function. Some device in the plant drives the regulator to respond
whenever the liquid level changes from one level to another, and in two additional
special circumstances: (a) if the level has been empty, and the response was fill valve
closed (a situation that would never lead to a change from empty to low), then
whenever a frustrated user opens the empty valve and gets nothing, the regulator is
notified that the tank is empty; (b) if the level has been full, and the response was fill
valve open (a situation that would never lead to a change from full to high), then
whenever a user closes the empty valve, liquid spills out of the tank, and the regulator
is notified that the tank is full. We assume that the empty valve will be opened and
closed infinitely often. Again we take the initial plant states to be XI and X3' The
plant function is given in Fig. 4(b).

Let i/J be XI --+ 0 D(x3 v x4 ) , as above, and suppose we want to find (if possible)
a regulator that will make i/J valid. The proof of Theorem 2 suggests that we make
a Jist of all possible regulators, and test them, one by one, until we find a regulator
that works or finish testing them all without finding one that works. As it turns out,
the regulator R that was described above makes i/J valid. For the first version of the
surge tank, the string determined by the pair (XI' X2) served as an example showing
that R did not make i/J valid. For the second version or the surge tank, this string is
not R-allowable.

The next example is a manufacturing system. In the plant, there is one machine
which must process two types of parts. A part of the first type, from producer PI,
waits in buffer BI until it is permitted to enter the processing machine. When the
processing is completed, the part goes into the first or two output bins. A part or the
second type, from producer P2, waits in buffer B2 until it is permitted to enter the
processing machine. When the part comes out or the processing machine, it goes into
the second output bin. The regulator must ensure mutual exclusion in the machine,
i.e. only one part is processed at a time. The regulator must also ensure that producer
PI gets priority in the use of the machine. The plant state indicates whether there is
a part in a given buffer, and whether there is a part of a given type in the machine.
The regulator acts to allow parts from the different buffers to enter the machine. The
manufacturing system is shown in Fig. 6 below.

We use four-bit binary strings to represent the plant states. The first bit is I if
there is a PI part in the machine and 0 otherwise. The second bit indicates the
presence or absence or a P2 part in the machine. The third and fourth bits represent

BI B2

00
Output Bins

Figure 6. Manufacturing system.
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1504 J. F. Knight and K. M. Passino

the presence or absence of parts in buffers BI and B2, respectively. For example, the
plant state '100 I' indicates that (i) there is a P I part in the machine, (ii) there is not
a P2 part in the machine, (iii) there is not a PI part in buffer BI, and (iv) there is a
P2 part in buffer P2. There are 16 plant states in all. The states of the regulator are
ql (allowing a part from PI, presently in HI, to enter the machine), q2 (allowing a
part from P2, presently in B2, to enter the machine), and q3 (not allowing any parts
to enter the machine). We have X = {OOOO, 0001, 0010, 0011, 0100, 0101, OlIO, 0111,
1000, IDOl, 1010, 1011, 1100, 1101, 1110, IIII} and Q= {ql> q2' q3}' We suppose that
X 0 = {OOOO} and that the initial regulator state is Q3'

We suppose that there is a clock in the plant, and each second, on the second a
device provides a measurement of the manufacturing system state and the regulator
is triggered to act so as to allow parts to enter the machine. The plant transition
function is given by Table I, and the regulator transition function is given by Table 2.

Plant input

Plant state q, q2 q3

0000 0000,0001,0010,0011
0001 0100,0101,0110,0111 0001, 0011
0010 1000, 1001, 1010, 1011 0010,0011
DOlI 1001,1011 0110, 0111 0011
0100 0100,000
0101 0100,0101, OliO, 01111 0001,0011,0101,0111
0110 1000, 1001, 1010, 1011 0010,0011,0100,0111

1100, 110I, 1110, I111
0111 1001, lOll, 1101, 1111 0010,0011, OlIO, 0111 0111,0011
1000 0000,0001,0010,0011

1000, 1001, 1010, lOll
1001 0100,0101,0110, DIll 0001, DOli, lOll, 1001

1100,1101,1110,1111
1010 1000, 1001, 1010, lOll 0010, DOlI, 1010, ion
1011 1001, 1011, 1101, 11I1 0100,0101,0110, Dill ion, 0011

1100,1101,1110,1111
1100 all symbols possible
1101 0100,0101,0110, DIll 0001,0011,0101, DIll

1100,1101,1110,1111 1001,1011,1101,1111
1110 1000, 1001, 1010, lOll 0010,0011, 01l0, 0111

1100, 1101, 1110, IIIl 1010, lOll, 1l10, 1111
11111 1001,1011,1101,111l 0110, Dill, IIlO, IIlI 0011,0111,1011,1111

Table I. Manufacturing system (plant). Possible next plant states are shown.

Regu- Regulator input
lator
state 00000001 0010 0011 01000101 0110 0111 1000 1001 1010 1011 1100 1101 1110 IIII

q, q3 q2 ql q, q3 q3 q3 q3 q3 q3 q3 q3 q3 q3 q3 q3
q2 q3 q2 q, q, q3 q3 q3 q3 q3 q3 q3 q3 q3 q3 q3 q3
q3 q3 q2 q, ql q3 q3 q3 q3 q3 q3 q3 q3 q3 q3 q3 q3

Table 2. Manufacturing system regulator. Next regulator states are shown.
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Decidability using temporal logic in system analysis 1505

We consider two closed-loop specification formulae. The mutual exclusion speci­
fication, which we verify first, is cp = 0(,(1100 v 1101 v 1110 v 1111)). To avoid con­
fusion, since we now have to deal with output strings whose terms are (finite) strings,
we write Xt, X2, X3, ... , instead of XtX2X3 .... We also write (v; r) instead of (v, r). Some
pairs, determining strings in different ~ t,R-classes, are: (e;0000, 0001, 0100),
(0000; 000 I, 010 I), (0000, 0010; 1000), and (0000, 00 II; 10II). Let a be the string deter­
mined by a pair (v; r). Suppose v has length n, and r has length n2 and let m = nt + 3n2 •

To show that (R, a) Fcp (following Lemma 2, and the definition of satisfaction), it is
enough to test that for all j ,;;; m (W,i, ai ) F1100 or (W·i, ai ) F 110I or (R··i, ai ) F 1100 or
(W,j, ai ) FiliI. It is clear that for the (v; r) pairs above and all others this is satisfied.
Hence the formula is valid.

The priority specification is cp = 0(0011 ..... 0(1001 v lOll)). Since this has rank 2,
the mechanical procedure would be to examine all pairs on a 2-complete list. Again
it is clear just from examining the initial states and transition functions for the plant
and regulator that the specification is met. As in the surge tank example, we could
take new closed-loop specifications and synthesize regulators to meet them, if possible.
For example, we might change the priority from producer PI to P2. We could also
consider a second version of the manufacturing system where the plant states and
regulator states are the same as in the first version above but the schedule is different.
We could have some device in the plant which drives the regulator to respond
whenever the manufacturing system state changes; hence the plant operates in an
asynchronous fashion relative to a clock. This will result in a different plant state
transition function and interpretation of the priority specification above.

The manufacturing example above is similar to the Two Class Parts Processing'
example in Thistle and Won ham (1986). There, however, Thistle and Wonham allow
an arbitrary finite number of parts of one type to enter the machine. This forces their
controller to have an infinite number of states, so that our decision procedure does
not apply to their example. There are, however, many practical problems that are
finite-state. The examples originally given in Knight and Passino (1987), which are
studied above, have also been examined using a branching-time temporal logic frame­
work (Passino and Antsaklis 1988).
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