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Abstract

While intelligent control methods such as direct, adaptive, and supervisory fuzzy control have shown some success, there is
a significant need to evaluate their performance relative to conventional control approaches, particularly in an experimental setting.
Such evaluations help to determine the value of the new intelligent control methods, and provide the engineer with general guidelines
on how to apply them to more complex real-world applications. In this work a case study is conducted where comparisons are made
between conventional and intelligent controllers for a process control experiment in our laboratory. Nominal, disturbance, and plant
failure conditions are studied and the advantages and disadvantages of each of the approaches is highlighted. C: 1998 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

Recently, excitement over the field of intelligent con-
trol has risen due to progress in the areas of fuzzy control,
neural networks, genetic algorithms, and expert systems
to name a few (Antsaklis and Passino, 1993; Passino,
1995, 1996a). Unfortunately, the contributions of these
areas have been difficult to assess due to the relatively
little work focused on determining the advantages of
these new approaches relative to existing conventional
control techniques (Passino 1996, 1993). Often, engineers
need both theoretical and experimental comparative
analysis to determine the advantages and disadvantages
of new control methods. In some applications (e.g..
safety-critical ones) engineers are hesitant to employ
a new approach without being assured that the technique
has a firm theoretical foundation and a track-record of
success in a variety of applications.

Clearly, a complete engineering cost-benefit analysis
which includes comparative analysis of intelligent versus

* Corresponding author. E-mail: passino@ee.eng.ohio-state.edu
! This work was supported in part by the National Science Founda-
tion Grant EEC9315257.

conventional control methods is beyond the scope of this
or any other piece of work. Here the focus is on compara-
tive analysis of fuzzy control versus several conventional
control methods in a single experimental test bed. In
particular, comparisons are made between conventional
on-off, proportional, feedback linearizing, adaptive feed-
back linearizing control, direct, adaptive, and super-
visory fuzzy control methods for a liquid level control
problem. Hence, the focus is on a simulation-based and
experimental comparison between conventional and
fuzzy control methods. For a more philosophical com-
parison between these methods, where a wide range of
issues are discussed, see Passino (1993) and Passino
(1995). It must be emphasized that you must be careful
not to over-generalize the results of this paper. While
similar characteristics have been seen for other applica-
tions you clearly cannot generalize all the conclusions to
all other applications.

It is assumed that the reader has a good understanding
of fuzzy control (e.g., see Passino and Yurkovich, 1998;
Driankov et al, 1993), and point the reader to Ross
(1995);, Kandel and Langholz (1993); Yen et al. (1995);
Sugeno (1985);. Marks (1994); Yager and Zadeh (1992) for
additional studies of applications of fuzzy control. The
adaptive fuzzy control technique that that is used, “fuzzy
model reference learning control,” is explained in Layne
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and Passino (1992, 1993 and 1996) and other applications
of this method can be found in Layne et al. (1993),
Kwong et al. (1995), Moudgal et al. (1995) and Lennon
and Passino (1995). Other methods for adaptive fuzzy
control are covered in the above referenced books and in
Graham and Newell (1988), Graham and Newell (1989),
Procyk and Mamdani (1979), Scharf and Mandic (!985),
Tanscheit and Scharf (1988), Isaka et al. (1988), Daley
and Gill (1987) and Wang et al. (1997). Other fuzzy
supervisory control approaches are given in Ollero and
Garcia-Cerezo (1989), de Silva (1991), Garcia-Benitz et al.
(1993), Moudgal et al. (1994) and Murphy et al. (1996).
Overall, our case study is similar in spirit to the one
found in Heckenthaler and Engell (1994) where the
authors perform a comparative analysis of a variety of
controllers for a specific application.

[n the next section, the process control experiment is
explained by describing the experimental setup, giving
a model of the system, and describing the experimental
conditions. Following this the seven control techniques
mentioned above are introduced. Then the results will be
presented and discussed. Next, advantages and disadvan-
tages of the techniques as they apply to this experiment,
a computational complexity comparison, and our recom-
mendation for which type of controller performed best in
this experiment are presented. Finally, the paper is con-
cluded with a broad discussion of the results, and future
research directions are identified.

2. Process control experiment

The process control experiment in our laboratory
has been designed to emulate systems found in che-
mical processes by providing the ability to study liquid
level control with various disturbances and plant vari-
ations. In this section the experimental setup is described,
give a model of the system, supply a description of
the experimental conditions, and discuss our control
objectives.

TANK

Lf meee——
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-

2.1. Experimental setup

The process control experiment consists of two tanks
as shown in Fig. 1. The first tank, which is called the “fill”
tank, contains a liquid whose volume is to be controlled.
Note that this volume is proportional to the liquid level.
The liquid volume is denoted by L and it is measured in
gallons. When full, the fill tank contains 10 gallons of
liquid. The reference input, which is a desired level, is
denoted by L,. The second tank is a “reservoir” tank
which contains the liquid that will be pumped into and
out of the fill tank. The reservoir tank is the same size as
the fill tank. There are two controlled pumps and another
pump that is used for creating a disturbance. The first
pump is a variable-rate DC pump (which is denoted by
P,) which pumps liquid from the reservoir tank into the
fill tank. The next pump is an AC pump (which is denoted
by P} which can only be turned off and on. This pump
will be used to control the amount of liquid leaving the
fill tank. The last pump, another variable-rate DC pump
(which is denoted by P,), is used to create a disturbance
by removing liquid from the fill tank. The control input
to the system is a single voltage u where a positive value
of sufficient magnitude will cause the DC pump P, to
pump liquid into the fill tank and a negative u of suffi-
cient magnitude will cause the AC pump P, to pump
liquid out of the fill tank. A Gateway 2000 486DX2 66
MHz PC computer is used to run all control algorithms
in the implementation. The process control experiment is
interfaced to the PC through a Keithley Instruments
DAS20 data acquisition board. The sampling period is
0.25 seconds for all the experiments. There are other
electronics that perform filtering on the level measure-
ments, pulse width modulation for the pumps, optical
1solation, and power, but for brevity these electronics will
not be discussed.

It is interesting to note that there are several character-
istics of the experiment which cause problems with regu-
lating the liquid level. First, a styrofoam ball on the end
of a plastic rod (which is free to rotate about a fixed
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Fig. 1. Process control experiment.
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point) along with a potentiometer is used to measure
liquid level. If liquid is pumped into and out of the tank
in a series of pulses, waves are created which cause
problems with level measuring (the styrofoam ball only
measures the level at a point on the surface in the tank,
not the entire surface), which in turn makes regulating
the liquid level more difficult. Second, the pumps have
a significant “dead zone” nonlinearity so that if the volt-
age level is not large enough, no liquid is pumped. This
problem is further magnified in that the AC pump P, has
a much larger dead zone than that of the DC pump P,.
Both of these pumps are responsible for control actions.
Third, there are, of course, saturation nonlinearities on
the rate at which the pumps can transfer water between
the tanks. Fourth, there is significant noise in the system
that seems to arise mainly from the pumps. This noise
tends to propagate by first causing problems with the
level measuring, which in turn causes chattering in the
control output, which further causes the pumps to add
more noise to the system. Fifth, there tends to be some
delay in the system when the pumps are being turned on
and off. Finally, there is a small disturbance in the plant
such that when the pumps are turned off, water may flow
in either direction through the pumps. This flow is due to
the liquid level differential between the two tanks. For
example, if the fill tank has more liquid in it than the
reservoir tank, then the liquid will slowly flow into the
reservoir tank. For all the experiments it is ensured that
more water is in the fill tank so that this “leak” will flow
out of the fill tank. Since the “leak” is relatively small it is
ignored in our model and in the development of our
conventional controllers.

In the next subsection, these nonlinearities are more
carefully quantified by providing a mathematical model
of the system.

2.2. Model

Using some basic modeling ideas, it has been found that
a reasonably good model of the experiment is given by

Lf:a,(u)—af (Lf) (1)

where 24(L/) is a level-dependent disturbance caused by
pump P, (one that is created by the user), «,(u) represents
the combined effects of the pumps P, and P,, u is a volt-
age input (with values between — 8.5 Volts and 10.0
Volts) which controls pumps P, and P,, and L, is the
liquid level in the fill tank. Also,

o, (1) = R(u) 2)
and

0.87R(d(Ly) if d(L;) >0

% (Ly) = {0 if d(L;)<0 @)

R(x) gations/sec

0
X (volts}
Fig. 2. Plot of R(x).

where d(L ) represents the disturbance to the liquid level
(in our experiments the user can pick the disturbance)
and

—0.0333 if x < — 80
0.0000 if —80<x<43

R(X) =14 0.0058x — 00092 if 4.3 < x < 100 “)
0.0488 if 10.0 < x

as shown in Fig. 2.

The function R(x) represents the flow rate of the
pumps. For Eq. (3) the DC pump P, was not as efficient
as the DC pump P, and an efficiency factor of 0.87 was
determined experimentally to represent the difference
(compare Egs. (2) and (3)). The DC pump P, turns on
when an input signal of 4.3 volts or higher is used. At 10
Volts, the DC pump P, saturates, so the flow rate never
goes beyond 0.0488 gallons/sec. The AC pump P, turns
on when a voltage of — 8.0 volts or lower is applied. All
control values u were saturated between the values of

— 8.5 volts and 10.0 volts. Since the AC pump can only

be turned on and off, a voltage had to be chosen to
represent when the pump was on. At 8.0 volts, the DC
pump P, has approximately the same flow rate as the AC
pump has when it is on so this value was used (the DC
pump has a flow rate of approximately 0.0372 gallons/sec
at this voltage).

The disturbance was chosen to be

15.0
d(Ly) = — tan” ' (L)) (5

for two reasons. First, it is desired to have a disturbance
that takes on values between 5.0 volts and 9.0 volts since
this helps to ensure that the model operates in a control-
lable region (so that the pump does not operate in its
dead zones). Second, it is desired to have a disturbance
which is dependent on the volume of liquid since the
disturbance is viewed as an effect from a human operator
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or other subsystem that will generally remove more
liquid from the tank when there is more liquid available.
The function in Eq. (5) meets both of these requirements.
Note that this disturbance only gives us the 5.0 to 9.0 volt
range for our P; pump input when the level is above
2 gallons. Because of this fact, our reference input is
restricted to be above 2 gallons.

The simulations were done with a fourth-order Runge-
Kutta algorithm with an integration step size of 0.25
seconds. The control output was only updated once every
0.25 seconds to better imitate the controllers used in
implementation.

2.3. Experimental conditions

Each controller was allowed to control the process
control system for three different experimental condi-
tions. Each test run involved tracking a desired liquid
volume reference input L,, which was a square wave of
a frequency of 0.005 Hz that switched between 5 and
6 gallons. The reference input was slow enough for well-
designed controllers to succeed in regulating the level, yet
the change in volume was large enough to force the plant
to exhibit its nonlinear characteristics. Similar results are
obtained for most other amplitudes (note the restriction
above). The three different plant setups were:

e Nominal plant (ie., o, (L;) = 0),

e Plant with disturbance (i.e., a, (L;) = 0.87d(L,) ), and

o Plant with a degradation on the DC pump P, or what
will be called a “pump failure,” (For this setup, let
oy (Ly) = 0 and the input to the pump P, was multi-
plied by 0.6, a 60% reduction in the efficiency of the
DC pump P,.) Such a failure may result from build-up
of particulates in the filters of the pump as con-
taminated liquid passes through them.

Note that other experimental conditions were tested but
are not reported here in the interest of brevity. The results
here are representative of the quality of the results found
for other test cases including the case when different
amplitude square waves were used for the desired liquid
volume reference input.

2.4. Control objectives

The control objectives for the process control experi-
ment are to keep the steady-state error small, to have
little or no chattering on the control output, and to use
a low amount of control energy. The most important of
these control objective is having a small steady-state
error (this problem is one of regulating liquid level).
A performance measure will be developed in Section 5 to
quantify this objective. The next important control objec-
tive is to reduce chattering on the control output, to
prolong the life of the pumps. This objective is difficult to
quantify, so it will only be measured qualitatively. The

amount of control energy is important because of power
consumption. A performance measure will be developed
in Section 5 for this objective. For implementation
purposes, the interest is not in the transient responses
because the controllers showed very similar transient
responses relative to the differences seen between the
controllers’ steady-state responses.

3. Conventional control

In this section four conventional control techniques
are presented: on-off, proportional, feedback linearizing,
and adaptive feedback linearizing control. Here, only the
control laws are presented; the results of the controllers’
performance will be presented in Section 5.

3.1 On-off control

The first controller, and probably the simplest studied,
is the on-off controller. This controller follows the simple
control law

10 if L, <L,
“"{~8.5 it L > L, (6)
where L, is the measured liquid volume and L, is the
desired liquid volume. This control law was easy to
develop and also turned out to be an effective controller
for most disturbances and plant variations (see Section
5 for full details). The only drawback of this controller
was that it used the most control energy for all the
experimental setups, and caused chattering in the control
output to a high degree. Clearly, this effect is a negative
characteristic, as chattering the control output can age
the pumps rapidly.

3.2 Proportional control

The next control method presented is a proportional
controller. The control law is

u=Ky(Ls—Ly) (7)

where the proportional gain K, was experimentally de-
termined to be 350 in implementation and 1000 in simu-
lation. Again, this controller is easy to develop, and more
importantly tends to use less control energy than the
on-ofl controller. In fact, this method used the least
amount of control energy for the nominal plant in imple-
mentation as will be seen in Section 5. Proportional
integral derivative (PID), PI, and PD controllers were
also studied, but these techniques offered few, if any,
advantages over the proportional control for a number of

reasons. The sensors on the system tended to be very

noisy, so any derivative of the level tended to be of little
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value because of noise. The integral term was not needed,
because in almost all cases no constant steady-state error
occurred in implementation, and the integral term tended
to slow the system’s response and cause overshoot. Note,
however, that there were two cases which did have a no-
ticeable constant steady-state error. These were the feed-
back linearizing controller for the nominal plant and
pump failure setup. In both cases including the integral
term caused poorer performance than not including it.

3.3 Feedback Linearizing Control

The next conventional controller studied makes use of
feedback linearization (Vidyasagar, 1993). This controller
was designed assuming that complete knowledge of the
disturbance in Eq. (5) is available since if this term is
ignored, the feedback linearization procedure produces
a simple proportional controller (which has already been
studied). Notice that due to the nonlinearity in Eq. (4),
Eq. (1) does not fit the form for feedback linearization.
For instance, notice that if u is small the system is not
controllable due to the dead zone in the pumps. Clearly,
the theory does not apply directly. It can be assumed,
however, that the system will operate in a region where
the theory does hold (e.g., R(x)= 0.0058x — 0.0092).
Proceeding along these lines the control law used for the
feedback linearizing controller is

150 0.0092

+ K, (La—Ly). (8)
Substituting Eq. (8) into Eq. (1) you obtain

. 150, _ 0.0092

- 0.87R(—1—i£) tan” ‘(Lf)) 9)

which simplifies to
L, =00058K,(L;— Lj). (10)

Note that the above derivations make use of the fact that
as long as the input voltage to pumps P, and P, stays
between 5 volts and 9 volts, the assumption above holds
and the flow rate of the pumps R(x) can be approximated
as

R(x) = 0.0058x — 0.0092 . (11)

Since the differential equation can be put into this form
for some operating conditions, the system is feedback
linearizable with certain disturbances (such as the one
given in Eq. (5)). In addition, letting ¢ = L, — L, and
for constant L, L, = 0, the differential equation (Eq. (7))

becomes
é= — (0.0058K e . (12)

This final differential equation shows the system to be
asymptotically stable (for K, > 0). The gain K, is a tu-
ning gain which was experimentally determined to be 80
in implementation and 1000 in simulation.

Section 5 will show that the control law in Eq. (8)
performed best with the known disturbance (i.e., the one
in Eq. (5)) in simulation and implementation. However,
when the controller was used with the nominal plant, it
performed poorly. Because this method performed so
well with a known disturbance, two methods are intro-
duced that utilize some of the structure of the feedback
linearization, but modify it to accommodate other distur-
bances, and the nominal plant. One such method will be
discussed in the next subsection and another in the sec-
tion on intelligent control methods.

3.4. Adaptive feedback linearizing control

The last conventional controller studied is an adaptive
controller. Because of the success of the feedback lineariz-
ing controller for the disturbance case, two adaptive
approaches based on this technique were attempted. The
first approach, adaptive feedback linearization, is pre-
sented here. The second approach is explained in the next
section. The adaptive feedback linearizing approach used
here is discussed in Sastry and Bodson (1989) and Sastry
and Isidori (1989).

Several assumptions need to be made to use the adap-
tive feedback linearizing methodology. First, use
R(x) = 0.0058x — 0.0092. Second, it is assumed that the
disturbance has d(L,) > 0. With the disturbance in Eq.
(5) the R(x) assumption will hold. Without the distur-
bance this control law would result in an adaptive pro-
portional controller with an offset. Finally, the update
law found in Sastry and Isidori (1989) is modified to
include projection (Sastry and Bodson, 1989). With the
above assumptions, the plant becomes

X = R(u) — 0.87R(d(x)) (13)
V=X (14)
where d(x) 1s the same as in Eq. 5, R(x) = 0.0058x —
0.0092, and x is L,. Expanding Eq. 13 results in

. 150 |

X = 0.0058u — 0.0092 — 0.87{ 0.0058 - tan” *(x)

+ 0.87(0.0092) (15)
which becomes

15.0
X =0.0058u—0.87 (0.0058 —15— tan~ 1(x)> —0.13(0.0092).
T

(16)
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Letting  f(x) = — 0.87(0.0058(15.0/x)tan" ' (x)) — 0.13
(0.0092), g(x)=0.0058, and h(x)=x, then X=

f(x)+ g(x)u and y = h(x). From these equations, one
obtains Ljh(x) # 0 (where Ljh(x) is the Lie derivative of
h(x) with respect to g) and thus this system has a relative
degree of 1 (Sastry and Bodson, 1989; Sastry and Isidori,
1989). Further, using the notation in (Sastry and Bodson,
1989; Sastry and Isidori, 1989) and letting 0} =
0.87(0.0058(15.0/x)), 83 = 0.13(0.0092), 0 = 0.0058, fi(x) =
—tan~ }(x), f2(x) = —1, and g,(x) = 1 gives

2
f(x) =3 0ifix) (17)
i=1
and
glx) = 01 g4(x) (18)
where the 0}, i = 1, 2 and #? can be treated as unknown

parameters. The estimates of f(x) and g(x) are f(x) and
d(x) respectively. The estimates can be written as

2

fx)=Y 0! fi(x) (19)
i=1

and

d(x)=0%g,(x) (20)

where f;, i = 1,2 and g, are assumed to be known. The
0} are estimates of 8! and 0? is an estimate of 0. The
control law then becomes

u=ﬁ(—ff?+v) @1)

where

e~ 2 ~

Lh=7Y 0 Lh (22)
]

and

Th=0L, h (23)

where Ly h= —tan"!(x), Lj,h= —1, L,h=1, and
v = Ly + a(L; — y). The variable « is a tuning parameter
which was experimentally determined to be 0.35 for im-
plementation and 2.0 in simulation.

_The adaptive update law for the estimates
0 (0 =[01,0%,0%]17) is of a gradient type with
0=yy—Low (24)

where y is the adaptive gain and w = [w], wl]" where

wy =[L;h L; h]" and 25)

— L,k
Wy = Ly h (%) (26)

Table 1
Bounds on the true values of 6

Variable Upper bound Lower bound
0} 0.0500 0.0000
03 0.0100 0.0005
03 0.0080 0.0020

The adaptive gain y was experimentally determined to be
0.045 in implementation and 0.2 in simulation.

The projection algorithm makes use of the assumption
that upper and lower bounds on the true values of 1, 03,
and 07 are known. The range of possible estimates are
thus restricted to this region. The projection algorithm is
implemented in the following manner: if #} > 8} .., then
0! = 01 .. else if ) < B i, then 01 = 0} .. else 8} is
updated as above. Here ] .., and 0} ;, are our upper
and lower bounds. 03 and A7 are updated in a similar
manner. Table 1 contains the bounds that were used in
both simulation and implementation. Note, that these
bounds contain the true values for 81, 03, and 67 in
simulation for all the plant setups (assuming that
R(x) = 0.0058x — 0.0092).

As will be seen in Section 5, this method performed
well when controlling the plant in the presence of the
known disturbance both in implementation and simula-
tion, but poorly when faced with the pump failure in
implementation. Compared to the other adaptive con-
trollers, it did not perform well for the nominal plant
setup in implementation and simulation. A possible
cause of these problems is parameter uncertainty. To
overcome this problem one possibility is to add uncon-
ventional correcting schemes (e.g., a means to “turn off”
the adaptation during certain transient regions). How-
ever, it was desirable to present this approach without
departing from its basic theoretical framework as estab-
lished in Sastry and Bodson (1989); Sastry and Isidori
(1989) so such a correcting scheme was not used. As will
be seen in Section 5, an approach which does turn off its
adaptation mechanism during the transient region per-
forms remarkably well (this method is the fuzzy supervis-
ory controller).

4. Intelligent control

Many advantages which are inherent in intelligent
control can be attributed to its ability to allow designers
to easily incorporate heuristic knowledge of how to best
control a system into a controller. This knowledge could
come from a human operator who has manually per-
formed the control task, or from a control engineer who
has done mathematical, simulation-based, or experi-
mental analysis of the plant and candidate controllers for
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it. After a considerable amount of studying how our
process control system operates (that included our ex-
periments in conventional control), it was determined
that the best controller for the nominal plant would be
one which, for large errors, used the pumps at full flow
rate, and for the steady-state area, one which pumped
liquid into the tank slowly (lowest flow rate) until the
level was above the desired level, and then let the small
leaking (as mentioned earlier) cause the liquid level to fall
below the desired level. Although the output is oscillat-
ing, this control design is probably the best control
method which can be done for the nominal plant because
of the considerable amount of dead zone in the actuators.
Such heuristic knowledge is exploited in some of the
intelligent control methods below.

The three intelligent control techniques which will be
discussed in this section are fuzzy control, fuzzy model
reference learning control (FMRLC), and a fuzzy super-
visory control.

4.1. Fuzzy control

Fuzzy control has emerged as a practical alternative
for many applications. To design fuzzy controllers one
specifies a set of rules (a rule base) that indicates what the
plant input should be, given the current inputs to the
fuzzy controller. While in operation, the fuzzy control-
ler’s inputs are fuzzified to form fuzzy sets that can be
used by the inference mechanism. The inference mecha-
nism then decides what rules to apply for these inputs by
matching the fuzzified inputs to the premises of the rules
in the rule base. The inference mechanism provides
a fuzzy set that indicates the certainty that the plant input
should take on various values. Then, defuzzification
is used to convert the fuzzy set produced by the infer-
ence mechanism into a crisp output to be used by the
plant.

The fuzzy controller developed here has two inputs
and a single output. It uses singleton fuzzification. The
minimum operator is used to represent premise and
implication. The center of gravity technique is used for
the defuzzification. Furthermore, there are 9 evenly
spaced triangular membership functions over [1, — 1] on
each input. Also, there are 81 triangular membership
functions on the output universe of discourse, and the
outermost membership functions peak at — 8.5 and 10.0
volts.

A block diagram of the fuzzy control system is shown
in Fig. 3. The two fuzzy controller inputs were error in
volume (L, — L;) and volume of liquid L. The gain on
error in volume, K,, was determined experimentally to
be 400 in simulation and 20 in implementation. To utilize
more rules. level values in the range [4.83, 6.17] were
mapped to [ — 1, 1] by performing the following opera-
tion: (L — 5.5) 1.5. The second input, volume of liquid,
was used because of the leaking mentioned earlier. This
leaking depended on the relative volume of liquid in the
two tanks, where larger liquid level differences in the
tanks resulted in larger leaks. So, for the same amount of
error at two different levels, there was a slight difference
in how much liquid the pumps should be pumping.
Furthermore, the disturbance presented in Eq. (5) was
also level-dependent, and with the FMRLC the second
input would greatly help its performance, and so using
the second input on the direct fuzzy controller allowed
for a better comparison between the two methods.

Although the use of L, for the fuzzy controller would
seem to limit the ability of this controller to track refer-
ence inputs out of this range (i.e., outside of the range
[4.83, 6.17]), by changing the fuzzy controller input
(Ly —5.5) 1.5 to (L; — 5.0) 0.18 and increasing the num-
ber of input membership functions on the level input, any
reference input between 0 and 10 could be tracked (the
tanks can only hold ten gallons).

Finally, notice that the nonlinear control surface in-
duced by the fuzzy controller that is shown in Fig. 6(a)
results in an implementation of the control objectives
stated at the beginning of this section. For small negative
errors, the pump P, is never turned on, and for small
positive errors, the pump P, is turned on at its lowest
rate, thus satisfying the second control objective.
For large errors, the corresponding pump was turned on
at its maximum rate, thus satisfying the first control
objective.

4.2. Fuzzv model reference learning control

Fuzzy model reference learning control (FMRLC) has
been effectively used in several applications as a means to
“tune” fuzzy controllers on-line to try to make the fuzzy
controllers more robust to plant variations and to im-
prove disturbance rejection (Layne and Passino, 1992,
1993, 1996; Layne et al. 1993; Kwong et al, 1995;
Moudgal et al.. 1995; Lennon and Passino, 1995). Tt is

t, ——)

[L-5.51%15

€
K oy

PROCESS L

Fig. 3. Block diagram of fuzzy controi system.
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Fig. 4. FMRLC for the tank.

assumed that the reader has access to these publications
for an introduction to the FMRLC and hence a basic
understanding of the FMRLC method.

The block diagram of the FMRLC is shown in Fig. 4.
The fuzzy controller in Fig. 4 has the same structure as
the fuzzy controller described in the previous subsection,
and since it provided a reasonably good performance it is
used to initialize the FMRLC. The gain K, was deter-
mined to be 20 in implementation and 12 in simulation.
The use of the second input becomes more important for
the FMRLC because, as mentioned before, the distur-
bance is a function of the volume of liquid in the tank.
With this information, the amount of control voltage
needed to compensate for the disturbance can be better
tuned.

The reference model for the FMRLC is simply a unity
gain which represents our desire to perfectly track the
reference input L, In experimental work it was found
that using other reference models usually only slowed the
system down (i.e., the rise time decreased) and never
improved performance in the steady state region.

The fuzzy inverse model is a single-input, single-output
fuzzy system with nine input and output membership
functions. The input to the fuzzy inverse model was
scaled with a gain K, which was experimentally found to
have a value of 20 in implementation and a value of 35 in
simulation. The input membership functions were tri-
angular and evenly distributed over [1, — 1], with the
ones at the outermost edges saturated in the usual man-
ner. The output membership function centers followed
a power spacing law over [1, — 1]. In particular, the
output near zero error is small, and increases according
to a square function (membership function centers were
proportional to (L, — L,)?). To see how the fuzzy inverse
model behaves, see Fig. 5. Again, the minimum operator
was used to represent the premise and implication, and
center of gravity was used for the defuzzification. The
output of the fuzzy inverse model was further scaled with
a gain K, which was tuned to be 2.0 in simulation and 4.5
in implementation, and was used as an input to the
knowledge base modifier. The scaling gains of the input

18 . ; . .
-1 05

1

ig. 5. Input-output map for the fuzzy inverse model.

and output of the fuzzy inverse model resulted from using
tuning ideas from the FMRLC construction procedures
in Layne and Passino (1993); Kwong et al. (1995).

The FMRLC knowledge base modifier modifies the
output centers (or consequences) of the fuzzy controller
(for more details see Layne and Passino, 1993). For this
experiment, it was found that modifying the rules that
were on two time periods before gave the best response. If
the previous rule was used (one time period before) then
the controller tunes itself to behave like an on-off con-
troller. This phenomenon occurred because if the error
were positive then the control output’s center would
increase, and as time went on the center would continue
to increase until it reached its maximum value (limits
were placed on the maximum and minimum values that
the knowledge base modifier could modify the output
centers). Similarly, if the error was negative, the output
center on the negative side would be decreased until it
reached its minimum value. The resulting on-off type
control forced the volume to go high then go low by
extreme values. By modifying the output centers from
two time periods before, the FMRLC did not exhibit
the behavior of an on-off controller. For example, the
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Fig. 6. Control surface for the FMRLC controlling the nominal plant. (a) Fuzzy controller surface at 0 sec. (b) Fuzzy controller surface at 150 sec. (c)

Fuzzy controller surface at 250 sec. (d) Fuzzy controller surface at 400 sec.

one-time-period modification makes changes based on
the current sensor readings, and since it takes about one
time period to determine whether the current control
action was effective or not this method does not work
well. However, in the two-time-period modification, the
controller looks at the next level measurement and if the
error is still positive then the output center is increased;
however, if the control action was “high” enough to cause
the level to be negative, then the output center is de-
creased. This approach achieved our control objective; it
operated the pumps in a manner which controlled the
pumps to barely overshoot the reference input.

While the full results of using the FMRLC will be
shown in Section 5, here it is illustrated how the FMRLC
tunes a fuzzy controller. The control surface for the fuzzy
controller of the previous section that was used to initial-
ize the FMRLC is shown in Fig. 6(a). The subsequent
plots in Figs. 6(b}~(d) show how the FMRLC tunes the
fuzzy controller in implementation (similar results are
seen when tuning the fuzzy controller in simulation).
From these it is seen that the initial fuzzy control design
was a close “guess” to the tuned values (although in
Section 5 it will be seen that the re-shaping of the surface

achieved by the FMRLC has a significant impact on
performance to make it perform better than the direct
fuzzy controller in implementation). Another important
point to notice is that by 250 seconds into the trial, the
control surface stayed constant. In the fuzzy controller
presented earlier the output centers were tuned to our
best “guess,” while the centers of the FMRLC’s fuzzy
controller were tuned to values that operated best with-
in the system. The main difference being that even in
the nominal experimental setup, it was not possible to
exactly place the centers where they would be most
effective; the FMRLC did tend to place the centers where
they would be most effective. As seen in Fig. 6 the
majority of the tuning occurred where the error was
small, and the movement of the centers was also relative-
ly small.

From the simulation results it is seen that the FMRLC
only performed better than the fuzzy controller for the
disturbance case. One plausible reason for this occur-
rence is the high gain on the error used by the fuzzy
controller. The FMRLC had problems with such a high
gain on this input. An FMRLC could be designed with
a high gain comparable to the fuzzy controller, but such
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an FMRLC would have very low gains on the learning
mechanism (results for the disturbance case would not
have been achieved, and a high gain on the input fuzzy
system is not practical in implementation). Thus,
a tradeoff was necessary between the gains on the fuzzy
system and the learning mechanism. Generally, it has
been found that if one has a very good understanding of
the plant, then higher gains can be used on the fuzzy
controller (i.e., high gain feedback) and lower gains on the
adaptation. On the other hand, if one has a poor under-
standing of the plant dynamics then it may be desirable
to have lower gains on the controller, and higher gains in
the adaptation loop.

4.3. Fuzzy supervisory control

The fuzzy supervisory controller was developed to try
to capitalize on (i) all the knowledge that had been gained
from the other approaches about how to perform good
control, and (ii) the excellent performance the feedback
linearizing controller displayed for handling the plant
with a disturbance. To overcome the problems of not
“knowing” the system well, two gains are actively tuned
during run-time. A block diagram of the fuzzy supervis-
ory controller is shown in Fig. 7. The control law for the
fuzzy supervisory control technique is

u=fi L+ K,(Li—Ly)+g;(Ly— Ly). (27)

The gain K, was determined to be 150 in implementation
and 1000 in simulation. The gains, f; and g, are tuned by
single-input single-output fuzzy systems. Both fuzzy sys-
tems use singleton fuzzification, the minimum operator
to represent premise and implication, and center of grav-
ity for defuzzification. They both have nine evenly spaced
triangular membership functions over [1, — 1] on each

-1

15 A " A " i
~1.5 -1 -0.5 0.5 1 1.5

[}
control input

Fig. 8. Input-output map for the fuzzy systems in the fuzzy supervisor.

input, with the membership functions at the outermost
edges saturated in the usual manner, and use nine evenly
spaced triangular membership functions over [1, — 1] on
the output universe of discourse. The control surface for
both fuzzy systems is shown in Fig. 8. The only difference
between the two fuzzy systems is that one of the fuzzy
system’s input gain, K;, was 20 in implementation and
150 in simulation, and the other fuzzy system’s input gain
K, was only scaled by 10 in implementation and 50 in
simulation.

The gain f; is adjusted up or down to compensate for
any disturbances (it also ends up compensating for any
plant variations). Tuning f; is accomplished by a fuzzy
system. The adaptation law for | is

fitk + 1) = fi(k) (1 = |y: 1)y, (28)

FUZZY SUPERVISOR

PROCESS L

Fig. 7. Fuzzy supervisory controller block diagram.
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where y; is one of the outputs of the fuzzy supervisor (see
Fig. 7), and y was a tuning factor on the learning rate. The
value of y was experimentally determined to be 0.04 in
implementation and 1.0 in simulation. The (1 — |y,|) term
is used to turn the adaptation on and off. It tunes the
controller when it is within a certain region around the
steady-state value. When it is far away (in the transient
region), it is not tuned. The last term, y,, stops the tuning
when the output is near the desired level. In effect, the
adaptation mechanism does not tune when the output is
far away from the desired output, and when it is very
close to the desired output. It only tunes when it is
“somewhat” close.

The gain g, is tuned to be either a small-(zero-) or
high-gain proportional controller. This part of the con-
trol law was used to ensure that the output stayed within
certain values of the desired output. For regions of large
error the gain g, was 500 in implementation and 2000 in
simulation, and for regions of small error the gain g; was
zero. The adaptation law for g; was the following

91 = K3y, (29)

where y, was the other output of the fuzzy supervisor (see
Fig. 7), and K5 was 500 for implementation or 2000 for
the simulations.

The fuzzy supervisory controller developed above spe-
cifically duplicated the large error response that was
desired by “turning” on and off a high-gain proportional
controller, and for small errors, it operated similarly to
the feedback linearizing controller. By acting like the
feedback linearizing controller for small errors, the
needed response of “just turning on” the pump when the
level was slightly below the desired level is effectively
duplicated. For most cases, the f; gain was large enough
so that for small positive errors the DC pump P, turned
on slightly, and for small negative errors none of the
pumps were turned on. Thus, this controller again du-
plicated the desired design, with the added possibility
that it would duplicate the feedback linearizing results
for most disturbances.

5. Simulation and experimental results

Because the quality of the responses is difficult to
assess by simply observing the graphs of the responses,
a means of quantifying the quality of the responses from
the raw data is used. The two quantitative performance
measures used are a sum of the errors squared over the
two time periods 250 to 300 seconds and 350 to 400
seconds (this measure is denoted by ¥ ), and sum of
control output squared (this is denoted by ¥ u*) over the
same two time periods (note that for the error perfor-
mance measure ¥, e any values within 0.01 in implemen-
tation are judged to be approximately the same. Any
values of ¥ u® within 1000 in implementation of each

other would be judged to be nearly the same). These time
periods were chosen for several reasons. First, they allow
the adaptive control techniques time to “learn” how to
best control the plant. Second, they do not take into
account the transient response. Performance of the con-
trollers in the transient regions were very nearly the
same (all controllers when faced with large errors im-
mediately output a large control voltage). It is important
to note that the control voltage measure of performance
(Yu?) in some cases can be very misleading because of
the dead zones of the pumps. For example, a constant
output of — 5 volts would have a worse performance
measure than a constant output of — 1 volts; however,
both of these controllers use the same amount of “pump
power” since in both instances neither pump would be
on. Another measure of the performance of the control-
lers (though only shown graphically) was its ability to
meet the steady-state error and keep the control output
from chattering. This requirement proved important, be-
cause if the pumps were turning on and off, a consider-
able amount of mechanical and electrical noise entered
the system, causing the level sensor not to operate
effectively. By eliminating noise, better sensor readings
could be obtained. Also note, extreme chattering is con-
sidered a disadvantage because it can age the pumps
rapidly.

In this section results for each experimental setup for
both simulation and implementation are compared and
a recommendation is provided for the controller which
performed the best. For the sake of brevity, only
tabulated numerical results for the on-off controller were
included in this work, and no plots were included.

5.1 Simulation results

The simulation results are presented in this subsection.
Constraints were placed on the proportional gains of the
controllers. In simulation, proportional components of
the controllers studied could be tuned to be unrealisti-
cally high. It is known from implementation studies that
high proportional gain controllers simply act like on-off
controllers because of the noise in the system. It is for this
reason that a limit of 1000 was set on all proportional
components of the controllers.

5.1.1 Nominal plant

The numerical results for the seven controllers for the
nominal plant in simulation can be found in Table 2, and
the corresponding responses of the six controllers (the
seven minus the on-off controller) can be found in Fig. 9.
As can be seen from these results, the fuzzy controller
performed the best at reducing steady state-error. A
reason for this fact is that the fuzzy controller is able
to reflect the necessary nonlinear control needed for
controlling this plant (e.g., the dead zones of the
actuators).
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Table 2 In this instance, the use of the control output per-
Numerical simulation results for nominal plant formance measure is somewhat misleading. The fuzzy

: ; R supervisory controller has a large amount of control
Control technique xe e output when compared to the feedback linearization
On-off control 1.6 x 102 35% 10 controller. Between the times 250-300 seconds, the out-
Proportional control 22x1073 22x10° put of the fuzzy supervisor outputs a — 7 volt signal,
Feedback linearizing control 27x107%  21x10° while the feedback linearization technique outputsa — 2
Adaptive feedback linearizing control L.3x 107,: 1.1x 10? volt signal. In both cases these signals are within the dead
Fuzzy control 5.0%x10°° 6.2 x 10° . .
FMRLC 2510~ 34 % 10° zone. So no energy is being used by the pumps for
Fuzzy supervisory control 5.7x1073 1.4 x 10* pumping.
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Fig. 9. Simulation results for no disturbance and no pump failure (ie. nominal plant). (a) Fuzzy supervisory control. (b) FMRLC. (c) Adaptive
feedback linearizing control. (d) Fuzzy control. (¢) Feedback linearizing control. (f) Proportional control.
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5.1.2. Plant with disturbance

The numerical results for the seven controllers for the
plant with a disturbance in simulation can be found in
Table 3, and the corresponding responses of the six
controllers can be found in Fig. 10. Several of the control-
lers were able to reduce the steady-state error consider-
ably. Among these techniques were all three adaptive
techniques (FMRLC, fuzzy supervisory, and adaptive
feedback linearization) and the feedback linearization.

However, the feedback linearizing technique performed
the best by producing no steady-state error as measured
by our performance measure. Note that the adaptive and
non-adaptive feedback linearization techniques were de-
signed for the disturbance case. All controllers, except the
on-off controller, used about the same amount of control
energy. The reason for the adaptive controllers perform-
ing so well is due to the fact the plant with disturbance is
controllable at most time instances. These controllers are
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Fig. 10. Simulation results for disturbance and no pump failure. (a) Fuzzy supervisory control. (b) FMRLC. (c) Adaptive feedback linearizing control.
(d) Fuzzy control. (¢) Feedback linearizing control. (f) Proportional control.
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Table 3

Numerical simulation results for plant with disturbance
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Table 4

Numerical simulation results for plant with pump failure.

Control technique

Y’

Control technique

ret

Yu?

On-off control 22x1077 3.7 x10% On-off control 7.7x1073 3.5x 104
Proportional control 59%1072 1.4 x 10* Proportional control 94x107° 9.4 x10°
Feedback linearizing control 0.0 1.4 x 10* Feedback linearizing control 30x1077 9.7x10°
Adaptive feedback linearizing control 30%x107° 1.4 10* Adaptive feedback linearizing control 7.8x1073 53x10°
Fuzzy control 47x107* 1.4 x 10* Fuzzy control 1L1x107* 9.1x 10°
FMRLC 561073 1.4 10* FMRLC 40x 1073 5.0x 10°
Fuzzy supervisory control 9.1x10 " 1.4 x 10* Fuzzy supervisory control 15x107% 1.9 x 102
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Fig. 11. Simulation results for no disturbance with pump failure. (a) Fuzzy supervisory control. (b) FMRLC. (c) Adaptive feedback
linearizing control. (d) Fuzzy control. {¢) Feedback linearizing control. (f) Proportional control.
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then able to adapt to tune the necessary parameters to
allow for no steady-state error (the error in level actually
went to zero near the end of each step portion).

5.1.3 Pump failure condition

The numerical results for the seven controllers for the
plant with a pump failure in simulation can be found in
Table 4, and the corresponding responses of the six
controllers can be found in Fig. 11. The fuzzy controller
and fuzzy supervisory controller performed the best.
Again, the fuzzy controller’s ability to map the necessary
nonlinear surface needed for control helped considerably.
Also, in this instance the control output performance
measure is misleading.

3.2. Experimentation results

In this subsection the results of implementing the seven
controllers in the experimental test bed are presented.
Additional tuning was done on many of the controllers to
optimize their performance in the presence of some of the
plant dynamics that were not modeled (e.g., the noise in
the system and the pump delays). In many of the tuning
instances reducing the gains on the error terms and
slowing down the learning of the adaptive techniques
occurred. The tuning that was necessary is explained in
Section 6.

It is emphasized that, in implementation, the control
voltage measure of performance was a meaningful
measure performance. Because of the presence of noise
and the small leakage, the controllers seldom caused
their respective control outputs to remain in a dead-zone
region.

5.2.1. Nominal plant

The numerical results for the seven controllers for the
nominal plant can be found in Table 5, and the corres-
ponding responses of the six controllers can be found in
Fig. 12. As can be seen from these results, the fuzzy
supervisory control and the FMRLC performed better
than any other controllers considering the steady-state
error, Both of these controllers perform about the same,
in so far as they use the smallest amount of control
energy. However, the fuzzy supervisory control technique
tended to keep the control output from chattering. The
controller which used the least amount of control energy
was the proportional controller. Note that, from ¢t = 50
to 100 seconds, the FMRLC tunes its fuzzy controller to
decrease the amount of chattering and this continues to
be evident from ¢t = 230 to 250 seconds.

5.2.2. Plant with disturbance

The results of the experiment with the disturbance can
be seen in Fig. 13 and in Table 6. From these results,
it can easily be seen that the feedback linearization

Table 5

Numerical implementation results for nominal plant.

Control technique de? Yu?

On-off control 8.7x 1072 3.4 % 10*
Proportional control 3.6x 1072 44x10°
Feedback linearizing control 1.2x10° 7.1x10%
Adaptive feedback linearizing control 6.5x1072 1.2x10*
Fuzzy control 23x1072 5.1x10%
FMRLC 8.1x1073 5.2x10°
Fuzzy supervisory control 88x1073 5.8x10%

technique performed the best, with the FMRLC, super-
vised fuzzy controller, and the adaptive feedback control-
ler performing almost as well. However, both the
feedback linearizing controller and adaptive feedback
linearizing controller were designed to account for the
very “disturbance” that was induced (i.e., in the develop-
ment of the controllers perfect knowledge of the distur-
bance is assumed). The two adaptive intelligent control
techniques did not have a priori knowledge of the distur-
bance. The adaptive feedback linearizing and fuzzy
supervisory controllers used the least amount of control
energy. Both intelligent adaptive control techniques had
the same amount of steady-state error, and the fuzzy
supervisory controller used slightly less control energy.

5.2.3. Pump failure condition

The results of the experiment with the pump failure
can be seen in Fig. 14 and in Table 7. Again, the FMRLC
and fuzzy supervisory control techniques out-performed
the other techniques as far as steady-state error is con-
cerned. The fuzzy supervisory technique did slightly bet-
ter in reducing the steady-state error; however, the
FMRLC technique used less control energy. However,
looking at the time period from 150 to 200 seconds, the
FMRLC has problems coping with the pump delays.
Fortunately, the FMRLC is able to adapt to overcome
these delays, as is evident for the rest of the experiment.
Due to the heavy reliance on a priori knowledge of the
plant dynamics, the feedback linearization and adaptive
feedback linearization approaches performed signifi-
cantly worse.

6. Lessons learned

Here, advantages and disadvantages of each type of
controller are presented, a comparison of the controllers
based on computational complexity is given, and our
recommendation for the controller that performed the
best in this experiment is provided.
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Fig. 12. Implementation results for no disturbance and no pump failure (i.e. nominal plant). (a} Fuzzy supervisory control. (b) FMRLC. (c) Adaptive
feedback linearizing control. (d) Fuzzy control. (e} Feedback linearizing control. (f) Proportional control.

6.1. On-off control

The advantage of the on-off controller is that it was the
easiest to develop. It also tended to have a low steady-
state error. However, it caused chattering on the control
output, which caused considerable noise in the level
measuring (the steady-state error would have been better
had this noise not been introduced). The main disadvan-
tage of this controller was that it used the most control

energy for all cases. Simulation and implementation de-
signs for this controller were identical.

6.2. Proportional control

The advantages of the proportional controller are that
it did about the same as the on-off controller in keeping
the steady-state error small, and at the same time reduced
the amount of control energy used. The disadvantage of



J. Zumberge, K.M. Passino/Contro! Engineering Practice 6 (1998) 1055—-1075

Table 6

Numerical implementation results for plant with disturbance.

Control technique Ye? Yu?
On-off control ) 9.9x 1072 3.7 x 10*
Proportional control 12x10°! 1.4 x 10*
Feedback linearizing control 1.5x 1072 1.1 x 10*
Adaptive feedback linearizing control 29x1072 1.2x10*
Fuzzy control LIx107! 1.4 x 10*
FMRLC 1.8x1072 1.3x10*
Fuzzy supervisory control 1.8x 1072 1.2 x 10*
65 ™ — -
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the proportional controller is that it tended to perform
poorly with the disturbance or the pump failure present
in implementation. The implementation of this controller
used a gain of 350, while the simulation used a gain
of 1000. A smaller gain on the proportional controller
was used for coping with noise. As mentioned earlier,
a large gain on a proportional component of a controller

caused the controller to behave similar to an on-off
controller.
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Fig. 13. Implementation results for disturbance and no pump failure. (a) Fuzzy supervisory control. (b) FMRLC. (c) Adaptive feedback linearizing
control. (d) Fuzzy control. (¢) Feedback linearizing control. (f) Proportional control.
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Table 7

Numerical implementation results for plant with pump failure
Control technique Ye? Yu?
On-off control 50x1072 3.7x10*
Proportional control 1.2x107! 1.5x 10*
Feedback linearizing control 3.4x10° 2.1x10*
Adaptive feedback linearizing control 1.1x 10° 23x10*
Fuzzy control 14x107! 20x10%
FMRLC 1.6x107?2 1.3x10*
Fuzzy supervisory control 93x107? 1.9 x 10*

Volume (gal)

6.3. Feedback linearizing control

The advantage of the feedback linearizing controller
was that it was able to perform the best when a known
disturbance was used. Its performance was good, due to
the fact that it did not cause chattering on the control
output, and thus did not introduce much noise into the
system in implementation. The disadvantage of this con-
trol technique lies in its inability to cope with variations
in the plant (as is standard with feedback linearization

control output (V)
h o w 3

L
5

200 250
time (sec)

Fig. 14. Implementation results for no disturbance with pump failure. (a) Fuzzy supervisory control. (b) FMRLC. (c) Adaptive feedback linearizing
control. (d) Fuzzy control. (¢) Feedback linearizing control. (f) Proportional control.
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approaches). The simulation and implementation results
showed that the feedback linearizing controller has prob-
lems coping with the nominal plant, and the experi-
mental setup with the pump failure. The simulation and
implementation of this controller were nearly identical,
except for the use of a higher proportional gain in simula-
tion and a tuning of the gain on the disturbance (i.e., the
0.87 relative efliciency coefficient was tuned to 0.80 for
implementation). The need for the proportional gain
change is the same as for the proportional controller.

6.4. Adaptive feedback linearizing control

The advantage of the adaptive feedback linearizing
controller was seen in its ability in simulation to drive the
steady-state error to zero for the disturbance case. Its
disadvantages resulted from its inability to cope with the
plant with a pump failure in implementation. This con-
troller was designed for the disturbance case, yet it did
not perform better than either of the intelligent adaptive
or feedback linearization techniques for this plant setup.
As seen from Fig. 14(c), this control technique produced
visible oscillations in the hiquid level. These oscillations
were primarily due to the delay in the pumps and this
control technique’s adaptation process.

The two intelligent adaptive techniques’ adaptation
schemes were such that their learning process were not
affected by these delays. Both of the intelligent techniques
were able to adapt slowly because of their architecture.
The FMRLC approach has a “remembering” mecha-
nism, such that at different levels in the tank, different
parameters are learned (transient and steady-state re-
gions had their own parameters). The fuzzy supervisory
controller did not learn when a large error was present
(the steady-state parameters were only learned when the
plant was in the steady-state region). The adaptive feed-
back linearizing control technique adjusted the same
parameters throughout all levels in the tank, and thus
had to adapt quickly to learn in both the transient and
steady-state regions.

Finally, note that designs for simulation and imple-
mentation were the same except for changing the learn-
ing and proportional gains. The learning gain y was
decreased from 0.2 in simulation to 0.045 in implementa-
tion. The proportional gain « was also decreased from 2.0
in simulation to 0.35 in implementation to further help in
improving performance.

6.5. Fuzzy control

The fuzzy control technique performed the best among
the non-adaptive techniques for controlling the nominal
plant. Its ability to perform so well with the nominal
experimental setup stems from our ability to heuristically
add knowledge of how to control the plant into the fuzzy
controller. A disadvantage of using this controller (and

the other non-adaptive techniques) was its inability to
cope with the disturbance and the pump failure as effec-
tively as the two intelligent adaptive techniques did.

6.6. Fuzzy model reference learning control

The FMRLC technique performed, in most condi-
tions, as well as or better than all the other controllers
(excluding the fuzzy supervisory controller). It performed
only slightly worse than the feedback linearizing control-
ler for the disturbance case, even though it had no a priori
knowledge of the disturbance. The ability of this tech-
nique to perform so well is primarily due to the fact
that it can adapt differently in each region of operation
(transient and steady-state). One disadvantage to this
technique is that it uses a relatively high amount of
computational resources. However, the FMRLC was im-
plementable within the sampling period, and hence this is
not a significant disadvantage.

FMRLC designs for simulation and implementation
differed in the choice of the scaling gains. The simulation
design made use of high gains on the learning mechanism
to help cope with plant variations. The implementation
design used lower gains on the learning mechanism to
avoid effects from the pump delays. The lower learning
gains allowed for slightly higher gains on the propor-
tional components.

6.7. Fuzzy supervisory control

The fuzzy supervisory technique performed the best in
the majority of trials, both in simulation and implemen-
tation. It performed only slightly worse than the feedback
linearizing controller for the disturbance case, even
though it had no a priori knowledge of the disturbance.
The ability of this technique to perform so well is prim-
arily due to the fact that it employs a specially designed
adaptation mechanism, such that it only tuned while the
process was in its steady-state region. During the transi-
ent regions it simply acted as an on-off controller. Designs
for simulation and implementation were quite similar,
except for the use of higher gains on the proportional
components, and the use of higher gains on the adaptation
process, thus allowing it to learn faster for simulation.

6.8. Computational complexity

The computational complexity of the seven algorithms
can be best represented by letting the complexity of the
feedback linearization be denoted by N (the computation
complexity here is based on the relative amount of pro-
cessor use). The complexity of the on-off controller and
proportional controllers was slightly less than N. The
complexity of the fuzzy and the fuzzy supervisory con-
trollers was about 5N, the complexity of the FMRLC
and the adaptive feedback linearizing controller was
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about 10N (all of these values are only approximations;
the implemented fuzzy systems use an algorithm that
allows for few computations because of the fact that only
two input membership functions on each input are ever
on). The differences in the computation time may be
great, but the ability of modern processors greatly reduces
the effect. In fact, it is quite easy to implement all the con-
trollers using the same sampling period of 0.25 seconds.

6.9. Recommendations

From the results in the previous section, the fuzzy
supervisory controller is recommended for implementa-
tion for this experiment. The fuzzy supervisory controller
performed equally with the FMRLC when using our
quantitative performance measures only, but the fuzzy
supervisory controller also had lower amounts of chat-
tering as compared to the FMRLC control method. This
advantage is considered a significant benefit in that the
chattering can cause excessive wear on the pumps. Al-
though the fuzzy supervisory controller did not perform
as well as the feedback linearizing controller for the
disturbance setup, both in the performance measure
(though this is a very minute difference) and the level of
chattering, it is believed that if the fuzzy supervisory
controller were given additional information about the
plant it could perform as well.

7. Concluding remarks

In this work four conventional control techniques (in-
cluding one adaptive technique) and three intelligent
control techniques (two were adaptive techniques) were
presented. Each of these controllers was tested in simula-
tion and three separate experimental setups and a com-
parative analysis was performed. The fuzzy supervisory
control technique tended to perform the best.

Possible future research directions include

o Expanding the experimental setup to include control of
temperature and liquid level,

o Performing some theoretical analysis on stability and
robustness,

e Experimenting with additional nonlinear control tech-
niques, and

e Using other intelligent control techniques (current
work includes an indirect adaptive fuzzy control tech-
nique (Spooner and Passino, 1996) and a genetic model
reference adaptive control technique (Porter and
Passino, 1994).

Overall, it seems that the primary advantages of the
intelligent control methods lie in the ease with which our
heuristic ideas about how to achieve good control could
be incorporated. It remains to be seen if this advantage
holds for other applications. Clearly, in some cases there

may be significant advantages to conventional methods,
especially if one has a good mathematical model of the
process.
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