
188 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 2, MARCH 1999

Intelligent Control for Brake Systems
William K. Lennon and Kevin M. Passino,Senior Member, IEEE

Abstract—There exist several problems in the control of brake
systems including the development of control logic for antilock
braking systems (ABS) and “base-braking.” Here, we study
the base-braking control problem where we seek to develop a
controller that can ensure that the braking torque commanded
by the driver will be achieved. In particular, we develop a “fuzzy
model reference learning controller,” a “genetic model reference
adaptive controller,” and a “general genetic adaptive controller,”
and investigate their ability to reduce the effects of variations
in the process due to temperature. The results are compared to
those found in previous research.

Index Terms—Adaptive control, automotive, brakes, fuzzy con-
trol, genetic algorithms.

I. INTRODUCTION

A UTOMOTIVE antilock braking systems (ABS) are de-
signed to stop vehicles as safely and quickly as possible.

Safety is achieved by maintaining lateral stability (and hence
steering effectiveness) and trying to reduce braking distances
over the case where the brakes are controlled by the driver.
Current ABS designs typically use wheel speed compared to
the velocity of the vehicle to measure when wheels lock (i.e.,
when there is “slip” between the tire and the road) and use
this information to adjust the duration of brake signal pulses
(i.e., to “pump” the brakes). Essentially, as the wheel slip
increases past a critical point where it is possible that lateral
stability (and hence our ability to steer the vehicle) could be
lost, the controller releases the brakes. Then, once wheel slip
has decreased to a point where lateral stability is increased and
braking effectiveness is decreased, the brakes are reapplied.
In this way the ABS cycles the brakes to try to achieve an
optimum tradeoff between braking effectiveness and lateral
stability. Inherent process nonlinearities, limitations on our
abilities to sense certain variables, and uncertainties associated
with process and environment (e.g., road conditions changing
from wet asphalt to ice) make the ABS control problem
challenging. Many successful proprietary algorithms exist for
the control logic for ABS. In addition, several conventional
nonlinear control approaches have been reported in the open
literature (see, e.g., [1] and [2]), and even one intelligent
control approach has been investigated [3].

Manuscript received July 29, 1996; revised September 29, 1997. Recom-
mended by Associate Editor, K. Passion. This work was supported in part
by Delphi Chassis Division of General Motors, the Center for Automotive
Research (CAR) at Ohio State University, and National Science Foundation
under Grants IRI9210332 and EEC9315257.

The authors are with the Department of Electrical Engineering, Ohio State
University, Columbus, OH 43210 USA.

Publisher Item Identifier S 1063-6536(99)01618-8.

In this paper, we do not consider brake control for a
“panic stop,” and hence for our study the brakes are in a
non-ABS mode. Instead, we consider what is referred to as
the “base-braking” control problem where we seek to have
the brakes perform consistently as the driver (or an ABS)
commands, even though there may be aging of components or
environmental effects (e.g., temperature or humidity changes)
which can cause “brake grab” or “brake fade.” We seek to
design a controller that will try to ensure that the braking
torque commanded by the driver (related to how hard we hit
the brakes) is achieved by the brake system. Clearly, solving
the base braking problem is of significant importance since
there is a direct correlation between safety and the reliability
of the brakes in providing the commanded stopping force.
Moreover, base braking algorithms would run in parallel with
ABS controllers so that they could also enhance braking
effectiveness while in ABS mode.

Prior research on the braking system considered here has
shown that one of the primary difficulties with the brake
system lies in compensating for the effects of changes in
the “specific torque,” to be defined below, that occur due to
temperature variations in the brake pads [4]. Previous research
on this system has been conducted using proportional-integral-
derivative (PID), lead-lag, autotuning, and model reference
adaptive control (MRAC) techniques [5]. While several of
these techniques have been highly successful (particularly the
lead-lag compensator that we use as a base-line comparison
here), there is still a need to improve the compensators for
the case where there are changes in specific torque due to
temperature variations that result from, for example, repeated
application of the brakes. In this paper we investigate the
performance of three intelligent control techniques, fuzzy
model reference learning control [6], genetic model reference
adaptive control [7], [8], and “general genetic adaptive con-
trol” [9], for the base braking problem and compare their
performance to the best results found in [4] and [5]. We
especially focus on the performance of these techniques when
there are variations in the specific torque.

In Section II we provide a simulation model for the base
braking system that has proven to be very effective in de-
veloping,implementing, and testing control algorithms for the
actual braking system [4], [5]. In Section III we develop a
fuzzy model reference learning controller (FMRLC) for the
base braking system problem. Its performance is evaluated in
simulation by comparing it to a lead-lag compensator from [5]
under varying specific torque conditions. In Sections IV and
V, we develop a genetic model reference adaptive controller
(GMRAC) and a general genetic adaptive controller (GGAC)

1063–6536/99$10.00 1999 IEEE

LENNON AND PASSINO: INTELLIGENT CONTROL FOR BRAKE SYSTEMS 189

Fig. 1. Base braking control system.

for the base braking problem. We use similar test conditions
for evaluating the controller and compare its performance to
the previous ones. Numerical performance results are shown
in Section VI, and some concluding remarks are provided in
Section VII.

II. THE BASE BRAKING CONTROL PROBLEM

Fig. 1 shows the diagram of the base braking system, as
developed in [5]. The input to the system, denoted by , is
the braking torque requested by the driver. The output,
(in ft-lbs), is the output of a torque sensor, which directly
measures the torque applied to the brakes. Note that while
torque sensors are not available on current production vehicles,
there is significant interest in determining the advantages of
using such a sensor. The signal represents the error
between the reference input and output torques, which is used
by the controller to create the input to the brake system, .
A sampling interval of s was used for all our
investigations.

The General Motors braking system used in this research
is physically limited to processing signals between [0,5]
V, while the braking torque can range from 0 to 2700 ftlb.
For this reason and other hardware specific reasons [5], the
input torque is attenuated by a factor of 2560 and the output
is amplified by the same factor. After is multiplied by
2560 it is passed through a saturation nonlinearity where if
2560 , the brake system receives a zero input and if
2560 then the input is five. The output of the brake
system passes through a similar nonlinearity that saturates at
zero and 2700. The output of this nonlinearity passes through

, which is defined as

The function was experimentally determined and rep-
resents the relationship between brake fluid pressure and
the stopping force on the car. Next, is multiplied by
the specific torque . This signal is passed through an
experimentally determined model of the torque sensor; the
signal is scaled and is output. The specific torque
in the braking process reflects the variations in the stopping
force of the brakes as the brake pads increase in temperature.
The stopping force applied to the wheels is a function of
the pressure applied to the brake pads and the coefficient of
friction between the brake pads and the wheel rotors. As the
brake pads and rotors increase in temperature, the coefficient

of friction between the brake pads and the rotors increases.
As a result, less pressure on the brake pads is required for the
same amount of braking force. The specific torqueof this
braking system has been found experimentally to lie between
two limiting values so that

All the simulations we conducted use a repeating 4 s input
reference signal. The input reference begins at 0 ftlb, increases
linearly to 1000 ftlb by 2 s, and remains constant at 1000 ftlb
until 4 s. After 4 s the states of the brake system are cleared
(i.e., set to zero), and the simulation is run again. The first
two 4-s simulations are run with , corresponding
to “cold brakes” (a temperature of 125F). The next two 4-s
simulations are run with increasing linearly from 0.85 at
0 s to 1.70 by 8 s. Finally, two more 4-s simulations are run
with , corresponding to “hot brakes” (a temperature
of 250 F). Fig. 2 shows the reference input and the specific
torque over the course of the simulation that we will use
throughout this paper.

As a base-line comparison for the techniques to be shown
here, the results of a conventional lead-lag controller are shown
in Fig. 3. This controller was chosen because it was the best
conventional controller previous researchers [4], [5] developed
for this braking simulation. The lead-lag controller is defined
as

As can be seen in Fig. 3, the conventional controller performs
adequately at first, but as the specific torque increases, the
controller induces a large overshoot at the beginning of each
ramp-step in the simulation. The conventional controller does
not compensate for the increased specific torque of the brakes
and hence overshoots the reference input when the reference
input is small. In fairness to the conventional method however,
it was designed for cold brakes. If it were designed for hot
brakes it would perform better for , but then it would
not perform as well for cold brakes. Clearly, there is a need
for an adaptive or robust controller.

Past researchers have investigated certain adaptive methods.
First a gradient-based MRAC was studied [5]. This controller
performed worse than the controllers shown in this paper (it
had a much poorer transient response) so we still use the
fixed lead-lag compensator for comparisons. In [4] and [5] the

190 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 2, MARCH 1999

Fig. 2. Reference input and specific torque.

Fig. 3. Results using conventional lead-lag controller.

authors also investigated the use of a proportional-integral-
derivative (PID) autotuner. This method was very successful
in the off-line tuning (i.e., open-loop tuning) of a PID brake
controller. Its only drawback is that it does not provide for
continuous adaptation as the temperature changes (which is
our primary concern here).

The intelligent control techniques to be presented in this
paper use a reference model to quantify the desired perfor-
mance of the closed-loop system. This model was developed

in previous work [5], and is defined as shown in (1)

(1)

This model was chosen to represent reasonable and adequate
performance objectives for the brake system. The physical

LENNON AND PASSINO: INTELLIGENT CONTROL FOR BRAKE SYSTEMS 191

Fig. 4. FMRLC for base braking.

process was taken into consideration in the development of
this model.

III. A DAPTIVE FUZZY CONTROL

In this section we develop an adaptive fuzzy controller
for the base braking problem. In particular, we modify the
fuzzy model reference learning control (FMRLC) technique
[3], [6], [10], [11] that has already been utilized in several
applications. The FMRLC, shown in Fig. 4, utilizes a learning
mechanism that observes the behavior of the fuzzy control
system, compares the system performance with a model of
the desired system behavior, and modifies the fuzzy controller
to more closely match the desired system behavior. Next we
describe each component of the FMRLC in more detail.

A. FMRLC for Base Braking

The inputs to the fuzzy controller are the error and
change in error defined as
and , respectively. The gains

, , and were adjusted to normalize the universe of
discourse (the range of values for an input or output variable)
so that all possible values of the variables lie between [1, 1].
After some simulation-based investigations we chose ,

, and .
The knowledge-base for the fuzzy controller is generated

from IF–THEN control rules. A set of such rules forms the
“rule base” which characterizes how to control a dynamical
system. The fuzzy controller we designed consists of two
inputs with six membership functions each, as shown in Fig. 5.
Thus, there are a total of 36 IF–THEN rules in the fuzzy
controller of Fig. 4. There are 36 triangular output membership
functions that peak at one, are symmetric, and have base
widths of 0.2. It is the centers of the output membership
functions that are adjusted by the FMRLC.

Suppose that, as shown in Fig. 5, the normalized inputs
to the fuzzy controller are and

. Let us use the linguistic
description “error” for , “change in error” for ,

and “output” for . Therefore, in the example shown in
Fig. 5, the certainty that “error is positive small” is 0.764,
and the certainty that “error is positive medium” is 0.236.
Likewise, the statement “change in error is negative medium”
has a certainty of 0.873 and “change in error is negative small”
has a certainty of 0.127. All other values have certainties of
zero. Of the 36 rules in the fuzzy controller rule-base, only four
have premises with certainties greater than zero (we use the
min operator to represent the “and” operator in the premise).
They are as follows.

If error is positive-smalland change-in-erroris
negative-smallThen output is consequence

If error is positive-smalland change-in-erroris
negative-mediumThen output is consequence
If error is positive-mediumand change-in-error
is negative-smallThen output is consequence

If error is positive-mediumand change-in-erroris
negative-mediumThen output is consequence .

Here consequence is the linguistic value associated with
the output membership function of the rule. The member-
ship function of the implied fuzzy set corresponding to each
consequence is determined by taking the minimum of
the certainty of the premise with the membership function
associated withconsequence . The implied fuzzy sets are
shown in the shaded regions in Fig. 5.

The output of the fuzzy controller, , is computed
via the center of gravity (COG) defuzzification algorithm, as
shown in Fig. 5. For COG the certainty of each rule premise
is calculated, and the trapezoid with a height equal to that
certainty is shaded. The center of gravity of the shaded regions
is calculated, and that is the output of the fuzzy controller,

.
In the FMRLC, typically the center of the output mem-

bership function of each rule is initialized to zero when the
simulation is first started. This is done to signify that the direct
fuzzy controller initially has “no knowledge” of how to control
the brake system (of course it does have some knowledge
since the designer must specify everything else in the fuzzy

192 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 2, MARCH 1999

Fig. 5. Example of fuzzy inference.

controller except for the output membership function centers).
Note that using a well-tuned direct fuzzy controller for the
braking system to initialize the FMRLC only slightly affects
performance. Of course, we are not implying that we are not
using model information about the plant to perform our overall
design of the adaptive fuzzy controller. Plant information is
used in the tuning of the FMRLC through an iterative process
of simulation of the closed-loop system and tuning of the
scaling gains. More details are provided on this below.

The output of the fuzzy controller can be mapped as a three-
dimensional surface, where the two inputs, and ,
define the and axes and the output of the fuzzy controller,

defines the axis. The rule base of the fuzzy controller
can be visualized in terms of this surface, and the learning
mechanism of the FMRLC can be thought of as adjusting the
contours of this surface.

The rules in the “fuzzy inverse model” quantify the inverse
dynamics of the process [3], [6], [10], [11]. The fuzzy inverse
model is very similar to the direct fuzzy controller in that
it has two inputs, error and change in error, one output,
and a knowledge base of IF–THEN rules (their membership
functions have shapes similar to those shown in Fig. 5).
Both inputs in our fuzzy inverse model contain membership
functions (with the middle one centered at zero), corresponding
to 25 IF–THEN rules. The fuzzy inverse model operates on
the error, , and change in error, , between the

desired behavior of the system, , and the observed
behavior of the system, . It then computes what the input
to the braking processshould have beento drive this error
to zero. This information is passed to the rule-base modifier
which then adjusts the fuzzy controller to reflect this new
knowledge.

The output centers of the rule base of the fuzzy inverse
model are structured so that small differences between the
desired and observed system behavior result
in fine tuning of the fuzzy controller rule-base, while large
differences result in very large adjustments to
the fuzzy controller rule-base. For example, the following are
three of the 25 rules in the fuzzy inverse model.

If error is zeroand change-in-error
is zeroThen output is zero

If error is positive-smalland change-in-error
is positive-smallThen output is positive-tiny
If error is positive-largeand change-in-error
is positive-largeThen output is positive-huge

Here the input linguistic valueszero, positive-small, and
positive-largecorrespond to numerical values of 0, 0.5, and
1.0, respectively, and the output linguistic valeszero, positive-
tiny, and positive-hugecorrespond to numerical values of 0,
0.031, and 1.0. After some simulation-based investigations we
chose , , and .

LENNON AND PASSINO: INTELLIGENT CONTROL FOR BRAKE SYSTEMS 193

Fig. 6. Results using the FMRLC.

The rule base modifier uses the information from the fuzzy
inverse model , to change the rule base of the direct
fuzzy controller. At each time, the direct fuzzy controller
computes the implied fuzzy set of each of the 36 rules in
its knowledge base. Because there are two inputs, at any one
time sample at most four rules will be activated. The rule-base
modifier stores the degree of certainty of each rule premise
for the past several time samples. It then modifies those rules
by a factor equal to the output times the degree of
certainty of the rule (note that this approach to knowledge-
base modification differs slightly from that in [6] since there
the premise certainties are not used). Because there is a delay
of three time samples in the dynamics of the braking process,
the rule base modifier adjusts the centers of the rules that
were active three time units in the past. In this manner, the
learning mechanism adjusts the rules that caused the error in
the braking process, and not just the rules that were active
most recently. For more details on the operation and design
of the FMRLC see [11].

B. FMRLC Results

The results of the FMRLC simulation are shown in Fig. 6.
The FMRLC does not perform well initially because it is
learning to control the braking process. The FMRLC was
more successful in the remaining seconds and outperformed
the conventional controller when the specific torque of the
brake system increased. Note in Fig. 6 that the FMRLC very
quickly (within 0.25 s) learned to control the braking process.
The FMRLC performed consistently well over the full range of
specific torque. It is difficult to discern any difference between
cold and hot brakes in the output of the braking process (which
is the goal of this project). Nevertheless, it is clearly seen (by
comparing the controller output in the first 8 s to the controller

output in the final 8 s) that the fuzzy controller is learning
to compensate for the increased specific torque by sending a
smaller signal to the brakes. We computed the error between
the reference input and the braking process output at each time
step in the simulation. This error was squared and summed
over the entire simulation. These results are shown in Table I
in Section VI.

Fig. 7 shows the nonlinear map implemented by of the
fuzzy controller in Fig. 4 at four time instances. The black
“X” was included on the 3-dimensional plots to clearly show
the center of the fuzzy surface, where most of the learning
takes place. When the FMRLC is first run, it quickly creates
inference rules that effectively control the braking process.
As the simulation continues and the dynamics of the plant
change, (i.e., the specific torque increases), the FMRLC tunes
the rules of the fuzzy controller to adequately compensate for
the change in brake dynamics. Note that at first glance of
Fig. 7, the surface of the fuzzy controller does not appear
to change appreciably as the braking process changes. This
is because much of what the controller has learned is still
valid and the learning mechanism does not affect these areas.
However, it is important to see that the center of the fuzzy
surface, corresponding to and ,
(the area in which the controller is designed to operate),
decreases by roughly one-half when the specific torque of the
braking process increases by two. Thus the FMRLC learns to
adapt to conditions of the braking process, keeping old rules
unmodified and adjusting only those rules that are used in the
present operating conditions. In the simulation, as the brake
pads increase in temperature and the specific torque of the
brakes increase, the learning mechanism adjusts the rules of
the fuzzy controller to compensate for the increased gain in
the braking process.

194 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 2, MARCH 1999

Fig. 7. Adaptation of fuzzy controller surface. The axes labeled “error” ise(kT), “change in error” isc(kT), and “output” isu(kT). Note that after the
controller surface is first created, the only significant modifications occur at the center of the surface, marked by the “X.” The surface center adapts as the
brake process changes, from a height of 0.378 whenSt = 0:85 to a height of 0.183 whenSt = 1:70.

Fig. 8. GMRAC for base braking.

IV. DIRECT GENETIC ADAPTIVE CONTROL

In this section we develop a genetic model reference adap-
tive controller (GMRAC) [7], [8] for the base braking control
problem. A genetic algorithm (GA) is used to evolve a
good brake controller as the operating conditions of the
braking process change. The GMRAC, shown in Fig. 8, uses
a simplified model of the braking process to evaluate a
population (set) of braking controllers and “evolve” a good
controller for the braking process. Next we describe each

component of the GMRAC in more detail, but first we briefly
outline the basic mechanics of GA’s.

A. The Genetic Algorithm

A genetic algorithm is a parallel search method that manip-
ulates a string of numbers (a “chromosome”) according to the
laws of evolution and biology. A population of chromosomes
are “evolved” by evaluating the fitness of each chromosome
and selecting members to “reproduce” based on their fitness.

LENNON AND PASSINO: INTELLIGENT CONTROL FOR BRAKE SYSTEMS 195

Evolution of the population of individual chromosomes here is
based on four genetic operators: crossover, mutation, selection,
and elitism.

Selection is the process where the most fit individuals
survive to reproduce and the weak individuals die out. The
selection process evaluates each chromosome by some fitness
mechanism and assigns it a fitness value. Those individuals
deemed “most fit” are then selected to become parents and
reproduce. The selection of which chromosomes will repro-
duce is not deterministic, however. Every member of the
population has a probability of being selected for reproduction
equal to its fitness divided by the sum of the fitness of the
population. Hence, the more fit individuals have a greater
change to reproduce than the less fit individuals. Crossover
is the procedure where two “parent” chromosomes exchange
genetic information (i.e., a section of the string of numbers) to
form two chromosome offspring. Crossover can be considered
a form of local search in the population space. Mutation is
a form of global search where the genetic information of
a chromosome is randomly altered. Elitism is used in the
GMRAC to ensure that the most fit member of the population
is moved without modification into the next generation. By
including elitism, we can increase the rates of crossover and
mutation, thereby increasing the breadth of search, but still
ensure that a good controller remains present in the population.

Our genetic algorithm uses the base-10 number system
as opposed to base-2 which is commonly used in [12] and
[13]. While base-2 systems can be advantageous because they
consist of smaller “genetic building blocks,” they have the dis-
advantage of more complicated encoding/decoding procedures
and longer strings (which can affect our ability to implement
the genetic adaptive controllers in real time). While both bases
work well, we chose to use base-10 because of the ease in
which controller parameters can be coded into a chromosome,
as described below.

B. GMRAC for Base Braking

In this section, we describe each component of the genetic
adaptive mechanism in Fig. 8.

1) The Population of Controllers:The GMRAC uses a
lead-lag controller which is the best conventional controller
previous researchers in [4] and [5] have found for this braking
simulation. The transfer function of this controller is

The gain of the controller was constant at in previous
research, but will be “evolved” by the GMRAC to adapt to
braking process changes. The range of valid gains has been
limited to . This is to try to ensure that the
GA does not evolve controllers that are unstable or
highly oscillatory .

The controller population size was constant at eight mem-
bers. This was a compromise between search speed and
processing time. In general, as the population size increases,
more variety exists in the population and therefore “good”
controllers are more likely to be found. However, computation
time is greatly affected by population size, and therefore

the maximum population size is limited by the speed of the
processor and the sampling interval of the system. Note that
performance of the GMRAC was not significantly affected by
population sizes of six or more. Rather, the GMRAC perfor-
mance was more greatly affected by the crossover probability,
mutation probability, and the number of time units into the
future the fitness evaluation attempts to predict (described
below).

Each individual controller gain was described by a three-
digit base-10 number. Each digit is called a “gene” and
the string of genes together forms the “chromosome.” This
chromosome is very simply decoded into a decimal number
corresponding the gain of the lead-lag controller. To decode
a chromosome, simply place a decimal point before the first
gene of the chromosome. For example, a chromosome of [345]
would decode into .

2) Fitness Evaluation and the Braking Process Model:The
GA uses , , , , (and their past
values), and a plant model to evaluate the fitness of the strings
in the population of candidate controllers. At each time step
(i.e., each “generation”) the GA chooses the controller in the
population with maximum fitness value to control the plant
from time to time .

The process model used in the GMRAC is a simplified
model of the braking process. The model of the plant is
described by the transfer function

(2)

Comparing this to the actual model of the brake system in
Section II, we see that this model ignores significant nonlin-
earities and the “disturbance” (i.e., we treat the model in
Section II as the “truth model”).

The genetic algorithm seeks to maximize the fitness function

where

and is the predicted error between the outputs of the plant
and reference model. Here denotes the “look ahead” time
window, signifying that the fitness evaluation attempts to pre-
dict the braking process for the next unit samples. Because
there is significant delay between control input and braking
output, a short time window would cause the current controller
candidates to be evaluated mostly on the performance of past
controllers, leading to inaccurate fitness evaluations. However,
longer time windows cause greater deviations between the
braking process model and the actual braking process, and
this also leads to inaccurate fitness evaluations. We selected

as a good compromise to maintain the validity of the
fitness evaluations.

After some simulation-based investigations, we choose
and . The constant defines the number

of time samples in which the error should reach zero. For
example, if and , then the fitness function is

196 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 2, MARCH 1999

maximized when , which would indicate
that should reach zero in time steps.

The fitness evaluation proceeds according to the following
pseudocode.

1) Collect , , and .
2) Compute a first-order approximation of ,

.
3) Estimate the closed-loop system response for the next

samples for each controller in the population:
For to :

Generate from braking process model in (2).
Estimate .
Compute .
Generate from , ,

etc., and controller parameters.
Next .

4) Compute .
5) Assign fitness, , to each controller candidate, :

Let
.

6) The maximally fit controller becomes the next controller
used between timesand . The selection, crossover,
mutation, and elitism [7] processes are applied to pro-
duce the next generation of controllers (see below).
Increment the time index and go to Step 1).

3) Selection and Reproduction of Controllers:Once each
controller in the population has been assigned a fitness

, the GA uses the “roullete-wheel” selection process
[12] to determine which controllers will reproduce into the
next generation. The roullete-wheel selection process picks
the “parents” of the next generation in a manner similar
to spinning a roullete-wheel, with each individual in the
population assigned an area on the roullete-wheel proportional
to that individual’s fitness. Hence the probability that an
individual will be selected as a particular parent of the next
generation is proportional to the fitness of that individual.
Note that some individuals will likely be selected more than
once (indicating they will have more than one offspring),
while other individuals will not be selected at all. In this
way the “bad” controllers are generally removed from the
population.

Next, the parents are coupled together and generally undergo
crossover. The probability that crossover occurs between two
parents is determineda priori by a crossover probability.
In our simulation, two parents will undergo crossover with
probability 0.90. Crossover is conducted differently than is
commonly described. In all genetic algorithms used in these
simulations, crossover is not done by selecting a crossover
site and exchanging genes beginning at the crossover site
and ending at the end of the chromosome. Instead, crossover
is done on a gene-by-gene basis. Each gene (digit) in the
chromosome has a 0.5 probability of being exchanged for
the digit in the same location on the mating chromosome.
For example, the GA uses a string length of three, so two
possible parent chromosomes could be [333] and [111]. If
these two chromosomes undergo crossover, possible offspring
pairs could be [113] and [331] or [131] and [313].

After crossover, the two offspring undergo mutation, with a
prespecified probability. In the GMRAC, we used a mutation
probability of 0.3, which means every digit in the chromosome
has a 30% probability of being mutated. Note that this is
a relatively high mutation probability, but with the elitism
operator ensuring that a good controller is always in the
population, a high mutation rate helps to offset the small
population size and improve the searching ability of the GA.
Moreover, we have found that since the fitness function
is time varying and the plant is changing in real time, there
is a significant need to make the GA aggressive in exploring
various regions (i.e., in trying different controller candidates).
If it locks on to some controller parameter values and is
inflexible to change it will not be successful at adaptation.

C. GMRAC Results

Fig. 9 shows the results of the braking simulation using
the GMRAC. As can be seen in Fig. 9, the GMRAC performs
more consistently as the specific torque of the brakes increases.
While the performance does degrade somewhat as specific
torque increases, at its worst it is still significantly better than
the conventional controller. Note that contrary to conventional
controllers and the FMRLC discussed previously, the GMRAC
is stochastic, and the results in Fig. 9 represent the behavior
for only one simulation run. We did, however, find similar
average behavior when we performed 100 simulation runs.
We computed the error between the reference input and the
braking process output at each time step in the simulation.
This error was squared and summed over the entire simulation.
The minimum, average, and maximum errors for the 100
simulations are shown in Table I in Section VI.

D. GMRAC with Fixed Population Members

Because genetic algorithms are stochastic processes, there
is always a small possibility that good controllers will not be
found and hence degrade performance. While this possibility
diminishes with population size and the use of elitism, it
nevertheless exists. One method to combat this possibility is
to seed the population of the GA with individuals that remain
unchanged in every generation. These fixed controllers can
be spaced throughout the control parameter space to ensure
that a reasonably good controller is always present in the
population. Simulations were run for the GMRAC with three
fixed controllers in the GA population (leaving the remaining
five controllers to be adapted by the GA as usual). Because
the controller gains were restricted to , the
population was seeded with three fixed PD controllers, defined
by , , and . Because the fixed controllers
adequately cover the parameter space, the mutation probability
of the GA was be decreased to .

Using fixed controllers is a novel control technique that
appears to decrease the variations in the performance results.
The technique is conceptually similar to [14] where Narendra
and Balakrishnan use fixed plant models in an indirect adaptive
controller to identify a plant and improve transient responses.
Likewise, having a genetic algorithm with fixed controller

LENNON AND PASSINO: INTELLIGENT CONTROL FOR BRAKE SYSTEMS 197

Fig. 9. Results using GMRAC.

TABLE I
RESULTS

population members enables the GA to find reasonably good
controllers quickly and then search nearby to find better ones.

Table I shows the minimum, average, and maximum errors
between the reference input and braking process output for 100

simulations using the GMRAC with fixed population mem-
bers. Over the course of 100 simulations, the GMRAC with
fixed population members had a smaller difference between
minimum and maximum errors than did the GMRAC with

198 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 2, MARCH 1999

Fig. 10. Results using GMRAC with fixed population members.

Fig. 11. GGAC for base braking.

no fixed population members. This was expected because the
fixed models add a deterministic element to the inherently
stochastic genetic algorithm. Fig. 10 shows the results of a
typical simulation run. Note that this controller performs very
well with little difference in performance as the specific torque
increases.

V. GENERAL GENETIC ADAPTIVE CONTROL

In this section we expand on the genetic model reference
adaptive controller in Section IV, no longer assuming we have
a good model of the braking process, but instead use another

genetic algorithm to identify the braking process model. This
braking process model is then used in the fitness evaluation
of the first genetic algorithm which attempts to find a good
controller. Fig. 11 shows the GGAC.

A. GGAC for Base Braking

The plant model structure is similar to the one used in the
GMRAC, but a constant offset is assumed. The plant model
is defined as

(3)

LENNON AND PASSINO: INTELLIGENT CONTROL FOR BRAKE SYSTEMS 199

The constant offset is used to help identify inherent friction
in the automobile [as modeled in the brake system by the
function described in Section II].

The second genetic algorithm attempts to identify the pa-
rameters , , , , and . The gains are restricted to lie in
regions where we know the parameters should be. The gain of
the braking process modelwas restricted to . The
first two poles (the poles of the braking process) were restricted
to and the third pole (the pole of the
torque sensor) was restricted to . The constant
offset was restricted to . All the parameters
are restricted because we assume we know a fair amount of
information about the braking system.

The individual process models are defined by a 15-digit
chromosome, and each of the five parameters is represented
with three digits. The population of process models consists
of 100 individuals. The probability of mutation was set to
0.1 (relatively high since we want to make sure that the
populations do not stagnate such that the controller will not
adapt). The probability of crossover was set to 0.8.

Because the plant parameters do not change very quickly
and the processing time is short (s), the iden-
tification genetic algorithm only computes a new generation
once every five samples. Furthermore, the identification GA
is not run for the first ten samples of every ramp-step in the
simulation because the braking process input is nearly zero at
this time and hence no information can be obtained to help
identify the plant parameters.

The fitness function of the genetic identification algorithm is
as follows: For each plant model candidate in the population

do the following.

1) Initialize the states of the discrete-time process model
with the outputs of the actual braking process.

2) Using the past samples of braking control signal
use the process model candidate to predict the past

outputs of the braking process, . Compute the error
between the predicted output and the actual output

for each time step.
For to

Next
The braking process model uses the parameters, ,

, , and from the process model candidate,.
Then

3) Assign fitness to each plant model candidate

Here .
4) Repeat Steps 1)–3) for each member of the population.

5) The maximally fit braking process model becomes the
model used for the next time step.

The fitness function is designed to compare how well each
plant model tracks the output of the actual braking system,
given the actual inputs to the braking system. The error at each
time step is computed, squared and summed over the model
estimation window, . The plant model with the smallest error
sum, , will have the largest fitness value and will be
selected as the model used in the next time step. The value for

was set to . In general, we usually select to be one
or two orders of magnitude less than the average error sum,
, to provide a good mix of fitness values in the population.

The model estimation window, was set to 20 because this
provides enough time to observe the braking process model,
yet does not require too much controller processor time.

Once the braking process model is determined, it is placed
into the fitness function of a genetic algorithm that evolves
a good controller. This operates exactly like the GMRAC
described previously. In all simulations of the GGAC, we
use the GMRAC technique with fixed controllers because
we have already demonstrated this improves average tracking
performance.

B. GGAC Results

Fig. 12 shows the results of the braking simulation using
the GGAC. The GGAC performs consistently, regardless of
the specific torque of the brakes. While the GGAC does
not perform as well as the GMRAC, it also assumed less
knowledge of the braking process model. The results in Fig. 12
represent the behavior for only one simulation run. Because
the GGAC is stochastic, results vary with each simulation.
On average, the GGAC greatly outperformed the conventional
controller, and outperformed the FMRLC. While the GGAC
did not outperform the GMRAC, it required less knowledge
of the braking process. See Table I for a summary of these
results.

C. GGAC with Fixed Plant Models

Just as fixed controllers in the GA population can improve
the performance of a closed-loop system, so too can fixed plant
models. Similar to the work in [14], fixed plant models in a
GA population help the GA to quickly identify a reasonable
plant model and search nearby for a better one. The parameters
of the 16 fixed plant models used in GGAC are defined by all
possible combinations of

Table I shows the minimum, average, and maximum errors
between the reference input and braking process output for
100 simulations using the GGAC with both fixed plant models
and fixed controllers. No simulation plot is shown for the
GGAC with fixed plant models because the results on average
are very similar to the GGAC without fixed plant models.

200 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 2, MARCH 1999

Fig. 12. Results using GGAC with fixed controllers.

The advantage of the GGAC with fixed plant models is its
ability to find a reasonable plant model more quickly than
the GGAC without fixed plant models. This is critical in
the first few seconds of the simulation when very little data
from the plant is available. The GGAC without fixed plant
models sometimes has difficulties tracking the reference input
early in the simulation (as can be seen from the maximum
tracking error for the first four seconds in Table I). The GGAC
with fixed plant models dramatically reduced this maximum
tracking error.

VI. DISCUSSION

A. Summary of Results

For all simulations, the error between the reference input
and the output of the braking process was computed at each
time step. This error was squared and summed for every time
step in the simulation to quantify the performance of each
controller (note that the amount of control energy used in all
cases was comparable and not as important for this application,
so we do not use this as an additional performance measure).
For the genetic adaptive control techniques, the simulations
were run 100 times and the minimum, average, and maximum
errors were determined. The results are separated for each 4-s
ramp-step input and shown in Table I.

Note that all the intelligent control techniques performed
significantly better at tracking the reference input than the
conventional lead-lag controller, especially when the specific
torque increased. The FMRLC, aside from the first few sec-
onds where it learned to control the braking process, performed
quite well. The GMRAC performed well, and the GMRAC
with fixed controllers performed the best on average of all the
control techniques investigated. Of course the GMRAC also

requires the most information about the braking process and
uses this information well to track the reference input. The
GGAC performed consistently, outperforming the FMRLC,
and performing almost as well as the GMRAC while requiring
less information about the braking process. The GGAC with
both fixed controllers and plant models performed the most
consistently, with virtually no difference in the tracking error
over the whole range of specific torque values.

We must point out once again, however, that the lead-lag
compensator design was for the cold brake condition and in
this region (0–4 s) it performs quite well with little oscillation
in its control input. Later in the simulations when the brakes
heat up the performance of the lead-lag compensator degrades
somewhat, but it uses less oscillations in the control input
than the intelligent controllers.

B. Computational Complexity

By far the simplest algorithm to implement is the lead-
lag compensator. For it there are five gains to store for
its difference equation and hence five multiplications and
four additions for each time step. Next, we discuss how to
come up with “order of magnitude” approximations of the
number of operations needed per step (i.e., within the sampling
interval) and memory needed for each of the intelligent control
strategies. This analysis is meant to help gain insights into
implementation issues for the controllers presented in this
paper and to give an idea of what must be paid to get
the performance improvements that the intelligent controllers
offer.

The complexity of the FMRLC is not too significant since
it only has 36 rules in the fuzzy controller and 25 rules in
the inverse model. Its update scheme implemented by the

LENNON AND PASSINO: INTELLIGENT CONTROL FOR BRAKE SYSTEMS 201

TABLE II
COMPUTATIONAL COMPLEXITY

adaptation mechanism is simple and hence computation time
is short (only four multiplications and four sums) to update
the fuzzy controller. There are six multiplications and five
additions for the reference model. The memory needed for
the adaptation mechanism depends on the number of steps the
mechanism looks back in time to update rules; in this case,
it looked back three steps. The mechanism needs to store the
degrees of certainty of the four rules that could have been on
over the last four steps, and the four past center values for these
four rules so values must be stored. However, this
ignores the computations necessary for computing the fuzzy
inverse model and fuzzy controller outputs. For this, first note
that we must store 61 output membership function centers (36
for the fuzzy controller and 25 for the fuzzy inverse model)
and 22 input membership function centers (12 for the fuzzy
controller and ten for the inverse model). Next, to find the
degree to which an input membership function is on amounts
to finding the value of a function (a line), that is the value
of the membership function (but you can avoid computing
the degree of certainty for each input membership function by
some simple range checking on the inputs). However, this has
to be done for each of the two inputs for both the fuzzy inverse
model and the fuzzy controller. Hence, we have to compute
the membership values for all 61 rules in the worse case (of
course simple strategies may be used to reduce computations
here where for instance, you only compute membership values
for the eight rules that are on, four rules for the fuzzy controller
and four for the inverse model). Next, the areas under the
implied fuzzy sets must be computed, but simple geometry can
be used (for the area under a chopped-off triangle) rather than
an explicit computation of an integral so this only takes four
multiplications and an addition. This completes the necessary
computations. Overall, we see that the FMRLC is quite a bit
more complex than the lead-lag controller.

To better understand the computation time required of
the genetic adaptive controllers, we carefully examined our

simulation program (written in the C language) and computed
roughly the number of operations required per generation.
Using the variables to represent the population size,
to represent the look-ahead time window steps in the fitness
function, and to represent the length of the chromosome,
we arrived at the following equation:

Here represents the number of operations per genera-
tion (i.e., per time step) of the genetic algorithm, where an
operation is any addition, multiplication, subtraction, divi-
sion, assignment, increment, comparison, or declaration. This
equation represents a rough estimate; we were careful to
overestimate calculations when simplifying this equation. For
memory, you need to store the reference model, the population
(elements), the results of looking aheadsteps for each of
these elements (about parameters), and the model
of the system.

Using this equation, we can see that the GMRAC requires
roughly 4230 operations per generation. Using a sampling
time of s, that amounts to approximately 850 000
operations per second. This number is less for the case
with fixed population members. The GGAC uses two genetic
algorithms, with the second GA having a significantly higher
population size and chromosome length. The GGAC requires
approximately 3.3 million operations per second, assuming a
sampling time of s for the genetic adaptive control
algorithm and s for the genetic identification
algorithm. Of course this computation time could be reduced
with more streamlined code and smaller population size and
chromosome length. Because this research was in simulation,
we did not attempt to optimize the computation time. We
are confident that substantial improvements could be made
in terms of processing time. Nevertheless, with the cheap and
powerful microprocessors widely available today, a controller

202 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 2, MARCH 1999

that requires 3.3 million operations per second is certainly
implementable.

The results of this discussion are summarized in Table II.
Overall, our conclusion is that the performance improve-
ments obtained with the intelligent control methods cost us
in computational complexity. The cost is not too great for the
FMRLC but is significant when we use our GMRAC/GGAC
and this demands that we study ways to simplify the code that
implements these controllers.

VII. CONCLUDING REMARKS

We have used the work from [4] and [5] to define the base
braking control problem and have developed two intelligent
control methods for this system. Clearly the approaches and
conclusions that we present are somewhat preliminary and
are in need of further significant investigations. For instance,
it would be useful to perform stability, convergence, and
robustness analysis of both the FMRLC and GMRAC to
help evaluate this safety-critical automotive system. While
the model that we use from [4] and [5] has proven to be
quite adequate for the development of controllers that have
been experimentally evaluated at a test track on a vehicle, it
would be valuable to evaluate the developed controllers in the
field. This would force us to take a very careful look at the
requirements for real-time implementations of the intelligent
controllers (our preliminary investigations indicate that we
should be able to implement these in real time).

ACKNOWLEDGMENT

The authors would like to thank Prof. S. Yurkovich for his
help in all aspects of this brake system project which have
involved significant efforts over many years in modeling and
development of conventional controllers for this brake system.
They would also like to thank him for his helpful discussions
throughout the research on intelligent control methods for
the brake system. Also, they would like to thank J. Hurtig
for her assistance in establishing the model and simulation
testbed for our evaluations and for her past work on controller
development and implementation that provided a base-line
comparison for the methods developed here. Finally, they
would like to acknowledge the support and assistance of
D. Littlejohn from the Delphi Chassis Division of General
Motors.

REFERENCES

[1] P. Kachroo, “Nonlinear control strategies and vehicle traction control,”
Ph.D. dissertation, Univ. California, Berkeley, 1993.

[2] S. Drakunov,Ü. Özg̈uner, P. Dix, and B. Ashrafi, “ABS control using
optimum search via sliding modes,”IEEE Trans. Contr. Syst. Technol.,
vol. 3, pp. 79–85, Mar. 1995.

[3] J. Layne, K. Passino, and S. Yurkovich, “Fuzzy learning control for
antiskid braking systems,”IEEE Trans. Contr. Syst. Technol.,vol. 1, pp.
122–129, June 1993.

[4] J. Hurtig, S. Yurkovich, K. Passino, and D. Littlejohn, “Torque regula-
tion with the General Motors ABS VI electric brake system,” inProc.
Amer. Contr. Conf.,Baltimore, MD, June 1994, pp. 1210–1211.

[5] J. K. Harvey, “Implementation of fixed and self-tuning controllers for
wheel torque regulation,” Master’s thesis, Ohio State Univ., Columbus,
1993.

[6] J. Layne and K. Passino, “Fuzzy model reference learning control for
cargo ship steering,”IEEE Contr. Syst. Mag.,vol. 13, pp. 23–34, Dec.
1993.

[7] L. Porter and K. Passino, “Genetic model reference adaptive control,”
in Proc. IEEE Int. Symp. Intell. Contr.,Columbus, OH, Aug. 1994, pp.
219–224.

[8] W. Lennon and K. Passino, “Intelligent control for brake systems,” in
Proc. IEEE Int. Symp. Intell. Contr.,Monterey, CA, Aug. 1995, pp.
499–504.

[9] W. Lennon and K. Passino, “Genetic adaptive identification and con-
trol,” 1996, in preparation.

[10] V. Moudgal, W. Kwong, K. Passino, and S. Yurkovich, “Fuzzy learning
control for a flexible-link robot,”IEEE Trans. Fuzzy Syst.,vol. 3, pp.
199–210, May 1995.

[11] J. Layne and K. Passino, “Fuzzy model reference learning control,” in
Proc. 1992 IEEE Conf. Contr. Applicat.,Dayton, OH, Sept. 1992, pp.
686–691.

[12] D. Goldberg,Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

[13] Z. Michalewicz,Genetic Algorithms+ Data Structures= Evolutionary
Programs. Berlin: Springer-Verlag, 1992.

[14] K. S. Narendra and J. Balakrishnan, “Improving transient response of
adaptive control systems using multiple models and switching,”IEEE
Trans. Automat. Contr.,vol. 39, pp. 1861–1866, 1994.

William K. Lennon received the B.S. degree in
electrical engineering in 1994 and the M.S. degree
in electrical engineering with a specialization in
control systems in 1996, both from the Ohio State
University, Columbus.

Presently he is working in the Radio Network
Development Department at Ericsson, Research Tri-
angle Park, NC.

Kevin M. Passino (S’79–M’90–SM’96) received
the Ph.D. degree in electrical engineering from the
University of Notre Dame in 1989.

He has worked on control systems research at
Magnavox Electronic Systems Co. and McDonnell
Aircraft Co. He spent a year at Notre Dame Uni-
versity, IN, as a Visiting Assistant Professor and is
currently an Associate Professor in the Department
of Electrical Engineering at the Ohio State Univer-
sity, Columbus.

He has served as a member of the IEEE Control
Systems Society Board of Governors; has been an Associate Editor for the
IEEE TRANSACTIONS ON AUTOMATIC CONTROL; served as the Guest Editor
for the 1993IEEE Control Systems MagazineSpecial Issue on Intelligent
Control; and a Guest Editor for a special track of papers on Intelligent Control
for IEEE Expert Magazinein 1996; and was on the Editorial Board of the
International Journal for Engineering Applications of Artificial Intelligence.
He is currently the Chair for the IEEE CSS Technical Committee on Intelligent
Control and is an Associate Editor for IEEE TRANSACTIONS ONFUZZY SYSTEMS.
He was a Program Chairman for the 8th IEEE International Symposium on
Intelligent Control in 1993 and was the General Chair for the 11th IEEE
International Symposium on Intelligent Control. He is Coeditor of the book
An Introduction to Intelligent and Autonomous Control(Boston, MA: Kluwer,
1993), Coauthor of the bookFuzzy Control(Reading, MA: Addison-Wesley,
1998), and Coauthor of the bookStability Analysis of Discrete Event Systems
(New York: Wiley, 1998). His research interests include intelligent systems
and control, adaptive systems, stability analysis, and fault-tolerant control.

