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Intelligent Control for Brake Systems

William K. Lennon and Kevin M. Passin@Genior Member, IEEE

Abstract—There exist several problems in the control of brake In this paper, we do not consider brake control for a
systems including the development of control logic for antilock “panic stop,” and hence for our study the brakes are in a
braking systems (ABS) and *base-braking.” Here, we study o, ABg mode. Instead, we consider what is referred to as
the base-braking control problem where we seek to develop a u o
controller that can ensure that the braking torque commanded the ‘“base-braking” control problem where we seek to have
by the driver will be achieved. In particular, we develop a “fuzzy the brakes perform consistently as the driver (or an ABS)
model reference learning controller,” a “genetic model reference  commands, even though there may be aging of components or
B vessam o o e e S vty STHronmental effecs e, temperaure of huricy changes)
in the procgss due to temgerature. The results are compared to Wh'(_:h can cause “brake g_rab" or “brake fade.” We Seek_ to
those found in previous research. design a controller that will try to ensure that the braking
torque commanded by the driver (related to how hard we hit
the brakes) is achieved by the brake system. Clearly, solving
the base braking problem is of significant importance since
there is a direct correlation between safety and the reliability
of the brakes in providing the commanded stopping force.
Moreover, base braking algorithms would run in parallel with

UTOMOTIVE antilock braking systems (ABS) are de-ABS controllers so that they could also enhance braking

signed to stop vehicles as safely and quickly as possibigfectiveness while in ABS mode.
Safety is achieved by maintaining lateral stability (and hencePrior research on the braking system considered here has
steering effectiveness) and trying to reduce braking distanegfown that one of the primary difficulties with the brake
over the case where the brakes are controlled by the drivwstem lies in Compensating for the effects of Changes in
Current ABS designs typically use wheel speed comparedif@ “specific torque,” to be defined below, that occur due to
the velocity of the vehicle to measure when wheels lock (i.@emperature variations in the brake pads [4]. Previous research
when there is “slip” between the tire and the road) and ugg this system has been conducted using proportional-integral-
this information to adjust the duratior_1 of brake signal pU|5_Qﬁerivative (PID), lead-lag, autotuning, and model reference
(e, to “pump” the brakes). Essentially, as the wheel sligyaptive control (MRAC) techniques [5]. While several of
increases past a critical point where it is possible that lategghge techniques have been highly successful (particularly the
stability (and hence our ability to steer the vehicle) could qgad-lag compensator that we use as a base-line comparison
lost, the controller releases the brakes. Then, once wheel gfi}e) there is still a need to improve the compensators for
has decreased to a point where lateral stability is increased case where there are changes in specific torque due to
braking effectiveness is decreased, the brakes are reappligg e rature variations that result from, for example, repeated
In t,h's way the ABS cycles the.brakes t(,) try to achieve plication of the brakes. In this paper we investigate the
optimum tradeoff between braking effectiveness and later rformance of three intelligent control techniques, fuzzy

stability. Inherent process nonlinearities, limitations on o odel reference learning control [6], genetic model reference
abilities to sense certain variables, and uncertainties associagg ptive control [7], [8], and “gener,al genetic adaptive con-
with process and envir_onment (e.g., road conditions changi{rl I [9], for the ba,se l,)raking problem and compare their
from wet asphalt to ice) make the ABS control prObIemerformance to the best results found in [4] and [5]. We

challenging. Mgny successful proprletary algorithms eX|-st f(%specially focus on the performance of these techniques when
the control logic for ABS. In addition, several conventlonat

. . here are variations in the specific torque.
nonlinear control approaches have been reported in the opep . . ) .
n Section Il we provide a simulation model for the base

literature (see, e.g., [1] and [2]), and even one intelligent . S
control approach has been investigated [3]. rl?)rakmg system that has proven to be very effective in de-

veloping,implementingand testing control algorithms for the
actual braking system [4], [5]. In Section Ill we develop a
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Fig. 1. Base braking control system.

for the base braking problem. We use similar test condition$ friction between the brake pads and the rotors increases.
for evaluating the controller and compare its performance £s a result, less pressure on the brake pads is required for the
the previous ones. Numerical performance results are shogsame amount of braking force. The specific tordiyeof this

in Section VI, and some concluding remarks are provided braking system has been found experimentally to lie between
Section VII. two limiting values so that

Il. THE BASE BRAKING CONTROL PROBLEM 0.85 < 5, < 1.70.

Fig. 1 shows the diagram of the base braking system, asy|| the simulations we conducted use a repeating 4 s input
developed in [5]. The input to the system, denotedGyI), is  reference signal. The input reference begins atlf) fincreases
the braking torque requested by the driver. The outplitZ’)  |inearly to 1000 ftib by 2 s, and remains constant at 100bft
(in ft-Ibs), is the output of a torque sensor, which directlyntj| 4 s, After 4 s the states of the brake system are cleared
measures the torque applied to the brakes. Note that Whil@  set to zero), and the simulation is run again. The first
torque sensors are not available on current production vehiclggy 4-s simulations are run witls, = 0.85, corresponding
there is significant interest in determining the advantages gf«cold prakes” (a temperature of 12F). The next two 4-s
using such a sensor. The signdkT’) represents the error simylations are run witts; increasing linearly from 0.85 at
between the reference input and output torques, which is uged to 1.70 by 8 s. Finally, two more 4-s simulations are run
by the controller to create the input to the brake systef[’). with S, = 1.7, corresponding to “hot brakes” (a temperature
A sampling interval of7” = 0.005 s was used for all our of 250°F). Fig. 2 shows the reference input and the specific

investigations. _ o torque over the course of the simulation that we will use
The General Motors braking system used in this researgfioughout this paper.
is physically limited to processing signals between ]  As a base-line comparison for the techniques to be shown

V, while the braking torque can range from 0 to 2700bft here, the results of a conventional lead-lag controller are shown
For this reason and other hardware specific reasons [5], {Rerig. 3. This controller was chosen because it was the best
input torque is attenuated by a factor of 2560 and the outpifnventional controller previous researchers [4], [5] developed

is amplified by the same factor. Afte KT") is multiplied by for this braking simulation. The lead-lag controller is defined
2560 it is passed through a saturation nonlinearity where 4§

256Q:(kT") < 0, the brake system receives a zero input and if _ ) _ )
2560Q:(kT") > 5 then the input is five. The output of the brake u(kT) _ 0.2(z = 0.95 +0.025)(z — 0.95 — 0.02j)

system passes through a similar nonlinearity that saturates at ¢(k7)) 2(z—1)
zero and 2700. The output of this nonlinearity passes throu

RQ can be seen in Fig. 3, the conventional controller performs
F(y), which is defined as ) g o Ier p
adequately at first, but as the specific torque increases, the
F(y) = Y + 0.0139878. controller induces a large overshoot at the beginning of each
2502.4419 ramp-step in the simulation. The conventional controller does
The function F'(y) was experimentally determined and repnot compensate for the increased specific torque of the brakes
resents the relationship between brake fluid pressure artl hence overshoots the reference input when the reference
the stopping force on the car. Next(y) is multiplied by inputis small. In fairness to the conventional method however,
the specific torqueS;. This signal is passed through arit was designed for cold brakes. If it were designed for hot
experimentally determined model of the torque sensor; theakes it would perform better faf, = 1.7, but then it would
signal is scaled and(kT) is output. The specific torqugs;) not perform as well for cold brakes. Clearly, there is a need
in the braking process reflects the variations in the stoppif@y an adaptive or robust controller.
force of the brakes as the brake pads increase in temperatur®ast researchers have investigated certain adaptive methods.
The stopping force applied to the wheels is a function d&first a gradient-based MRAC was studied [5]. This controller
the pressure applied to the brake pads and the coefficientpefformed worse than the controllers shown in this paper (it
friction between the brake pads and the wheel rotors. As thad a much poorer transient response) so we still use the
brake pads and rotors increase in temperature, the coefficitesxed lead-lag compensator for comparisons. In [4] and [5] the
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Fig. 3. Results using conventional lead-lag controller.

authors also investigated the use of a proportional-integrai-previous work [5], and is defined as shown in (1)

derivative (PID) autotuner. This method was very successful

in the off-line tuning (i.e., open-loop tuning) of a PID brake Ym (k1) _

controller. Its only drawback is that it does not provide for r(kT)

continuous adaptation as the temperature changes (which is 0.1(z—0.95)

our primary concern here). (z—0.7005)(z—0.8808+0.4985)(z—0.8808 — 0.498;)
The intelligent control techniques to be presented in this

paper use a reference model to quantify the desired perfdhis model was chosen to represent reasonable and adequate

mance of the closed-loop system. This model was developgetformance objectives for the brake system. The physical

1)
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Fig. 4. FMRLC for base braking.

process was taken into consideration in the developmentasfd “output” forw(k7"). Therefore, in the example shown in

this model. Fig. 5, the certainty that “error is positive small” is 0.764,
and the certainty that “error is positive medium” is 0.236.
. ADAPTIVE FuzzY CONTROL Likewise, the statement “change in error is negative medium”

. . . has a certainty of 0.873 and “change in error is negative small”

In this section we develop an ada_puve fuzzy Cor.‘tm”q{as a certainty of 0.127. All other values have certainties of
for the base braking problem. In particular, we mod|fy_ 8ero. Of the 36 rules in the fuzzy controller rule-base, only four
fuzzy model reference learning control (FMRLC) technique,ye nremises with certainties greater than zero (we use the

[31, [6], [10], [11] that has already been utilized in severgl;, onerator to represent the “and” operator in the premise).
applications. The FMRLC, shown in Fig. 4, utilizes a Iearmnghey are as follows

mechanism that observes the behavior of the fuzzy control

system, compares the system performance with a model of If error is positive-smalland change-in-erroris
the desired system behavior, and modifies the fuzzy controller negative-smalThen outputis consequence?
to more closely match the desired system behavior. Next we  If error is positive-smalland change-in-erroris

describe each component of the FMRLC in more detail. negative-mediurThen outputis consequende?
If error is positive-mediunand change-in-error
A. FMRLC for Base Braking is negative-smallThen outputis consequence?

If error is positive-mediunand change-in-erroris

The inputs to the fuzzy controller are the eregkT’) and negative-mediurThen outputis consequence?.

change in error(kT") defined ase(kT) = »(kT) — y(kT)
andc(kT) = (e(kT) — (kT —T))/T, respectively. The gains Here consequende’ is the linguistic value associated with
ge, 9., and g, were adjusted to normalize the universe ahe output membership function of the rule. The member-
discourse (the range of values for an input or output variablghip function of the implied fuzzy set corresponding to each
so that all possible values of the variables lie betweeh, [L]. consequencée’ is determined by taking the minimum of
After some simulation-based investigations we chgse- 25, the certainty of the premise with the membership function
g. = 3, and g, = 0.002. associated withconsequenée’. The implied fuzzy sets are
The knowledge-base for the fuzzy controller is generatethown in the shaded regions in Fig. 5.
from IF-THEN control rules. A set of such rules forms the The output of the fuzzy controllery(kT), is computed
“rule base” which characterizes how to control a dynamicala the center of gravity (COG) defuzzification algorithm, as
system. The fuzzy controller we designed consists of twamown in Fig. 5. For COG the certainty of each rule premise
inputs with six membership functions each, as shown in Fig. i8. calculated, and the trapezoid with a height equal to that
Thus, there are a total of 36 IF-THEN rules in the fuzzgertainty is shaded. The center of gravity of the shaded regions
controller of Fig. 4. There are 36 triangular output membership calculated, and that is the output of the fuzzy controller,
functions that peak at one, are symmetric, and have bagéT).
widths of 0.2. It is the centers of the output membership In the FMRLC, typically the center of the output mem-
functions that are adjusted by the FMRLC. bership function of each rule is initialized to zero when the
Suppose that, as shown in Fig. 5, the normalized inpugBnulation is first started. This is done to signify that the direct
to the fuzzy controller ar&(kT) = gee(kT) = 0.293 and fuzzy controller initially has “no knowledge” of how to control
¢(kT) = g.c(kT) = —0.546. Let us use the linguistic the brake system (of course it does have some knowledge
description “error” fore(kT), “change in error” foré(kT), since the designer must specify everything else in the fuzzy
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Fig. 5. Example of fuzzy inference.

controller except for the output membership function centerslesired behavior of the system,,(kT"), and the observed
Note that using a well-tuned direct fuzzy controller for théehavior of the systeny(kT). It then computes what the input
braking system to initialize the FMRLC only slightly affectdo the braking processhould have beeto drive this error
performance. Of course, we are not implying that we are nist zero. This information is passed to the rule-base modifier
using model information about the plant to perform our overaihich then adjusts the fuzzy controller to reflect this new
design of the adaptive fuzzy controller. Plant information iknowledge.

used in the tuning of the FMRLC through an iterative process The output centers of the rule base of the fuzzy inverse
of simulation of the closed-loop system and tuning of theodel are structured so that small differences between the
scaling gains. More details are provided on this below.  desired and observed system behavige(kT) ~ 0) result

The output of the fuzzy controller can be mapped as a thre@-fine tuning of the fuzzy controller rule-base, while large
dimensional surface, where the two input&;7) andz(k7), differences(g.¢(kT) = 1) result in very large adjustments to
define theX andY axes and the output of the fuzzy controllerthe fuzzy controller rule-base. For example, the following are
u(kT) defines theZ axis. The rule base of the fuzzy controllethree of the 25 rules in the fuzzy inverse model.
can be visualized in terms of this surface, and the learning
mechanism of the FMRLC can be thought of as adjusting the
contours of this surface.

The rules in the “fuzzy inverse model” quantify the inverse
dynamics of the process [3], [6], [10], [11]. The fuzzy inverse
model is very similar to the direct fuzzy controller in that
it has two inputs, error and change in error, one output,
and a knowledge base of IF-THEN rules (their membershipHere the input linguistic valuegerg positive-small and
functions have shapes similar to those shown in Fig. Hositive-largecorrespond to numerical values of 0, 0.5, and
Both inputs in our fuzzy inverse model contain membershinO, respectively, and the output linguistic vaiesq positive-
functions (with the middle one centered at zero), corresponditigy, and positive-hugecorrespond to numerical values of 0,
to 25 IF-THEN rules. The fuzzy inverse model operates dh031, and 1.0. After some simulation-based investigations we
the error, é(kT), and change in errorg(kT), between the choseg: = 0.5, g» = 0.015, andg; = 0.0005.

If error is zeroand change-in-error
is zero Then outputis zero
If error is positive-smalland change-in-error
is positive-smallThen outputis positive-tiny
If error is positive-largeand change-in-error
is positive-largeThen outputis positive-huge
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Fig. 6. Results using the FMRLC.

The rule base modifier uses the information from the fuzzyutput in the final 8 s) that the fuzzy controller is learning
inverse modelf(kT’), to change the rule base of the directo compensate for the increased specific torque by sending a
fuzzy controller. At each time, the direct fuzzy controllesmaller signal to the brakes. We computed the error between
computes the implied fuzzy set of each of the 36 rules the reference input and the braking process output at each time
its knowledge base. Because there are two inputs, at any atep in the simulation. This error was squared and summed
time sample at most four rules will be activated. The rule-bas&er the entire simulation. These results are shown in Table |
modifier stores the degree of certainty of each rule premise Section VI.
for the past several time samples. It then modifies those rules-ig. 7 shows the nonlinear map implemented by of the
by a factor equal to the output(kT) times the degree of fuzzy controller in Fig. 4 at four time instances. The black
certainty of the rule (note that this approach to knowledg&X” was included on the 3-dimensional plots to clearly show
base modification differs slightly from that in [6] since therg¢he center of the fuzzy surface, where most of the learning
the premise certainties are not used). Because there is a dédkes place. When the FMRLC is first run, it quickly creates
of three time samples in the dynamics of the braking processference rules that effectively control the braking process.
the rule base modifier adjusts the centers of the rules thet the simulation continues and the dynamics of the plant
were active three time units in the past. In this manner, tiobange, (i.e., the specific torque increases), the FMRLC tunes
learning mechanism adjusts the rules that caused the errothia rules of the fuzzy controller to adequately compensate for
the braking process, and not just the rules that were actitee change in brake dynamics. Note that at first glance of
most recently. For more details on the operation and desigig. 7, the surface of the fuzzy controller does not appear
of the FMRLC see [11]. to change appreciably as the braking process changes. This

is because much of what the controller has learned is still
B. FMRLC Results valid and the learning mechanism does not affect these areas.

The results of the FMRLC simulation are shown in Fig. 8Hdowever, it is important to see that the center of the fuzzy
The FMRLC does not perform well initially because it issurface, corresponding te(k7") =~ 0 and ¢(kT) =~ 0,
learning to control the braking process. The FMRLC waghe area in which the controller is designed to operate),
more successful in the remaining seconds and outperfornumtreases by roughly one-half when the specific torque of the
the conventional controller when the specific torque of tHeraking process increases by two. Thus the FMRLC learns to
brake system increased. Note in Fig. 6 that the FMRLC veagapt to conditions of the braking process, keeping old rules
quickly (within 0.25 s) learned to control the braking processinmodified and adjusting only those rules that are used in the
The FMRLC performed consistently well over the full range agfresent operating conditions. In the simulation, as the brake
specific torque. It is difficult to discern any difference betweegpads increase in temperature and the specific torque of the
cold and hot brakes in the output of the braking process (whibhakes increase, the learning mechanism adjusts the rules of
is the goal of this project). Nevertheless, it is clearly seen (blye fuzzy controller to compensate for the increased gain in
comparing the controller output in the first 8 s to the controlléhe braking process.
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V. DIRECT GENETIC ADAPTIVE CONTROL component of the GMRAC in more detail, but first we briefly

In this section we develop a genetic model reference ade%'—t”ne the basic mechanics of GA's.
tive controller (GMRAC) [7], [8] for the base braking control _ _
problem. A genetic algorithm (GA) is used to evolve #. The Genetic Algorithm

good brake controller as the operating conditions of the A genetic algorithm is a parallel search method that manip-
braking process change. The GMRAC, shown in Fig. 8, usgktes a string of numbers (a “chromosome”) according to the
a simplified model of the braking process to evaluate laws of evolution and biology. A population of chromosomes

population (set) of braking controllers and “evolve” a goodre “evolved” by evaluating the fitness of each chromosome
controller for the braking process. Next we describe eaemd selecting members to “reproduce” based on their fitness.
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Evolution of the population of individual chromosomes here the maximum population size is limited by the speed of the
based on four genetic operators: crossover, mutation, selectipmcessor and the sampling interval of the system. Note that
and elitism. performance of the GMRAC was not significantly affected by
Selection is the process where the most fit individuafspulation sizes of six or more. Rather, the GMRAC perfor-
survive to reproduce and the weak individuals die out. Theance was more greatly affected by the crossover probability,
selection process evaluates each chromosome by some fitmegtation probability, and the number of time units into the
mechanism and assigns it a fitness value. Those individullture the fitness evaluation attempts to predict (described
deemed “most fit” are then selected to become parents drelow).
reproduce. The selection of which chromosomes will repro- Each individual controller gain was described by a three-
duce is not deterministic, however. Every member of thgigit base-10 number. Each digit is called a “gene” and
population has a probability of being selected for reproductighe string of genes together forms the “chromosome.” This
equal to its fitness divided by the sum of the fitness of ththromosome is very simply decoded into a decimal number
population. Hence, the more fit individuals have a greateorresponding the gaii of the lead-lag controller. To decode
change to reproduce than the less fit individuals. Crossovechromosome, simply place a decimal point before the first
is the procedure where two “parent” chromosomes exchangene of the chromosome. For example, a chromosome of [345]
genetic information (i.e., a section of the string of numbers) t@ould decode intoK = 0.345.
form two chromosome offspring. Crossover can be considere®) Fitness Evaluation and the Braking Process Mod&he
a form of local search in the population space. Mutation SA uses r(kT), w(kT), y(kT), ym(kT), (and their past
a form of global search where the genetic information afalues), and a plant model to evaluate the fitness of the strings
a chromosome is randomly altered. Elitism is used in thie the population of candidate controllers. At each time step
GMRAC to ensure that the most fit member of the populatidine., each “generation”) the GA chooses the controller in the
is moved without modification into the next generation. Bpopulation with maximum fitness value to control the plant
including elitism, we can increase the rates of crossover afidm time & to time & + 1.
mutation, thereby increasing the breadth of search, but stillThe process model used in the GMRAC is a simplified
ensure that a good controller remains present in the populatiomodel of the braking process. The model of the plant is
Our genetic algorithm uses the base-10 number systelescribed by the transfer function
as opposed to base-2 which is commonly used in [12] and . .
[13]. While base-2 systems can be advantageous because they ?(kT) = 0.25 . (2)
consist of smaller “genetic building blocks,” they have the dis- a(kT) 2% —2.662% + 2.3382 — 0.677

advantage of more complicated encoding/decoding proceduggsmparing this to the actual model of the brake system in
and longer strings (which can affect our ability to implemengection 11, we see that this model ignores significant nonlin-
the genetic adaptive controllers in real time). While both basggyities and thes, “disturbance” (i.e., we treat the model in
work well, we chose to use base-10 because of the easesittion Il as the “truth model”).

which controller parameters can be coded into a chromosomethe genetic algorithm seeks to maximize the fitness function
as described below.

67
B. GMRAC for Base Braking St
In this section, we describe each component of the genefiBere
adaptive mechanism in Fig. 8. - ek +N)—ek)
1) The Population of ControllersThe GMRAC uses a J = (k) + ﬁ(T)
lead-lag controller which is the best conventional controller
previous researchers in [4] and [5] have found for this brakir@f!d ¢ is the predicted error between the outputs of the plant
simulation. The transfer function of this controller is and reference model. Her® denotes the “look ahead” time
wkT)  K(z - 0.95+0.02)(z — 0.95 — 0.02)) Wlndow, S|gn_|fy|ng that the fithess evaIL_Jat|0n attempts to pre-
= . dict the braking process for the neXt unit samples. Because
e(kT) Az = 1) there is significant delay between control input and braking
The gain of the controller was constantft= 0.2 in previous output, a short time window would cause the current controller
research, but will be “evolved” by the GMRAC to adapt tc¢andidates to be evaluated mostly on the performance of past
braking process changes. The range of valid gains has beentrollers, leading to inaccurate fithess evaluations. However,
limited to (0.0 < K < 0.4). This is to try to ensure that thelonger time windows cause greater deviations between the
GA does not evolve controllers that are unstafe < 0) or braking process model and the actual braking process, and
highly oscillatory (K > 0.4). this also leads to inaccurate fithess evaluations. We selected
The controller population size was constant at eight mem¥ = 10 as a good compromise to maintain the validity of the
bers. This was a compromise between search speed é&tress evaluations.
processing time. In general, as the population size increasesifter some simulation-based investigations, we chaese
more variety exists in the population and therefore “goody.000001 and 3 = 20. The constant? defines the number
controllers are more likely to be found. However, computatioof time samples in which the error should reach zero. For
time is greatly affected by population size, and therefoexample, if NV = 10 and 3 = 20, then the fitness function is
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maximized where(k + 10) = 0.5¢(k), which would indicate  After crossover, the two offspring undergo mutation, with a

that e(k) should reach zero ir¥ = 20 time steps. prespecified probability. In the GMRAC, we used a mutation
The fitness evaluation proceeds according to the followingobability of 0.3, which means every digit in the chromosome
pseudocode. has a 30% probability of being mutated. Note that this is
1) Collectr(k), y(k), andym, (k). a relatively high mutation probability, but with the elitism
2) Compute a first-order approximation @f,,, #.(k + OPerator ensuring that a good controller is always in the
N) = ym(k) + Nym(k) — ym(k — 1)]. populat!on, a high mutation rate helpg to off;et the small
3) Estimate the closed-loop system response for the n@@pulation size and improve the searching ability of the GA.
N samples for each controller in the population: Moreover, we have found that since the fitness functipn
Forj = 1 to N: is time varying and the plant is changing in real time, there
Generatej(k + ) from braking process model in (2).is a significant need to make the GA aggressive in exploring
Estimater(k + 5) = r(k) + j[r(k) — r(k — 1)]. various regions (i.e., in trying different controller candldates_).
Computec(k + j) = #(k + j) — ik + 7). If it locks on to some controller parameter values and is

Generateii(k + j + 1) from &(k + 4), é(k +j — 1), inflexible to change it will not be successful at adaptation.
etc., and controller parameters.

Next j. X X C. GMRAC Results
4) Computec(k + N) = 4 (k+ N) — gk + N). ) ] ) . ]
5) Assign fitness/;, to each controller candidaté: Fig. 9 shows the results of the braking simulation using
Let 7; = e(k) + B((e(k + N) — e(k))/N) the GMRAC. As can be seen in Fig. 9, the GMRAC performs

more consistently as the specific torque of the brakes increases.

—2
Ji = af(J; + ). ) o
6) The maximally fit controller becomes the next controlle\(\/hIIe the performance does degrade somewhat as specific

used between timdsandk--1. The selection, crossover,torque increases, at its worst it is still significantly better _than
mutation, and elitism [7] processes are applied to r(t)k]e conventional controller. Note that contrary to conventional
' 1P PP Pr ontrollers and the FMRLC discussed previously, the GMRAC
duce the next generation of controllers (see below], . - .
Increment the time index and go to Step 1) IS stochastic, and the results in Fig. 9 represent the behavior
. i ' for only one simulation run. We did, however, find similar
3) Selection and Reproduction of Controller@ince each 4yerage behavior when we performed 100 simulation runs.
controller in  the populaPon has beer: assigned a fitnef® computed the error between the reference input and the
Ji, the GA uses the “roullete-wheel” selection processaking process output at each time step in the simulation.
[12] to determine which controllers will reproduce into therhis error was squared and summed over the entire simulation.
next generation. The roullete-wheel selection process pick§e minimum, average, and maximum errors for the 100
the “parents” of the next generation in a manner simila§iqylations are shown in Table | in Section VI.
to spinning a roullete-wheel, with each individual in the
population assigned an area on the roullete-wheel proportional

to that individual's fitness. Hence the probability that ab. GMRAC with Fixed Population Members

individual will be selected as a particular parent of the next gecause genetic algorithms are stochastic processes, there
generation is proportional to the fitness of that individuals a\ways a small possibility that good controllers will not be
Note that some individuals will likely be selected more thagnd and hence degrade performance. While this possibility
once (indicating they will have more than one offspringliminishes with population size and the use of elitism, it
while other individuals will not be selected at all. In thisyeyertheless exists. One method to combat this possibility is
way the “bad” controllers are generally removed from thg, seed the population of the GA with individuals that remain
population. unchanged in every generation. These fixed controllers can
Next, the parents are coupled together and generally undefgospaced throughout the control parameter space to ensure
crossover. The probability that crossover occurs between tyt a reasonably good controller is always present in the
parents is determined priori by a crossover probability. population. Simulations were run for the GMRAC with three
In our simulation, two parents will undergo crossover Wwitfixed controllers in the GA population (leaving the remaining
probability 0.90. Crossover is conducted differently than e controllers to be adapted by the GA as usual). Because
commonly described. In all genetic algorithms used in thegge controller gains were restricted te0.4 < k < 0, the
simulations, crossover is not done by selecting a crossoygipulation was seeded with three fixed PD controllers, defined
site and exchanging genes beginning at the crossover $i{ek = 0, £ = 0.2, andk = 0.4. Because the fixed controllers
and ending at the end of the chromosome. Instead, crossoagequately cover the parameter space, the mutation probability
is done on a gene-by-gene basis. Each gene (digit) in thiethe GA was be decreased fol.
chromosome has a 0.5 probability of being exchanged forUsing fixed controllers is a novel control technique that
the digit in the same location on the mating chromosomappears to decrease the variations in the performance results.
For example, the GA uses a string length of three, so tvithe technique is conceptually similar to [14] where Narendra
possible parent chromosomes could be [333] and [111]. dhd Balakrishnan use fixed plant models in an indirect adaptive
these two chromosomes undergo crossover, possible offspragtroller to identify a plant and improve transient responses.
pairs could be [113] and [331] or [131] and [313]. Likewise, having a genetic algorithm with fixed controller
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Error between Reference Input and Braking Process Output
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Fig. 9. Results using GMRAC.

TABLE |
RESULTS
Simulation time (seconds)
Control Technique 0-4 4-8 8-12 12-16 16-20 20-24
S: = 0.85 085<85: <17 S =17
Conventional Lead-Lag | 0.00843 0.00843 | 0.00716 0.3552 | 0.11761 0.11761
FMRLC 0.012909 0.00732 | 0.00886 0.00968 | 0.00962 0.00864
GMRAC
minimum 0.00136 0.00137 | 0.00098 0.00154 | 0.00344 0.00356
average 0.00170 0.00166 | 0.00120 0.00390 { 0.01589 0.01525
maximum 0.00260 0.00304 | 0.00166 0.02137 | 0.07151 0.06087
GMRAC with
Fixed Controllers
minimum 0.00161 0.00160 | 0.00118 0.00169 | 0.00435 0.00435
average 0.00161 0.00161 | 0.00121 0.00186 | 0.00446 0.00446
maximum 0.00166 0.00167 | 0.00122 0.00235 | 0.00574 0.00556
GGAC with
Fixed Controllers
minimum 0.00459 0.00479 | 0.00401 0.00338 | 0.00497 0.00499
average 0.00601 0.00553 | 0.00459 0.00358 { 0.00522 0.00520
maximum 0.01175 0.00736 | 0.00635 0.00436 | 0.00694 0.00624
GGAC with
Fixed Controllers and
Plant Models
minimum 0.00502 0.00479 | 0.00415 0.00343 | 0.00499 0.00517
average 0.00545 0.00567 | 0.00490 0.00415 { 0.00558 0.00559
maximum 0.00812 0.00627 | 0.00640 0.00471 | 0.00648 0.00573

population members enables the GA to find reasonably gosichulations using the GMRAC with fixed population mem-

controllers quickly and then search nearby to find better onégrs. Over the course of 100 simulations, the GMRAC with
Table | shows the minimum, average, and maximum errdiiged population members had a smaller difference between

between the reference input and braking process output for I@himum and maximum errors than did the GMRAC with
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Fig. 11. GGAC for base braking.

no fixed population members. This was expected because glemetic algorithm to identify the braking process model. This
fixed models add a deterministic element to the inherentlyaking process model is then used in the fithess evaluation
stochastic genetic algorithm. Fig. 10 shows the results ofoh the first genetic algorithm which attempts to find a good
typical simulation run. Note that this controller performs vergontroller. Fig. 11 shows the GGAC.

well with little difference in performance as the specific torque

increases. A. GGAC for Base Braking

The plant model structure is similar to the one used in the
V. GENERAL GENETIC ADAPTIVE CONTROL GMRAC, but a constant offset is assumed. The plant model

i ) . is defined as
In this section we expand on the genetic model reference

adaptive controller in Section IV, no longer assuming we have i(2) = ku(z) + dz® ) 3)
a good model of the braking process, but instead use another (z = p1)(2 — p2)(2 — p3)
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The constant offsef is used to help identify inherent friction 5) The maximally fit braking process model becomes the
in the automobile [as modeled in the brake system byt model used for the next time step.

function described in Section I1]. The fitness function is designed to compare how well each
The second genetic algorithm attempts to identify the pgtant model tracks the output of the actual braking system,
rameterst, p1, p2, p3, andd. The gains are restricted to lie ingiven the actual inputs to the braking system. The error at each
regions where we know the parameters should be. The gainife step is computed, squared and summed over the model
the braking process modehas restricted t0 < k& < 0.5. The  estimation window,V. The plant model with the smallest error
first two poles (the poles of the braking process) were restrictedm, ¢;, will have the largest fitness valué and will be
t0 0.9 < p1,p2 < 1.1 and the third pole (the pole of theselected as the model used in the next time step. The value for
torque sensor) was restricted & < ps < 0.8. The constant « was set td).0001. In general, we usually seleatto be one
offset was restricted t0 < d < 107°. All the parameters or two orders of magnitude less than the average error sum,
are restricted because we assume we know a fair amountofo provide a good mix of fitness values in the population.
information about the braking system. The model estimation window was set to 20 because this
The individual process models are defined by a 15-digitovides enough time to observe the braking process model,
chromosome, and each of the five parameters is represerfetidoes not require too much controller processor time.
with three digits. The population of process models consistsOnce the braking process model is determined, it is placed
of 100 individuals. The probability of mutation was set tonto the fitness function of a genetic algorithm that evolves
0.1 (relatively high since we want to make sure that thg good controller. This operates exactly like the GMRAC
populations do not stagnate such that the controller will ngiescribed previously. In all simulations of the GGAC, we
adapt). The probability of crossover was set to 0.8. use the GMRAC technique with fixed controllers because

Because the plant parameters do not change very quiclg have already demonstrated this improves average tracking
and the processing time is shoff’ (= 0.005 s), the iden- performance.

tification genetic algorithm only computes a new generation
once every five samples. Furthermore, the identification G\ sGAC Results
is not run for the first ten samples of every ramp-step in the

simulation because the braking process input is nearly zero al[:ig' 12 sho;/]vs the resultsf of the bra_king Isimulatiogl usingf
this time and hence no information can be obtained to hefp® GGA,C,' The GGAC performs conS|s_tent y, regardiess o
identify the plant parameters. the specific torque of the brakes. While the GGAC does

The fitness function of the genetic identification algorithm jgot perform as well as the GMRAC, it also assur_ned_ less
as follows: For each plant model candidate in the populati owledge of the braking process model. The results in Fig. 12
P, do the following represent the behavior for only one simulation run. Because

1) Initialize the states of the discrete-time process mod%e GGAC is stochastic, results vary with each simulat.ion.
with the outputs of the actual braking process average, the GGAC greatly outperformed the conventional
2) Usina th N — 20 |  braki t .I . Icontroller, and outperformed the FMRLC. While the GGAC
) Using the pas = 20 samples o oraking control signa di(ti not outperform the GMRAC, it required less knowledge
u(k) use the process model candidate to predict the PF'the braking process. See Table | for a summary of these
outputs of the braking procesg|(k). Compute the error results
between the predicted outpfit(k) and the actual output '
Zég“r)jf(i elafoh ]tv'me step. C. GGAC with Fixed Plant Models
) . . Just as fixed controllers in the GA population can improve
ik + ) = kiu(k +7 = 3) the performance of a closed-loop system, so too can fixed plant
— (=p1i — p2i — p3i)Ui(k +5 —1) models. Similar to the work in [14], fixed plant models in a
— (p1ipai + prip3i + paipsi)Gi(k +45—2)  GA population help the GA to quickly identify a reasonable
— (—puipaips)ii(k + j — 3) + d;. plant mod(_el and search nearby for.a better one. Thg parameters
of the 16 fixed plant models used in GGAC are defined by all
Next j possible combinations of
The braking process model uses the paramétgrs,;,

p2i, P3i, andd; from the process model candidate, k €{0.167, 0.333}

Then p1 €{0.967, 1.033}
N p2 €10.967, 1.033)
&=y [u(N —j) — G:(N — ). ps € {0.667,0.733)  d = 0.
=1

Table | shows the minimum, average, and maximum errors

3) Assign fitness/; to each plant model candidate . ]
) 'gn f P I between the reference input and braking process output for

J, = — « 100 simulations using the GGAC with both fixed plant models
¢+ and fixed controllers. No simulation plot is shown for the
Here o« = 0.0001. GGAC with fixed plant models because the results on average

4) Repeat Steps 1)-3) for each member of the populaticere very similar to the GGAC without fixed plant models.
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Fig. 12. Results using GGAC with fixed controllers.

The advantage of the GGAC with fixed plant models is iteequires the most information about the braking process and
ability to find a reasonable plant model more quickly thanses this information well to track the reference input. The
the GGAC without fixed plant models. This is critical inGGAC performed consistently, outperforming the FMRLC,
the first few seconds of the simulation when very little datand performing almost as well as the GMRAC while requiring
from the plant is available. The GGAC without fixed plantess information about the braking process. The GGAC with
models sometimes has difficulties tracking the reference infaath fixed controllers and plant models performed the most
early in the simulation (as can be seen from the maximueensistently, with virtually no difference in the tracking error
tracking error for the first four seconds in Table 1). The GGA©ver the whole range of specific torque values.
with fixed plant models dramatically reduced this maximum We must point out once again, however, that the lead-lag
tracking error. compensator design was for the cold brake condition and in
this region (0-4 s) it performs quite well with little oscillation
VI. DisCUSSION in its control input. Later in the simulations when the brakes
heat up the performance of the lead-lag compensator degrades
somewhat, but it uses less oscillations in the control input
For all simulations, the error between the reference inptitan the intelligent controllers.
and the output of the braking process was computed at each
time step. This error was squared and summed for every time
step in the simulation to quantify the performance of eadh Computational Complexity

controller (note that the amount of control energy used in all By far the simplest algorithm to implement is the lead-
cases was comparable and not as important for this applicatipfy compensator. For it there are five gains to store for
so we do not use this as an additional performance measupg).difference equation and hence five multiplications and
For the genetic adaptive control techniques, the simulatiofiur additions for each time step. Next, we discuss how to
were run 100 times and the minimum, average, and maximy®me up with “order of magnitude” approximations of the
errors were determined. The results are separated for eachmnsiber of operations needed per step (i.e., within the sampling
ramp-step input and shown in Table I. interval) and memory needed for each of the intelligent control
Note that all the intelligent control techniques performegtrategies. This analysis is meant to help gain insights into
significantly better at tracking the reference input than thmplementation issues for the controllers presented in this
conventional lead-lag controller, especially when the specifi@aper and to give an idea of what must be paid to get
torque increased. The FMRLC, aside from the first few sethe performance improvements that the intelligent controllers
onds where it learned to control the braking process, performeiier.
quite well. The GMRAC performed well, and the GMRAC The complexity of the FMRLC is not too significant since
with fixed controllers performed the best on average of all tlieonly has 36 rules in the fuzzy controller and 25 rules in
control technigues investigated. Of course the GMRAC alsbe inverse model. Its update scheme implemented by the

A. Summary of Results
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TABLE 1l
COMPUTATIONAL COMPLEXITY
Number of Operations per Step Memory

Conventional 5 multiplications, 4 additions 5 gains to store

Lead-Lag

FMRLC Adaptation: 4 multiplications, 4 sums; | Adaptation: 28 values; Reference model:
Reference model: 6 multiplications, 5 ad- | 6 values; Fuzzy inverse model and fuzzy
ditions; Fuzzy inverse model, fuzzy con- | controller: 61 output membership func-
troller: compute values of input member- | tion centers, 22 input membership func-
ship functions (which depends on how you | tion centers, plus parameters to fully de-
code it) and compute outputs (4 multipli- | fine all membership functions, plus stor-
cations and 8 additions for each assuming | age of all 61 rules (essentially pointers be-
that the areas under the implied fuzzy sets | tween membership functions).
are computed).

GMRAC/GGAC || GMRAC has O = P(P+40N +20C+60) | Reference model: 6 values; Population el-
operations / step, or for us 4230 opera- | ements: 8; N x P = 80 values for look-
tions / step, and there is roughly three | ahead, plus the system model. Roughly
times this amount for GGAC. twice this amount for GGAC.

201

adaptation mechanism is simple and hence computation tisimulation program (written in the C language) and computed
is short (only four multiplications and four sums) to updateoughly the number of operations required per generation.
the fuzzy controller. There are six multiplications and fiv&Jsing the variables” to represent the population sizé]
additions for the reference model. The memory needed fior represent the look-ahead time window steps in the fitness
the adaptation mechanism depends on the number of stepsftmegtion, andC to represent the length of the chromosome,
mechanism looks back in time to update rules; in this casee arrived at the following equation:

it looked back three steps. The mechanism needs to store the
degrees of certainty of the four rules that could have been on
over the last four steps, and the four past center values for these
four rules sal24-16 = 28 values must be stored. However, this ,
ignores the computations necessary for computing the fuﬂgre _O repres_ents the number of (_)peratlo_ns per genera-
inverse model and fuzzy controller outputs. For this, first no n (i.e., per time step) of the genetic algorithm, where an

that we must store 61 output membership function centers %eranoq IS any fidd'tlon' mult|pllcqt|on, subtractmq, divi .
) Ion, assignment, increment, comparison, or declaration. This

for the fuzzy controller and 25 for the fuzzy inverse mode : . )
guation represents a rough estimate; we were careful to

and 22 input membership function centers (12 for the fuZZa(/erestimate calculations when simplifying this equation. For
controller and ten for the inverse model). Next, to find the Plying d )

d to which ot bershio function i r{]emory, you need to store the reference model, the population
egree o which an input membership function IS on amounts, elements), the results of looking ahe&dsteps for each of
to finding the value of a function (a line), that is the valu

. . . . theseP elements (aboulv x P parameters), and the model
of the membership function (but you can avoid computings ihe system
the degree of certainty for each input membership function byUsing this equation, we can see that the GMRAC requires

some simple range checking on the inputs). However, .thIS %%ghly 4230 operations per generation. Using a sampling
to be done for each of the two inputs for both the fuzzy inversgne of 77 = 0.005 s, that amounts to approximately 850 000
model and the fuzzy controller. Hence, we have to compWerations per second. This number is less for the case
the membership values for all 61 rules in the worse case (Qfih fixed population members. The GGAC uses two genetic
course simple strategies may be used to reduce computatigigyrithms, with the second GA having a significantly higher
here where for instance, you only compute membership valygsyulation size and chromosome length. The GGAC requires
for the eight rules that are on, four rules for the fuzzy controllgfpproximately 3.3 million operations per second, assuming a
and four for the inverse model). Next, the areas under tB@mpling time off” = 0.005 s for the genetic adaptive control
implied fuzzy sets must be computed, but simple geometry cagyorithm and7 = 0.025 s for the genetic identification
be used (for the area under a chopped-off triangle) rather th@gorithm. Of course this computation time could be reduced
an explicit computation of an integral so this only takes foutith more streamlined code and smaller population size and
multiplications and an addition. This completes the necessayromosome length. Because this research was in simulation
computations. Overall, we see that the FMRLC is quite a hife did not attempt to optimize the computation time. We
more complex than the lead-lag controller. are confident that substantial improvements could be made
To better understand the computation time required of terms of processing time. Nevertheless, with the cheap and
the genetic adaptive controllers, we carefully examined opowerful microprocessors widely available today, a controller

O = P(P + 40N + 20C + 60).
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that requires 3.3 million operations per second is certainlys] J. K. Harvey, “Implementation of fixed and self-tuning controllers for
implementable. wheel torque regulation,” Master’s thesis, Ohio State Univ., Columbus,

1993.

The results of this _diSC_USSion are summarized in_ Table II[6] J. Layne and K. Passino, “Fuzzy model reference learning control for
Overall, our conclusion is that the performance improve- cargo ship steering,[EEE Contr. Syst. Magyol. 13, pp. 23-34, Dec.
ments obtained with the intelligent control methods cost us, 1993.

L. Porter and K. Passino, “Genetic model reference adaptive control,”

in computational complexity. The cost is not too great for theé * iy proc. IEEE Int. Symp. Intell. ContrColumbus, OH, Aug. 1994, pp.
FMRLC but is significant when we use our GMRAC/GGAC  219-224.

and this demands that we study ways to simplify the code tha]

W. Lennon and K. Passino, “Intelligent control for brake systems,” in
Proc. IEEE Int. Symp. Intell. ContriMonterey, CA, Aug. 1995, pp.

implements these controllers. 499-504.

[9] W. Lennon and K. Passino, “Genetic adaptive identification and con-
trol,” 1996, in preparation.
VII. CONCLUDING REMARKS [10] V. Moudgal, W. Kwong, K. Passino, and S. Yurkovich, “Fuzzy learning
control for a flexible-link robot,”IEEE Trans. Fuzzy Systvol. 3, pp.

We have used the work from [4] and [5] to define the base 199 519 May 1995.
braking control problem and have developed two intelligerft1] J. Layne and K. Passino, “Fuzzy model reference learning control,” in
control methods for this system. Clearly the approaches and Froc. 1992 IEEE Conf. Contr. ApplicaDayton, OH, Sept. 1992, pp.

686—691.

conclusions that we present are somewhat preliminary afigl| p. Goldberg,Genetic Algorithms in Search, Optimization and Machine
are in need of further significant investigations. For instance, Learning. Reading, MA: Addison-Wesley, 1989.

it would be useful to perform stability, convergence, antt

3] Z. Michalewicz,Genetic Algorithms} Data Structures= Evolutionary
Programs. Berlin: Springer-Verlag, 1992.

robustness analysis of both the FMRLC and GMRAC ta4] K. S. Narendra and J. Balakrishnan, “Improving transient response of
help evaluate this safety-critical automotive system. While adaptive control systems using multiple models and switchifigEE

the model that we use from [4] and [5] has proven to be

Trans. Automat. Contryol. 39, pp. 1861-1866, 1994.

quite adequate for the development of controllers that have
been experimentally evaluated at a test track on a vehicle, it

would be valuable to evaluate the developed controllers in the
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