
Journal of Intelligent and Robotic Systems 18: 209–248, 1997. 209
c© 1997 Kluwer Academic Publishers. Printed in the Netherlands.

Intelligent Control for an Acrobot

SCOTT C. BROWN and KEVIN M. PASSINO?

Department of Electrical Engineering, The Ohio State University, 2015 Neil Avenue, Columbus,
OH 43210, U.S.A. e-mail: passino@ee.eng.ohio-state.edu

(Received: 1 November 1996)

Abstract. The acrobot is an underactuated two-link planar robot that mimics the human acrobat who
hangs from a bar and tries to swing up to a perfectly balanced upside-down position with his/her
hands still on the bar. In this paper we develop intelligent controllers for swing-up and balancing
of the acrobot. In particular, we first develop classical, fuzzy, and adaptive fuzzy controllers to
balance the acrobot in its inverted unstable equilibrium region. Next, a proportional-derivative (PD)
controller with inner-loop partial feedback linearization, a state-feedback, and a fuzzy controller are
developed to swing up the acrobot from its stable equilibrium position to the inverted region, where
we use a balancing controller to ‘catch’ and balance it. At the same time, we develop two genetic
algorithms for tuning the balancing and swing-up controllers, and show how these can be used to
help optimize the performance of the controllers. Overall, this paper provides (i) a case study of the
development of a variety of intelligent controllers for a challenging application, (ii) a comparative
analysis of intelligent vs. conventional control methods (including the linear quadratic regulator
and feedback linearization) for this application, and (iii) a case study of the development of genetic
algorithms for off-line computer-aided-design of both conventional and intelligent control systems.

Key words: acrobot, robotics, fuzzy control, genetic algorithms.

1. Introduction

The acrobot, so named because of its similarity to a human acrobat, is an underac-
tuated unstable robot useful as a testbed for studying the theory and application
of nonlinear control (see Figure 1). In this paper we apply intelligent control
[1, 2] to two challenging robotics control problems associated with the acrobot:
swing-up and balancing. To date there seems to be no uniform theory for the
control of underactuated robots such as the acrobot, where we try to control the
position of its two links with one input. Indeed, its nonlinear dynamics have
forced researchers to employ two very different varieties of controllers, one for
swing-up and another for balancing. Typically, a heuristic strategy is used for
swing-up, where the goal is to force the acrobot to reach its vertical upright
position with near zero velocity on both links. Then, when the links are close to
the inverted position, a balancing controller is switched on and used to maintain
the acrobot in the inverted position (again, see Figure 1).

This paper builds directly on earlier work performed by Professor Mark Spong
and his colleagues at the University of Illinois, who have focused on the develop-
? This work has been supported in part by National Science Foundation Grant EEC9315257.

Please address correspondence to K. Passino.

VTEX(D) PIPS NO.: 125740 MATHKAP
JINT1343.tex; 12/03/1997; 12:52; v.7; p.1

210 SCOTT C. BROWN AND KEVIN M. PASSINO

Figure 1. The acrobot.

ment of conventional controllers for the acrobot. Their work in [3] and [4] serves
as an excellent introduction to the acrobot and its dynamics. Each paper presents
a different partial feedback linearizing controller used for acrobot swing-up. A
linear quadratic regulator (LQR) balancing controller is developed for the acrobot
in both of these works. The dynamics of a simple acrobot are also stated in both
works, however a more complete development of the acrobot dynamics may be
found in Spong and Vidyasagar’s book on robotics [5]. Two other relevant papers
which discuss the acrobot dynamics, the unstable equilibrium manifold, and con-
trollability issues include [6] and [7]. In this paper we study a different type of
acrobot than in [3, 4, 6, 7], where we assume that (i) the actuator (motor) used
to drive the second link is attached to the end of the first link, (ii) the second
link is not allowed to move in a full circle but is constrained so that it cannot

JINT1343.tex; 12/03/1997; 12:52; v.7; p.2

INTELLIGENT CONTROL FOR AN ACROBOT 211

cross over the first link, and (iii) we put a saturation nonlinearity on the torque
input from the motor.

We make extensive use of direct and adaptive fuzzy controllers throughout
this work. Publications in this area abound in the literature; however, several
sources for fuzzy control theory include [8], [9], and [10]. The fuzzy model
reference learning controller (FMRLC), an adaptive fuzzy controller used here
for the acrobot (see Section 3), has also been applied to many other applications
[11, 12]. This paper presents what seems to be the first results on the use of
direct and adaptive fuzzy control for the acrobot.

Genetic algorithms (GAs) are also used throughout this work. The interested
reader is encouraged to consult [13] and [14] for an introduction to the genetic
algorithm (due to space constraints we do not overview the basic mechanics of
GAs and simply assume that the reader understands these). Genetic algorithms
have in the past been used in the design of conventional and intelligent control
systems. For instance, see [15, 16, 17, 18, 19, 20, 21, 22]. In this paper we present
what seems to be the first results on the development of GAs for computer-aided-
design of conventional and intelligent swing-up and balancing controllers for the
acrobot.

This paper is organized into five sections. Section 2 develops a model for the
acrobot, including the parameter values to model a realistic physical acrobot. In
Section 3 we develop linear and non-linear balancing controllers for the acrobot.
The disturbance rejection capabilities of each balancing controller are investi-
gated. We also discuss how we use genetic algorithms to tune the balancing
controller parameters, and present the results of these re-tuned controllers. In
Section 4 we develop three types of swing-up controllers; genetic algorithms are
then used to tune the swing-up controller parameters. Lastly, Section 5 provides
a brief summary of the results.

2. The Acrobot System and Dynamics

The acrobot has a single actuator at the elbow and no actuator at the shoulder;
the system is underactuated because we desire to control two links of the acrobot
(each with one degree of freedom) with only a single system input. The config-
uration of a simple acrobot, from which the system dynamics are obtained, is
shown in Figure 2. The joint angles q1 and q2 serve as the generalized system
coordinates; m1 and m2 specify the mass of the links; l1 and l2 specify the link
lengths; lc1 and lc2 specify the distance from the axis of rotation of each link to
its center of mass; and lastly, I1 and I2 specify the moment of inertia of each
link taken about an axis coming out of the page and passing through its center
of mass. The single system input, τ , is defined such that a positive torque causes
q2 to increase (move in the counter-clockwise direction).

In [5], Spong has developed the equations of motion of a planar elbow manip-
ulator; this manipulator is identical to the acrobot shown in Figure 2, except that

JINT1343.tex; 12/03/1997; 12:52; v.7; p.3

212 SCOTT C. BROWN AND KEVIN M. PASSINO

Figure 2. Simple acrobot notation.

it is actuated at joints one and two. The dynamics of the acrobot are simply those
of the planar manipulator, with the term corresponding to the input torque at the
first joint set equal to zero and are given by

d11q̈1 + d12q̈2 + h1 + φ1 = 0, (1)

d12q̈1 + d22q̈2 + h2 + φ2 = τ, (2)

where the coefficients in equations 1 and 2 are defined as

d11 = m1l
2
c1 +m2(l21 + l2c2 + 2l1lc2 cos(q2)) + I1 + I2, (3)

d22 = m2l
2
c2 + I2, (4)

d12 = m2(l2c2 + l1lc2 cos(q2)) + I2, (5)

h1 = −m2l1lc2 sin(q2)q̇2
2 − 2m2l1lc2 sin(q2)q̇2q̇1, (6)

h2 = m2l1lc2 sin(q2)q̇2
1, (7)

φ1 = (m1lc1 +m2l1)g cos(q1) +m2lc2g cos(q1 + q2), (8)

φ2 = m2lc2g cos(q1 + q2). (9)

In our acrobot model we have also limited the range for joint angle q2 to
[−π, π] (i.e., the second link is not free to rotate in a complete revolution – it

JINT1343.tex; 12/03/1997; 12:52; v.7; p.4

INTELLIGENT CONTROL FOR AN ACROBOT 213

Table I. Acrobot model parameters
used in simulations

Parameter Value

m1 1.9008 kg
m2 0.7175 kg
l1 0.2 m
l2 0.2 m
lc1 1.8522 × 10−1 m
lc2 6.2052 × 10−2 m
I1 4.3399 × 10−3 kg·m2

I2 5.2285 × 10−3 kg·m2

cannot cross over the first link). We have also cascaded a saturation nonlinearity
between the controller output and plant input to limit the input torque magnitude
to 4.5 N/m. This seemed a reasonable torque limitation based upon current motor
designs. The model parameter values which we have used throughout this paper
have been chosen as realistically as possible. In choosing these parameters, we
have assumed that the input torque at joint two would be supplied by a motor
mounted at the end of link one. With this assumption, the acrobot parameters
that we have chosen are summarized in Table I.

For all of the simulations performed in this paper we use a fourth-order
Runge–Kutta technique with an integration step-size of 0.0025 seconds. To sim-
ulate the effects of implementing the controllers on a digital computer we sample
the output signals with a period Ts = 0.01 seconds, and only update the control
input every Ts seconds (holding the value constant in between updates).

3. Balancing Controllers

The first controllers developed for the acrobot were balancing controllers. Bal-
ancing the acrobot refers to maintaining the acrobot in the inverted position when
it starts close to this position. To balance the acrobot in the inverted position,
one must design a controller which stabilizes the behavior of the system in some
region about an equilibrium point. The acrobot has a single stable equilibrium
point corresponding to both links hanging vertically beneath joint one. Rather
than a single inverted equilibrium point, however, the acrobot dynamics result
in a manifold of inverted equilibrium positions. Physically, the acrobot is in
an inverted equilibrium position whenever the system center of mass is direct-
ly above joint one [7]. Each equilibrium position is associated with a unique
constant torque input [6]; thus, only the completely vertical inverted position
results in a zero torque input. Several of the infinitely many inverted equilibrium
positions along the equilibrium manifold are shown in Figure 3. In this section
we will design controllers to balance the acrobot only in the completely verti-

JINT1343.tex; 12/03/1997; 12:52; v.7; p.5

214 SCOTT C. BROWN AND KEVIN M. PASSINO

Figure 3. Several possible equilibrium positions on the equilibrium manifold.

cal position. Other works have designed controllers to move the acrobot along
the equilibrium manifold (see [7] and [6]). Indeed, Hauser and Murray showed
in [7] that the linearized acrobot dynamics are completely controllable along the
equilibrium manifold and can be controlled locally by linear controllers.

In this section, both linear and nonlinear balancing controllers have been
developed for the acrobot. A linear quadratic regulator (LQR) is the first balanc-
ing controller introduced. Next, two nonlinear controllers are introduced: a direct
fuzzy controller, and a fuzzy model reference learning controller (FMRLC) [11].
This section will develop all of the balancing controllers and also provide simu-
lation results demonstrating their performance on the nominal plant and the plant
with constant and periodic torque disturbances. Genetic algorithms will then be
used to tune the controller parameters for these balancing controllers.

3.1. LINEAR QUADRATIC REGULATOR

The first step in developing any linear controller is obtaining a linear model
of the system. A linear model of the acrobot was obtained by linearizing the
acrobot dynamics about the inverted position (q1 = π/2, q2 = 0, q̇1 = 0, q̇2 = 0)
with τ = 0. Defining the state vector x = [q1 − π/2, q2, q̇1, q̇2]T transforms
the balancing control problem to a regulation problem. The acrobot dynamics
linearized about x = [0, 0, 0, 0]T may be described by

ẋ = Ax +Bτ, (10)

y = Cx +Dτ. (11)

The numerical values for the A, B, C, and D matrices for the acrobot model
developed in Section 2 were determined to be

A =


0 0 1 0

0 0 0 1

49.4782 −5.5038 0 0

−50.0109 66.2336 0 0

 , (12)

JINT1343.tex; 12/03/1997; 12:52; v.7; p.6

INTELLIGENT CONTROL FOR AN ACROBOT 215

B =


0

0

−23.9348

175.7326

 , (13)

C = I 4×4, (14)

D = 04×1. (15)

The poles of the linearized open-loop system are found to be at −8.7431,
8.7431, −6.2666, and 6.2666, showing that the inverted equilibrium position
is (as expected) unstable.

The linear quadratic regulator (LQR) is an optimal state-feedback controller
that minimizes the quadratic cost criterion

J =

∫ ∞
0

(xTQx + τTRτ) dt. (16)

The matrices Q and R in Equation (16) are used to weight the states and input
in the cost criterion. The LQR designed for the linearized acrobot system has
weighting matrices given by

Q =


1000 −500 0 0

−500 1000 0 0

0 0 1000 −500

0 0 −500 1000

 , (17)

R = [10000]. (18)

Matlab was used to determine the corresponding static state-feedback gains given
by

KLQR = [−113.8908, −9.5070, −17.3951, −1.9405]. (19)

The weighting matrices chosen are similar to those used by Spong in [3] for
designing a balancing controller for a different acrobot. He used the same Q
matrix and a different value for R. A larger value of R was used here for two
reasons. First, increasing the value of R places greater emphasis on reducing
the torque input requirements in the cost criterion. Second, while increasing the
value of R does tend to result in a slightly worse balancing performance (because
the control input is reduced), a lower R value results in a single fast closed-loop
pole that can cause problems with discrete implementation. The linearized system
with the LQR designed above has closed-loop poles at −60.9287, −1.5402,
−6.4372 − 0.1331j, and −6.4372 + 0.1331j. Other controllers designed with
different Q and R matrices were also tried but found to be less successful.

JINT1343.tex; 12/03/1997; 12:52; v.7; p.7

216 SCOTT C. BROWN AND KEVIN M. PASSINO

Figure 4. Simulation results for acrobot with LQR.

The initial condition used to test this and other balancing controllers was:
q1 = π/2+0.04, q2 = −0.0500, q̇1 = −0.2000, and q̇2 = 0.0400. This arbitrarily
chosen initial condition is such that the first link is approximately 2.29◦ beyond
the inverted position, while the second link is displaced approximately −2.86◦

from the first link. The initial velocities are such that the first link is moving away
from the inverted position, while the second link is moving into line with the first
link. The simulation results for the acrobot with this initial condition and the LQR
are shown in Figure 4. The optimal LQR is successful at balancing the acrobot
in the inverted position; the controller performance for this initial condition is
also quite similar to the performance found with other initial conditions provided
they are not too far from the balanced position.

3.2. MANUALLY TUNED NONLINEAR CONTROL

In this section we will develop two nonlinear controllers, a direct fuzzy controller
and a FMRLC. Because the acrobot is a nonlinear system we might expect the
nonlinear controllers to have some advantage over the LQR. These controllers
will be tested for the same set of initial conditions as the LQR, and their perfor-
mance compared with the performance of the LQR.

3.2.1. Direct Fuzzy Control

A direct fuzzy controller was the next balancing controller designed for the
acrobot. The fuzzy system used has four inputs: g0(q1 − π/2), g1q2, g2q̇1, and

JINT1343.tex; 12/03/1997; 12:52; v.7; p.8

INTELLIGENT CONTROL FOR AN ACROBOT 217

g3q̇2; and a single output τ (each input is preceded by a static normalizing gain
term, g0, g1, g2, and g3, while the output is multiplied by a static gain, h). The
‘effective universe of discourse’ (i.e., the range where the membership func-
tions are not saturated at one) for each input and the output is [−1, 1]. We first
attempted to choose the rule-base intuitively and determine values for the fuzzy
controller gains based upon our understanding of the system. The system was
simulated with different initial conditions and input torques in an attempt to
ascertain typical operating ranges for the system states and the effect of different
input torques on these states. However, no fuzzy controller gains and rule-bases
determined in this manner were successful at balancing the acrobot in the inverted
position.

The next method tried for determining the gains g0, g1, g2, g3, and h uses
the LQR gains previously designed for a linearized model of the system. To
use this method, one of the input gains, gi, is first chosen to map the nor-
mal operating range of state i to the normalized universe of discourse, [−1, 1].
The index i is chosen to correspond to the most important state, i.e., the state
most critical in achieving the control objective. With gi determined, we solve
for h so that the ‘effective gain?’ for the ith input to the fuzzy controller
is equal to the the corresponding state-feedback gain for the ith state; that
is

h =
KLQR(i)

gi
. (20)

With h now determined, the remaining gains, gj (j = 1, . . . , 3; j 6= i), are cho-
sen to also match the corresponding state-feedback gains. Using this method,the
final fuzzy system gains are related to the state-feedback gains with the relation-
ship

KLQR = [g0h, g1h, g2h, g3h]. (21)

The rule-base for a fuzzy system with its gains determined in this manner should
implement index adding, to emulate the summing effect of a state-feedback con-
troller. Such a scheme is explained in more detail in [23] and [24] for two other
applications.

Using the above method in conjunction with the state-feedback gains devel-
oped in Section 3.1, a successful direct fuzzy balancing controller was found.
The angular position of joint one, q1, was determined to be the critical state in
balancing the acrobot. A gain of g0 = 10 was chosen as the input normalizing
gain for the first fuzzy controller input; this choice for g0 implies that values of
q1 in the range [− 1

10 ,
1
10] radians will be mapped to fuzzy sets without satura-

tion.
? Since the fuzzy controller is a static nonlinear map that is Lipschitz continuous, if we make

small changes to its inputs its outputs will only change slightly so that locally the fuzzy controller
will act like a linear controller; to characterize this we use the term ‘effective gain’.

JINT1343.tex; 12/03/1997; 12:52; v.7; p.9

218 SCOTT C. BROWN AND KEVIN M. PASSINO

A better fuzzy controller, however, was designed using the same gain selec-
tion method in conjunction with another set of state-feedback gains. The state-
feedback gains resulting in improved fuzzy controller performance were deter-
mined from an LQR designed with a different R weighting value; a value of
R = 1000 was used instead of the previous value of R = 10000. This value
change results in state-feedback gains given by

KLQR = [−310.6372, −26.3246, −47.5231, 5.3165], (22)

and the corresponding linearized system closed-loop pole locations? at−189.2311,
−106.8802,−6.4360−0.1336j,−6.4360+0.1336j. After some simulation trials,
a value of g0 = 5.5555̄ (1/0.18 radians) was found to yield the best simulation
results. Using the above procedure, the other resulting fuzzy controller gains are
given by g1 = 0.4708, g2 = 0.8500, g3 = 0.0951, and h = 55.9147.

The best fuzzy system is implemented with 13 triangular membership func-
tions on each universe of discourse, with 50% overlap, evenly distributed over
each input universe of discourse. The leftmost and rightmost membership func-
tions are extended to −∞ and +∞, respectively, and there are 49 triangular mem-
bership functions distributed over the output universe of discourse. The addition
of more membership functions on the input or output universes of discourse did
not seem to significantly improve performance. The output membership function
centers are mapped by the function

Ci =
sign(i)|i|z

(max(i))z
, (23)

where i is the membership function’s linguistic index ranging from −max(i) to
max(i) (i.e., we number the membership functions on each universe of discourse
with integer indices i, where

i ∈ {. . . , −4, −3, −1, 0, 1, 2, 3, 4, . . .},

with ‘0’ labeling the membership function that is centered at zero (these are
sometimes called ‘linguistic-numeric indices’) [8]). The best value for the vari-
able z was found to be 0.8. This choice of z causes the spacing between output
membership function centers to decrease as the linguistic index is increased; thus,
the output membership functions are spread out most about zero, increasing the
controller’s effective gain in this region. The fuzzy system’s rule-base imple-
ments ‘index-adding’ with saturation (see [23]); min is used for the premise and
implication, and center-of-gravity (COG) is used for defuzzification [8].

Simulation results for this fuzzy controller are shown in Figure 5. These
results were obtained using the same initial conditions used in Section 3.1. When
compared with the LQR simulation results for the same initial conditions in
Figure 4, we see that the LQR controller results in smoother state trajectories
? Note how the reduced value of R has resulted in a faster closed-loop pole.

JINT1343.tex; 12/03/1997; 12:52; v.7; p.10

INTELLIGENT CONTROL FOR AN ACROBOT 219

Figure 5. Simulation results for direct fuzzy controller.

and a reduced control input. Clearly, however, this is not due to a deficiency in the
fuzzy control approach. Additional tuning would result in performance similar
to the LQR case since, theoretically, it is possible to tune the fuzzy controller to
implement the same control surface as the LQR (at least locally). The problem
is that it is quite difficult to tune the direct fuzzy controller; additionally, more
membership functions may be required. This is why we turn to the adaptive fuzzy
controller studied next, where we seek a method that will automatically tune the
membership functions.

3.2.2. Fuzzy Model Reference Learning Control

We saw in the previous section that the fuzzy controller may be manually tuned to
achieve reasonable performance. However, different initial conditions can severe-
ly degrade the controller’s performance. To this end we are motivated to pursue
an adaptive strategy for balancing the acrobot in the inverted position.

The FMRLC strategy utilizes a second fuzzy system to modify the output
membership centers of the first direct fuzzy controller. In a typical FMRLC
configuration, a reference model output is compared with the actual plant out-
put and is used to generate error inputs to the second fuzzy system. A ‘fuzzy
inverse model’ (the rule-base of the second fuzzy system) is then used to gen-
erate a desired change in the output membership function centers of the rules
that caused the deviation from the reference model. Often the rules and cor-
responding output membership functions which caused the deviation from the

JINT1343.tex; 12/03/1997; 12:52; v.7; p.11

220 SCOTT C. BROWN AND KEVIN M. PASSINO

Figure 6. Configuration of balancing FMRLC.

reference model occurred several sampling periods prior to the current output.
Due to space constraints we must omit the details of the FMRLC operation and
refer the reader to [25, 11] for a more detailed tutorial introduction and several
studies of its application.

In the case of the acrobot FMRLC, no explicit dynamical reference model is
used. Instead, the plant outputs are multiplied with normalizing gains and used
directly as inputs to the second fuzzy system, as shown in Figure 6. Here, the
input normalizing gains, r0, r1, r2, and r3, are set equal to the input normalizing
gains used for the direct fuzzy controller, g0, g1, g2, and g3, respectively (for
justification of this choice see [11]). Each input to the second fuzzy system has
11 triangular membership functions, with 50% overlap, evenly distributed over
its respective universe of discourse. The output universe of discourse is spanned
by 41 triangular membership functions. The membership function centers are
mapped with the same type of I/O mapping used for the direct fuzzy controller,
but here a value of z = 1.3 has been used. The rule-base of the second fuzzy
system is once again implemented by adding the indices (see the previous section
for more details). The output of this fuzzy system is passed through a gain
hp = 0.5; this value affects the ‘learning rate’ of the FMRLC. The larger the
value of hp, the more the affected membership function centers are changed,
and the faster the system adapts (of course stability concerns limit how high hp
can be). For more details on design procedures and tuning of the FMRLC see
[11, 23].

The knowledge-base modifier actually changes the output membership func-
tion centers of the direct fuzzy controller (Fuzzy System 1 in Figure 6). The
direct fuzzy controller has been augmented to store the rules that were on, and
the corresponding degree of membership in each output membership function, for
the past d sampling periods. The knowledge-base modifier uses this stored infor-
mation to change the center of each membership function which had a nonzero
degree of membership d samples ago. Each effected membership function center,

JINT1343.tex; 12/03/1997; 12:52; v.7; p.12

INTELLIGENT CONTROL FOR AN ACROBOT 221

Figure 7. Simulation results for acrobot with FMRLC.

Ci,j,k,l((k − d) · Ts), is shifted by the relationship

Ci,j,k,l((k − d)Ts) := Ci,j,k,l
(
(k − d)Ts

)
+

+ p(kTs) · µi,j,k,l
(
(k − d)Ts

)
(24)

at each t = kTs. The subscripts i, j, k, l on C and µ represent the center and
degree of membership for the membership function corresponding to the rule
with linguistic indices i, j, k, l for each input, respectively.

Often when FMRLC is used, the direct fuzzy controller is initialized with no
knowledge, i.e., all output membership function centers are set to zero (see, e.g.,
[11]). In this case, all of its subsequent knowledge is learned via the FMRLC.
For the acrobot system, however, it seems this is not possible because the invert-
ed position is an unstable equilibrium point. Without some initial knowledge,
the acrobot falls over before the controller has time to learn. Thus, the direct
fuzzy controller is initialized with the same knowledge base as the direct fuzzy
controller used in Section 3.2.1.

The response of the acrobot with the FMRLC for the initial condition used
previously is shown in Figure 7. A value of d = 1 was used for this simulation.
For the acrobot, a single sample delay was found to yield the best simulation
results for all of the initial conditions tried. Comparing the response in Figure 7
with the response of the direct fuzzy controller shown in Figure 5, we see a
dramatic improvement for the FMRLC over the direct fuzzy controller. However,
the response of the system with FMRLC is not quite as smooth as the system

JINT1343.tex; 12/03/1997; 12:52; v.7; p.13

222 SCOTT C. BROWN AND KEVIN M. PASSINO

with the LQR (see Figure 4). The FMRLC was found to perform similarly for
other initial conditions; hence, the FMRLC significantly reduces the dependence
on initial conditions observed with the direct fuzzy controller. In the next section
we will also show that the FMRLC seems to have certain advantages over the
LQR for disturbance rejection.

3.3. CONTROLLER DISTURBANCE REJECTION

In this section we will consider the disturbance rejection abilities of the three
balancing controllers already developed. The first type of disturbance studied
was a constant disturbance at the torque input, which could result from a small
offset error in the power amplifier used to drive the acrobot motor. A periodic
disturbance at the torque input was studied next; such a disturbance could be a
result of noise emanating from surrounding electrical equipment or the AC power
lines. To demonstrate the behavior of the system for another initial condition, the
simulation results shown in this section were started from the initial condition:
q1 = 1.4704, q2 = 0.0828, q̇1 = 0.5811, and q̇2 = −0.2020. This initial condition
implies that the first link is approximately 5.75◦ from the inverted position, while
the second link is displaced approximately 4.74◦ from the first link (see Figure 2).
The initial velocities are such that the first link is moving toward the inverted
position, while the second link is moving into line with the first link.

3.3.1. Constant Torque Disturbance

The constant disturbance tested was a constant offset added to the plant’s torque
input. This disturbance had the form

τ = τdesired + C. (25)

A value of C = 0.5 was used in the simulations. The simulation response for
the acrobot with the LQR is shown in Figure 8. Here we see that the constant
torque disturbance has caused the LQR to balance the acrobot in an equilibrium
position other than the completely vertical position on the equilibrium manifold.
We omit the plot for the direct fuzzy controller since it results in an unstable
system. Figure 9 shows the simulation response for the FMRLC. Not only has
the addition of the FMRLC stabilized the system, but it has also compensated for
the constant disturbance. Indeed, in approximately 15 seconds, the acrobot has
been returned to the completely vertical equilibrium position (performing better
than the LQR).

3.3.2. Periodic Torque Disturbance

The periodic disturbance tested was a sinusoid added to the plant’s torque input.
The actual disturbance used in simulation is given by

τ = τdesired + 0.3 sin(2πt). (26)

JINT1343.tex; 12/03/1997; 12:52; v.7; p.14

INTELLIGENT CONTROL FOR AN ACROBOT 223

Figure 8. Simulation results for acrobot with LQR and constant torque disturbance.

Figure 9. Simulation results for acrobot with FMRLC and constant torque disturbance.

Figure 10 shows the simulation response for the acrobot with the LQR. The
results reveal that while the acrobot remained balanced, the disturbance has been
passed through to the system with no attenuation whatsoever. The simulation

JINT1343.tex; 12/03/1997; 12:52; v.7; p.15

224 SCOTT C. BROWN AND KEVIN M. PASSINO

Figure 10. Simulation results for acrobot with LQR and periodic torque disturbance.

Figure 11. Simulation results for acrobot with FMRLC and periodic torque disturbance.

results for the direct fuzzy controller reveal an even worse response as again
the disturbance is not attenuated and its response is not as smooth as that of
the LQR. The FMRLC, however, has dramatically outperformed both the LQR

JINT1343.tex; 12/03/1997; 12:52; v.7; p.16

INTELLIGENT CONTROL FOR AN ACROBOT 225

and the direct fuzzy controller. The simulation results shown in Figure 11 reveal
that the FMRLC has almost completely eliminated the effects of the disturbance.
Indeed, the only real difference between this result and the result obtained with
no disturbance is a small high-frequency oscillation on the input to the plant,
which seems reasonable.

3.4. BALANCING CONTROLLER TUNING BY A GENETIC ALGORITHM

In this section the parameters of the manually tuned balancing controllers intro-
duced in Section 3.2 will be tuned by genetic algorithms (GAs). In fact, we will
show how the GAs are able to successfully improve the performance of each
balancing controller for a given initial condition?. Note that in the GA we have a
population (set) of chromosomes with each chromosome representing the candi-
date controller (i.e., the controller parameters are sets of ‘genes’ called traits and
these are represented with standard base-10 numbers). There is a fitness function
that is used to evaluate the fitness of each controller in the population based on
standard closed-loop control system performance measures (which are carefully
quantified below). The GA operates by selecting chromosomes (controllers) to
enter a mating pool more often if they have an above average fitness (i.e., have
better closed-loop responses). The chromosomes (controllers) in the mating pool
are then ‘crossed-over’ and ‘mutated’ [13, 14] with certain probablities to form
the new generation (this achieves an interpolation between the controllers in the
population that are the best and these better controllers are placed in the next
generation). Also, we use ‘elitism’ [13] so that the most fit chromosome (i.e.,
the best controller) is passed on to the next generation without modification (this
helps to ensure that there will be at least one good controller in each generation).
Repeating this process results in an evolution of controller parameters and hence
provides us with a way to tune our controllers. For more details see [13, 14].

3.4.1. The Balancing Fitness Function

Before any GA can be used to tune the controller parameter values, a quantitative
measure of the balancing performance is needed; the fitness function provides us
with this measurement. The fitness function used to evaluate the performance of
the balancing controllers attempts to penalize the movement of the acrobot’s two
joints, as well as the required control input. The balancing controllers were each
simulated for 10 seconds, beginning from the same initial condition. During
each run the following statistics were gathered to characterize the controller’s
performance: the mean of the joint positions, q1−π/2 and q2, and control input,
τ , for t = 5 to t = 10 seconds (denoted mq1 , mq2, and mτ); the normalized sum
of the squares of the joint positions and control input for t = 0 to t = 5 seconds

? The GAs used throughout this paper have been implemented in C using a modified version
of a GA program written by Will Lennon.

JINT1343.tex; 12/03/1997; 12:52; v.7; p.17

226 SCOTT C. BROWN AND KEVIN M. PASSINO

(denoted sq1, sq2, and sτ); and the standard deviation of the joint positions and
control input for t = 5 to t = 10 seconds (denoted σq1 , σq2 , and στ). Using these
variables, the balancing fitness function may be written as?

fb =

{
wT s if (wT s > 0.001),

0.001 else,
(27)

where

w = [w0, w1, . . . , w7, w8]T (28)

is a user-specified vector of weights for the vector

s = [|mq1 |, |mq2 |, |mτ |, sq1, sq2, sτ , σq1 , σq2 , στ]
T . (29)

Basically, the GA tries to evolve a population of controllers that minimizes
fb (by maximizing 1/fb) and thereby reduces variations in the joint angle and
control input. By using different values for the weighting vector w, it is possible
to have a GA tune the balancing controllers to meet different criteria. The sum
of the squares have been used as performance measures in the first 5 seconds of
simulation to penalize movement and control input during the transition period of
the simulation. The standard deviation was used instead of the sum of the squares
in the latter simulation period to penalize variation in the joint positions and
input, without being adversely affected by balancing in non-vertical equilibrium
positions.

3.4.2. LQR Tuning by a Genetic Algorithm

The GA was used to tune the four state-feedback gains of the LQR. Each con-
troller gain was represented as a unique trait. Accordingly, there were four traits,
represented with 15 genes per trait, for a total chromosome length of 60 genes.
The allowable ranges for the feedback gains K0, K1, K2, and K3, were set
at [−9999.0, −40], [−1000.0, −2.0], [−2000.0, −5.0], and [−300.0, −0.1],
respectively. These ranges were chosen because they bound the gains determined
by designing 20 LQR controllers – each designed with different weighting matri-
ces. The population size for the GA was set to 20, and each individual in the
initial population was ‘seeded’ with the parameters of one of the 20 previously
designed LQRs.

This GA was run for 100 generations using the weighting vector

w = [1, 1, 1, 100, 80, 5, 10, 8, 0.5]T . (30)

This choice of w places emphasis on minimizing the joint movements, with a
lesser emphasis placed on the control input. The probabilities of mutation and
? The if condition in Equation (27) is used to ensure that the balancing fitness is not less than

0.001. We desire a fitness greater than zero for assigning a probability of mating to an individual
in the GA.

JINT1343.tex; 12/03/1997; 12:52; v.7; p.18

INTELLIGENT CONTROL FOR AN ACROBOT 227

Figure 12. Simulation results for LQR tuned by a GA.

crossover were set to 0.05 and 0.5, respectively. It is important to note that we
have seeded the GA with LQR gains, but that as the GA searches the gain space
it is likely that it will not produce a set of LQR gains (i.e., ones that would
minimize the performance index). An alternative approach to the GA tuning of
the LQR would be to use a population of weighting matrices and at each step
solve the Riccati equation. This would force the GA to search over the space of
LQRs, but it would be much more computationally intensive and hence we have
avoided this approach.

Simulation results for the linear controller tuned by the GA are shown in
Figure 12. We have used the same initial conditions used throughout Section 3.2.
We see that after tuning, the acrobot response is still quite smooth and uses
very little input torque; however, the speed of the balancing response has been
increased. This is not necessarily a beneficial characteristic though. Indeed it is
difficult to say that the balancing performance has been improved. Simulations
results using the re-tuned controller started from other initial conditions also yield
similar results. The final gains determined by the GA are shown in Table II, along
with the gains developed in Section 3.1 (the gains from Section 3.1 are denoted
as ‘Initial Value’). Notice how little each gain has been changed after tuning by
the GA. Considering the large range for the gains of different LQR balancing
controllers, the fact that the gains have remained almost fixed indicates that our
original LQR was a very good balancing controller.

JINT1343.tex; 12/03/1997; 12:52; v.7; p.19

228 SCOTT C. BROWN AND KEVIN M. PASSINO

Table II. State-feedback gains before and
after tuning by GA

Parameter Initial Final
value value

K0 −113.8908 −109.4879
K1 −9.5070 −9.8571
K2 −17.3951 −16.0464
K3 −1.9405 −1.9738

3.4.3. Direct Fuzzy Controller Tuning by a Genetic Algorithm

The next balancing controller tuned by a GA was the direct fuzzy controller
introduced in Section 3.2.1. The GA was used to tune six of the fuzzy controller
parameters: the four input normalizing gains, the output gain, and the input–
output mapping power (z). Each controller parameter was represented as a unique
trait. Accordingly, there were 6 traits, represented with 15 genes per trait, making
the total chromosome length for each individual 90 genes. The probabilities of
mutation and crossover were again set to 0.05 and 0.5, respectively. The GA
was run for 100 generations with a population size of 20. As a starting point,
a single individual in the initial population was seeded with the parameters of
the manually tuned fuzzy controller developed previously; all other individual’s
chromosomes were randomly determined such that each trait was within pre-
specified allowable ranges for each controller parameter. Only a single individual
was seeded with a working controller here because it is significantly more time
consuming to determine working fuzzy controllers than LQRs. The allowable
ranges for the fuzzy controller parameters, g0, g1, g2, g3, h, and z were set
at, respectively: [2.0, 8.0], [0.1, 2.5], [0.1, 2.0], [0.01, 2.0], [4.0, 99.0], and
[0.1, 1.5].

The weighting vector chosen first was the same vector used with the LQR:

w = [1, 1, 1, 100, 80, 5, 10, 8, 0.5]T . (31)

The same initial condition as earlier was used to start each simulation. Recall
that this initial condition resulted in a rather poor balancing performance for the
manually tuned controller (see Figure 5). Note that using the fitness function
developed in Section 3.4.1 and the weights above, the manually tuned fuzzy
controller is given a fitness value of 231.2. The simulation results for the best
direct fuzzy controller tuned by the GA are shown in Figure 13. The results
indicate that the GA was able to greatly improve the performance of the direct
fuzzy controller by tuning the six controller parameters previously indicated.
We do still see a significant control input during the first few seconds of the
simulation though.

JINT1343.tex; 12/03/1997; 12:52; v.7; p.20

INTELLIGENT CONTROL FOR AN ACROBOT 229

Figure 13. Simulation results for direct fuzzy controller tuned by a GA.

Next, in an attempt to reduce the required control input, the weighting vector
in the balancing fitness function was changed to

w = [1, 1, 1, 100, 80, 50, 100, 80, 50]T . (32)

This weighting vector greatly increases the weights on the transient characteristics
of the controller (where the large torque inputs are found), and increases the
weighting on the control input throughout the simulation. All other aspects of
the GA were left unchanged from the previous run. Simulation results for the
direct fuzzy controller tuned by the GA with this weighting vector are shown
in Figure 14. While placing greater emphasis on the control input in the fitness
function has significantly reduced the control input, it has not quite been reduced
to the level of the LQR (compare with Figure 12).

A comparison between the manually tuned controller parameters and the con-
troller parameters determined by the GAs with the different fitness functions is
shown in Table III. Here we see that the GAs have changed the input normal-
izing gains of the fuzzy controller very little. The GA with the fitness function
that stressed a reduction in control input achieved this objective by reducing the
output gain and increasing the value of z. Both of these changes work together to
reduce the overall controller gain. The other GA has changed all of the controller
parameters only slightly. One might be tempted to say that the fuzzy controller
with the reduced torque requirements is a more desirable controller. However,
while this controller has met the objective of a reduced control input for this

JINT1343.tex; 12/03/1997; 12:52; v.7; p.21

230 SCOTT C. BROWN AND KEVIN M. PASSINO

Figure 14. Simulation results for direct fuzzy controller tuned by a GA using a different
weighting vector.

Table III. Direct fuzzy controller parameters
before and after tuning by GA

Parameter Initial Final Final
value value 1 value 2

g0 5.5556 5.5572 5.4855
g1 0.4708 0.4758 0.4096
g2 0.8499 0.8089 0.8109
g3 0.0951 0.0960 0.0956
h 55.9147 55.9143 25.6158
z 0.8000 0.9891 1.2016

initial condition, the re-tuned controller is now unable to balance the acrobot for
some other initial conditions (though using the FMRLC, the re-tuned controller
is still able to balance the acrobot for other initial conditions). This is not the
case for the controller tuned with the other fitness function – it has resulted in
improved controller performance for several initial conditions.

Note, that while the controller parameters are only shown to 4 decimal places
in Table III, each controller parameter was actually represented with 15 genes on
a chromosome (leaving 14 significant digits to represent the controller parameters
plus one sign digit). This amount of precision is necessary. If such precision is
not used to represent the controller parameters the results obtained for a single

JINT1343.tex; 12/03/1997; 12:52; v.7; p.22

INTELLIGENT CONTROL FOR AN ACROBOT 231

independent simulation will not match the results obtained when run from within
the GA. For example, if only 8 genes are used to represent each trait, a controller
which produced a satisfactory balancing response in independent simulation may
be unstable when run from within the GA. This is due to the loss of preci-
sion resulting from subsequently encoding and decoding the parameter values.
Even using 15 genes to represent each trait results in different simulation results
between the manually tuned controller simulated independently and the manually
tuned controller simulated within the GA. The reverse situation, however, does
not occur: the results obtained from within the GA can be exactly duplicated
in independent simulation. This is because the actual parameters passed to the
fuzzy controller are stored by the GA.

3.4.4. FMRLC Tuning by a Genetic Algorithm

A GA was next used to tune the same controller parameters of a direct fuzzy
controller, except this time an FMRLC was added to the feedback loop. The
weighting vector used was the same vector used in the first run above:

w = [1, 1, 1, 100, 80, 5, 10, 8, 0.5]T . (33)

A single individual in the initial population was again initialized with the initial
controller parameters of the manually tuned direct fuzzy controller. The FMRLC
used was configured identically to the FMRLC developed in Section 3.2.2. All

Figure 15. Simulation results for FMRLC tuned by a GA.

JINT1343.tex; 12/03/1997; 12:52; v.7; p.23

232 SCOTT C. BROWN AND KEVIN M. PASSINO

Table IV. Direct fuzzy controller
parameters tuned by GA with
FMRLC in feedback loop

Parameter Initial Final
value value

g0 5.5556 5.5155
g1 0.4708 0.4852
g2 0.8499 0.8120
g3 0.0951 0.0942
h 55.9150 15.9027
z 0.8000 0.6620

of the FMRLC parameters remain fixed throughout the simulation. The GA was
configured in exactly the same manner as it was for the direct fuzzy controller
alone: probability of mutation is 0.05, probability of crossover is 0.5, population
size is 20, and number of generations is 50. The initial conditions were also the
same. Figure 15 shows the simulation of the best controller tuned by the GA.

The changes made to the controller parameters by the GA are shown in
Table IV. Even using the fitness function which does not heavily emphasize
a reduction in control input, the GA has tuned the FMRLC to a significantly
reduced effective gain. This re-tuned controller is successful at balancing the
acrobot from other initial conditions, but sometimes at a somewhat reduced per-
formance. Thus, the FMRLC tuned by the GA does not always perform as well
as the LQR (the GA tuning seems to have made the FMRLC more sensitive).

4. Swing-Up Controllers

Swing-up control for the acrobot involves commanding the acrobot to transition
from the downward stable equilibrium point to an unstable inverted equilibrium
position. Both joints must approach the inverted position with nearly zero velocity
so that they may be ‘caught’ by a balancing controller. In this section three types
of swing-up controllers will be developed. The three types of swing-up control
to be studied include partial feedback linearization and subsequent PD control,
classical state-feedback control, and direct fuzzy control. The parameters for
each of the controllers mentioned will first be manually tuned; later, a GA will
be used to re-tune the controller parameters. Simulation results and performance
evaluations will be provided for each controller.

4.1. MANUALLY TUNED SWING-UP CONTROLLERS

This section will introduce three types of controllers to swing up the acrobot in
simulation. All of the parameters for the controllers used in this section were
manually tuned, some with greater difficulty than others.

JINT1343.tex; 12/03/1997; 12:52; v.7; p.24

INTELLIGENT CONTROL FOR AN ACROBOT 233

4.1.1. PD Control of the Linearized System

Here we introduce an inner-loop partial feedback linearizing controller developed
for the acrobot system. An outer-loop PD controller will then be used to swing up
the linearized system. The first swing-up controller applied to the acrobot system
utilizes partial feedback linearization and is the swing-up technique proposed by
Spong in [3]. Feedback linearization is a nonlinear control technique that uses
feedback to effectively cancel the nonlinearities of a system. As an example,
consider the single input nonlinear system ẋ = f(x) + g(x)u. The system is said
to be feedback linearizeable if there exists a region U in Rn, a diffeomorphism?

T : U → Rn, and a nonlinear feedback u = α(x) + β(x)v, such that the trans-
formed states y = T(x) satisfy the linear equations ẏ = Ay + bv. Unfortunately,
proving the existence of such a transformation and nonlinear feedback is often
difficult. Another disadvantage of feedback linearization is that it relies on the
exact cancellation of mathematical terms and therefore requires exact knowl-
edge of the system dynamics and parameters. The main advantage of feedback
linearization is, however, that it allows the control engineer to design a linear
controller for a linear system – a well understood task.

In [3], Spong proposes a nonlinear feedback which results in partial lineariza-
tion of the acrobot. The meaning of partial linearization will become apparent
after the development to follow. Recall the dynamical equations for the acrobot
are given by the two second order coupled differential equations

d11q̈1 + d12q̈2 + h1 + φ1 = 0, (34)

d12q̈1 + d22q̈2 + h2 + φ2 = τ. (35)

By solving for q̈1 in Equation (34) and substituting into Equation (35), we may
rewrite Equation (35) as

d̄22q̈2 + h̄2 + φ̄2 = τ, (36)

where the terms d̄22, h̄2, and φ̄2 are defined as??

d̄22 = d22 − d12d
−1
11 d12,

h̄2 = h2 − d12d
−1
11 h1, (37)

φ̄2 = φ2 − d12d
−1
11 φ1.

It is easily shown that the nonlinear feedback

τ = d̄22v2 + h̄2 + φ̄2 (38)
? A diffeomorphism is a differentiable function whose inverse exists and is also differentiable [5].
?? Note that the parameter d11 is a scalar which is nonzero due to the positive definiteness of

the acrobot’s inertia matrix [3].

JINT1343.tex; 12/03/1997; 12:52; v.7; p.25

234 SCOTT C. BROWN AND KEVIN M. PASSINO

defines a feedback linearizing controller for Equation (36), with new input v2.
By including the feedback linearizing control the system dynamics may be

rewritten as

d11q̈1 + h1 + φ1 = −d12v2, (39)

q̈2 = v2. (40)

Notice that Equation (40) is linear from input v2 to output q2. Thus, the nonlinear
feedback law has linearized the system with respect to q2 (partial linearization),
and has also decoupled the motion of joint two from that of joint one. Equa-
tion (39) is still nonlinear, however, and the motion of joint one has not been
decoupled from that of joint two; it is in fact the motion of joint two that excites
joint one and enables the acrobot to swing up.

Indeed, only partial feedback linearization is possible for the acrobot system.
Consider the acrobot dynamics written in the form

ẋ = f(x) + g(x)u. (41)

The overall system cannot be feedback linearizeable because the set?

{g, adf(g), ad2
f (g)} (42)

is not involutive [7, 5].
Utilizing the partial feedback linearization developed above, a proportional-

derivative (PD) controller may be defined for q2 as

v2 = q̈d2 +Kd(q̇
d
2 − q̇2) +Kp(q

d
2 − q2), (43)

where qd2 represents the desired position of the second link. In [3], Spong suggests
the use of the arctangent function to generate the reference input qd2 as a function
of the velocity of joint one, particularly

qd2 = α arctan(q̇1). (44)

The arctangent function has the effect of pumping energy into joint one during
each swing; however, any first and third quadrant function may be used [3].
The arctangent function has the desirable characteristic of straightening out the
second joint when q̇1 equals zero at the peak of each swing, allowing a balancing
controller to catch the system in the approximately inverted position.

This reference choice leads to an autonomous system, but requires a slightly
altered control law if we assume that only q1, q2, q̇1, and q̇2 are measurable.
A realizable control law given by

v2 = Kp(q
d
2 − q2)−Kdq̇2 (45)

? The term adkf (g) denotes the iterative Lie Bracket [f, adk−1
f (g)], where the Lie Bracket of f

and g is defined as: [f, g] = ∂g
∂x f− ∂f

∂x g.

JINT1343.tex; 12/03/1997; 12:52; v.7; p.26

INTELLIGENT CONTROL FOR AN ACROBOT 235

Figure 16. Simulation results for outer-loop PD controller with inner-loop partial feedback
linearizing controller.

leads to the system input

τ = d̄22[Kp(α arctan(q̇1)− q2)−Kdq̇2] + h̄2 + φ̄2. (46)

The effect of using the realizable control law in Equation (45) instead of the
control law in Equation (43) is that the motion of joint two is no longer exactly
decoupled from that of joint one in a transformed coordinate system; however,
this is not critical for the swing-up action [3].

While not immediately apparent, the applied torque given by Equation (46)
is identically zero when the acrobot is started from the stable equilibrium point,
[q1, q2, q̇1, q̇2]T = [−π/2, 0, 0, 0]T . Although any deviation from the equilibrium
point will start the acrobot in motion, an exogenous input was added to the
system for the first one half second so that the swing-up simulations could be
started from the stable equilibrium point. The exogenous input is given by

τ =
π

8
sin(7.0 t+ π) (t < 0.5 sec.). (47)

This function was found to smoothly start joints one and two in motion.
By tuning the gains Kp, Kd, and α, values were found which successfully

swing up the acrobot. The LQR has been used to catch and balance the acrobot
in the inverted position because it exhibited the best overall catching behavior
for the nominal system. The balancing controller is engaged when the position
of joint one is within β radians of π/2, or |q1 − π/2| < β. A value of β = 0.08
radians was used in all of the swing-up simulations. Figure 16 shows the swing-

JINT1343.tex; 12/03/1997; 12:52; v.7; p.27

236 SCOTT C. BROWN AND KEVIN M. PASSINO

Figure 17. Simulation results for state-feedback PD controller.

up simulation results for the manually tuned PD controller with Kp = 44.0,
Kd = 2.1, and α = 0.1. Notice that this controller is able to swing up the acrobot
in just over 30 seconds; however, the transition from swing-up to balancing
controller is not particularly smooth.

4.1.2. State Feedback Swing-Up

While we have seen that the swing-up strategy utilizing partial feedback lin-
earization and PD control is able to successfully swing up the acrobot, we had to
assume complete knowledge of the system parameters to implement the control
law. In reality, our knowledge of the system parameters is not exact; thus, we
desire a swing-up control law that does not rely on such precise knowledge of
the system parameters. In this section we will show how the acrobot may be suc-
cessfully swung-up using a state-feedback approach. These controllers have been
referred to as state-feedback controllers because only the system states are used
as inputs to the controller; however they are not typical state-feedback controllers
because the controller outputs are not a simple weighted sum of the inputs.

The first state-feedback swing-up controller tried was the same outer-loop
PD controller used previously in Section 4.1.1; the dependence on exact param-
eter knowledge has been removed by eliminating the inner-loop control. This
controller may be written as

τ = Kp(q
d
2 − q2)−Kdq̇2 (48)

JINT1343.tex; 12/03/1997; 12:52; v.7; p.28

INTELLIGENT CONTROL FOR AN ACROBOT 237

Figure 18. Simulation results for three-input fuzzy controller.

= Kp(α arctan(q̇1)− q2)−Kdq̇2. (49)

Gains which cause this controller to successfully swing up the acrobot were found
with no greater difficulty than the gains for the system with inner-loop control.
The swing-up response for gain values of Kp = 10.1, Kd = 1.5, and α = 0.505
is shown in Figure 17. Here we see that with no more tuning effort than the
previous PD controller with inner-loop feedback linearization, we have been
able to swing up the acrobot in approximately the same time, with a comparable
control input, and without using the plant parameters in the feedback law.

4.1.3. Fuzzy Controller Swing-Up

The first direct fuzzy swing-up controller tested was implemented in a manner
similar to the classical swing-up controller given in Equation (48). A two-input
fuzzy controller with inputs gsw0 (α arctan(q̇1) − q2) and gsw1 q̇2 was used as the
swing-up controller, where gsw0 and gsw1 represent the fuzzy controller input
normalizing gains. The single output from the fuzzy controller was multiplied by
a constant gain hsw. This controller was very difficult to tune manually, however,
and no gains were found to result in a successful swing-up and balancing. The
main problem associated with this controller was that joints one and two were
found to swing in phase – precisely the phenomenon we had hoped to avoid with
our choice of reference input. In the next section, we will show how a genetic
GA is able to successfully tune the fuzzy controller in this form.

JINT1343.tex; 12/03/1997; 12:52; v.7; p.29

238 SCOTT C. BROWN AND KEVIN M. PASSINO

In an attempt to improve the phase between links one and two another input
was added to the fuzzy controller: gsw2 q2. By using a gain gsw2 < 0, the phase
relationship can be greatly improved?. The idea for this input came from expe-
rience gained tuning an acrobot with different parameters. This acrobot had a
tendency to swing link two beyond the physical π radian constraint. In this case,
the addition of the term gsw2 q2 was found to not only reduce the magnitude of
the second joint angle, but also to improve the phase between joints one and
two. Using this term, the fuzzy controller was easily tuned to successfully swing
up the acrobot. The simulation results for this fuzzy controller are shown in Fig-
ure 18. While the movement of links one and two appears to be similar to the
other two swing-up controllers, the torque input is not nearly as smooth.

The fuzzy controller used has input normalizing gains of gsw0 = 1.00, gsw1 =
−0.10, and gsw2 = −2.01, and an output normalizing gain of 5.0. A value of 1.2
is used for α (note that α could have easily been incorporated into the gain gsw0).
The fuzzy system has 15 triangular membership functions, with 50% overlap,
evenly distributed over the three input universes of discourse. Nine triangular
membership functions are distributed over the output universe of discourse, index
adding was used as with the balancing controller, and the output membership
function centers are mapped with a z value of 0.50.

4.2. SWING-UP CONTROLLER TUNING BY A GENETIC ALGORITHM

In this section the parameters of the manually tuned swing-up controllers intro-
duced in Section 4.1 will be tuned by GAs. We will show how the GAs have
improved the performance of each manually tuned swing-up controller. Addi-
tionally, the GAs have been able to tune successful swing-up controllers without
seeding the initial population with the parameters of a working controller.

4.2.1. The Swing-Up Fitness Function

Determining a fitness function which quantifies the swing-up performance was
a tedious albeit necessary process. The fitness function eventually determined
places heavy emphasis on a reduced swing-up time and on the smoothness of the
transition from swing-up to balancing controller. Similar to the fitness function
developed for the balancing controller alone, the mean and sum of the squares
of the two joint positions and input torque were acquired after the controller
was switched from swing-up to balancing. The swing-up time and the maximum
values attained by joints one and two were acquired during operation of the
swing-up controller. Let tfinal denote the simulation time length, and tswitch denote
the time at which the controller is changed from a swing-up to a balancing
controller. We now define the following variables used in determining the swing-

? For a conventional controller this would be no different than increasing Kp while decreasing α;
however, the two are not equivalent for a fuzzy controller since it is nonlinear.

JINT1343.tex; 12/03/1997; 12:52; v.7; p.30

INTELLIGENT CONTROL FOR AN ACROBOT 239

up fitness:

stat0 =

{
0 if (control|(t=tfinal) = balance)

1 else,
(50)

stat1 =

{
1 if (|mq1 | < 0.5)

0 else,
(51)

stat2 =
stat0 · 10.0

π/2−max(q1)
, (52)

stat3 =
stat1 · 500 · (60.0− tswitch)

|mq1 |+ |mq2 |+ |mu|+ 10 · sq1 + 10 · sq2 + 5 · sτ
, (53)

where

mq1 =

∑i[t=tfinal]
i[t=tswitch](q1[i]− π/2)

i[t = tfinal]− i[t = tswitch]
, (54)

mq2 =

∑i[t=tfinal]
i[t=tswitch] q2

i[t = tfinal]− i[t = tswitch]
, (55)

mτ =

∑i[t=tfinal]
i[t=tswitch] τ

i[t = tfinal]− i[t = tswitch]
, (56)

sq1 =

∑i[t=tfinal]
i[t=tswitch](q1[i]− π

2)2

i[t = tfinal]− i[t = tswitch]
, (57)

sq2 =

∑i[t=tfinal]
i[t=tswitch] q

2
2

i[t = tfinal]− i[t = tswitch]
, (58)

sτ =

∑i[t=tfinal]
i[t=tswitch] τ

2

i[t = tfinal]− i[t = tswitch]
. (59)

The variables mx and sx in Equations (54)–(59) denote the normalized balancing
mean of variable x and the normalized balancing sum of the squares of variable
x, respectively. As in Section 3, y[i] denotes the ith sample for variable y and
i[t = x] denotes the ith data sample taken at time t = x seconds. Using these
variables, the swing-up fitness function may be written as

fs =

 stat2 + stat3 if

 (stat2 + stat3 > 0.001)
and

(max(q2) < π
2 − 0.05)


0.001 else.

(60)

JINT1343.tex; 12/03/1997; 12:52; v.7; p.31

240 SCOTT C. BROWN AND KEVIN M. PASSINO

The variable stat0 is used to record whether or not the balancing controller
was engaged by completion of the simulation?. The variable stat1 attempts to
quantify if the balancing controller was stable??. The variables stat2 and stat3
are the important variables in calculating the fitness function. If the balancing
controller was not engaged at the end of the simulation (q1 was never within
β radians of π/2), stat2 records the swing-up fitness (stat3 = 0); as joint one
swings closer to π/2 the value of stat2 increases. If the balancing controller has
been engaged (stat2 = 0), and is stable, stat3 records the swing-up fitness; stat3
is highly dependent on the swing-up time, tswitch, due to the multiplicative term
(60− tswitch) in the numerator of stat3. It is also dependent on the performance of
the balancing controller (which is itself heavily dependent on initial conditions
and hence the swing-up control) due to the denominator of stat3. The gains
used to define stat2 and stat3 ensure that any swing-up controller which results
in balancing and catching of the acrobot in the inverted position receives a
higher fitness than any swing-up controller which never engages the balancing
controller. A swing-up controller which leads to an unstable balancing control
receives the lowest possible fitness. The conditions in Equation (60) perform two
functions: (i) they ensure that the minimum fitness is 0.001, and (ii) they ensure
that individuals which swing joint two close to the π/2 limitation are not found
to be fit.

This fitness function has the important property of increasing incrementally
for simulations which move the acrobot closer to a successful swing-up; this was
not the case for the balancing fitness function, which has the same low fitness
value for all unsuccessful balancing controllers. The swing-up fitness function
developed here will be used unchanged by each of the GAs used to tune the
controllers in the upcoming sections.

4.2.2. Outer-Loop PD Controller Tuning by a Genetic Algorithm

The first use of a GA was in the tuning of the two PD gains, Kp and Kd,
and the gain α for the outer-loop PD controller used in conjunction with the
inner-loop partial feedback linearizing controller. The GA was configured with
probabilities of mutation and crossover of 0.1 and 0.5, respectively; it was run
for 100 generations with 20 individuals in the population. Each trait on the
chromosome was represented with 15 genes, for a total chromosome length of 45
genes. The allowable ranges for Kp, Kd, and α were [10.0, 90.0], [0.1, 10.0], and
[0.1, 3.0], respectively. A single individual in the initial population was seeded
with the manually tuned PD controller parameters used in Section 4.1.1 for the
the first run of the GA. Using the fitness function developed in Section 4.2.1, the
manually tuned swing-up controller (and initial population seed) was found to

? The current controller is stored in the variable control; this variable may take on a value of
swing-up or balance.
?? Note, that if the balancing controller was not engaged, mq1 = 0.

JINT1343.tex; 12/03/1997; 12:52; v.7; p.32

INTELLIGENT CONTROL FOR AN ACROBOT 241

Figure 19. Simulation results for partial feedback linearization with PD gains tuned by a
GA with a seeded population.

Figure 20. Simulation results for partial feedback linearization with PD gains tuned by a
GA without a seeded population.

JINT1343.tex; 12/03/1997; 12:52; v.7; p.33

242 SCOTT C. BROWN AND KEVIN M. PASSINO

Table V. PD controller parameters and fitness tuned by a GA
with and without a seeded population

Parameter Manually Seeded Unseeded
tuned population population

Kp 44.0000 46.0042 57.6571
Kd 2.1000 2.0500 4.0381
α 0.2200 0.2081 0.2854

fs 7.6912 × 104 1.8250 × 107 9.8800 × 106

have a fitness of fs = 7.691× 104. The simulation results for the PD controller
tuned by the GA are shown in Figure 19. These results reveal that the GA has
improved the performance of the swing-up controller by reducing the swing-up
time to under 30 seconds and significantly smoothing out the transition from
swing-up to balancing controller.

Next, a GA was used to tune the same controller without seeding the initial
population; all other parameters remained unchanged for this run of the GA.
The simulation results for the unseeded case are shown in Figure 20. Here we
see that the simulation results obtained by the controller tuned by the unseeded
GA are virtually identical to the results tuned by the seeded algorithm. The
parameter values for the manually tuned PD controller and the parameters of the
two controllers tuned by GAs are given in Table V. Notice how the parameter
values tuned by the seeded GA have remained fairly close to the manually tuned
values, while the unseeded GA has tuned the parameters quite differently. Indeed,
for swing-up there are many parameter value combinations that produce similar
simulation results.

4.2.3. State-Feedback Controller Tuning by a Genetic Algorithm

A GA was next used to tune the manually tuned controller given in Equation (48).
The GA was configured to tune the gains Kp, Kd, and α. The probabilities of
mutation and crossover were again chosen to be 0.1 and 0.5, respectively. The
population size and number of generations was set at 20 and 50, respective-
ly. Each trait on the chromosome was represented with 15 genes, for a total
chromosome length of 60 genes. The allowable ranges for Kp, Kd, and α were
[0.1, 10], [−5.0, 0.0], and [0.1, 3.0], respectively. An individual in the initial
population was once again seeded with the parameters of the manually tuned
state-feedback controller; this controller was determined to have a fitness value
of fs = 8.713×104. The simulation results for the re-tuned controller are shown
in Figure 21. The GA has been able to greatly improve the swing-up performance
by reducing the swing-up time and smoothing the transition between controllers.
While the transition from swing-up to balancing controllers is not as smooth as

JINT1343.tex; 12/03/1997; 12:52; v.7; p.34

INTELLIGENT CONTROL FOR AN ACROBOT 243

Figure 21. Simulation results for state-feedback controller with gains tuned by a GA with
a seeded population.

Table VI. State-feedback controller parameters and fitness
tuned manually and by a GA with and without a seeded
population

Parameter Manually Seeded Unseeded
tuned population population

Kp 10.1000 10.0986 27.3830
Kd 1.5000 0.6548 3.1322
α 0.5050 0.5447 0.3227

fs 8.713 × 104 2.564 × 106 1.079 × 106

for the previous PD controller, the swing-up time has been further reduced. It
also appears that slightly more input torque has been used with this controller.

4.2.4. Fuzzy Controller Tuning by a Genetic Algorithm

A GA was next applied to tuning the fuzzy swing-up controllers introduced in
Section 4.1.3. The first fuzzy controller tuned by a GA was the three-input fuzzy
controller with inputs gsw0 (α arctan(q̇1) − q2), gsw1 q̇2, and gsw2 q2. The GA was
configured to tune the three input normalizing gains: gsw0 , gsw1 , and gsw2 ; the
output normalizing gain hsw; the I/O mapping parameter z; and the arctangent

JINT1343.tex; 12/03/1997; 12:52; v.7; p.35

244 SCOTT C. BROWN AND KEVIN M. PASSINO

Figure 22. Simulation results for fuzzy controller with gains tuned by a GA with a seeded
population.

gain α. The allowable ranges for gsw0 , gsw1 , gsw2 , hsw, z, and α were, respectively:
[0.1, 5.0], [−5.0, 0.0], [−6.0, 0.0], [1.0, 15.0], [0.1, 3.0], and [0.1, 3.0]. The
probabilities of mutation and crossover were set to 0.1 and 0.5, respectively;
15 genes were used to represent each trait on the chromosome, making the
total chromosome length 90 genes. The GA was run for 50 generations with 20
individuals per generation. For the first run, an individual in the initial population
was seeded with the manually tuned fuzzy controller given in Section 4.1.3. The
manually tuned fuzzy swing-up controller was determined to have a fitness of
fs = 2.739 × 105. The simulation results for the fuzzy controller tuned by the
GA are shown in Figure 22. This re-tuned controller has demonstrated the least
improvement in performance. While the fitness has increased, it is seemingly
a result only of smoothing the switching transition, as the swing-up time has
remained approximately the same.

The same GA was then run again with the same configuration, except the
initial population was not seeded with a tuned controller. The results for this
case are shown in Figure 23. The parameter values of the manually tuned fuzzy
controller and those determined by the seeded and unseeded GAs are shown in
Table VII. We see that the unseeded case has resulted in a much faster swing-
up time than the seeded case – the fastest swing-up yet. The fitness value for
this swing-up simulation is not significantly higher than the simulation for the

JINT1343.tex; 12/03/1997; 12:52; v.7; p.36

INTELLIGENT CONTROL FOR AN ACROBOT 245

Figure 23. Simulation results for fuzzy controller tuned by a GA without a seeded initial
population.

Table VII. Fuzzy controller parameters and fitness tuned
by a GA with and without a seeded population

Parameter Manually Seeded Unseeded
tuned population population

gsw0 1.0000 1.0000 4.6983
gsw1 −0.1000 −0.1001 −0.1267
gsw2 −2.0100 −2.0094 −1.0323
hsw 5.0000 14.7696 8.9313
z 0.5000 1.5519 1.9211
α 1.2000 1.4145 0.7162

fs 2.739 × 105 4.043 × 106 5.768 × 106

controller tuned by the seeded GA because the transition between swing-up and
balancing controllers is not as smooth as in the seeded case.

5. Concluding Remarks

Using the nonlinear model of the acrobot specified in Section 2, we were able to
design a successful LQR balancing controller (in simulation) by linearizing the
system dynamics about the inverted position. A successful direct fuzzy balancing

JINT1343.tex; 12/03/1997; 12:52; v.7; p.37

246 SCOTT C. BROWN AND KEVIN M. PASSINO

controller was then designed by emulating the action of a LQR. This was the only
design method which leads to a working fuzzy balancing controller. Even after
having gained considerable experience with the acrobot system dynamics, we
were unable to transfer this knowledge to a working fuzzy balancing controller
in the usual way that fuzzy controllers are designed. While the direct fuzzy
controller designed for the acrobot was able to balance the acrobot in the inverted
position in simulation, the state trajectories were not nearly as smooth as with
the LQR. The fuzzy controller also commanded a larger, more oscillatory torque
input. To improve the balancing performance of the direct fuzzy controller we
then moved to an adaptive fuzzy controller: the FMRLC. The FMRLC was found
to perform significantly better than the direct fuzzy controller, though still not
as well as the LQR (all things considered). The three balancing controllers were
also tested in simulation with different disturbances. With the exception of a
random disturbance, the FMRLC was able to completely remove the effects of
the disturbance, and therefore performed much better than either the LQR or
direct fuzzy controller.

GAs were used to tune the parameter values of each type of balancing con-
troller. We saw that a GA was able to improve the performance of each controller
type for a specific initial condition (though it is difficult to determine if the per-
formance of the LQR was really improved, since the responses before and after
tuning were quite similar). While tuning by a GA did not adversely affect the
performance of the LQR for initial conditions other than the initial condition
used to tune the parameters, the direct fuzzy controller was found to be unstable
for several other initial conditions after tuning. Indeed, the direct fuzzy controller
was much more sensitive to different initial conditions than the LQR. Using the
FMRLC, however, we found that we were able to eliminate this dependence on
initial conditions observed with the direct fuzzy controller. In terms of overall
robustness to changes in initial conditions, we observed that the non-linear con-
trollers performed better before tuning by a GA than after – which makes sense
since the GA tuned the controller for only a specific initial condition.

In Section 4 we developed three types of swing-up controllers for the acrobot.
While the PD controller with partial feedback linearizing inner-loop controller
was originally proposed by Spong, the state-feedback controller and fuzzy con-
troller introduced have not previously been applied to the acrobot. Unlike the
controller proposed by Spong, the latter two swing-up controllers do not require
knowledge of the system parameters for construction of the controller. These
controllers were found to perform as well as the PD controller with inner-loop
linearizing control in simulation. We found that there were many combinations
of controller parameter values which can be used to swing up the acrobot. For
this reason, the swing-up controllers were well-suited to tuning by a GA. Addi-
tionally, we were able to use a fitness function which increased incrementally
as we approached a working controller; this was not the case with the fitness
function used in tuning the balancing controllers. Indeed, a GA was able to tune

JINT1343.tex; 12/03/1997; 12:52; v.7; p.38

INTELLIGENT CONTROL FOR AN ACROBOT 247

successful swing-up controllers without seeding the initial population with the
parameters of a working controller. Moreover, the controllers tuned by GAs with
unseeded initial populations were found to perform as well as those tuned by
GAs with seeded populations.

Acknowledgment

The authors would like to thank Stephen Yurkovich for several helpful comments
on this work. We would also like to thank Will Lennon for the use of his GA C
code.

References

1. Antsaklis, P. and Passino, K.: An Introduction to Intelligent and Autonomous Control, Kluwer
Academic Publishers, Norwell, MA, 1993.

2. Gupta, M. and Sinha, M.: Intelligent Control: Theory and Practice, IEEE Press, Piscataway,
NJ, 1995.

3. Spong, M.: Swing up control of the acrobot, in IEEE Conference on Robotics and Automation,
San Diego, CA, 1994, pp. 2356–2361.

4. Spong, M.: The swing up control problem for the acrobot, IEEE Control Systems Magazine,
1995.

5. Spong, M. and Vidyasagar, M.: Robot Dynamics and Control, John Wiley and Sons, New
York, 1989.

6. Bortoff, S. and Spong, M.: Pseudolinearization of the acrobot using spline functions, in Pro-
ceedings of the 31st Conference on Decision and Control, Tucson, AZ, 1992, pp. 593–598.

7. Hauser, J. and Murray, R.: Nonlinear controllers for non-integrable systems: The acrobot
example, in Proc. American Control Conference, 1990, pp. 669–671.

8. Passino, K. and Yurkovich, S.: Fuzzy control, in W. Levine (ed.), Handbook on Control, CRC
Press, Boca Raton, 1996.

9. Driankov, D., Hellendoorn, J. and Reinfrank, M.: An Introduction to Fuzzy Control, Springer-
Verlag, New York, 1993.

10. Wang, L.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice-Hall,
NJ, 1994.

11. Layne, J. and Passino, K.: Fuzzy model reference learning control for cargo ship steering,
IEEE Control Systems Magazine 13(6) (1993), 23–34.

12. Kwong, W. and Passino, K.: Dynamically focused learning control, IEEE Transactions on
Systems, Man, and Cybernetics, 26(1) (1996), 53–74.

13. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning, Addison-
Wesley, Reading, MA, 1989.

14. Michalewicz, Z.: Genetic Algorithms + Data Structure = Evolution Programs, Springer-Verlag,
Berlin, Heidelberg, 1992.

15. Lee, M. A. and Takagi, H.: Integrating design stages of fuzzy systems using genetic algorithms,
in Second IEEE International Conference on Fuzzy Systems, San Francisco, CA, 1993, pp. 612–
617.

16. Vars̆ek, A., Urbanc̆ic̆, T. and Filipic̆, B.: Genetic algorithms in controller design and tuning,
IEEE Transactions on Systems, Man and Cybernetics 23(5) (1993), 1330–1339.

17. Porter, B. and Borairi, M.: Genetic design of linear multivariable feedback control systems
using eigenstructure assignment, International Journal of Systems Science 23(8) (1992), 1387–
1390.

18. Michelewicz, Z.: Genetic algorithms and optimal control problems, in Proceedings of the 29th
Conference on Decision and Control (Honolulu, Hawaii), 1990, pp. 1664–1666.

JINT1343.tex; 12/03/1997; 12:52; v.7; p.39

248 SCOTT C. BROWN AND KEVIN M. PASSINO

19. Ishibuchi, H., Nozaki, K. and Yamamoto, N.: Selecting fuzzy rules by genetic algorithm
for classification problems, in Second IEEE International Conference on Fuzzy Systems, San
Francisco, CA, 1993, pp. 1119–1124.

20. Katai, O.: Constraint-oriented fuzzy control schemes for cart-pole systems by goal decoupling
and genetic algorithms, in A. Kandel and G. Langholz (eds), Fuzzy Control Systems, CRC
Press, Boca Raton, 1994, pp. 181–195.

21. Karr, C. and Gentry, E.: Fuzzy control of ph using genetic algorithms, IEEE Transactions on
Fuzzy Systems 1(1) (1993), 46–53.

22. Nomura, H., Hayashi, I. and Wakami, N.: A self-tuning method of fuzzy reasoning by genetic
algorithm, in A. Kandel and G. Langholz (eds), Fuzzy Control Systems, CRC Press, Boca
Raton, 1994, pp. 338–354.

23. Kwong, W., Passino, K., Laukonen, E. and Yurkovich, S.: Expert supervision of fuzzy learning
systems for fault tolerant aircraft control, Proceedings of the IEEE 83(3) (1995), 466–483.

24. Widjaja, M.: Intelligent control for swing up and balancing of an inverted pendulum, Master’s
thesis, The Ohio State University, 1994.

25. Layne, J. and Passino, K.: Fuzzy model reference learning control, in Proc. 1st IEEE Conf.
on Control Applications, Dayton, OH, 1992, pp. 686–691.

JINT1343.tex; 12/03/1997; 12:52; v.7; p.40

