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Stable Auto-Tuning of Adaptive Fuzzy/Neural
Controllers for Nonlinear Discrete-Time Systems

Hazem N. Nounou, Member, IEEE, and Kevin M. Passino, Fellow, IEEE

Abstract—In direct adaptive control, the adaptation mechanism
attempts to adjust a parameterized nonlinear controller to approx-
imate an ideal controller. In the indirect case, however, we approx-
imate parts of the plant dynamics that are used by a feedback con-
troller to cancel the system nonlinearities. In both cases, “approx-
imators” such as linear mappings, polynomials, fuzzy systems, or
neural networks can be used as either the parameterized nonlinear
controller or identifier model. In this paper, we present algorithms
to tune some of the parameters (e.g., the adaptation gain and the
direction of descent) for a gradient-based approximator param-
eter update law used for a class of nonlinear discrete-time systems
in both direct and indirect cases. In our proposed algorithms, the
adaptation gain and the direction of descent are obtained by min-
imizing the instantaneous control energy. We will show that up-
dating the adaptation gain can be viewed as a special case of up-
dating the direction of descent. We will also compare the direct and
indirect adaptive control schemes and illustrate their performance
via a simple surge tank example.

Index Terms—Adaptive control, fuzzy/neural control.

I. INTRODUCTION

CONSIDER the discrete-time single-input–single-output
(SISO) nonlinear system described by

(1)

where is a smooth function, is a state vector, is a
scalar input, is the scalar output, and . We will consider
cases where there is significant uncertainty in our knowledge of

, and we will consider several adaptive control approaches
to cope with this problem. In adaptive control, typically some
type of function approximator is used to approximate the plant
dynamics (for the indirect approach) or the controller dynamics
(in the direct case). Good candidates for such approximators
(that include linear mappings, polynomials, wavelets, and many
others) are fuzzy systems and neural networks that are known
to posses the universal approximation property [1]–[4].

Many techniques for adaptive control of discrete-time non-
linear systems have been developed. First, we outline some of
the conventional control approaches for discrete-time nonlinear
systems that include adaptive output feedback control as in [5]
and [6]. In [7], the authors consider -control of discrete
time nonlinear systems. They studied the problem of distur-
bance attenuation under different assumptions. An adaptive
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control scheme for nonlinear systems (described by the scalar
system where is an unknown
constant and is a nonlinear function which is not necessarily
sector bounded) is presented in [8] and [9]. In [10], necessary
and sufficient conditions for the equivalence between a general
class of discrete-time systems and discrete-time systems in
strict feedback form were provided using the backstepping
method.

The authors in [11] presented an indirect adaptive control
scheme using neural networks where stability is ensured
assuming that the neural networks are poorly adjusted. In [12],
however, the authors ensured tracking to an -neighborhood of
zero when they relaxed the above assumption. Stability was
ensured in [11] and [12], assuming that the initial estimate
of the system is close to the actual one. In [13] and [14], the
authors consider a discrete time multiple-input–multiple-output
nonsquare feedback linearizable system without zero dy-
namics, but with a bounded state disturbance. They designed
an indirect adaptive controller using neural networks (linear
in the parameters in [13], and nonlinear in the parameters
in [14]) which require no initialization conditions. Such a
controller provides uniform boundedness of the tracking error.
In [15], a discrete-time fuzzy logic controller for a class of
unknown feedback linearizable nonlinear dynamical systems is
presented. Unlike most adaptive control approaches, this fuzzy
controller uses basis functions based on the fuzzy system,
not a regression matrix. The significance of this approach is
that no certainty equivalence assumption is needed and no
assumption of linearity in the parameters is used. In [16] the
author considers a NARX discrete time system with unknown
uncertainties for which a dynamical upper bound is known. An
adaptive controller in the form of a “parallel distributed com-
pensator” is designed. This controller uses a Takagi–Sugeno
fuzzy system (TSFS) that is updated online. Finally, the authors
in [17] and [18] considered a class of discrete-time nonlinear
systems which includes strict feedback systems. In [18], a
direct adaptive control scheme is presented where TSFS were
used as a functional approximator. A continuous dead zone is
used to guarantee convergence of the output tracking error to
an -neighborhood of zero. In [17] the authors presented an
indirect adaptive control scheme using TSFS. Similar stability
results are achieved using a continuous dead zone (in which a
gradient method is used for adaptation) and discontinuous dead
zone (in which least squares method is used for adaptation). It
is important to mention that the work presented in [12], [17],
and [18] is the most relevant work to ours; actually, some of the
notations and definitions we use here are exactly the same.
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Within this study, we consider a feedback linearizable sub-
class of discrete-time nonlinear systems described by (1). Sim-
ilar to [12], [17], and [18], the parameter vectors of the approx-
imators are updated using a gradient update law. Unlike [12],
[17], and [18] (where the adaptation gain and direction of de-
scent are not updated), the adaptation gain and direction of de-
scent used here are updated in ways that seek to optimize certain
cost functions. For both the direct and indirect cases, we extend
the stability analysis in [12] to prove that the adaptation gain
and direction of descent tuning methods provide stable opera-
tion. Moreover, we provide a surge tank example that illustrates
the ideas presented here.

II. DIRECT AND INDIRECT ADAPTIVE CONTROL

In this section, we start by describing the system we consider
for control, along with its direct and indirect control laws, and
adaptation law.

A. Plant Description and Control Laws

Here, we consider the SISO discrete-time system described
by (as shown in [12])

(2)

where and are unknown smooth functions, is a
vector of past inputs and outputs

, where , is the output, is
the input, and is the time delay (relative degree) of the system.
It is known that for the class of systems (2), there exists an ideal
controller that drives the output of the system to track
a known reference trajectory after steps. Such a controller is
defined as

(3)

where it can be shown by recursive substitution as in [12] that
and

. Here, we consider the same plant assumptions used in
[12].

A direct adaptive controller that seeks to drive the system to
track a known reference input uses an approximator that
attempts to approximate the ideal controller dynamics ( , that
we assume to exist). Here, we assume that the ideal control can
be approximated by

(4)

where is an approximation of the ideal parameter vector
, is the known part of the ideal control, and

is the partial of the approximator output with respect to the
parameter vector. Define the approximator parameter error as

.
Unlike the direct approach, in the indirect approach we ap-

proximate the plant dynamics, then the feedback controller uses

these estimates of the plant dynamics. As in the direct case, let
us consider the subclass of systems (2) which can be written as

(5)

where and are the known parts of the dynamics, and
and are the unknown parts of the dynamics (in what

follows, we can consider the case where ).
Using the certainty equivalence approach, the control law is

defined as

(6)

where and are estimates of
and , respectively. A projection algorithm may be
used to ensure that so that the con-
trol signal is well defined. As in the direct case, the param-
eter errors for the indirect adaptive controller are defined as

and .
Note that fuzzy systems can be used as approximators to ap-

proximate the controller in the direct case, or approximate parts
of the plant dynamics as in the indirect case. One good candidate
of fuzzy systems is the TSFS, which has shown to be successful
in many applications.

The error equation for both direct and indirect cases can be
written as

(7)
where (it is assumed here that

is defined such that , and
and are known constants related to the plant dynamics),

in the indirect case, and and 1 in
the direct and indirect cases, respectively. Also, is function
of the approximation error. For simplicity, we will write (7) as

(8)

Here, the normalized gradient-based parameter update law
(that seeks to minimize the squared tracking error) is used. Con-
sider the cost function

(9)

where , , is the instanta-
neous tracking error, and is the instantaneous control, and

(as we will define later) is the adaptation gain.
The normalized gradient-based parameter update law that

minimizes the first part of the cost function (i.e., ) can be
expressed as

(10)
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where is the adaptation gain, and is a positive constant
. Here, (which is the representation of the output error

in terms of a continuous dead zone of finite size ) is
defined as

if
if
if

(11)

It is assumed that is chosen such that

(12)

It can shown that, can be written as

(13)

where .

B. Stability Analysis

In this section, we state stability and convergence results for
the system (2) (for both direct and indirect cases) similar to the
ones presented in [12] for the indirect case.

Theorem 1: Suppose for all . Given any
constant and any small constant , there exist positive
constants , , ,
and such that if the appropriate assumptions
stated in [12] are satisfied on with , and also
satisfied on , , and , then using
the direct adaptive control law (4), we will ensure that

1) will be monotonically nonincreasing, and
will converge to zero;

2) the tracking error between the plant output and the refer-
ence command will converge to a ball of radius centered
at the origin.

Proof: This proof follows the proof of the indirect case
presented in [12].

The authors in [12] have derived local convergence results for
indirect adaptive control as shown in next theorem.

Theorem 2: Suppose for all . Given any
constant and any small constant , there exist positive
constants , , ,
and such that if the appropriate sssumptions
stated in [12] are satisfied on with , and also
satisfied on , , and , then using
the indirect adaptive control law (6), we will ensure that

1) will be monotonically nonincreasing, and
will converge to zero;

2) the tracking error between the plant output and the refer-
ence command will converge to a ball of radius centered
at the origin.

Proof: See [12].

III. AUTO-TUNING THE ADAPTATION GAIN

The gradient update law presented in the previous section re-
lies on the the following idea. Starting with an initial value for
the parameter vector, the gradient algorithm changes (updates)

Fig. 1. Steps used for adaptation gain selection.

this vector by adding to it another vector having a magnitude
(that depends on the adaptation gain and the magnitude of the
output error) and a direction of descent. We can think of this as
searching for the ideal parameter vector. If we keep the adapta-
tion gain fixed (selected a priori as presented in [12], [18]), the
magnitude of this vector will only depend on the magnitude of
the direction of descent and tracking error. Here, however, we
argue that the adaptation gain can be selected (adapted) online
to minimize . It is important to mention that our objec-
tive here is to search for an “optimal” (that we will call

). Note that is not necessarily the optimal adap-
tation gain. The step of finding is crucial to find the
new parameter vector , and hence the new control,

. The term optimal is used here only because the adap-
tation gain (as shown later) will be selected to minimize the the
instantaneous control energy that is defined in
the second part of the cost function (9). We would like to note
that some of the results in this section can be found in [19], [20].

A. Direct Adaptive Control

The adaptation gain tuning algorithm proceeds according to
the following steps (shown in Fig. 1).

1) Find a range on (i.e., ),
such that the tracking error is forced to be within an
-neighborhood of zero no matter which in this

range is used.
2) Find the new adaptation gain that minimizes the

instantaneous control energy .
3) Using , find the new parameter vector

and, hence, the new control .
1) Finding a Feasible Range on : The feasible range on

is defined in the following theorem.
Theorem 3: Consider the system given in (2). The direct

adaptive control law (4) with its parameter update (10) can guar-
antee stability results stated in Theorem 1 for any adaptation
gain that satisfies
and if the parameters

and are selected such that

1) and , where is a
positive design parameter (that is related to the rate of
decrease of the Lyapunov function);

2) .
Proof: Recall that the discrete-time parameter update law

is given by (10). Based on our definition of the parameter error
, can be expressed as

(14)
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Consider the Lyapunov-like function . We
will consider the case where is within the dead zone sepa-
rate from the case where is outside the dead zone. First,
consider the case where is inside the dead zone. Then,

so according to (14) and
. With the error outside the dead zone, and for

some and , we have

so that, with (13)

(15)

Since and , we get

(16)

For , we need

(17)

One way to ensure this is to use , where

(18)

where is defined as an upper bound on . This implies
that stability can be ensured using any value of the adaptation
gain

(19)

where . Based on this definition of the adaptation
gain, the upper and lower bounds on the adaptation gain can be
defined as

(20)

where for fixed constants and
. Later, we will define and in terms of known plant

information. From the above analysis, stability [i.e.,
] can be guaranteed for any choice of such

that inequality (20) holds. Next, we study how to choose and
such that satisfies the above constraints. Note that if

we can find such an , we will be able to derive a range of
possible values of that ensures stability. Since ,
(15) becomes

(21)

Suppose we want the decrease of to be
influenced by a parameter ( is a design parameter we can
pick but below we will derive some constraints on its choice),
then that meets this requirement can be expressed as

(22)

Then, can be written as

(23)

Since , then

(24)

Notice that since , the smallest will
be is where

(25)

We will pick such that

(26)

and

(27)

since we want to guarantee that . Note also that the
largest will be is where

(28)

and we pick such that so

(29)

Note that for the previous oices, we know that
because

(30)
With this we know that there will be a range of possible
values. At this stage of our analysis, it is important to study
the feasibility of our choices of and (in terms of plant
dynamics). One way to make such a study is to see how big
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is, where and are the minimum
and maximum values that and can have

(31)
Therefore, for this approximation to apply, we need

(32)

which means that since .
Hence, this is very suitable for applications where we want to
find as small of as possible and as big of as possible.

Note that here, we picked and found the resulting values of
and . We can also start by picking and such that

(33)

with

(34)

then pick such that

(35)

which can be written as

(36)

and also so that

(37)

or, equivalently

(38)

Therefore, should be chosen such that

(39)

and also

(40)

Now, it is important to study the feasibility of our choice of .
We can do that by finding the constraints that guarantee two
things. First, the upper bound of is always greater than the
lower bound. Second, . To check the first condition, we
want to make sure that (39) holds. That is

So, it is clear that for the upper bound of to be always greater
than the lower bound, we need

(41)

Also, to make sure that , it can be shown that we need the
lower bound of (39) be greater than zero or, equivalently, the
following inequality be satisfied:

(42)

Next, we will show that using the gradient update law (whose
adaptation gain is adapted to satisfy the above requirements)
along with the continuous dead zone, the output error is forced
to stay within an -neighborhood of zero.

2) Finding the New Adaptation Gain via Minimizing
the Instantaneous Control Energy: Here, the new adaptation
gain is obtained by minimizing the second part of the cost func-
tion (9) which can be expressed as

(43)

such that . The control defined in
(4) (assuming , we have no prior information about
the ideal control), can be written as

(44)

Using (44), it can be shown that can be written as

(45)

where

and

Since in independent of it can be omitted. Since
expressed in (45) is in quadratic form, the cost function

(43) can be minimized as a quadratic programming problem
with linear inequality constraint .
Since is positive definite, this problem is known to have a
unique global minimum, , which is used to find the new
parameter vector and, hence, the new control. Now, this adap-
tation gain can be used in the update routine of the controller’s
parameter vector as shown next.

The new adaptation gain can be used to find the new
parameter vector as follows:

(46)

This new parameter vector of the controller is used to find the
new control as

(47)

which is the control to be input to the system.
It is important at this point to show that (that is found

using ) lies inside the feasible control
range . This is shown in the next theorem.
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Theorem 4: Given that the new adaptation gain is
defined such that , the direct
adaptive control law ( that is obtained using ) lies
inside the feasible control range .

Proof: Since the control is defined as ,
it can be shown that the control can be written as

(48)

where and
. We know from the previous

sections that and do not necessarily produce
and , respectively. Hence, and

are defined as

if
produces

if
produces

(49)
and

if
produces
if
produces

(50)
It is clear at this point that we have two cases. In the first case,

and are found using and , re-
spectively. In the second case, however, and
are found using and , respectively. It can be
easily shown that is positive in the first case and negative
in the second. To see this, note that in the first case we know that

(51)

or, equivalently

(52)

Subtracting from both sides, we get

(53)

Hence, we have

(54)

which means that is positive, knowing (by definition) that
. In the second case, a similar way can be

used to show that is negative.
Let us consider each case separately.

Case 1)
By definition, we know that

(55)

or equivalently

(56)

We are given that
. Since , we have

(57)

Adding to the previous inequality, we get

or

(58)

Now, consider the second case.
Case 2)

By definition, we know that

(59)

or, equivalently

(60)

We are given that
. Since , we have

(61)

Adding to the previous inequality, we get

or

(62)

which completes the proof.

B. Indirect Adaptive Control

The general steps in this adaptation gain tuning algorithm are
the same as the one outlined in the direct case; however, there are
some key differences in the stability conditions and the deter\mi-
nation of the control law. Let us start by discussing the steps of
the algorithm which are summarized in Fig. 1.

1) Finding a Feasible Range on : Before stating the the-
orem that defines the feasible range on the adaptation gain, we
present the following assumption.

Assumption 1: It is assumed that a lower bound on is
known, that is .

Theorem 5: Consider the system given in (2). The indirect
adaptive control law (6) with its parameter update law (10)
can guarantee stability results stated in Theorem (2) for any
adaptation gain that satisfies Assumption 1,

, and

if

if
(63)

if the parameters and are selected such that
.

Proof: Based on our definition of the parameter error
, can be expressed as

(64)
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Consider the Lyapunov-like function . The
case where is within the dead zone is the same as before.
With error outside the dead zone, and for some and

, we have

so that, with (13), we have

(65)

Since and (since in this case),
we get

(66)

Note that (66) is similar to (16), except that (since in
this case ). It can be shown that can be defined
the same way as in (20), where is defined as

(67)

From the previous analysis, stability can be guaranteed for any
choice of such that holds. Also,
it can be shown that the parameter can be expressed as

(68)

Then, can be written as

(69)

Since , then

(70)

To ensure that , the rate of decrease has to be
bounded within . It is clear from this discussion
that unlike the direct case, the choice of the bounds of in the
indirect case is independent of the plant dynamics. However,
no matter what choice we make in selecting the bounds of
(as long as ), the a rate of decrease of

is confined in the interval (0,2) (i.e.,
). These conclusions represent the major differences between

the two cases.

Notice that since can be very small (as in TSFSs), it is
important to assume that we know a lower bound on (i.e.,

). Such a lower bound on provides an upper
bound on the adaptation gain. It is known that the maximum
possible adaptation gain is given by

(71)

Using (71) and the assumption that , then the upper
bound on becomes

(72)

This can be guaranteed by letting

if

if
(73)

This upper bound on the maximum adaptation gain can be used
to ensure boundedness of the new adaptation gain, .

Next, we will show how to select the adaptation gain to min-
imize the instantaneous control energy.

2) Finding the New Adaptation Gain : Since
in the indirect case, the instantaneous control becomes

(74)

and, hence, becomes

(75)

where

and

Since in independent of it can be omitted; hence,
the cost function can be solved as quadratic programming
problem with linear inequality constraints which is known to
have a unique optimal solution since is positive definite.
Once the new adaptation gain is found, it can be used to find
the new parameter vector as follows:

(76)

The new parameter vector can be used to find approximation of
the plant dynamics as follows:

(77)

and

(78)
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Now, the new control to be input to the system can be easily
computed by

(79)

It is important at this point to show that (that is found
using ) lies inside the feasible control
range .

Theorem 6: Given that the new adaptation gain
is defined such that ,
the indirect adaptive control law ( that is ob-
tained using ) lies inside the feasible control range

.
Proof: The proof is the same as the one used to prove The-

orem 4.

IV. AUTO-TUNING THE DIRECTION OF DESCENT

As discussed earlier, the gradient update routine is based on
the idea that starting with an initial value for the parameter
vector, the gradient algorithm changes (updates) this vector by
adding to it another vector having a magnitude and a direction
of descent. We can think of this as searching for the ideal param-
eter vector. To improve (or loosely speaking, attempt to “opti-
mize”) the performance of the searching mechanism in the gra-
dient-based update law, we will attempt to modify the direction
of descent so that a certain cost criterion of interest is optimized.
Note that this approach is applicable to both direct and indirect
adaptive control schemes. Next, we will present our assumption.

A. Assumptions

Assumption 2: The new direction of descent vector can
be expressed as

(80)

where is defined as an incremental vector that when it is
added to the no\minal directional vector , is obtained.
We also assume that

(81)

where and are defined as

...
(82)

and

...
(83)

respectively.
Assumption 3: We assume that has a known upper

bound (i.e., , ).
Now, we will present our proposed algorithm for auto-tuning

the direction of descent.

B. Algorithm Description

Using the previous assumptions, our goal here is to auto-tune
the direction of descent vector that is characterized by so
that an improved directional vector is obtained. Recall
the gradient update law defined in (10). Substituting (80) into
the update law defined in (10), we get

(84)

To simplify notation, let
, then (84) becomes

(85)

Based on the definition of the parameter error
, can be expressed as

(86)

One choice of a cost criterion that we wish to optimize is the
control energy defined as . Thus, we need a new for-
mulation of in which the new definition of the directional
vector is incorporated. Based on (80), can be defined as

(87)

Substituting (85) into (87), can be written as

(88)

where

and

Based on this formulation, it can be shown that the instanta-
neous control energy function can be written as

(89)
where , , and

. Since is not defined in terms of
, it can be omitted from the function we need to optimize.

Thus, to find we need to solve the following cost function:

(90)
It is known that the cost function (90) has a unique solution when
it is solved subject to a linear constraint. In this case the cost
function can be solved subject to the linear constraint
(81) defined in Assumption 2. Hence, to solve for , the
following cost function needs to be minimized:

(91)
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Fig. 2. Two-dimensional geometrical presentation.

At this point, we have derived a direction of descent that min-
imizes not only the squared output error, but also the control
energy. Substituting the direction of descent in (10), a
new parameter vector (that uses as its new direction of
descent) can be obtained. Finally, this new direction of descent,

, can be used to deter\mine the new parameter vector
[using in (10)] and new control [using (4) and
(6) in the direct and indirect cases, respectively].

C. Geometrical Interpretation and Relation to Auto-Tuning
the Adaptation Gain

In Assumption 2, we assumed that the new direction of de-
scent can be expressed by (80), where is defined as an in-
cremental vector that when it is added the no\minal directional
vector , an improved vector is obtained. To describe
this assumption geometrically, consider (for simplicity) the two
dimensional case (i.e., ). This situation can be shown
in Fig. 2. We know (from Assumption 2) that

(92)

It can be verified that can be expressed as

(93)

where

. . .
(94)

and , . Equation (93) can be
written as

(95)

where and is the identity matrix. Note that
the diagonal matrices , , and . It is clear that

, which can be expressed as

. . .

. . .
(96)

is a diagonal gain matrix that when it is multiplied by the
no\minal direction of descent, a new vector is obtained.
From the definition of , we know that

(97)

Note that for the special case when

(98)

will be a scaled version of , that is, we only change
the magnitude of the direction of descent vector. It is clear that
this special case is equivalent to auto-tuning the adaptation gain
(presented in [19] and [20]). However, when the condition (98)
is not satisfied, some type of change will occur to the direction
of the direction of descent vector.

As a result of this algorithm, the overall control energy
is expected to decrease as increases since will be
affected by , which is found by minimizing the instanta-
neous control energy. It is interesting to note that the line of
argument used here to select the magnitude of is similar to
one used in selecting the gains of the quadratic cost function

used in linear quadratic regula-
tion problems, where the gains and are selected based on
the desired closed-loop performance relative to the affordable
control energy.

Under the special case when , (and, hence, the
control) equals zero if

(99)

which is equivalent to

(100)

Hence, to avoid this special which may result in a zero control,
one may want to exclude the case when .

D. Stability Analysis

For both direct and indirect cases, we present the following
result.

Theorem 7: Suppose for all . Given any
constant and any small constant , there exist positive
constants , , ,
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and such that if the appropriate assumptions
stated in [12] are satisfied on with and on ,
Assumptions 2 and 3 are satisfied for all , ,

, and the parameters and are selected to
satisfy

(101)

then using either the direct (4) or indirect (6) adaptive control
law with the direction of descent selected by solving (91), we
will ensure that

1) will be monotonically nonincreasing, and
will converge to zero;

2) the tracking error between the plant output and the refer-
ence command will converge to a ball of radius centered
at the origin.

Proof: The proof of this theorem is similar to the proof of
Theorem 1 in the direct case (or Theorem 2 in the indirect case),
except for the part in step 2) where we need to show that the
Lyapunov-like function is monotonically
nonincreasing. We will consider the case where is within
the dead zone separate from the case where is outside the
dead zone. First, consider the case where is inside the dead
zone. In this case, so and

. With the error outside the dead zone, we have

(102)

Based on (13), it can be shown that

(103)
Using (103) and the fact that , (102) can be expressed as

(104)

Since and , we get

For , we need

(105)

Define such that , where
and , and ( is defined as the set
of positive real numbers). It can be shown that

(106)

Since , (106) becomes

(107)

Since , (107) becomes

(108)

Based on (105), to guarantee that , we
need

(109)

or, equivalently

(110)

This can be achieved when

(111)

Hence, we need to ensure that

(112)

Combining (108) and (112), we need to guarantee that

(113)
Since , we need to ensure that

(114)

or (using Assumption 3)

(115)

It is clear from (115) that we need also to guarantee that
(since both sides of the equation have to be positive).

Therefore, choosing the parameters and to satisfy

(116)
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will ensure that .
Note that the condition (101) may be infeasible for certain

class of systems. However, if there is a class of systems for
which this condition is satisfied, then stability can be guaran-
teed.

V. SURGE TANK EXAMPLE

Consider the surge tank model (taken from [21]) that can be
represented by the following differential equation:

(117)

where is the input flow (control input), which can be pos-
itive or negative. Also, is the liquid level (output of the
system); is the cross-sectional area of the tank;

is the gravitational acceleration; and is the
known cross-sectional area of the output pipe. Let

, where and . Using Euler approxima-
tion to discretize the system, we have

(118)

where . Note that the system (118) belongs to the same
class of systems (2), where

(119)

and

(120)

We will simulate the system for so that the simulation
is realistic. This system will be used here to demonstrate how
to use the previously discussed algorithms for auto-tuning the
adaptation gain and the direction of descent. Next, auto-tuning
the adaptation gain algorithm will be used for this example.

A. Auto-Tuning the Adaptation Gain

We have discussed earlier that auto-tuning the adaptation gain
algorithm can be used for both direct and indirect adaptive con-
trol schemes. Our objective here is not only to discuss the ap-
plicability of using the proposed algorithm for both direct and
indirect adaptive control schemes, but also to find a basis for
comparison between the two adaptive control schemes within
the context of the proposed algorithm.

1) Direct Case: The direct fuzzy controller
used here is a TSFS that has two inputs,

the reference input (which is a square wave whose upper and
lower values are 1.5 and 3) and error, .
Five Gaussian membership functions are used for each input
universe of discourse. For the first input (reference input), the
centers of the membership functions are distributed evenly
between 0 and 5, and the centers for the second input (error)
are distributed evenly between 5 and 5. The choices of the
parameters used in the update routine are made based on the
following reasoning. Since the tank (118) belongs to the class

Fig. 3. Optimal adaptive direct fuzzy controller for the surge tank.

Fig. 4. Optimal adaptation gain compared to its upper and lower bounds.

of systems (2), the error dynamics can be expressed by (8)
where

Since must satisfy

and assuming that , it can be shown that the
following relation must hold:

so let us pick and to be 0.033 and 0.05, respectively. It is
easy to verify that this choice satisfies (32). Also, based on (41),

must be greater than 0.5152 so we can pick and to
be 0.1 and 0.95, respectively. From (40), we know that has to
be less than 40 and also satisfy (39) (which says that must lie in
the closed interval [22.6061,36]) so one reasonable choice is to
pick . The closed-loop response of the overall system is
shown in Fig. 3. The first plot shows a comparison between the
plant’s output and the desired square wave reference trajectory.
The second and third plots in the figure show the output error

and the control , respectively. A plot of the adapta-
tion gain (compared to the upper and lower bounds) is
shown in Fig. 4. It is also clear from Fig. 4 that the lower bound



NOUNOU AND PASSINO: STABLE AUTO-TUNING OF ADAPTIVE FUZZY/NEURAL CONTROLLERS 81

Fig. 5. Optimal indirect adaptive fuzzy controller for the surge tank.

of the adaptation gain is used as the optimal one when
the output error is very small. This result agrees with our in-
tuition since no major changes are needed in the adaptive con-
troller when the achieved closed-loop performance is accept-
able. In this case, no major changes in the parameter vector (and
hence a small adaptation gain) are needed. In the case where the
output error is fairly large, considerable changes in the adaptive
controller are needed. This translates to major changes in the
parameter vector (which, of course, require a large adaptation
gain). As expected, the results provided by this example in the
direct case verify our intuition on the choices of the adaptation
gain.

2) Indirect Case: Here, two unknown functions (
and ) are to be approximated online in order for the
control law to be computed. The actual functions and

(that we assume to be unknown) to be approximated
are defined in (119) and (120), respectively. The approximators
of both functions used here are TSFS that have one input, .
Three Gaussian membership functions are used for the input in
each approximator, where the centers are distributed evenly be-
tween 0 and 4. As in the direct case, we choose and

; this implies that . Also, to ensure that
is bounded away from zero, we let

where . To guarantee boundedness of the adaptation
gain, we assumed that , where . Using ,
this translates to having the upper bound on the maximum pos-
sible adaptation gain to be 4. The closed-loop response of the
overall system is shown in Fig. 5. A plot of the optimal adap-
tation gain (compared to the upper and lower bounds)
is shown in Fig. 6. Also, in the second period of our simulation
shown in Fig. 6 (where the parameter vector are converging to-
ward the ideal ones), the lower bound of the adaptation gain is
used as an optimal one. This agrees with our intuition as in the
direct case. It is important to note that the convergence of the pa-
rameter vector in the indirect case in simulation is slower than
the convergence in the direct case. This simulation result agrees
with our conclusion which says that no matter what bounds we
choose for our adaptation gain (as long as ),
the parameter is always bounded in the interval (0, 2); whereas
in the direct case can be much larger (in this case, we picked
it to be 30).

Fig. 6. Optimal adaptation gain compared to its upper and lower bounds.

B. Auto-Tuning the Direction of Descent

Here, we will demonstrate the impact of auto-tuning the di-
rection of descent vector for the direct adaptive case; similar
analysis can be performed also for the indirect adaptive control
case.

The ideal controller is approximated here using a TSFS that
has two inputs, the reference input (which is a square wave
whose upper and lower values are 3 and 1.5) and error,

. Five Gaussian membership functions are used
for each input universe of discourse. For the first input (refer-
ence input), the centers of the membership functions are dis-
tributed evenly between 0 and 3, and the centers for the second
input (error) are distributed evenly between 5 and 5. To sat-
isfy Assumption 2, the function (91) is minimized subject to

, where we choose is
to be 0.7. It is assumed that , where

and are 0.033 and 0.05, respectively. Also, based on As-
sumption 3 (i.e., ), we assume to be 2. To
guarantee that , we choose the parameters
and to be 1 and 0.01, respectively. To satisfy (101), we choose

to be 0.7. Note that (101) can be satisfied for other values
of . To study the effect of the direction of descent adaptation,
we compared the case where the direction of descent is adapted
to the case where it is not. The performance of the closed-loop
system for the first case is shown in Fig. 7, where the first plot
shows a comparison between the plant’s output and the desired
square wave reference trajectory. The second and third plots in
the figure show the output error and the new control ,
respectively. The performance of the closed-loop system for the
second case (when no direction of descent adaptation is used)
is shown in Fig. 8, where the first plot shows a comparison be-
tween the plant’s output and the desired square wave reference
trajectory. Also, the second and third plots in the figure show the
output error and the control , respectively. It is clear
from the first plot in Fig. 7 that the closed-loop performance
seems unacceptable at the beginning; however, the performance
starts to improve over time. Note that the magnitude of over-
shoot in Fig. 7 (when the direction of descent is adapted) de-
creases faster than the corresponding one in Fig. 8 (when the
direction of descent is not adapted). However, the output error
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Fig. 7. Performance of direct adaptive controller when direction is adapted.

Fig. 8. Performance of direct adaptive controller when direction is not adapted.

in Fig. 8 (when the direction of descent is not adapted) decreases
faster than the corresponding one in Fig. 7 (when the direction
of descent is adapted). This observation agrees with our con-
clusions since the parameter vector in the first case is adapted
to minimize only the squared output error; in the second case,
however, there is a tradeoff between minimizing the squared in-
stantaneous output error and the instantaneous control energy.
Variations in the MCE and the MSE are shown in Fig. 9. The
values shown in Fig. 9 are average values over a simulation pe-
riod of 100 s. It is clear that the MCE decreases as increases.
This observation makes sense since as increases, the incre-
mental vector (which is found by minimizing the instan-
taneous control energy) may become larger, and hence may
become greatly affected by . Therefore, as increases the
resulting will be obtained such that more consideration is
given to minimizing the control energy. Also, in is clear from the
figure that the MSE increases as increases. Hence, adapting
the direction of descent can be used to tradeoff between the de-
sired closed-loop performance relative to the affordable control
energy.

VI. CONCLUDING REMARKS

Considering both direct and indirect adaptive control
schemes, the main contribution of this paper is to auto-tune

Fig. 9. Variations in MSE and MCE as �� varies.

some of the parameters (i.e., the adaptation gain and the direc-
tion of descent) for a gradient-based approximator parameter
update law used for a class of nonlinear discrete-time systems.
The adaptation mechanism of the gradient update law is usually
based on minimizing the squared output error. Here, however,
we update some parameters in the update law to minimize
some other cost function (e.g., control energy). Based on the
results of the example presented earlier, a comparison to some
extent can be made between direct and indirect adaptive control
schemes. Unlike the direct case, it is shown that the selection
of the bounds of the adaptation gain in the indirect case is
independent of the plant dynamics. This represents a major
difference between the two adaptive control schemes. We have
also found, from example, that auto-tuning the direction of de-
scent helps to decrease the magnitude of overshoot and control
energy. We were also able to conclude that auto-tuning the
adaptation gain can be viewed as a special case of auto-tuning
the direction of descent.
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