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Abstract—Coordinated dynamical swarm behavior occurs be applied in optimization (e.g., in telecommunication systems)
when certain types of animals forage for food or try to avoid [2], [5], robotics [9], [10], traffic patterns in intelligent trans-
predators. Analogous behaviors can occur in engineering systems portation systems [11]-[13], and military applications [14]. For

(e.g., in groups of autonomous mobile robots or air vehicles). In Lo .
this paper, we study a model of anM-dimensional (M > 2 instance, there has been a growing interest in groups (swarms)

asynchronous swarm with a fixed communication topology, Offlyingvehicles[15]-[17]. Moreover, it has been proposed that
where each member only communicate with fixed neighbors, to swarms of robots may provide the possibility of enhanced task
provide conditions under which collision-free convergence can performance, high reliability (fault tolerance), low unit com-
be achieved with finite-size swarm members that have proximity jexity and decreased cost over traditional systems. Also, it has
sensors, and neighbor position sensors that only provide delayed been argued that a swarm of robots can accomplish some tasks
position information. Moreover, we give conditions under which ) ) ’ - )

an M -dimensional asynchronous mobile swarm with a fixed thatWOUld beImDOSSIble foraSIngle rObOttO aCh|eVe. Partlculal’
communication topology following an “edge-leader” can maintain research includes that of Beni [10] who introduced the concept
cohesion during movements even in the presence of sensing delaygf cellular robotic systems, and the related study in [18]. The
and asynchronism. In addition, the swarm movement flexibility behavior-based control strategy put forward by Brooks [19] is

is analyzed. Such stability analysis is of fundamental importance . . . - -
if one wants to understand the coordination mechanisms for Uit well known and ithas been applied to collections of simple

groups of autonomous vehicles or robots, where intermember indgpendent fObOtS, u;ually for simple tasks. Matéric [20] de-
communication channels are less than perfect and collisions must scribes experiments with a homogeneous population of robots

be avoided. acting under different communication constraints. Suzuki [21]
Index Terms—Asynchronism, discrete-event systems, fixed com- considered a number of two-dimensional (2-D) problems of for-
munication topology, stability, swarms. mation of geometric patterns with distributed anonymous mo-

bile swarm robots, where point-size robots are studied and col-
lisions are allowed. A preliminary study on applying social po-
tential fields to distributed autonomous multirobot control was
VARIETY OF organisms have the ability to cooperativelypresented in [22]. A survey of autonomous search by robots and
forage for food while trying to avoid predators and otheginimals is provided in [23]. Decentralized control of a collective
risks. For instance, when a school of fish searches for prey, or igift autonomous robotic vehicles was discussed in [24], where
encounters apredator, the fish often make coordinated maneugapility of a linear chain of interdependent vehicles spreading
as if the entire group were one organism [1]. Analogous behavigut along a line was analyzed. Other approaches and results in
is seen in flocks of birds, herds of wildebeests, swarms of begsis area are summarized in [9], [25].
groups of ants, and social bacteria [2]-[5]. We call this kind of ag- In this paper, we are interested in mathematical modeling and
gregate motion “swarm behavior.” A high-level view of a swarnanalysis of stability properties of swarms. Stability is a basic
suggests that the organisms are cooperating to achieve some gualitative property of swarms since if it is not present, then it
poseful behavior and achieve some goal. Naturalists and bioleay be impossible for the swarm to achieve any other group
gists have studied such swarm behavior for decades. Moreowjective. Stability analysis of swarms is still an open problem
computer scientistsinthe field of “artificial life” have studied howput there have been several areas of relevant progress. In
to model and simulate biological swarms to understand how susiblogy, researchers have used “continuum models” for swarm
“social animals” interact, achieve goals, and evolve [6]-[8].  behavior based on nonlocal interactions, and have studied
Recently, there has been a growing interest in biomimicetability properties [26]. Jiret al. in [27] studied stability of
of the mechanisms of foraging and swarming for use in engjynchronized distributed control of one-dimensional (1-D) and
neering applications since the resulting swarm intelligence carD swarm structures. Interestingly, their model and analysis
. ) ) methods look similar to the model and proof of stability for the
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asynchronism leads to asymptotic collision-free convergenstidy uses a discrete time discrete event dynamical system [28]
and partial asynchronism leads to finite time collision-freapproach and unlike the studies of platoon stability in intelli-
convergence even with sensing delays. Furthermore, conditigient transportation systems we avoid detailed characteristics of
were given in [31] and [32] under which an asynchronousw level “inner-loop control” and vehicle dynamics in favor
mobile swarm (here, we mean the entire swarm is moving as@infocusing on high-level mechanisms underlying qualitative
entity when we say a swarm is “mobile;” clearly, each membswarm behavior when there are imperfect communications.
moves in order to achieve such mobility) following (pushed

by) an “edge-leader” can maintain cohesion during movements Il. MODELING

even in the presence of sensing delays and asynchronism. Igjrst, we will explain the capabilities of a single swarm
addition, similar results were presented in [33] for stabilitfhember and provide a mathematical model forAdrdimen-

of a 1-D discrete-time asynchronous swarm via an differegfonal v -member asynchronous swarm with a communication
analysis method from [30]. Recently, in [34], a continuous-timgynology, whereM > 2 and N > 2 are fixed. Next, a
synchronous swarm model has been introduced and conditigigthematical model for anm/-dimensional asynchronous

for stable cohesion and ultimate swarm member behavior wefgpile swarm with a communication topology following an
derived with point-sized agents with no concern for collisionsgqge-leader” will be given.

Next, we would note that there have been several investigations
into the stability of intervehicle distances in “platoons” irA. Single Swarm Member Model

intelligent transportation systems (e.g., in [35] and [36], or of An A/-dimensional swarm is a set 8f swarm members that
the “slinky effect” in [37] and [38], and traffic flow in [11] move in anM/-dimensional space. Assume each swarm member
and [13]). Finally, we would note that the study of stabilithhas a finite physical size (diameter) > 0. It has a “prox-
properties of aircraft (spacecraft) formations is a relevant aglity sensor,” which has a sensing range with a radius w
active research area [15], [16]. around each member. In tié = 2 case, it is a circular-shaped
Swarm stability for theM > 2-dimensional case will be area with a radius > w around each member. Once another
studied in this paper, where stability is used to characterize tf\ﬁarm member reaches a distance dfom it, the sensom-
cohesiveness of a swarm. Comparing with our earlier analystantaneouslindicates the position of the other member. How-
for the 1-D case in [30]-[32], thé/ > 2-dimensional case ever, if its neighbors are not in its sensing range, the proximity
is more challenging. For example, each member in the 1dansor will returmo (or, practically, some large number). The
swarm has only left and right neighbors, and it can only moygoximity sensor is used to help avoid swarm member collisions
to the right or to the left. However, in th&/ > 2-dimensional and ensures that our framework allows for finite-size vehicles,
case each member may have many neighbors (it dependshgbjust points. Each swarm member also has a “neighbor posi-
the definition of “neighbor”) and each of them has an infinit§on sensor” which can obtain the positions of neighbors around
number of moving directions. Especially for the mobile casg, It performs this sensing via communications using a com-
there must exist some constraints for the moving direction gfunication topology. We assume that there is no restriction on
the “leader” besides the constraints on its step size in orderH@W close a neighbor must be for the neighbor position sensor
maintain swarm cohesion during movements and simultang-provide a sensed position. The sensed position information
ously avoid collisions. All of this significantly complicates thQ*nay be subjected to random communication delays (i.e., each
convergence analysis for thie > 2-dimensional case. In this swarm member’s knowledge about its neighbors’ positions may
paper, we will present af/ -dimensional asynchronous swarnpe outdated). Assume each swarm member knows its own po-
model by putting many single finite-size swarm membeistion with no delay (note that even we assume each member
together in anM -dimensional space, where we assume theggows its own position in the model, but in practice, it may not
exists a fixed “chain” communication topology among swarre necessary since it can move only using the relative positions
members and each member only communicates with fixgslits neighbors obtained by its sensors). Note that we define
neighbors via the topology. With the certain initial conditions ohe position, distance and sensor sensing range of the finite-size
the swarm (which will be explained in Section 1I-B), the chaigwarm member with respect to its center, not its edge.
communication topology that specifies that swarm memiber  Swarm members like to be close to each other, but not too
i = 2,3,...,N — 1, only communicates with its two nearest|ose. Supposé is the desired “comfortable distance” between
neighborsi — 1 andi + 1 except that swarm member 1 aMd  two adjacent swarm neighbors (“neighbors” will be fully de-
which are on the two ends of the chain only communicate witfhed below in terms of the chain communication topology)
one neighbor, members 2 ant— 1, respectively), is fixed. We known by every swarm member, and it satisfies> ¢ > w
will provide conditions under which ai/-dimensional swarm as shown in Fig. 3. Each swarm member senses the interswarm
will converge to be in a cohesive form even in the presence @lember distance via both neighbor position and proximity sen-
sensing delays and asynchronism on the basis of such a swags and makes decisions for movements via some position up-
model. Furthermore, we consider avf-dimensional asyn- dating algorithms, which is according to the error between the
chronous mobile swarm, where member 1 (the “leader”) leaggnsed distance and the comfortable distahd®nd then, the
and all members communicate only with neighbors accordigigcisions are input to its “driving device,” which provides loco-
to the chain communication topology, to present conditioffotion for it. Each swarm member will try to move to maintain
under which it can maintain collision-free cohesion during comfortable distance to its neighbors. This will tend to make
movements even with Sensing delays and asynchronism. s group move together in a cohesive swarm.
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B. Swarm Model With a Fixed Communication Topology Assumption 1. (Total Asynchronismissume the setg",
An M-dimensional swarm is formed by putting many = 1,2,...,N,are.|nf|n|te, aZDd IffOfeaCh,.tk € 1" andt;, —
of the above single swarm members together on)Masdi- ask — oo, thenlimy_,oo 7/_; (tx) = 00,1 =2,3,...,N.

This assumption guarantees that each swarm member moves
infinitely often and the old position information of neighbors
the position vector of swarm membeérat time #. We have of each swarm member is eventually purged from it. More pre-

. p p . T P cisely, given any time,, there exists a timé, > t; such that
Ti(t) = [24(t), 25(t), ..., 25, ()] € RM,i=1,2,...,N, . )
wherexi[(;) m 2: 1,2 MM] is the mth position coor- i) >, fori = 2,3,.... N gn_dt 2 fp. On the other

mh o hand, the delays — 77_,(¢) in obtaining position information

dinate of membei. We assume that there is a set of times_ - .
) of neighbor of membeircan become unboundedisisicreases.
T = {0,1,2,...} at which one or more swarm member

update their positions. LeFé C T'i = 1,2..... N, be a set ilext, we specify a more restrictive type of asynchronism, but

of tmes at uhch thah members posion'(1, < 7', S AN ULl ea o mpenentporactee, |
is updated. Notice that the elementsf should be viewed P : y ;

A | i T
as the indices of the sequence of physical times at whigﬁsmve integer B (i.e.5 € 2™, whereZ™ represents the set

. . . itive in r h th
updates take place, not the real times. These time mdexesoargOSt € integers) such that

nonnegative integers and can be mapped into physical timesg) for everyi andt > 0, ¢ € T, at least one of the elements
TheT?, i = 1,2,...,N, are independent of each other for of the set{t,# + 1,...,t + B — 1} belongs tdl™;
differenti. However, they may have intersections (i.e., it could b) there holdg — B < 7;_;(¢) < tforalli =2,3,..., N,
be thatl™ N T # () for i # j, SO two or more swarm members and allt > 0 belonging toT™.

may move simultaneously). Note that our model assumes th@tice that for the partial asynchronism assumption each
swarm membeti, i = 2,3,..., N, communicates with its member moves at least once wittintime indexes and the de-
neighbor member — 1 via its neighbor position sensors withinjaysz — 7 (¢) in obtaining position information of neighbors
a communication topology (the communication topology wilhf memberi are bounded by, i.e.,0 < ¢ — i, (t) < B.
be explained later) to obtain the position information of member Next, in order to construct a swarm model we will first ex-
i — 1 (the position information obtained may be subjected t94in the chain communication topology. We will study an asyn-
random delays). A variable/_,(¢) € T',i = 2,3,...,N,iS chronous swarm with certain initial conditions where the chain
used to denote the time index of the real time at which positiQammunication topology can exist. An example of suctvar:
information of its communicating neighber— 1 is obtained 2_dimensional swarm is shown in Fig. 1. Assume that there is
by memberi at?z € 7" and it satisfied) < 77 ,() < tfor 3 set of N swarm members distributed in ai-dimensional
t € T". Of course, while we model the times at which neighbajpace. Assumér| = V2 Tz and |27(0) — 27(0)| > d, for
position information is obtained as being the same times @t — 1,2 ... N.i # j initially. Suppose one of the swarm
which one or more swarm members decide where to moMgmbers always remains stationary (note that it can be rela-
and actually move, it could be that theal timeat which such tjyely stationary in the practical case of air or water vehicles),
neighbor position information is obtained is earlier than the reghich we call member 1. Member 1's nearest neighbor, which
time where swarm members moved. The differeneer;_,(¢) we call member 2, is assumed to be initially located inside a
between current time and the timer;_,(¢) can be viewed as sector area starting from the position of member 1 with a radius
a form of communication delay (of course the actual length ¢f > ¢ and a central angleé < 6§ < = as shown in Fig. 1 (notice
the delay depends on what real times correspond to the indiggst it is a sector area fav/ = 2 case, and a cone far = 3).
t, 7;_1(t))- Moreover, it is important to note that we assumglember 1 only communicates with member 2, and member 2
thatr]_,(t) > 7/_,(t') if t > ¢’ fort, ¢ € T". This ensures yses the information of member 1 to update its position. Assume
that member uses the most recently obtained communicatingember 2’s nearest neighbor in the pooliathosemembers,
neighbor position information. Besides the neighbor positiaghich we call member 3, is located inside theerlappingarea
information obtained from its neighbor position sensors, swargh the sector area starting from the position of member 1 and
member: also gets some information from its proximitya equal-size sector area starting from the position of member
sensors. Assume that if its communicating neighber 1 is 2, which is also symmetrical about the extension of the con-
beyond the sensing range of its proximity sensors, it uses iected line between positions of members 1 and 2. Member 2
informationz*~!(7/_, (t)) from its neighbor position sensors;only communicates with members 1 and 3, and member 3 uses
if its neighbori — 1 is inside the sensing range of its proximitythe information of member 2 to update its position. In the same
sensors, it uses the real-time neighbor position informatiovay, assume the nearest neighbors of swarm meinbein the
z*~1(¢) provided by its proximity sensors. The informatiorpool of unchosen members, which we call membés only lo-
is used for position updating until membegets more recent cated inside the overlapping area of all the sector areas starting
information, for example, from its neighbor position sensofrom positions of members, 2, ...,i — 1, respectively, where
Notice that swarm memberupdates its position only at time: = 4,5,..., N. In addition, the sector area starting from the
indicest € 7" and at all timeg ¢ 7" its positionz®(t) is left position of membet — 1 is symmetrical about the extension
unchanged. of the connected line between positions of members2 and
Next, we specify two assumptions that we use to characterize 1. Similarly, member — 1 only communicates with mem-
asynchronism for swarms according to [29]. bersi — 2 andi, and membei uses the information of member

mensional space. An example of dd = 2-dimensional
N-member swarm is shown in Fig. 1. Let'(¢) denote
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Fig. 1. M-dimensional M = 2) N-member asynchronous swarm with a fixed communication topology (dashed line along the direction of the arrows), all

members moving to be adjacent to the stationary member (member 1).

1 — 1 to update its position. Therefore, there exists a fixed chasmvarm which satisfies the above initial conditions is a one-di-

communication topology from membéf to member 1 in such mensional swarm.
a swarm, which is represented by a dashed line along the direcOf course, not all possible initial conditions of swarm mem-
tion of the arrows in Fig. 1. bers can fit in the above constraints. Two exampleg/bf=

We may think of the above swarm as a chain of intercom-dimensional swarms with illegal initial conditions are shown
municating single swarm members. With the topology, ead@hFig. 2. Obviously for the swarmin Fig. 2(a), itis impossible to
member only communicates with the two nearest members tditild an overlap-free communication topology from member 3
(which we call “communicating neighbors”) except that menteo the stationary member 1. Considering the swarm in Fig. 2(b),
bers 1 andV only communicate with the nearest member tolearly all members except the first three are not located in the
it. It updates its positions at its updating time indices using tlwrerlapping area requested above so that it is possible to have
most recent obtained position of its unique “reference neighbadmmunication paths overlapping during movements of swarm
(the communicating neighbor which it uses as a reference) emembers although there may exist a communication topology

cept the stationary member 1. In particular, swarm memperfrom member 9 to member 1. Hence, the “overlapping” condi-
1=2,3,..., N, tries to maintain a comfortable distant® its tion is needed due to the asynchronism and delays and our focus
reference neighbar— 1 so that it moves only along the connecon collision avoidance. Next, note that we need the constraint

tion line of its position and the sensed position of membet. 0 < § < = above to avoid situations like in Fig. 2(b). Why is
With the choice of the aforementioned initial conditions, therae upper bouna? This is due to the fact that only the com-
will be no communication path (the line connecting positions @fiunicating neighbors of each member are the nearest to it, and
two communicating neighbors) overlapping in such a fixed comll be discussed more later.

munication topology during position updating of swarm mem- Let ¢i(t) = xi(t) — 2**1(¢),i = 1,2,...,N — 1 denote
bers and collisions will never happen in the swarm. The undehe intermember distance vector of communicating neighbors
lying reasons will be explained below. Note thatit= 0, the i + 1 andi. Assume the direction of(¢) is from the posi-
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Fig. 2. Examples of\/ = 2-dimensional swarms with illegal initial conditions.

tion of memberi + 1 to the position of memberand|ei(t)| =

From our assumptior|e’(0)| > d, fori = 1,2,...,N — 1,

(ei(t)) Tei(t), wherele?(t)| denotes its magnitude. We usg “ so that at the beginning the proximity sensor of memberl
functions”g, (|e*(t)| — d) andg;(|e!(t)] — d) (see [30]-[32]) to cannot sense its neighbar So, swarm members only update
denote two different kinds of attractive and repelling relatiortheir positions according to the chosgffiunction, which uses

ships between two swarm neighbors, where for a s¢atari,
ga(l€*(t)] — d) is such that

the sensed information provided by their neighbor position sen-
sors. Particularly as shown in Fig. 3 which enlarges a part of
Fig. 1, member 2 will move toward the stationary member 1

1 (|et(t)| _ d) <q (|ei(t)| _ ) (|e (t)] — ) step by step along the connected line between members 1 and
B ‘ 2 via g function att € T2 once it gets the unchanged position
if (Je'(t)] — d) >0 (1) information of member 17!(t). From the definition of the
a (|ei(t)| —d) = (|ei(t)| —d) = function, we have
if (le'(t)] - d) =0 1 @) g (I2'(t) — 22(1)] = d) < &t (t) — 22(t)| - d
(le"®)] = d) >ga (Ie'()] — d) <B(|e()|— ) and so we get
if (|e’(t)| — d) <0 (3) |61(t)| >d V£,

and for some scalarg andn, such that > 1, andn > 0,
g5(|e’(t)] — d) satisfies

As we know, member 3’s proximity sensors cannot sense
member 2 sincge?(t)| is greater thand at the beginning.
Therefore, member 3 updates its positiontate T3 only

l (le i) —d) <gs (|e —d) < (|ei(t)| —d) according to its sensed position informatief(73(¢)) and the
B update step is equal tg|z2(73(t)) — z3(t)| — d). According
it (le'(t)] —d) > (4) to our assumptions of asynchronism, we hayét) < t. As
gy (| ’(t)| — d) - (|e (t)] - d) shqwn _in Fig. 3, member 2 already arrives_ at .the pGirdt ¢,
it —n<(le'(t) —d) <7 ) which is 2?(¢). However, due to communication delays, the
. - 1 position information of member 2 obtained by member 3 at
(le" ()] — d) >g¢ (| ()] — d) < = (' (¥)] — d) t € T is z*(r3(t)), which is still at the pointB (note that
, B if there is no communication delay, i.e=(¢) = ¢, points B
f(le'(®)] —d) <—n. (6) andC will overlap). Supposer is the angle formed by lines

of BC and AB in the clockwise direction, and then we have

Note that the aforementionegfunctions (a scalar) only rep- /9 < o < 37/2 since0 < § < = and member 3 is only

resents the amount of the attractive or repe”lng force betWe%ated inside the Over|app|ng area of the two sector areas
two communicating neighbors for a given distance vector. Thearting from positions of members 1 and 2 with a central angle

moving direction of swarm members depends on the directignCiearly, in the triangled BC, |AC| > |AB| (JAC| = |AB|
of the distance vectar (t). if points B andC' overlap), i.e.,

Next, we will show that in the abov&/-dimensional swarm,
collisions will never happen even without proximity sensors. |2? (r3(t)) — 2 (t)| < |2>(t) — 2> (¢)|. 7
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X]

Fig. 3. Enlargement of the part about members 1, 2, and 3 in Fig. 1.

According to the definition of thg function and (7), we have memberi and lef (i1 ()] = \/(e”" (ri T () Tei (w1 (1))
where|e? (/7' (¢)) | denotes its magnitude. So

: : W) > et (7)) | >d Yti=1,2,..., N —1.
(1 (0) ~ 0] - ) <|p? () ~ 0] - ORI ERO) 2 Vi N L
2 3
<|z7(t) = 2*(1)] — d. (8) A mathematical model for the previoug -dimensional swarm
. is given by
From (8), we know the update step of member 3 is always less
than or equal to the error between the real distance from member z*(t + 1) =2(¢) VteT!
3to2andd (i.e, [+*(t) — z°(t)| — d). Hence, the intermember 2 1 1) —2(4) 4 ¢ (|2 (72(1)) — ()| — d)
distance between members 3 and 2 is always greater than or - )
equal tod. Clearly, a similar result holds for all other swarm < | X () —2*(®) VieT?
members, so we have |zt (£ (2)) — 22(1)]

le'(t)| >d  Vti=1,2,...,N—1. (9) ’ )
+9 (]o" (05 (#) = VN0 - d)
Equation (9) implies that all the swarm members’ proximity pN-2 (T]QY_—Ql(t)) eN(t)
sensors will never sense their nearest neighbor during move- X |$N_2 (r=1(0) — xN—l(t)|
ments. With the choice of initial conditions there always exists a N-2
fixed overlap-free communication topology during movements VierN!
of swarm members so that each member always communicates:™ (¢ 4 1) =z (t) + ¢ (|Q;N—1 (TN_1 () — J;N(t)| —d)
with its nearest neighbor and try to maintain a comfortable dis- N1 (TN (t)) — 2N (t)
tance to it. Equation (9) also implies that the distance between X N1
every member and its nearest neighbor is larger than or equal to LZ'N_l (Tfyq(f)) — N t)|]
d at any time. Therefore, members will never have collisions in vierN
the previous swarm even without proximity sensors. i i i
Lt ¢ (rH1(8) = o (r (D) — aitie), i — ' (t+ 1) =z (¢) VigT', i=1,2,...,N. (11)
1,2,..., N — 1 denote the sensed intermember distance vectach item in bracketsin (11) is a unit vector which represents the

of communicating neighbors+ 1 andi. Assume its direction moving direction of each swarm member which is the direction
is from the position of member+ 1 to the sensed position of of its sensed interneighbor distance vector, and gdahction
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item in front of the brackets is a scalar, which is the step size thie mobile swarm model based on Assumption 2 (partial asyn-
each swarm member. In additiorf,t) is the position vector of chronism), which has a finite positive integBras an “asyn-
memberi. Hence, 4" and “—" are the addition and subtractionchronism measure.”
of vectors. For convenience, assume that‘(0)] = d, for
From the previous assumptions, we can write the model of = 1,2,...,N — 1 initially, i.e., at the beginning all
(11) into the following form; see (12) at the bottom of the pagewarm members are at a comfortable distance from their
wheree!(t) is the interneighbor distance vector of membigr$  communicating neighbors. In addition, we assume that the
andi. initial positions of swarm members satisfy the constraints we
_ ] explained for the stationary edge-member case except that
C. Mobile Swarm Model With an Edge-Leader all the sector areas starting from the position of member
Assume that in a swarm with a fixed communication topology, = 2,3,...,N — 1 are formed by a line starting from the
amemberwill consider itselfto be an edge-memberifitonly conposition of membei and the extension of the connected line
municates with one neighbor, and a middle member if it corlsetween positions of membeis— 1 and i with a central
municates with two neighbors. Therefore, members 1draf angled/2 as shown in Fig. 4, whereé < § < = (note that
the swarmin Fig. 1 are edge-members since they only commuagtually these sector areas are all the left or right half parts of
cate with members 2 anl — 1, respectively. All other mem- the corresponding sector areas we explained for the stationary
bersi,i = 2,3,...,N — 1, are middle members since theyedge-member case in Fig. 1; we will explain how th&
communicate with both neighbois- 1 andi + 1 assuming a constraint arises below). Similarly, membger 1 only commu-
fixed communication topology. Now, assume that member 1 (théecates with member and there exists a fixed communication
edge member) moves to some direction with a bounded steg@sology from membeN to member 1 represented by a dashed
an edge-leader (we will explain the moving direction and stédime along the direction of the arrows as shown in Fig. 4.

size of the edge-leader). Membe#t 1 will try to follow 7, ¢ = Assume member 1 (the edge-leader) moves only in “legal di-
1,2,...,N — 1, and at the same time try to maintain a comfortrections” with a step vectos(¢) at timet > 0, ¢ € T*, where
able interneighbor distance. 0 < |s(t)] < r (i.e., the step size is bounded by a finite pos-

Similar to [31], [32], we assumpl — v,d + ~] is a “com- itive scalarr). Here, “legal directions” means those directions
fortable distance neighborhood” relative to two communicatirtg which the distances of member 1 to all other members will
neighborsg andi + 1 (i.e., whenei(¢)| € [d —~,d + ], we say monotonically increase along each of its move steps if all other
that they are in the comfortable distance neighborhood), whenembers are stationary and they are defined on the basis of
2~ is the comfortable distance neighborhood size. Assume tltla¢ initial conditions we explained above. In fact, we assume
0 < € < d — « so that we do not consider swarm member1l member 1 will calculate the range of legal directions according
to be at a comfortable distance to membiéit is too close toit, to the position information of member 2 and 3 before each of its
wheree is the sensing range of swarm members’ proximity semoving steps (note that here we assume there are at least three
Sors. members in the swarm, and member 1 gets the position infor-

Clearly in the two assumptions of asynchronism we specifigdation of member 3 via member 2. The two-member case will
above, only Assumption 2 (partial asynchronism) will result ibe discussed in Corollaries 1 and 2). Assume that the moving
cohesiveness for a mobile swarm since the delays in Assundiirection of member 1 forms an andlevith the connected line
tion 1 (total asynchronism), which could be unbounded, witif positions of members 2 and 1 in the clockwise direction, and
make swarm members lose track of their edge-leader or thésie connected line between positions of members 1 and 2 forms
neighbors during movements, i.e., the distance between swammanglev with the connected line between positions of mem-
neighbors could become unbounded just because swarm méers 2 and 3 in the clockwise direction. Moreover, assume the
bers use arbitrarily old sensed information. Hence, we constrgcnnected line between positions of members 2 and 1 forms an

A0 - (e (F0)] - ) [ ED] vier

el(t+1) = et(ri )]

el(t) VitegT?

(. ) 4 et (ri_,

el(t) +g (|el—1 (Tilfl(t))l — d) [%]

—a(lei (FH | — e' (11 m) i it _
g (|e" (7 @)| - d) ECsa0)] VieT'nT*,i=23,...,N—1

i+l = e(t) =g (|e' ()] - d) d:%lzm Vie T t¢ T i=23,. .. N—1 (12)

(1) + g (| (i, (1))| - d) [%] ViteTit¢ T, i=23,... ,N—1

L e(t) Vtg TiuTH,i=23,...,N-1
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Fig. 4. AnAM-dimensional M = 2) N-member asynchronous mobile swarm example with a fixed communication topology (dashed line along the direction
of the arrows), all members following an edge-leader (member 1) (case (a): the edge-leader’'s moving directiorrsatisfiest < « if w > ).

angles with the connected line between positions of members 1 From this, member 1 must have the position information of
and 3 in the clockwise direction. Then, legal directions are thoseembers 2 and 3 to decide its moving direction. At the begin-
directions satisfying ning, members 3 and 2 are stationary with a comfortable dis-
tance to members 2 and 1, respectively. Therefore, member 1
starts its first move at € T', ¢ > 0 after it obtains the po-
(the shaded region in Fig. 4) and sition information of members 2 and 3, and all other members
also start moving one by one at their updating time sets. How-
ever, member 1 cannot immediately use its neighbor position
by symmetry, which are two different cases for thie= 2-di- information to move further at the nekte 7, ¢ > 0 since its
mensional swarm (fak/ = 3 case, the shaded region becomesiaformation about member 2 obtained via its neighbor position
one-fourth cone). Note that if members 3 and 2 are located in t@nsorz? (3 (t)) may include random delays (at this time its
same line with member 1, i.ev, = 7, the unique legal moving proximity sensor doesn’t work since the interneighbor distance
direction for member 1 i§ = 7. Moreover, thes/2 constraint is equal to or larger thad). In the same way, its information

of initial conditions (compared t6 constraint in the stationary of member 3 passed by member 2 may include random delays,
case) guarantees that the legal directions we defined always Holel Therefore, we assume that member 1 has to use, we call, a
during movements of the swarm, i.e., with the choice of initiaait 45 — 1 steps strategy” under Assumption 2 (partial asyn-
conditions member 1 will always move far away from all otheghronism) to get the information necessary for continuing its
members as long as it moves in legal directions. Clearly, withoving. Simply speaking, the “wait’3 — 1 steps strategy” is

the constraint of legal directions and the choice of the aforthat member 1 has to wait3 — 1 time indices to make another
mentioned initial conditions, member 1 cannot make sharp turm®ve step after its previous move, i.e., if member 1 moves at
or move toward member 2 during the moving process. It only € 7", its next moving step will be at the first time index
moves far away from all other members so that collisions cavhich satisfies > ¢* +4B —1,¢ € T". The underlying idea is

be avoided and an overlap-free communication topology alwafat we assume ate 7', member 1 moves with a step vector
exists in the swarm, which is a prerequisite for the mobile swarst) only when it has enough information to decide its legal
to keep the cohesiveness. Obviously, you could define ottiirections; otherwise, it remains stationary (waits). According
strategies that would allow for sharper turns but this will comi@ Assumption 2 (partial asynchronism), the maximum possible
at the expense of the leader needing more position informatiegighbor position delay i® — 1. On the basis of this, we can
from its followers. prove that the leader can be guaranteed to get the direction infor-

T—o<f<wmifw>mw

T<f<m+oifw<nm
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mation of the position information of members 2 and 3 withiwhereB € Z* is the asynchronism measure in Assumption 2,
the4B — 1 time steps, which will be explained in detail later. and¢,(t) denotes the last time index that member 1 moved to
Furthermore, we assume that member 2 follows member lamew position at timeé € T'. Furthermore, we assume that at
order to be in a comfortable distance to member 1. It updates= 0 member 1 receives members 2 and 3's initial position

its position att € 72 toward member 1 along the connectedhformation and,(0) = —(4B — 1) so that member 1 will start
line of its current position and its obtained position of membéo move at the first time indexe T, ¢ > 0.

1. Similarly, all other swarm membeisi = 3,4,..., N move For all other swarm members, we have

to follow their moving communicating neighbois- 1 along 9 9 172 9

the connected line of their positions and their obtained position v (t+1) =27() +g (|‘T (Tl (t)) - (t)| B d)
of i — 1 and try to be at the comfortable distance to them. We l ot (rE(t)) — 2(t)

think of the swarm as maintaining the cohesiveness if all the |zt (T2(t)) — 22(t)|
swarm members are in the comfortable distance neighborhood
to their communicating neighbors during movements. Note that D=

the leader’'s moving step size boundand the asynchronism 2NNt 4 1) =N (1)

] ViteT?

measureB can be used as a measure of how fast a cohesive r_

asynchronous swarm moves. +9 (|27 (R (0) =V (#)] = d)
Next, we will show that in the previoud/-dimensional N2 (TN () — 2N ()

mobile swarm, collisions will never happen even without |zN -2 (rN=1(1)) — aN-1(1)]

proximity sensors. From our assumptide;(0)| = d, for No1

1 = 1,2,...,N — 1, so that at the beginning the proximity vter ] ] ]

sensor of membei + 1 cannot sense its neighbaer So, Nt 4+ 1) =2V () + g (|2 (TN (1) — 2N ()] — d)

swarm members only update their positions according to 2N (AN (1) — 2N ()

the ¢ function, which uses the information provided by their X |37N_1 () = a:N(t)|

neighbor position sensors. Moreover, member 1 always moves N-1

far away from all other members. Similar to the analysis for the vtery
stationary edge-member case in the last section, we can prove (¢ 4+ 1) =z (t) Vte¢ T, i=23,...,N (14)
that (10) also holds for the above mobile case according to the

definition of theg function and assumptions of asynchronianhiCh is similgr Fo the model'of the stationary edge-member
This implies there will be no collisions in the above mobil&2S€ in (11). Similar to the stationary edge-member case, we can

swarm even without proximity sensors. Thus, we can write{it€ the model of (13) and (14) into the form of (15), shown at
model as in the below for the previoug-dimensional mobile the Pottom of the page, whet&({) is the intermember distance

swarm. For the edge-leader (member 1), we have vector between memberst- 1 and:.

L s () + s(t), ft—t,(t)>4B—1,te T [1l. CONVERGENCEANALYSIS OF M -DIMENSIONAL SWARMS
e (t+1) =9 ’ ise ' WITH A FIXED C T
z1(t), otherwise ITH A FIXED COMMUNICATION TOPOLOGY

In this section, we will study stability properties of-di-
mensional asynchronous swarms with a fixed communication

t, ift—t,(t) >4B —1,t € T!

tp(t+1) = { ty(t), otherwise. (13)

e'(t)+s(t) — g (|e' (rE(t))]| — d) [%} , fteT? t—t,(t)>4B—1,te 1"
Lt +1) = el(t) + s(t), ift—t,(t) >4B - 1,t €T, t ¢ T?
e'(t) — g (|e* (£ ()| — d) {%] ifteT?t¢g T orte T2UT , t —t,(t) <4B —1
el(t), iftgT?uT ort ¢ T?,t €T, t —t,(t) <4B —1.
[t ift —t,(¢t) >4B—1,t €T
tp(t+1) = { ty(t), otherwise.
( i i i O]
() +g (|~ (r_1(1)] - d) [ﬁ}
o e (rit! . o
—g(|e" (rF1(1))] - d) {%} 7 ifteT' nT*,i=23,... N-1
i t 1 = . . : P,i TTH—I L . . L 15
e( * ) el(t)_g(|ez(7_il+l(t))|_d) [%]7 |ft€T1+1,t§éTz,i:2,3_/,.,7N—l ( )
¢(t) +g (| (riy (1) | - d) [%} it ¢ €Tt ¢ T+, i=2,3, .. ,N-1
L el (t), ift¢ T uT*+,i=23,...,N—1
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topology on the basis of mathematical models we built eavtoreover, if at some € T*1, |ei(t)| > d, from (1) and (16),
lier and provide conditions under which the swarm will obwe havele(t + 1)| > d. So, (19) always holds in this case.
tain and keep the cohesiveness even in the presence of sensifigom (1) and (19), we know that ifi(¢)| is beyond the
delays and asynchronism. First, we will consider a stationayyrange of d (i.e.|e?(t)| > d + v, where0 < ~ < |e!(0)| — d),
edge-member asynchronod&member swarm, and then wewe get
will investigate anV-member asynchronous mobile swarm fol-

lowing an edge-leader. 2

5 < —(Ie(>|— d) < ga (e'(t)] = d) .
A. Convergence of a Stationary Edge-Memb&iDimensional So, membet + 1 will move toward membei with a moving
Swarm step at least larger thary 5. Hence, member+ 1 needs at most

p
Fig. 1 will converge to be adjacent to a stationary edge-member.

;(Iei(O)l —d—7)
We begin with the two-member case, then consider the general
N-member case where the proofs will depend on e 2 update time steps, and at least one update time step, to make
case. their intermember distance insid€,d + +], where |e’(0)]

1) Convergence for a Two-Member Swar8uppose there is the initial intermember distance. So, there exists a ttme
!
is an M -dimensional two-member swarm, which has membéPCh thaqe ()] € [d.d + ~]. Moreover, from (19), we know

Here, we will provide conditions under which the swarm in

1 andi + 1, where membei always remains stationary and{

member:; + 1 communicates with membeérand tries to move
to maintain a comfortable distandgo it.

Lemma 1:For an N = 2 M-dimensional totally asyn-
chronous swarm modeled by
e'(t+1) =¢'(t) — g (e’ (77F1(1)) | - d)
e’ (T +1 ) .
ViteTH!
[Iel (-7 >|] )

el(t+1) =e'(t) Vit¢TH!

where membei remains stationarye(0)| > d, andg = g,, it
is the case that for any, 0 < v < |¢?(0)|—d, there exists atime

(16)

hat fort € T+, V;(t) will asymptotically tend to zero (i.e.,
imy oo |€'(t)| = d). Q.E.D.

Lemma 2: For anN = 2 M-dimensional partially asyn-
chronous swarm modeled by (16) but wigh= g¢, where
memberi remains stationaryle’(0)| > d, the intermember
distance of communicating neighbois+ 1 and 4, |ei(t)]
will converge tod in some finite time, that is bounded by
BIA/n (¢ (0)] — d - n) + 2],

Proof: According to Assumption 2, we know that at most
after time B from the beginning, member + 1 will sense
memberi’s position. Then we get the results from the proof of
Lemma 1 after replacing, with g and choosingy = 7.

For the cas® < (|e'(t)| — d) <, |¢'(¢)] will converge tod
in onetime step according to (5). Similar to the proof of Lemma

t' such thate’ ()| € [d,d + ~] and alsdim;_, |e’()]| = d.
Proof: Define a Lyapunov-like function

Vi(t) = le' ()] - d

that measures how close swarm membeil is to the comfort-
able distance from membeérNotice that

1 we can prove that {£¢(t)| > d+n (heren = ), memberi+1

will move toward membei with a step at least larger thar 5.
Hence, after at most/n (|e'(0)| — d — n) update time steps,
and at least one update time stgf(¢)| will converge to be in-
side[d, d + n]. From Assumption 2, we know that for a partially
asynchronous swarm, the maximum update time intervAl.is
Also, according to (5), membeér+ 1 will reach a comfortable
distance to memberin the next update time step. So the total
time, including delay time and moving time, needed to achieve
convergence is bounded by

B+BV(
7

VteTt! (17)

Vi(t+1)

=it +1)| —d

|amn—d—m}+3
Vet

=B [% (le*(0)|—d—mn) +2| (20)
Q.E.D.

2) Convergence for an N-member M-dimensional
Swarm: Here, we will show that all members in &member
swarm with a fixed communication topology from membars
to 1 will converge to be at the comfortable distaddeom their
communicating neighbors on the basis of the aforementioned
analysis of a two-member swarm.

Theorem 1. (Partial Asynchronism, Finite Time Conver-
gence): For anN-memberM -dimensional swarm modeled by
(12) withg = g¢, N > 2, Assumption 2 (partial asynchronism)
holds, and|e!(0)] > d, all the intermember distances of
communicating neighborg‘()|, i = 1,2,...,N — 1, will

Since membef remains stationary, we have
e (r*H(1) = ¢'(1)

Vite Tt

Therefore
(t)

Vit +1) =|e'(t) — g (|ei(t)| - d) |:|ez(t)|
=le’ ()] — g (le"(t)] = d) -

Vit eTit,

Ji-

As we know, initially|e(t)| > d, and by (17) and (18)

~ga (J¢'(0)] — d) < 0.

(18)

AV, =Vi(t+1) = Vi(t) = (19)
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converge to the comfortable distant@ some finite time, that according to Assumption 2. From (5), we have

is bounded b
is bounded by g (|e* (£ ()| - d) =0, t>t"+ B.

So, we can write (22) in the form of (23), shown at the bottom

of the page.

i o _ Therefore, aftet > ¢* + B, memberk + 2 moves toward

W_her_e|e (0)_| are the initial intermember distances of COMMUsiemberk + 1, which already remains stationary, to be in a

hicating n.elghbors_. L _ comfortable distancé to it. Clearly, from Lemma 2e**+1(#)|
Proof: We will use a mathematical induction methodyy;| converge tad after some finite time. This ends the induction

where our induction hypothesis will be thate!(t)], step.

@ = L2...k converge to the comfortable d'itfmde Next, we will try to bound the amount of converging time for

in some finite time and from this we will show that™*(¢)|  the y-member\/-dimensional swarm. In Lemma 2, we deduce

wil _converge tod after some finite time. . that for a two-member swarm the time needed to achieve con-
First, for k = 1, member 2 moves toward the Stat'onar30ergence is bounded by

member 1 to be in a comfortable distantieom it, and we have
(221),1as shpwn at the bottqm of the_pgge: According to Lemma B B (|el(0)| —d— 77) 1ol

, |e* (¢)| will converge tod in some finite time. n

Next, we must show that given the induction hypothesis, t
intermember distance of communicating neighblors 1 and
k + 2, |ek*1(t)| in the N-memberM -dimensional swarm will ‘()| >d  Vti=1,2,...,N—1
converge tal after some finite time.

According to our induction hypothesis we know that ther&0 that swarm members never hinder their neighbors’ move-
exists a finite timet* such thatle?(t)| = d,i = 1,2,...,k, Ments. Aswe know, swarm members move to their reference
which means the first + 1 members of théV-member swarm Neighbors with a step at least larger thgf when their in-

remains stationary since they already stay in a comfortable digine€ighbor distance is beyonerange of the comfortable dis-
tance to their reference neighbors. tance due to the definition gf;. Considering the worst case, all

Now, considering the updating ¢65+1 ()|, from (12), we N members except the stationary one move to the same direc-

B

- (NZlﬂei(on ~d) —n) 42

=1

lP—%r the N-member swarm, we already know that

have|e®(t)| = d so that aftet > #* + B, we have chronism) all the swarm members will converge to be in a com-
- fortable distance to their reference neighbors one by one in this
" (1) = le" ()] = d case. Therefore, we can use the total time in the worst case taken
1 _ 1 2 _ e! (Tf(t)) 9
elt+1)=4{° () =g (le' (/f(1)] - d) [7|91(73(t)>|] VteT e
el(t) Vi ¢ T2.

[(F41(t) 4 g (e (4 (1) | - d) %}

—g (e (20| - d) | (i) Vi ThH ATk
g |6 Tre1 | [eH 1 (72 ()]

it +1)= , k1 (k2 (4) , , (22)
( ) ek HL(t) — g (|€k+1 (T:i—f(tm _ d) [|ek+lgr:‘}f(t);|] ViteTk+2, ¢ ¢ Thtl
() + g (| (rFL(D)| - d) H(ritm) VieTh, ¢ ¢ Th2
; ek (T (¢t
g [ (77 @) !
L eFT1(t) Vit ¢ TH+1 U TF+2,
k1 _k+2
klipy k1 (. k+2 _ S () k42 "
ek-i-l(t + 1) — € (t) ) (|6 (Tk-i-l (t))| d) |:e’\'+1(1-:_:r12(t))| vieT " Z t*+ B (23)

ek L(t) Vt ¢ TF2 1 > t* + B.
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by memberN to reach its final position to bound the total cond and 2 and member 2 and 3 have the maximum delay in ob-

verging time of the swarm, which is taining each other’s position information; member 1 updates its
N_1 position to the direction of = 7 (which is the one-dimensional

B Z (I(0)] —d) —n | +2 case) with a maximum possible step sizat the earliest time

n\ = satisfyingt € T*,t—1,(t) = 4B —1, whereI'* = T'; members

2 and 3 only update their positions at one element of the time set

Q.E.D. i
Remark 1: Notice that for anN-member M -dimensional {1+ 1’.' -, b+ B —1}fort € 1'so that they move as slowly
totally asynchronous swarm modeled by (12) with= g as poss-|b|e. L
@ Consider the worst case. In the first time §6t1,.... B —

}, member 1 starts its first move steptat 0 according to
13) since we assume it gets members 2 and 3’s initial position
information att = 0 andt,(0) = —(4B — 1). Attimet¢ = 1,

N > 2, Assumption 1 (total asynchronism) holds, an
le*(0)| > d, similarly we can use Lemma 1 to prove that al
the intermember distances of communicating neighhé(s)|,

1 = 1,2,..., N — 1, will asymptotically converge to the S - ; .
' T ymp y 9 member 1 arrives its new position and remains stationary at least

comfortable distance. until att = 4B — 1 from the “wait4B — 1 steps strategy.” So,
Remarks 2:Notice that the one-dimensional asynchronous
tpe worst case, we have

swarm results in [30] and [31] can be seen as a special casé o

our results if we assume’(0)| > d initially. let(1)| =d+ 7.
B. Convergence of ai/-Dimensional Mobile Swarm From Assumption 2, members 1 and 2's delay in knowing about
Following an Edge-Leader the position information of each other can be as larg& as

Next we will study cohesiveness of ad-dimensional mo- 1. Member 2 remains stationary at its updating time index of
' y the first time set since it still thinks member 1 is still in the

bile swarm. First, we will study the case of using #efunc- . .- o . .

. : . o initial position due to the delay. However, in the second time

tion, and then what happens if a differgrfunction is used that ) . .
t{B,B+1,...,2B — 1} it at least receives the new position

does not require a swarm member to move to be adjacent to) ; . )
ormation of member 1 at= B since the maximum delay is

|n
nell%h?:(()):\?e(r)n:n(s:teeacl)frIta?j(\eftSMV:rLybgrOS:stonghronous Mob|le — 1. So, in the worst case, it moves toward the new position
g y of member 1 via the function att = 28 — 1 in the second

Swarm: First, we choosegj; as theg function in (15) and

assumey = 7 (n is used in tfhe definition ofi ;). We will show time set. From (15), we have

that all members in atv-member mobile swarm will be ina | 1/ el (rE(1))

comfortable distance neighborhood from their communicating (t+1) =e'(t)—g (|@ (Tl (t)) |- ) W

neighbors during movements if there are constraints on the

leader’'s moving direction, moving frequency, and the partiatheree® (r£(2B — 1)) = e'(B) = d + r. From (24) and the

asynchronism measure, and constraints on the leader's moviagf thatV > 2, we have

step bound, the number of swarm members, and the comfort- 1

able distance neighborhood size. e (B —d=r<(N-Dr<y. (26)
Theorem 2:For an N-member M-dimensional asyn- Since we choose = 7, from (26), and the definition of s, we

chronous mobile swarm with a fixed communication topologthen have

modeled by (15), whergis g, N > 2, Assumption 2 (partial

asynchronism) holdge? (0)] ? d,i=1,2,...,N —1,and the 95(1e'(B)| = d) = |e'(B)| —d = .

edge-leader (member 1) only moves in legal directions defing@erefore

above via the “waittB — 1 steps strategy,” if

] (25)

o le'(2B)| = d.
0<r< — (24)
N And then, member 2 remains stationary at its new position since
for a given~, all the swarm members will be in the comfortit is already in a comfortable distance to member 1.
able distance neighborhodd, d + ~] of their communicating  Similarly, in the third time se{2B,2B + 1,...,3B — 1},
neighbors during movements, wheris the upper bound of the member 3 at least knows member 2’s new posmdn@BB —
edge-leader’'s moving step sigz€t)|, v (choosey = 7) is the 1. In the worst case, assume member 3 just updates its position
comfortable distance neighborhood size, dhdc Z* is the att = 3B—2inthetime set. Then, it has to wait to update its po-
partial asynchronism measure. sition again at the nexttime sg3B,3B +1,...,4B — 1}, i.e.,

Proof: For such anV-member mobile swarm, each swarmit moves toward member 2 at= 48 — 2. So att = 4B — 1
member follows its preceding communicating neighbor exceptembers 2 and 3 are all at a new position which is in a com-
the edge-leader. We know from (10) that there are no collisiofgtable distance to their communicating neighbors even in the
between members. This decouples the problem so that we vanst case. Clearly, their new position information can be cal-
consider each pair of neighboring swarm members individuallyulated by member 1, which is updated from their previous po-

First, we consider the relationship between members 1, 2, asition information with only one moving step (via tlgg func-
3 to explain why member 1 can get the position information dion). Therefore, at = 4B — 1, member 1 has enough informa-
members 2 and 3 with the “wadtB — 1 steps strategy” even tion to decide its legal moving directions and is ready to have
in the “worst” case. Here, the worst case means that membar®ther moving step. This explains that member 1 can get the
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position information of members 2 and 3 with the “wéi8 — 1  we can find that the maximum possible interneighbor distance
steps strategy” even in the worst case. In the future time set, ladttween membe®¥ —1 andN isd+ (N —1)r/2if N isan odd
three members will repeat the above process. Moreover, we camber, and ig+ (Nr)/2 if N is an even number, which is the
conclude from the above that the maximum possible value lafgest of all possible interneighbor distances in the tim&’set
interneighbor distancg’(¢)| and|e?(¢)| is d + 7, which is in  Hence, we conclude that the interneighbor distance bound for
the range of comfortable distance neighborhpbd + ] from N members isl + (Nr)/2.

(24). From (24), we have
Next, we try to find the maximum possible interneighbor dis- (N7)
tance between members 4 and 3 and members 5 and 4. For this d+ N <d+~

purpose, a special case (that is different from the worst case

for members 1, 2 and 3 above) is considered as follows. As @8d from (10), we then have

know, in the aforementioned worst case, at 4B —1 member 3 : (Nr) )

reaches its new position, and member 1 starts its second movirg < €' (1) < d + 5 Sdty, fori=1,2,...,N -1

step. Then, we have which means all members will always be in the comfortable dis-

let(4B — 1)| = |e*(4B — 1)| = d. tance neighborhoofd, d + ~] with their neighbors. So all mem-
) bers can keep the distance from their communicating neighbors
Assume member 4 also has the maximum delay about the Rpthe range of comfortable distance neighborhood even in the

sition information of member 3, and so member 4 still remaifgyrst case. Q.E.D.
stationary at its initial position. We have Remark 3: Note that in Theorem 2, (24) provides a bound
348 —1)| = d+ . on how far the leader can move in one step for a giyeand

the “wait4B — 1 steps strategy” provides a bound on how fre-
Now, different from before, we assume that simce 4B — 1, quent the leader can move for a given They work together
members 2 and 3 get the position information of their commurt provide how fast av-member swarm can move while still
cating neighbors without any delay, and they update their postaintaining the type of cohesiveness characterizeg. by
tion synchronously in order to maintain a comfortable distanceRemark 4: From Theorem 1, we can see that if member 1
d att = 4B — 1. Therefore, at = 4, we get (the edge-leader) stops moving (i.e(t) = 0, fort € T,
t—t,(t) = 4B—1), allthe interneighbor distances will converge
[ (4B)] = |e*(4B)| = d to b%( t¥1e comfortable distande
and In this, we study the convergence property of mobile swarms
with at least three members. Now, we consider fe= 2
le*(4B)| = d + 2r. case, which is even simpler. In the two-member case, legal di-

rections of the leader are defineda& < 6 < 3x/2. More-

Note that here we consider the one-dimensional case since W&, ‘member 1 only needs the information about the connected
try to find the maximum possible interneighbor distance. Theﬁhe of its position and the position of member 2 to decide its

‘r‘ner_nbers 1,2,and3 remairll’ stationary unti 85 —2 from the moving direction before further moving so that it uses the “wait
wait 48 — 1 steps strategy.” Due to the delay, member 4 kno% — 1 steps strategy,” which is the same as the “widit— 1

membeLS’s newg) osmor; at:b‘?B N ! andfadju.sts Its ?'Stancesteps strategy” except the length of the waiting time. Similarly,
to member 3 to be comfortable via the function at least at |, . '\ 2ve the following corollary.

t = 6B — 1. Then, the interneighbor distance of members 4 andCoroIIary 1: For a two-memberM-dimensional asyn-

3,|e3(t)| will bounce betweerd andd +r in the future time sets chronous mobile swarm modeled by (27), as shown at the
even in the above special case. Similar to the previous analy i§ttom of the page, where is g, Assumption 2 (partial
we have the same conclusion for the interneighbor distance Ber nchronism) hold$,¢1(0)| —dt {0) — —(2B-1), and the

- 1 Yp - 1

tween m_embers S a.nd 4as that fqr mem.bers 4 apd 3. Therefighe eader (member 1) only moves to legal directions via the
the maximum possible value of interneighbor distafcét)| “wait 2B — 1 steps strategy,” if

and|et(t)| is d + 2r, which is also in the range of comfortable ’
distance neighborhood, d + ~] from (24). In the same way, 0<r<y (28)

e'(t) +s(t) — g (le* (1)) | - d) [%} , ifteT’t—t,(t)>2B—1,teT!

At 1) = el (t) + s(t), . ift —t,(t) >2B—1,teT" t ¢ T>
A1) — g (I (r2() | - d) [%} , if 1€ T2t ¢ T ort € T2UTY, t — t,(t) < 2B — 1
el(t), iftgT?>uT ort ¢ T>, te Tt —t,(t) <2B -1

if t —t,(t) >2B—1,teT"

2
tp(t+1) = { ty(t), otherwise 27)
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for a given~, the two members will be in the comfortable dis- X,
tance neighborhoofl, d + ~] during movements, where is
the upper bound of the edge-leader’s moving step|sizg|, v
(choosey = ) is the comfortable distance neighborhood size,
andB € Z* is the partial asynchronism measure.

Proof: Similar to the proof of Theorem 2, it is easy to find
the maximum possible interneighbor distance of members 1 ar
2 is equaltal+r by analyzing the worst case. From (28), the two
members always keep their distance in the range of comfortab
distance neighborhood. Q.E.D.

2) Analysis of Movement Flexibilityln Theorem 2, we pro-
vide conditions under which alV-member mobile swarm can
keep cohesion during movements and avoid collisions as long ¢
the leader always moves in legal directions which hagange,
whereo is the angle formed by the two connected lines betweel
positions of members 2 and 1 and between positions of men
bers 1 and 3. Clearly, the movement flexibility depends on how
largeo is sinceo is the maximum possible turning angle that
the swarm can make in one step. Therefore, we will analyze thg 5. The change of during movements of the swarm.
change ot during movements of the swarm.

Theorem 3:For an N-member M-dimensional asyn- gimijlarly, in the triangleB EQ
chronous cohesive mobile swarm satisfying the conditions of
Theorem 2, if initiallyc > 0 and the swarm keeps moving, LEQO = /BEQ + LEBQ (30)
monotonically decreases and

Oold

Xy

and we also have

o — 0ast — oo Onew =/BEQ (31)
and if initially ¢ = 0 LAQP =LEQO. (32)
o=0 vt From (29)—(32), we get

during movements of the swarm, wherds the angle formed ~ 7°! =/EQO+ LAQP = (BEQ + LEBQ + LAQP

by the two connected lines between positions of members 2and ~ =0new + LEBQ + LAQP.
1 and between positions of members 1 and 3. So
Proof: For an N-memberM -dimensional asynchronous
cohesive mobile swarm satisfying the conditions of Theorem AC = 04q — Onew = LEBQ + LAQP (33)

2, member 1 has to obtain the position information of mem-

bers 2 and 3 to calculate before it moves. It can decide itsWhereZAQP is the angle formed by the two connected lines
legal moving directions witlr. As shown in Fig. 5, assume atbétween the new positions and the previous positions of mem-
timet, t € T%, ¢ — t,(t) = 4B — 1, and members 1, 2, angbers 1 and 2K F andAB), and/EBQ is the angle formed by

3 stay at positions!, B, andC, respectively (dashed circles).the two connected lines between the new positions and the pre-
Assume the current is equal tar,q > 0. Member 1 moves to Vious POSi“O”S of members 1 and B¢ and AC).

a new position in a legal direction. At+ 1, member 1 arrives at ~ Obviously, we have

position £ and waits until its next moving _step from_the “vv_a_it /AQP >0 (34)

4B — 1 steps strategy.” Then, member 2 will update its position

att = t + 2B — 1 in the worst case (see the proof of Theand

orem 2) to maintain a comfortable distance with member 1, and

assume it reaches the positiéh Similarly, member 3 moves LAQP =0

toward the new position of member 2 and reaches the positign g only if member 1 moves along the extension of lihB

G. Therefore, at = 4 4B — 1, members 2 and 3 are bothihe one-dimensional case, whei@ andAB are overlapped).
at a new position. Member 1 can calculate a mefwhich we  \1oreover. we have

call o,y) from these new positions to decide its next moving _
direction. Next, we will consider the relationship betweep; LEBQ > 0if go10 > 0 (35)
ando,.. in Fig. 5.

and
In the triangleA PQ, we have

o = LAPQ + LAQP 29) /EBQ = 0ifand only if 6,19 = 0. (36)

. Then, f 33)—(35), h
where we use to represent the angle formed by two lines. For en, from (33)—(35), we have

example,/ APQ is the angle formed by the linesP and PQ. Ao > 01if ogq > 0. (37)
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Therefore monotonically decreases and (e't) I—d? o]
8 (le'() -d)
o — 0ast — o el =) ¢
PR T (GG R
if initially o > 0 and the swarm keeps moving.
If initially o = 0 (the one-dimensional case, whet€' and /____/,,_—'qui(t) |~d)
AB are overlapped and member 1 only moves along the exte .
sion of line AB), from (33), (34), and (36), we get (le'® |-d)
Ao = 0. (38)
Therefore (e'o |- +c
c=0 Vi

during movements of the swarm. Q.E.DFig. 6. Functiony.(e’(t) — d) (solid) andg; (e’(t) — d) (dashed).

Remark 5: Notice that from Theorem 3, ai-memberM >
2-dimensional asynchronous cohesive mobile swarm satisfyingneighborhood of the comfortable distance to their communi-
the conditions of Theorem 2 will gradually become a one-déating neighbors). It has to walf — 1 time indices more to
mensional swarm as — 0 and its length is bounded GV — receive the position information in the case of the maximum
1) (d + 7). communication delay. In this case, we can modify the model in
Remark 6: Notice that after anV-memberM > 2-dimen- (15) as shown in (42) at the bottom of the next page.
sional asynchronous cohesive mobile swarm becomes a one-difheorem 4:For an N-member M-dimensional asyn-
mensional swarm, i.e., all members move along the same lishronous mobile swarm modeled by (42), whege is
legal directions of the leader could be setrt® < § < 37/2 g., N > 2, Assumption 2 (partial asynchronism) holds,
so that the swarm could later make turns in ways that avoid co#:(0)| = d,i = 1,2,..., N — 1, and the edge-leader (member
lisions. 1) only moves in legal directions defined above via the “wait
3) Alternative Convergence Condition®ow, we consider 5B — 2 steps strategy,” if
the case of using anothgrfunction in (15). Assume that for a 2y — ¢)
scalarc > 0, g.(|e*(t)| — d) is such that 0<r< N (43)

le'(t)] — d — ¢ <ge(le*(t)| — d) for a giveny, all the swarm members will be in the comfortable
<lef(t)| —d, if |e'(t)] —d > ¢ (39) distance neighborhodd, d + ~] of their communicating neigh-
Je (|ei(t)| _ d) —0, if —c<|ei(t)|—d<c (40) bors during the moving process, wheres the upper bound of
’ - - the edge-leader’'s moving step sizét)|, v is the comfortable

le*(t)| — d <9c4(|@1(t)| - d) distance neighborhood siz8, € Zt is the partial asynchro-
<le'(t)| —d+¢ nism measure, and(0 < ¢ < v) is the parameter aof. func-
if le'(t)| —d < —c. (41) tion.

o ) _ o Proof: Similar to the proof of Theorem 2, we can find that
As shown in Fig. 6, these relationships are similar to those fg{e maximum possible interneighbor distance between mem-
the g function. However, the. function has two different persn — 1 andn is d+ (N —1)r/2+cif N is an odd number,
boundsle’(t)| —d —cand|e’(t)| - d+cin (39) and (41), which and isd + (Nr)/2 + ¢ if N is an even number, which is the
guarantee the following members are in theeighborhood of |5rgest of all possible interneighbor distances in the timé’set

desired comfortable distance of their leading neighbors afigence, we conclude that the interneighbor distance bound for
each update step so that the following members can keep Atfnembers isl + (N7)/2 + c.

with the movements of their leading neighbors. Moreover, the £rom (43), we have
g function is equal to 0 when the interneighbor distance is

already in thec-neighborhood of the comfortable distance. d+ (N7) +e<d+n
Note that here we assumie< ¢ < 7 since we choose = 7 2
before. and, from (10), we then have
Similarly, we will show that with the). function, all mem- ' (N7)
bers can also be in a comfortable distance neighborhood from d<le'(t)] <d+ — +c

their communicating neighbors during movements under some
constraints on the leader’'s moving direction, moving frequency,
and the partial asynchronism measure, and constraints onwiech means all members will always be in the comfortable
leader’s moving step bound, the number of swarm members, thistance neighborhood, d + ~] with their neighbors. So, all
comfortable distance neighborhood size, and the parametersngimbers can keep the distance to their communicating neigh-
the g.. Note that with they. function, member 1 has to use thebors in the range of comfortable distance neighborhood even in
“wait 5B — 2 steps strategy” instead of the “ wdiB — 1 steps the worst case. Q.E.D.
strategy” since member 1 cannot calculate the position infor-Now, we consider th&/ = 2 case with they.. function. Simi-
mation of member 2 and 3 (it only knows they are inside tHarly, member 1 only needs the information about the position of

<d+~, fori=1,2,...,N -1
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member 2 to decide its moving direction before further moving. Remarks 8: Notice that we can write equivalent theorems of
Therefore, it uses the “wakB — 1 steps strategy.” So, we haveTheorems 2 and 4 as follows.

the following corollary. « With the same conditions in Theorem 2, assume that the
Corollary 2: For a two-member)/-dimensional asyn- edge-leader (member 1) only moves to legal directions

chronous mobile swarm modeled by (44), as shown at the defined above via the “wa( N —1) B —1 steps strategy.”

bottom of the page, wherg is g., Assumption 2 (partial Then, if

asynchronism) holdse! (0)| = d, t,(0) = —(3B — 1), and the

edge-leader (member 1) only moves to legal directions via the 0<r<~ (46)

wait 35 — 1 steps strategy,” if for a given~, all members of théV-memberM > 2-di-

O<r<~y—-c (45) mensional asynchronous mobile swarm will be in the com-
fortable distance neighborhodd d + +] of their commu-
nicating neighbors during movements.

* With the same conditions in Theorem 4, assume that the
edge-leader (member 1) only moves to legal directions
defined above via the “wai( N — 1) B — 1 steps strategy.”
Then, if

for a givenv, the two members will be in the comfortable dis-
tance neighborhood, d + ] during movements, wheres the
upper bound of the edge-leader’'s moving step iz8)|, v is
the comfortable distance neighborhood sizes Z7 is the par-
tial asynchronism measure, and0 < ¢ < v) is the parameter
of g. function.
Proof: Similar to the proof of Corollary 1, it is easy to 0<r<vy-—c (47)

find the maximum possible interneighbor distance of members
1 and 2 is equal td + r + b by analyzing the worst case. From for a giveny, all members of theéV-memberd > 2-di-
(45), the two members always keep their distance in the range mensional asynchronous mobile swarm will be in the com-
of comfortable distance neighborhood. Q.E.D. fortable distance neighborho¢d d + ~] of their commu-

Remarks 7:Notice that similar to Theorem 3, we can prove nicating neighbors during movements.
thato monotonically goes to zero for @d-memberM > 2-di- Proofsofthe aforementionedtheoremsare similartothose of The-
mensional asynchronous cohesive mobile swarm satisfying trems 2 and 4. Comparing these theorems with Theorems 2 and
conditions of Theorem 4. 4,we can see thatin order to keep cohesiveness of theember

e ‘r](t)
e'(t)+s(t) — g (|e* (rE(t))| — d) L—z(t)ﬂ ift €T t—t,(t)>5B-2,teT!
(t+1) el(t) + s(t), ift —1,(t) >5B—2,teT', t¢1T?
e'(t)— g (|e* (7£(1))| - d) [%} , ifteT?t¢g T orte T>UT, t —t,(t) <58 —2
el(t), iftgT>uT ' ort ¢ T, te Tt —t,(t) <58 —2.
|, ift —t,(t) >5B—2,teT?t
tp(t+1) _{tp(t)7 otherwise.
i i—1 (i e (T (1)
e(t) +g (|e=" (r_i (1) | - d) [W
g (|ef (7 ()| - d) [%} ifteT nT+,i=23,...,N—1
i — . i i+l . .
et+1) el(t) — g (|ef (71 (t))] — d) [%Q%J fteT ™t t¢T,i=23,... N—1 (42)
i i1 (t) B i i 5 —
e'(t)+g (|e=t (v, ()| - )[4(”“ fteT t¢ T, i=23,...,N-1
Lei(t), iftgT'uTH,i=23,...,N—1.
¢ (8) + 5(t) — g (le* (r2(1)) | — d) [%} L fteThi—t,(t)>3B—1,teT"
(t+1) el (t) + s(t), ift —t,(t) >3B—-1,teT, t¢T?
(1) — g (le! (r2() | - d) [%] , ift € T2t ¢ T ort € T2UTY, t — (1) < 3B — 1
el(t), iftgT>uUT ort ¢ T, te Tt —t,(t) <3B -1
[, ift —t,(t) >3B—1,teT?!
tp(t+1) _{t,,(t), otherwise (44)
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t=0sec t=1.5sec

mobile swarm in the presence of delays and asynchronism, if th

leader uses a strategy of waiting more time steps at one position, 80 <
can move with a bigger step size in future updating time indexes o -~
Onthe other hand, ifthe leader uses a strategy of waiting less tim 2 s

steps, it has to move with a smaller step size.

IV. SIMULATION STUDIES

t=4.9sec

Here, we will provide simulation examples to illustrate con-
vergence properties af/-dimensional asynchronous swarms.
First, we will simulate a three-dimensional swarm converging 2
to be adjacent to a stationary member under the partial asyr 2
chronism assumption in some finite time, which is summarized
in Theorem 1. Then, a simulation example of a three-dimen-
sional cohesive asynchronous mobile swarm, which satisfies a
the conditions in Theorem 2, will be given.

In the simulation, lef” = {0, 1,2,...} represent the indices
of the sequence of real times. For convenience, we assume
corresponds to the real time sgt,0.1,0.2,0.3,0.4,...} on a - ‘ -2
uniform grid of size 0.1 s at which one or more swarm members
update their positions. And we randomly select the time index
setT* C T,i =1,2,...,N, at which theith member’s posi- B .
tion zi(t), t € T?, is updated. Th@*,i = 1,2,..., N, are in- 80 H 80
dependent of each other for differénHowever, they may have 4
intersections so that two or more swarm members may mow 2
simultaneously. Moreover, in order to satisfy the partial asyn- % ;
chronism assumption, we assuie= 4 and add constraints to
the updating time index s@f’ to guarantee each member up-
dates at least once in the time index interval and the index Fig. 7. Simulation of A/ = 3-dimensional asynchronous ten-member

delays in obtaining neighbor positions are boundedby gz;r/lr;i:/?g?nous swarm with a fixed communication topology converging

20 40

090200
t=8.2sec

80

090" 200

t=11.5sec t=14.9sec
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- -
[ d £ d
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0207200 0202200

A. Stationary Edge Member Asynchronous Swarms Simulation

toward its communicating neighbor due to its attractive relation-

)érr]fip. In thet = 5.5 s plot, the first six members already con-

verged to be in a comfortable distance to their communicating
eighbors. In the last two plots, all members already remain
ationary at positions adjacent to the position of member 1.

(53,50,45), (30,50, 40), (20,36, 30), (18, 20, 25), (5, 20, 109, ( We provide all intermember distances of communicating neigh-

10,0),£-8,0,~10)ondx1, x2, 73) Space.respectively.at= 0, o during the convergence process in Fig. 8. Clearly, all in-

as shown in Fig. 7. Note that their initial positions satisfy all th . . :
constraints required in Theorem 1. Assume the comfortable d%rnelghbor distances are larger than or equal to 10 (i.e., there

tanced = 10, and the sensing range of proximity sensoes 4. are no collisions) and converged to the comfortable distance 10

. ‘ o ) . .~ . aftert > 9 s. Itis interesting to note that the intermember dis-
All members will update their positions in their updating tim . ) )
; . . . .fances daot asymptotically decrease at each step; sometimes
setsI™ except member 1 remains stationary. The communicatign

topology from member 10to member 1 is fixed according to thegre interneighbor distances could increase, then later decrease

Assume we have a three-dimensional ten-member as
chronous swarm and initially (i.¢, = 0 s), ten members from
member 1 to member 10 with a physical size= 6 are in order
located at the positions of (70, 70, 70), (60, 68, 65), (55, 60, 5

initial conditions. Assume the partial asynchronism assumpti this actually complicated the theoretical analysis in the last sec-

holds for this swarm wittB — 4 and we choose gy function |8n), V\éjhifh is essentially due to asynchronism and communi-

with an = 1 satisfying (1)—(3) to define the attractive and ation delays.

repelling relationship. In particulayy (e’ (t)] — d) = |e(t)| - d

if lle*(¢)] — d| < n,andgs(le’ ()] — d) = 0.4(|e*(t)] — d)

if [e*(t)] — d| > n. Here, we choos@ = 10000 since

lgr(ei(t) — d)| = 0.4|(le(t)] — d)| > 1/8](lei(t)] — d)| is Assume we have a three-dimensional ten-member asyn-

required if||e’(t)| — d| > n, whereg > 1 and also we want chronous mobile swarm and at the beginning ten members from

to allow a very small movement at any step. With all the aboveember 1 to member 10 with a physical size- 6 are in order

conditions, we get the finite-time convergence according tocated at the positions of (71, 70, 70), (68.4, 61.4, 65.7), (62.8,

Theorem 1. 56.4, 59.1), (56.3, 51.5, 53.2), (49.7, 46.5, 47.6), (42.8,41.8,
The results of the simulation are given by providing eight2), (35.8, 37.3, 36.6), (28.7, 32.8, 31.1), (21.4, 28.4, 25.9),

plots of swarm member positions froimm= 0 stot = 14.9s (14, 24.1, 20.8) on &1, x2, x3) Space, respectively, at= 0,

as shown in Fig. 7. In the = 3.6 s plot, each member movesas shown in Fig. 9. Note that their initial positions satisfy all

B. Asynchronous Mobile Swarm With an Edge-Leader
Simulation
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inter-member distance

15
t(sec)

Fig. 8. Intermember distances of communicating neighbors in Fig. 7 duri
the convergence process.

t=0sec t=11sec
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Fig. 9. Simulation of M 3-dimensional asynchronous ten-membe

asynchronous mobile swarm with a fixed communication topology followin

an edge-leader.

the constraints required in Theorem 2. Assume the comfortal

93

o (degree)

90 100

9. 10.

Change of during movements of the swarm in Fig. 9.

order for the asynchronous mobile swarm to maintain cohe-
siveness, i.e., all mobile swarm members are at a comfortable
distance neighborhood [10], [15] from their neighbors while
the swarm moves. Hence, we choese 1.

The results of the simulation are given by providing eight
plots of swarm member positions frofm= 0 s tot = 99.9 s as
shownin Fig. 9. We found that all mobile swarm members main-
tain a distance inside the comfortable neighborhood range [10],
[15] from their neighbors in all time indexes. Clearly, there are
no collisions during movements and the mobile swarm main-
tains cohesion. In addition, we show the changer afuring
movements of the swarm in Fig. 10. Obviousiynonotonically
decreases to zero as time increases, which verifies the conclu-
sion of Theorem 3. Also, note thattat 99.9 sin Fig. 9, the first
five members already move in the same dimension. If we extend
the simulation time, all other members will gradually move on
the same dimension asgoes to zero so that the three-dimen-
sional ten-member asynchronous swarm becomes a one-dimen-
sional swarm.

V. CONCLUSION AND FUTURE DIRECTIONS

We constructed a mathematical model forldrdimensional
asynchronous swarm with a fixed communication topology
by putting N identical single swarm members together. We
proved that all the intermember distances of communicating
neighbors in anM-dimensional asynchronous swarm will
converge to the comfortable distance so that it can obtain
cohesion even in the presence of delays and asynchronism.
rI\/Ioreover, an M-dimensional asynchronous mobile swarm
fpllowing an edge-leader with a fixed communication topology
iIs modeled and different conditions under which it can maintain
cohesion during movements are provided. In addition, the
klgarm movement flexibility is analyzed. Simulation studies

distanced = 10, and the comfortable distance neighborhoodre given to illustrate swarm convergence properties. Note that
sizey = 5. Member 1 uses the “waitB — 1 steps strategy” to our analysis, which allows for finite-size swarm members and
move only in legal directions defined by We use the samgr  ensures collision-free swarming, significantly complicates the
function as before. According to Theorem 2, the edge-leadedralysis compared to the case where point-size vehicles are
moving step is bounded by, where0 < r < 2y/N = 1, in studied and collisions are allowed (e.g., as in [21] and [34]) and,
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in some cases, clearly cannot allow for as strong of stability17] M. Polycarpou, Y. Yang, and K. Passino, “A cooperative search frame-
results. That is, as you would intuitively expect, asynchronism
and delays adversely affect swarm cohesion.

Swarm stability for the case where a communication topology18]
is dynamically generated or updated in a distributed fashion ac-

cording to the positions of swarm members will be studied in

the future. In particular, an interesting problem is how to form[19]
and maintain an unbroken communication network dynamicall
for the entire swarm so that the information through the swar
can be always propagated effectively. Another possible direction
is to consider using other possible communication protocols if?1]
the swarm model. For example, the token ring may be consid-
ered in the case of moderate numbers of swarm members. Fap]
the case of large number of swarm members, the idea of subnet
may even be useful. Moreover, the study of the optimal motior,3
control strategies under some criteria of specific tasks is also a

potential research direction. It may be useful for a variety of ap-

plications since it provides how the swarm achieve some gozﬁ‘”

in a optimal way besides avoiding collisions and staying inside

a comfort zone.

The authors would like to thank V. Gazi at the Ohio State
University, Columbus, for his helpful comments on this paper. :
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