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Abstract—Coordinated dynamical swarm behavior occurs
when certain types of animals forage for food or try to avoid
predators. Analogous behaviors can occur in engineering systems
(e.g., in groups of autonomous mobile robots or air vehicles). In
this paper, we study a model of an -dimensional ( 2)
asynchronous swarm with a fixed communication topology,
where each member only communicate with fixed neighbors, to
provide conditions under which collision-free convergence can
be achieved with finite-size swarm members that have proximity
sensors, and neighbor position sensors that only provide delayed
position information. Moreover, we give conditions under which
an -dimensional asynchronous mobile swarm with a fixed
communication topology following an “edge-leader” can maintain
cohesion during movements even in the presence of sensing delays
and asynchronism. In addition, the swarm movement flexibility
is analyzed. Such stability analysis is of fundamental importance
if one wants to understand the coordination mechanisms for
groups of autonomous vehicles or robots, where intermember
communication channels are less than perfect and collisions must
be avoided.

Index Terms—Asynchronism, discrete-event systems, fixed com-
munication topology, stability, swarms.

I. INTRODUCTION

A VARIETY OF organisms have the ability to cooperatively
forage for food while trying to avoid predators and other

risks. For instance, when a school of fish searches for prey, or if it
encountersapredator, thefishoftenmakecoordinatedmaneuvers
as if the entire group were one organism [1]. Analogous behavior
is seen in flocks of birds, herds of wildebeests, swarms of bees,
groups of ants, and social bacteria [2]–[5]. Wecall this kindofag-
gregate motion “swarm behavior.” A high-level view of a swarm
suggests that the organisms are cooperating to achieve some pur-
poseful behavior and achieve some goal. Naturalists and biolo-
gists have studied such swarm behavior for decades. Moreover,
computerscientists inthefieldof“artificial life”havestudiedhow
to model and simulate biological swarms to understand how such
“social animals” interact, achieve goals, and evolve [6]–[8].

Recently, there has been a growing interest in biomimicry
of the mechanisms of foraging and swarming for use in engi-
neering applications since the resulting swarm intelligence can
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be applied in optimization (e.g., in telecommunication systems)
[2], [5], robotics [9], [10], traffic patterns in intelligent trans-
portation systems [11]–[13], and military applications [14]. For
instance, there has been a growing interest in groups (swarms)
of flying vehicles [15]–[17]. Moreover, it has been proposed that
swarms of robots may provide the possibility of enhanced task
performance, high reliability (fault tolerance), low unit com-
plexity, and decreased cost over traditional systems. Also, it has
been argued that a swarm of robots can accomplish some tasks
that would be impossible for a single robot to achieve. Particular
research includes that of Beni [10] who introduced the concept
of cellular robotic systems, and the related study in [18]. The
behavior-based control strategy put forward by Brooks [19] is
quite well known and it has been applied to collections of simple
independent robots, usually for simple tasks. Mataric [20] de-
scribes experiments with a homogeneous population of robots
acting under different communication constraints. Suzuki [21]
considered a number of two-dimensional (2-D) problems of for-
mation of geometric patterns with distributed anonymous mo-
bile swarm robots, where point-size robots are studied and col-
lisions are allowed. A preliminary study on applying social po-
tential fields to distributed autonomous multirobot control was
presented in [22]. A survey of autonomous search by robots and
animals is provided in [23]. Decentralized control of a collective
of autonomous robotic vehicles was discussed in [24], where
stability of a linear chain of interdependent vehicles spreading
out along a line was analyzed. Other approaches and results in
this area are summarized in [9], [25].

In this paper, we are interested in mathematical modeling and
analysis of stability properties of swarms. Stability is a basic
qualitative property of swarms since if it is not present, then it
may be impossible for the swarm to achieve any other group
objective. Stability analysis of swarms is still an open problem
but there have been several areas of relevant progress. In
biology, researchers have used “continuum models” for swarm
behavior based on nonlocal interactions, and have studied
stability properties [26]. Jinet al. in [27] studied stability of
synchronized distributed control of one-dimensional (1-D) and
2-D swarm structures. Interestingly, their model and analysis
methods look similar to the model and proof of stability for the
load balancing problem in computer networks [28], [29]. More-
over, swarm “cohesiveness”was characterized as a stability
property and a 1-D asynchronous swarm model was constructed
by putting many identical single finite-size vehicular swarm
members together, which have proximity sensors and neighbor
position sensors that only provide delayed position information
in [30], [31]. For this model, in [30] and [31], the authors
showed that for a 1-D stationary edge-member swarm, total
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asynchronism leads to asymptotic collision-free convergence
and partial asynchronism leads to finite time collision-free
convergence even with sensing delays. Furthermore, conditions
were given in [31] and [32] under which an asynchronous
mobile swarm (here, we mean the entire swarm is moving as an
entity when we say a swarm is “mobile;” clearly, each member
moves in order to achieve such mobility) following (pushed
by) an “edge-leader” can maintain cohesion during movements
even in the presence of sensing delays and asynchronism. In
addition, similar results were presented in [33] for stability
of a 1-D discrete-time asynchronous swarm via an different
analysis method from [30]. Recently, in [34], a continuous-time
synchronous swarm model has been introduced and conditions
for stable cohesion and ultimate swarm member behavior were
derived with point-sized agents with no concern for collisions.
Next, we would note that there have been several investigations
into the stability of intervehicle distances in “platoons” in
intelligent transportation systems (e.g., in [35] and [36], or of
the “slinky effect” in [37] and [38], and traffic flow in [11]
and [13]). Finally, we would note that the study of stability
properties of aircraft (spacecraft) formations is a relevant and
active research area [15], [16].

Swarm stability for the -dimensional case will be
studied in this paper, where stability is used to characterize the
cohesiveness of a swarm. Comparing with our earlier analysis
for the 1-D case in [30]–[32], the -dimensional case
is more challenging. For example, each member in the 1-D
swarm has only left and right neighbors, and it can only move
to the right or to the left. However, in the -dimensional
case each member may have many neighbors (it depends on
the definition of “neighbor”) and each of them has an infinite
number of moving directions. Especially for the mobile case,
there must exist some constraints for the moving direction of
the “leader” besides the constraints on its step size in order to
maintain swarm cohesion during movements and simultane-
ously avoid collisions. All of this significantly complicates the
convergence analysis for the -dimensional case. In this
paper, we will present an -dimensional asynchronous swarm
model by putting many single finite-size swarm members
together in an -dimensional space, where we assume there
exists a fixed “chain” communication topology among swarm
members and each member only communicates with fixed
neighbors via the topology. With the certain initial conditions of
the swarm (which will be explained in Section II-B), the chain
communication topology that specifies that swarm member,

, only communicates with its two nearest
neighbors and except that swarm member 1 and
which are on the two ends of the chain only communicate with
one neighbor, members 2 and , respectively), is fixed. We
will provide conditions under which an -dimensional swarm
will converge to be in a cohesive form even in the presence of
sensing delays and asynchronism on the basis of such a swarm
model. Furthermore, we consider an -dimensional asyn-
chronous mobile swarm, where member 1 (the “leader”) leads
and all members communicate only with neighbors according
to the chain communication topology, to present conditions
under which it can maintain collision-free cohesion during
movements even with sensing delays and asynchronism. Our

study uses a discrete time discrete event dynamical system [28]
approach and unlike the studies of platoon stability in intelli-
gent transportation systems we avoid detailed characteristics of
low level “inner-loop control” and vehicle dynamics in favor
of focusing on high-level mechanisms underlying qualitative
swarm behavior when there are imperfect communications.

II. M ODELING

First, we will explain the capabilities of a single swarm
member and provide a mathematical model for an-dimen-
sional -member asynchronous swarm with a communication
topology, where and are fixed. Next, a
mathematical model for an -dimensional asynchronous
mobile swarm with a communication topology following an
“edge-leader” will be given.

A. Single Swarm Member Model

An -dimensional swarm is a set of swarm members that
move in an -dimensional space. Assume each swarm member
has a finite physical size (diameter) . It has a “prox-
imity sensor,” which has a sensing range with a radius
around each member. In the case, it is a circular-shaped
area with a radius around each member. Once another
swarm member reaches a distance offrom it, the sensorin-
stantaneouslyindicates the position of the other member. How-
ever, if its neighbors are not in its sensing range, the proximity
sensor will return (or, practically, some large number). The
proximity sensor is used to help avoid swarm member collisions
and ensures that our framework allows for finite-size vehicles,
not just points. Each swarm member also has a “neighbor posi-
tion sensor” which can obtain the positions of neighbors around
it. It performs this sensing via communications using a com-
munication topology. We assume that there is no restriction on
how close a neighbor must be for the neighbor position sensor
to provide a sensed position. The sensed position information
may be subjected to random communication delays (i.e., each
swarm member’s knowledge about its neighbors’ positions may
be outdated). Assume each swarm member knows its own po-
sition with no delay (note that even we assume each member
knows its own position in the model, but in practice, it may not
be necessary since it can move only using the relative positions
to its neighbors obtained by its sensors). Note that we define
the position, distance and sensor sensing range of the finite-size
swarm member with respect to its center, not its edge.

Swarm members like to be close to each other, but not too
close. Suppose is the desired “comfortable distance” between
two adjacent swarm neighbors (“neighbors” will be fully de-
fined below in terms of the chain communication topology)
known by every swarm member, and it satisfies
as shown in Fig. 3. Each swarm member senses the interswarm
member distance via both neighbor position and proximity sen-
sors and makes decisions for movements via some position up-
dating algorithms, which is according to the error between the
sensed distance and the comfortable distance. And then, the
decisions are input to its “driving device,” which provides loco-
motion for it. Each swarm member will try to move to maintain
a comfortable distance to its neighbors. This will tend to make
the group move together in a cohesive swarm.



78 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 1, JANUARY 2003

B. Swarm Model With a Fixed Communication Topology

An -dimensional swarm is formed by putting many
of the above single swarm members together on an-di-
mensional space. An example of an -dimensional

-member swarm is shown in Fig. 1. Let denote
the position vector of swarm memberat time . We have

, ,
where , , is the th position coor-
dinate of member. We assume that there is a set of times

at which one or more swarm members
update their positions. Let , , be a set
of times at which the th member’s position , ,
is updated. Notice that the elements of should be viewed
as the indices of the sequence of physical times at which
updates take place, not the real times. These time indexes are
nonnegative integers and can be mapped into physical times.
The , , are independent of each other for
different . However, they may have intersections (i.e., it could
be that for , so two or more swarm members
may move simultaneously). Note that our model assumes that
swarm member , , communicates with its
neighbor member via its neighbor position sensors within
a communication topology (the communication topology will
be explained later) to obtain the position information of member

(the position information obtained may be subjected to
random delays). A variable , , is
used to denote the time index of the real time at which position
information of its communicating neighbor is obtained
by member at and it satisfies for

. Of course, while we model the times at which neighbor
position information is obtained as being the same times at
which one or more swarm members decide where to move
and actually move, it could be that thereal timeat which such
neighbor position information is obtained is earlier than the real
time where swarm members moved. The difference
between current time and the time can be viewed as
a form of communication delay (of course the actual length of
the delay depends on what real times correspond to the indices
, ). Moreover, it is important to note that we assume

that if for , . This ensures
that member uses the most recently obtained communicating
neighbor position information. Besides the neighbor position
information obtained from its neighbor position sensors, swarm
member also gets some information from its proximity
sensors. Assume that if its communicating neighbor is
beyond the sensing range of its proximity sensors, it uses the
information from its neighbor position sensors;
if its neighbor is inside the sensing range of its proximity
sensors, it uses the real-time neighbor position information

provided by its proximity sensors. The information
is used for position updating until membergets more recent
information, for example, from its neighbor position sensor.
Notice that swarm memberupdates its position only at time
indices and at all times its position is left
unchanged.

Next, we specify two assumptions that we use to characterize
asynchronism for swarms according to [29].

Assumption 1. (Total Asynchronism):Assume the sets ,
, are infinite, and if for each, and

as , then , .
This assumption guarantees that each swarm member moves

infinitely often and the old position information of neighbors
of each swarm member is eventually purged from it. More pre-
cisely, given any time , there exists a time such that

, for and . On the other
hand, the delays in obtaining position information
of neighbor of membercan become unbounded asincreases.
Next, we specify a more restrictive type of asynchronism, but
one which is usually easy to implement in practice.

Assumption 2. (Partial Asynchronism):There exists a finite-
positive integer B (i.e., , where represents the set
of positive integers) such that

a) for every and , , at least one of the elements
of the set belongs to ;

b) there holds for all ,
and all belonging to .

Notice that for the partial asynchronism assumption each
member moves at least once withintime indexes and the de-
lays in obtaining position information of neighbors
of member are bounded by , i.e., .

Next, in order to construct a swarm model we will first ex-
plain the chain communication topology. We will study an asyn-
chronous swarm with certain initial conditions where the chain
communication topology can exist. An example of such an
-dimensional swarm is shown in Fig. 1. Assume that there is

a set of swarm members distributed in an -dimensional
space. Assume and , for

initially. Suppose one of the swarm
members always remains stationary (note that it can be rela-
tively stationary in the practical case of air or water vehicles),
which we call member 1. Member 1’s nearest neighbor, which
we call member 2, is assumed to be initially located inside a
sector area starting from the position of member 1 with a radius

and a central angle as shown in Fig. 1 (notice
that it is a sector area for case, and a cone for ).
Member 1 only communicates with member 2, and member 2
uses the information of member 1 to update its position. Assume
member 2’s nearest neighbor in the pool ofunchosenmembers,
which we call member 3, is located inside theoverlappingarea
of the sector area starting from the position of member 1 and
a equal-size sector area starting from the position of member
2, which is also symmetrical about the extension of the con-
nected line between positions of members 1 and 2. Member 2
only communicates with members 1 and 3, and member 3 uses
the information of member 2 to update its position. In the same
way, assume the nearest neighbors of swarm memberin the
pool of unchosen members, which we call member, is only lo-
cated inside the overlapping area of all the sector areas starting
from positions of members , respectively, where

. In addition, the sector area starting from the
position of member is symmetrical about the extension
of the connected line between positions of members and

. Similarly, member only communicates with mem-
bers and , and member uses the information of member
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Fig. 1. M -dimensional(M = 2) N -member asynchronous swarm with a fixed communication topology (dashed line along the direction of the arrows), all
members moving to be adjacent to the stationary member (member 1).

to update its position. Therefore, there exists a fixed chain
communication topology from member to member 1 in such
a swarm, which is represented by a dashed line along the direc-
tion of the arrows in Fig. 1.

We may think of the above swarm as a chain of intercom-
municating single swarm members. With the topology, each
member only communicates with the two nearest members to it
(which we call “communicating neighbors”) except that mem-
bers 1 and only communicate with the nearest member to
it. It updates its positions at its updating time indices using the
most recent obtained position of its unique “reference neighbor”
(the communicating neighbor which it uses as a reference) ex-
cept the stationary member 1. In particular, swarm member,

, tries to maintain a comfortable distanceto its
reference neighbor so that it moves only along the connec-
tion line of its position and the sensed position of member .
With the choice of the aforementioned initial conditions, there
will be no communication path (the line connecting positions of
two communicating neighbors) overlapping in such a fixed com-
munication topology during position updating of swarm mem-
bers and collisions will never happen in the swarm. The under-
lying reasons will be explained below. Note that if , the

swarm which satisfies the above initial conditions is a one-di-
mensional swarm.

Of course, not all possible initial conditions of swarm mem-
bers can fit in the above constraints. Two examples of
-dimensional swarms with illegal initial conditions are shown

in Fig. 2. Obviously for the swarm in Fig. 2(a), it is impossible to
build an overlap-free communication topology from member 3
to the stationary member 1. Considering the swarm in Fig. 2(b),
clearly all members except the first three are not located in the
overlapping area requested above so that it is possible to have
communication paths overlapping during movements of swarm
members although there may exist a communication topology
from member 9 to member 1. Hence, the “overlapping” condi-
tion is needed due to the asynchronism and delays and our focus
on collision avoidance. Next, note that we need the constraint

above to avoid situations like in Fig. 2(b). Why is
the upper bound ? This is due to the fact that only the com-
municating neighbors of each member are the nearest to it, and
will be discussed more later.

Let , denote
the intermember distance vector of communicating neighbors

and . Assume the direction of is from the posi-
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Fig. 2. Examples ofM = 2-dimensional swarms with illegal initial conditions.

tion of member to the position of memberand
, where denotes its magnitude. We use “

functions” and (see [30]–[32]) to
denote two different kinds of attractive and repelling relation-
ships between two swarm neighbors, where for a scalar ,

is such that

if (1)

if (2)

if (3)

and for some scalars and , such that , and ,
satisfies

if (4)

if (5)

if (6)

Note that the aforementionedfunctions (a scalar) only rep-
resents the amount of the attractive or repelling force between
two communicating neighbors for a given distance vector. The
moving direction of swarm members depends on the direction
of the distance vector .

Next, we will show that in the above -dimensional swarm,
collisions will never happen even without proximity sensors.

From our assumption, , for ,
so that at the beginning the proximity sensor of member
cannot sense its neighbor. So, swarm members only update
their positions according to the chosenfunction, which uses
the sensed information provided by their neighbor position sen-
sors. Particularly as shown in Fig. 3 which enlarges a part of
Fig. 1, member 2 will move toward the stationary member 1
step by step along the connected line between members 1 and
2 via function at once it gets the unchanged position
information of member 1, . From the definition of the
function, we have

and so we get

As we know, member 3’s proximity sensors cannot sense
member 2 since is greater than at the beginning.
Therefore, member 3 updates its position at only
according to its sensed position information and the
update step is equal to . According
to our assumptions of asynchronism, we have . As
shown in Fig. 3, member 2 already arrives at the pointat ,
which is . However, due to communication delays, the
position information of member 2 obtained by member 3 at

is , which is still at the point (note that
if there is no communication delay, i.e., , points
and will overlap). Suppose is the angle formed by lines
of and in the clockwise direction, and then we have

since and member 3 is only
located inside the overlapping area of the two sector areas
starting from positions of members 1 and 2 with a central angle
. Clearly, in the triangle , (

if points and overlap), i.e.,

(7)
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Fig. 3. Enlargement of the part about members 1, 2, and 3 in Fig. 1.

According to the definition of the function and (7), we have

(8)

From (8), we know the update step of member 3 is always less
than or equal to the error between the real distance from member
3 to 2 and (i.e, ). Hence, the intermember
distance between members 3 and 2 is always greater than or
equal to . Clearly, a similar result holds for all other swarm
members, so we have

(9)

Equation (9) implies that all the swarm members’ proximity
sensors will never sense their nearest neighbor during move-
ments. With the choice of initial conditions there always exists a
fixed overlap-free communication topology during movements
of swarm members so that each member always communicates
with its nearest neighbor and try to maintain a comfortable dis-
tance to it. Equation (9) also implies that the distance between
every member and its nearest neighbor is larger than or equal to

at any time. Therefore, members will never have collisions in
the previous swarm even without proximity sensors.

Let ,
denote the sensed intermember distance vector

of communicating neighbors and . Assume its direction
is from the position of member to the sensed position of

member and ,

where denotes its magnitude. So

(10)
A mathematical model for the previous-dimensional swarm
is given by

...
...

(11)

Each item in brackets in (11) is a unit vector which represents the
moving direction of each swarm member which is the direction
of its sensed interneighbor distance vector, and eachfunction
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item in front of the brackets is a scalar, which is the step size of
each swarm member. In addition, is the position vector of
member . Hence, “ ” and “ ” are the addition and subtraction
of vectors.

From the previous assumptions, we can write the model of
(11) into the following form; see (12) at the bottom of the page,
where is the interneighbor distance vector of members
and .

C. Mobile Swarm Model With an Edge-Leader

Assume that in a swarm with a fixed communication topology,
amemberwillconsider itself tobeanedge-member if itonlycom-
municates with one neighbor, and a middle member if it com-
municates with two neighbors. Therefore, members 1 andof
the swarm in Fig. 1 are edge-members since they only communi-
cate with members 2 and , respectively. All other mem-
bers , , are middle members since they
communicate with both neighbors and assuming a
fixed communication topology. Now, assume that member 1 (the
edge member) moves to some direction with a bounded step as
an edge-leader (we will explain the moving direction and step
size of the edge-leader). Member will try to follow ,

, and at the same time try to maintain a comfort-
able interneighbor distance.

Similar to [31], [32], we assume is a “com-
fortable distance neighborhood” relative to two communicating
neighbors and (i.e., when , we say
that they are in the comfortable distance neighborhood), where

is the comfortable distance neighborhood size. Assume that
so that we do not consider swarm member

to be at a comfortable distance to memberif it is too close to it,
where is the sensing range of swarm members’ proximity sen-
sors.

Clearly in the two assumptions of asynchronism we specified
above, only Assumption 2 (partial asynchronism) will result in
cohesiveness for a mobile swarm since the delays in Assump-
tion 1 (total asynchronism), which could be unbounded, will
make swarm members lose track of their edge-leader or their
neighbors during movements, i.e., the distance between swarm
neighbors could become unbounded just because swarm mem-
bers use arbitrarily old sensed information. Hence, we construct

the mobile swarm model based on Assumption 2 (partial asyn-
chronism), which has a finite positive integer as an “asyn-
chronism measure.”

For convenience, assume that , for
initially, i.e., at the beginning all

swarm members are at a comfortable distance from their
communicating neighbors. In addition, we assume that the
initial positions of swarm members satisfy the constraints we
explained for the stationary edge-member case except that
all the sector areas starting from the position of member,

are formed by a line starting from the
position of member and the extension of the connected line
between positions of members and with a central
angle as shown in Fig. 4, where (note that
actually these sector areas are all the left or right half parts of
the corresponding sector areas we explained for the stationary
edge-member case in Fig. 1; we will explain how the
constraint arises below). Similarly, member only commu-
nicates with member and there exists a fixed communication
topology from member to member 1 represented by a dashed
line along the direction of the arrows as shown in Fig. 4.

Assume member 1 (the edge-leader) moves only in “legal di-
rections” with a step vector at time , , where

(i.e., the step size is bounded by a finite pos-
itive scalar ). Here, “legal directions” means those directions
to which the distances of member 1 to all other members will
monotonically increase along each of its move steps if all other
members are stationary and they are defined on the basis of
the initial conditions we explained above. In fact, we assume
member 1 will calculate the range of legal directions according
to the position information of member 2 and 3 before each of its
moving steps (note that here we assume there are at least three
members in the swarm, and member 1 gets the position infor-
mation of member 3 via member 2. The two-member case will
be discussed in Corollaries 1 and 2). Assume that the moving
direction of member 1 forms an anglewith the connected line
of positions of members 2 and 1 in the clockwise direction, and
the connected line between positions of members 1 and 2 forms
an angle with the connected line between positions of mem-
bers 2 and 3 in the clockwise direction. Moreover, assume the
connected line between positions of members 2 and 1 forms an

,

, ,

, ,

,

(12)
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Fig. 4. AnM -dimensional(M = 2) N -member asynchronous mobile swarm example with a fixed communication topology (dashed line along the direction
of the arrows), all members following an edge-leader (member 1) (case (a): the edge-leader’s moving direction satisfies� � � � � � � if ! > �).

angle with the connected line between positions of members 1
and 3 in the clockwise direction. Then, legal directions are those
directions satisfying

if

(the shaded region in Fig. 4) and

if

by symmetry, which are two different cases for the -di-
mensional swarm (for case, the shaded region becomes a
one-fourth cone). Note that if members 3 and 2 are located in the
same line with member 1, i.e., , the unique legal moving
direction for member 1 is . Moreover, the constraint
of initial conditions (compared to constraint in the stationary
case) guarantees that the legal directions we defined always hold
during movements of the swarm, i.e., with the choice of initial
conditions member 1 will always move far away from all other
members as long as it moves in legal directions. Clearly, with
the constraint of legal directions and the choice of the afore-
mentioned initial conditions, member 1 cannot make sharp turns
or move toward member 2 during the moving process. It only
moves far away from all other members so that collisions can
be avoided and an overlap-free communication topology always
exists in the swarm, which is a prerequisite for the mobile swarm
to keep the cohesiveness. Obviously, you could define other
strategies that would allow for sharper turns but this will come
at the expense of the leader needing more position information
from its followers.

From this, member 1 must have the position information of
members 2 and 3 to decide its moving direction. At the begin-
ning, members 3 and 2 are stationary with a comfortable dis-
tance to members 2 and 1, respectively. Therefore, member 1
starts its first move at , after it obtains the po-
sition information of members 2 and 3, and all other members
also start moving one by one at their updating time sets. How-
ever, member 1 cannot immediately use its neighbor position
information to move further at the next , since its
information about member 2 obtained via its neighbor position
sensor may include random delays (at this time its
proximity sensor doesn’t work since the interneighbor distance
is equal to or larger than). In the same way, its information
of member 3 passed by member 2 may include random delays,
too. Therefore, we assume that member 1 has to use, we call, a
“wait steps strategy” under Assumption 2 (partial asyn-
chronism) to get the information necessary for continuing its
moving. Simply speaking, the “wait steps strategy” is
that member 1 has to wait time indices to make another
move step after its previous move, i.e., if member 1 moves at

, its next moving step will be at the first time index
which satisfies , . The underlying idea is
that we assume at , member 1 moves with a step vector

only when it has enough information to decide its legal
directions; otherwise, it remains stationary (waits). According
to Assumption 2 (partial asynchronism), the maximum possible
neighbor position delay is . On the basis of this, we can
prove that the leader can be guaranteed to get the direction infor-
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mation of the position information of members 2 and 3 within
the time steps, which will be explained in detail later.

Furthermore, we assume that member 2 follows member 1 in
order to be in a comfortable distance to member 1. It updates
its position at toward member 1 along the connected
line of its current position and its obtained position of member
1. Similarly, all other swarm members, move
to follow their moving communicating neighbors along
the connected line of their positions and their obtained position
of and try to be at the comfortable distance to them. We
think of the swarm as maintaining the cohesiveness if all the
swarm members are in the comfortable distance neighborhood
to their communicating neighbors during movements. Note that
the leader’s moving step size boundand the asynchronism
measure can be used as a measure of how fast a cohesive
asynchronous swarm moves.

Next, we will show that in the previous -dimensional
mobile swarm, collisions will never happen even without
proximity sensors. From our assumption, , for

, so that at the beginning the proximity
sensor of member cannot sense its neighbor. So,
swarm members only update their positions according to
the function, which uses the information provided by their
neighbor position sensors. Moreover, member 1 always moves
far away from all other members. Similar to the analysis for the
stationary edge-member case in the last section, we can prove
that (10) also holds for the above mobile case according to the
definition of the function and assumptions of asynchronism.
This implies there will be no collisions in the above mobile
swarm even without proximity sensors. Thus, we can write a
model as in the below for the previous-dimensional mobile
swarm. For the edge-leader (member 1), we have

if ,
otherwise

if
otherwise.

(13)

where is the asynchronism measure in Assumption 2,
and denotes the last time index that member 1 moved to
a new position at time . Furthermore, we assume that at

member 1 receives members 2 and 3’s initial position
information and so that member 1 will start
to move at the first time index , .

For all other swarm members, we have

...
...

(14)

which is similar to the model of the stationary edge-member
case in (11). Similar to the stationary edge-member case, we can
write the model of (13) and (14) into the form of (15), shown at
the bottom of the page, where is the intermember distance
vector between members and .

III. CONVERGENCEANALYSIS OF -DIMENSIONAL SWARMS

WITH A FIXED COMMUNICATION TOPOLOGY

In this section, we will study stability properties of -di-
mensional asynchronous swarms with a fixed communication

if , ,

if , ,

if , or ,

if or , ,

if ,
otherwise.

if ,

if , ,

if , ,

if ,

(15)
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topology on the basis of mathematical models we built ear-
lier and provide conditions under which the swarm will ob-
tain and keep the cohesiveness even in the presence of sensing
delays and asynchronism. First, we will consider a stationary
edge-member asynchronous-member swarm, and then we
will investigate an -member asynchronous mobile swarm fol-
lowing an edge-leader.

A. Convergence of a Stationary Edge-Member-Dimensional
Swarm

Here, we will provide conditions under which the swarm in
Fig. 1 will converge to be adjacent to a stationary edge-member.
We begin with the two-member case, then consider the general

-member case where the proofs will depend on the
case.

1) Convergence for a Two-Member Swarm:Suppose there
is an -dimensional two-member swarm, which has member

and , where member always remains stationary and
member communicates with memberand tries to move
to maintain a comfortable distanceto it.

Lemma 1: For an -dimensional totally asyn-
chronous swarm modeled by

(16)

where member remains stationary, , and , it
is the case that for any, , there exists a time

such that and also
Proof: Define a Lyapunov-like function

(17)

that measures how close swarm member is to the comfort-
able distance from member. Notice that

Since member remains stationary, we have

Therefore

(18)

As we know, initially , and by (17) and (18)

(19)

Moreover, if at some , , from (1) and (16),
we have . So, (19) always holds in this case.

From (1) and (19), we know that if is beyond the
-range of d (i.e., , where ),

we get

So, member will move toward member with a moving
step at least larger than . Hence, member needs at most

update time steps, and at least one update time step, to make
their intermember distance inside , where
is the initial intermember distance. So, there exists a time
such that . Moreover, from (19), we know
that for , will asymptotically tend to zero (i.e.,

). Q.E.D.
Lemma 2: For an -dimensional partially asyn-

chronous swarm modeled by (16) but with , where
member remains stationary, , the intermember
distance of communicating neighbors and ,
will converge to in some finite time, that is bounded by

.
Proof: According to Assumption 2, we know that at most

after time from the beginning, member will sense
member ’s position. Then we get the results from the proof of
Lemma 1 after replacing with and choosing .

For the case , will converge to
in onetime step according to (5). Similar to the proof of Lemma
1 we can prove that if (here ), member
will move toward member with a step at least larger than .
Hence, after at most update time steps,
and at least one update time step, will converge to be in-
side . From Assumption 2, we know that for a partially
asynchronous swarm, the maximum update time interval is.
Also, according to (5), member will reach a comfortable
distance to memberin the next update time step. So the total
time, including delay time and moving time, needed to achieve
convergence is bounded by

(20)

Q.E.D.
2) Convergence for an -member -dimensional

Swarm: Here, we will show that all members in an-member
swarm with a fixed communication topology from members
to 1 will converge to be at the comfortable distancefrom their
communicating neighbors on the basis of the aforementioned
analysis of a two-member swarm.

Theorem 1. (Partial Asynchronism, Finite Time Conver-
gence): For an -member -dimensional swarm modeled by
(12) with , , Assumption 2 (partial asynchronism)
holds, and , all the intermember distances of
communicating neighbors , , will
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converge to the comfortable distancein some finite time, that
is bounded by

where are the initial intermember distances of commu-
nicating neighbors.

Proof: We will use a mathematical induction method,
where our induction hypothesis will be that ,

, converge to the comfortable distance
in some finite time and from this we will show that
will converge to after some finite time.

First, for , member 2 moves toward the stationary
member 1 to be in a comfortable distancefrom it, and we have
(21), as shown at the bottom of the page. According to Lemma
2, will converge to in some finite time.

Next, we must show that given the induction hypothesis, the
intermember distance of communicating neighbors and

, in the -member -dimensional swarm will
converge to after some finite time.

According to our induction hypothesis we know that there
exists a finite time such that , ,
which means the first members of the -member swarm
remains stationary since they already stay in a comfortable dis-
tance to their reference neighbors.

Now, considering the updating of , from (12), we
have (22), as shown at the bottom of the page. After , we
have so that after , we have

according to Assumption 2. From (5), we have

So, we can write (22) in the form of (23), shown at the bottom
of the page.

Therefore, after , member moves toward
member , which already remains stationary, to be in a
comfortable distance to it. Clearly, from Lemma 2,
will converge to after some finite time. This ends the induction
step.

Next, we will try to bound the amount of converging time for
the -member -dimensional swarm. In Lemma 2, we deduce
that for a two-member swarm the time needed to achieve con-
vergence is bounded by

For the -member swarm, we already know that

so that swarm members never hinder their neighbors’ move-
ments. As we know, swarm members move to their reference
neighbors with a step at least larger than when their in-
terneighbor distance is beyond-range of the comfortable dis-
tance due to the definition of . Considering the worst case, all

members except the stationary one move to the same direc-
tion on a line. As we know, under Assumption 2 (partial asyn-
chronism) all the swarm members will converge to be in a com-
fortable distance to their reference neighbors one by one in this
case. Therefore, we can use the total time in the worst case taken

(21)

,

,

(22)

,

,
(23)
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by member to reach its final position to bound the total con-
verging time of the swarm, which is

Q.E.D.
Remark 1: Notice that for an -member -dimensional

totally asynchronous swarm modeled by (12) with ,
, Assumption 1 (total asynchronism) holds, and

, similarly we can use Lemma 1 to prove that all
the intermember distances of communicating neighbors ,

, will asymptotically converge to the
comfortable distance.

Remarks 2:Notice that the one-dimensional asynchronous
swarm results in [30] and [31] can be seen as a special case of
our results if we assume initially.

B. Convergence of an -Dimensional Mobile Swarm
Following an Edge-Leader

Next, we will study cohesiveness of an-dimensional mo-
bile swarm. First, we will study the case of using thefunc-
tion, and then what happens if a differentfunction is used that
does not require a swarm member to move to be adjacent to its
neighbor in one step if it gets very close to it.

1) Convergence for an -Member Asynchronous Mobile
Swarm: First, we choose as the function in (15) and
assume ( is used in the definition of ). We will show
that all members in an -member mobile swarm will be in a
comfortable distance neighborhood from their communicating
neighbors during movements if there are constraints on the
leader’s moving direction, moving frequency, and the partial
asynchronism measure, and constraints on the leader’s moving
step bound, the number of swarm members, and the comfort-
able distance neighborhood size.

Theorem 2: For an -member -dimensional asyn-
chronous mobile swarm with a fixed communication topology
modeled by (15), where is , , Assumption 2 (partial
asynchronism) holds, , , and the
edge-leader (member 1) only moves in legal directions defined
above via the “wait steps strategy,” if

(24)

for a given , all the swarm members will be in the comfort-
able distance neighborhood of their communicating
neighbors during movements, whereis the upper bound of the
edge-leader’s moving step size , (choose ) is the
comfortable distance neighborhood size, and is the
partial asynchronism measure.

Proof: For such an -member mobile swarm, each swarm
member follows its preceding communicating neighbor except
the edge-leader. We know from (10) that there are no collisions
between members. This decouples the problem so that we can
consider each pair of neighboring swarm members individually.

First, we consider the relationship between members 1, 2, and
3 to explain why member 1 can get the position information of
members 2 and 3 with the “wait steps strategy” even
in the “worst” case. Here, the worst case means that members

1 and 2 and member 2 and 3 have the maximum delay in ob-
taining each other’s position information; member 1 updates its
position to the direction of (which is the one-dimensional
case) with a maximum possible step sizeat the earliest time
satisfying , , where ; members
2 and 3 only update their positions at one element of the time set

for so that they move as slowly
as possible.

Consider the worst case. In the first time set
, member 1 starts its first move step at according to

(13) since we assume it gets members 2 and 3’s initial position
information at and . At time ,
member 1 arrives its new position and remains stationary at least
until at from the “wait steps strategy.” So,
in the worst case, we have

From Assumption 2, members 1 and 2’s delay in knowing about
the position information of each other can be as large as
. Member 2 remains stationary at its updating time index of

the first time set since it still thinks member 1 is still in the
initial position due to the delay. However, in the second time
set it at least receives the new position
information of member 1 at since the maximum delay is

. So, in the worst case, it moves toward the new position
of member 1 via the function at in the second
time set. From (15), we have

(25)

where . From (24) and the
fact that , we have

(26)

Since we choose , from (26), and the definition of , we
then have

Therefore

And then, member 2 remains stationary at its new position since
it is already in a comfortable distance to member 1.

Similarly, in the third time set ,
member 3 at least knows member 2’s new position at
. In the worst case, assume member 3 just updates its position

at in the time set. Then, it has to wait to update its po-
sition again at the next time set , i.e.,
it moves toward member 2 at . So, at
members 2 and 3 are all at a new position which is in a com-
fortable distance to their communicating neighbors even in the
worst case. Clearly, their new position information can be cal-
culated by member 1, which is updated from their previous po-
sition information with only one moving step (via the func-
tion). Therefore, at , member 1 has enough informa-
tion to decide its legal moving directions and is ready to have
another moving step. This explains that member 1 can get the
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position information of members 2 and 3 with the “wait
steps strategy” even in the worst case. In the future time set, all
three members will repeat the above process. Moreover, we can
conclude from the above that the maximum possible value of
interneighbor distance and is , which is in
the range of comfortable distance neighborhood from
(24).

Next, we try to find the maximum possible interneighbor dis-
tance between members 4 and 3 and members 5 and 4. For this
purpose, a special case (that is different from the worst case
for members 1, 2 and 3 above) is considered as follows. As we
know, in the aforementioned worst case, at member 3
reaches its new position, and member 1 starts its second moving
step. Then, we have

Assume member 4 also has the maximum delay about the po-
sition information of member 3, and so member 4 still remains
stationary at its initial position. We have

Now, different from before, we assume that since ,
members 2 and 3 get the position information of their communi-
cating neighbors without any delay, and they update their posi-
tion synchronously in order to maintain a comfortable distance

at . Therefore, at , we get

and

Note that here we consider the one-dimensional case since we
try to find the maximum possible interneighbor distance. Then,
members 1, 2, and 3 remain stationary until from the
“wait steps strategy.” Due to the delay, member 4 knows
member 3’s new position at and adjusts its distance
to member 3 to be comfortable via the function at least at

. Then, the interneighbor distance of members 4 and
3, will bounce between and in the future time sets
even in the above special case. Similar to the previous analysis,
we have the same conclusion for the interneighbor distance be-
tween members 5 and 4 as that for members 4 and 3. Therefore,
the maximum possible value of interneighbor distance
and is , which is also in the range of comfortable
distance neighborhood from (24). In the same way,

we can find that the maximum possible interneighbor distance
between members and is if is an odd
number, and is if is an even number, which is the
largest of all possible interneighbor distances in the time set.
Hence, we conclude that the interneighbor distance bound for

members is .
From (24), we have

and from (10), we then have

for

which means all members will always be in the comfortable dis-
tance neighborhood with their neighbors. So all mem-
bers can keep the distance from their communicating neighbors
in the range of comfortable distance neighborhood even in the
worst case. Q.E.D.

Remark 3: Note that in Theorem 2, (24) provides a bound
on how far the leader can move in one step for a given, and
the “wait steps strategy” provides a bound on how fre-
quent the leader can move for a given. They work together
to provide how fast a -member swarm can move while still
maintaining the type of cohesiveness characterized by.

Remark 4: From Theorem 1, we can see that if member 1
(the edge-leader) stops moving (i.e., , for ,

), all the interneighbor distances will converge
to be the comfortable distance.

In this, we study the convergence property of mobile swarms
with at least three members. Now, we consider the
case, which is even simpler. In the two-member case, legal di-
rections of the leader are defined as . More-
over, member 1 only needs the information about the connected
line of its position and the position of member 2 to decide its
moving direction before further moving so that it uses the “wait

steps strategy,” which is the same as the “wait
steps strategy” except the length of the waiting time. Similarly,
we have the following corollary.

Corollary 1: For a two-member -dimensional asyn-
chronous mobile swarm modeled by (27), as shown at the
bottom of the page, where is , Assumption 2 (partial
asynchronism) holds, , , and the
edge-leader (member 1) only moves to legal directions via the
“wait steps strategy,” if

(28)

if , ,

if , ,

if , or ,

if or , ,

if ,
otherwise

(27)
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for a given , the two members will be in the comfortable dis-
tance neighborhood during movements, where is
the upper bound of the edge-leader’s moving step size ,
(choose ) is the comfortable distance neighborhood size,
and is the partial asynchronism measure.

Proof: Similar to the proof of Theorem 2, it is easy to find
the maximum possible interneighbor distance of members 1 and
2 is equal to by analyzing the worst case. From (28), the two
members always keep their distance in the range of comfortable
distance neighborhood. Q.E.D.

2) Analysis of Movement Flexibility:In Theorem 2, we pro-
vide conditions under which an -member mobile swarm can
keep cohesion during movements and avoid collisions as long as
the leader always moves in legal directions which has a-range,
where is the angle formed by the two connected lines between
positions of members 2 and 1 and between positions of mem-
bers 1 and 3. Clearly, the movement flexibility depends on how
large is since is the maximum possible turning angle that
the swarm can make in one step. Therefore, we will analyze the
change of during movements of the swarm.

Theorem 3: For an -member -dimensional asyn-
chronous cohesive mobile swarm satisfying the conditions of
Theorem 2, if initially and the swarm keeps moving,
monotonically decreases and

as

and if initially

during movements of the swarm, whereis the angle formed
by the two connected lines between positions of members 2 and
1 and between positions of members 1 and 3.

Proof: For an -member -dimensional asynchronous
cohesive mobile swarm satisfying the conditions of Theorem
2, member 1 has to obtain the position information of mem-
bers 2 and 3 to calculate before it moves. It can decide its
legal moving directions with . As shown in Fig. 5, assume at
time , , , and members 1, 2, and
3 stay at positions , , and , respectively (dashed circles).
Assume the current is equal to . Member 1 moves to
a new position in a legal direction. At , member 1 arrives at
position and waits until its next moving step from the “wait

steps strategy.” Then, member 2 will update its position
at in the worst case (see the proof of The-
orem 2) to maintain a comfortable distance with member 1, and
assume it reaches the position. Similarly, member 3 moves
toward the new position of member 2 and reaches the position

. Therefore, at , members 2 and 3 are both
at a new position. Member 1 can calculate a new(which we
call ) from these new positions to decide its next moving
direction. Next, we will consider the relationship between
and in Fig. 5.

In the triangle , we have

(29)

where we use to represent the angle formed by two lines. For
example, is the angle formed by the lines and .

Fig. 5. The change of� during movements of the swarm.

Similarly, in the triangle

(30)

and we also have

(31)

(32)

From (29)–(32), we get

So

(33)

where is the angle formed by the two connected lines
between the new positions and the previous positions of mem-
bers 1 and 2 ( and ), and is the angle formed by
the two connected lines between the new positions and the pre-
vious positions of members 1 and 3 ( and ).

Obviously, we have

(34)

and

if and only if member 1 moves along the extension of line
(the one-dimensional case, where and are overlapped).
Moreover, we have

if (35)

and

if and only if (36)

Then, from (33)–(35), we have

if (37)
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Therefore, monotonically decreases and

as

if initially and the swarm keeps moving.
If initially (the one-dimensional case, where and

are overlapped and member 1 only moves along the exten-
sion of line ), from (33), (34), and (36), we get

(38)

Therefore

during movements of the swarm. Q.E.D.
Remark 5: Notice that from Theorem 3, an-member

-dimensional asynchronous cohesive mobile swarm satisfying
the conditions of Theorem 2 will gradually become a one-di-
mensional swarm as and its length is bounded by

.
Remark 6: Notice that after an -member -dimen-

sional asynchronous cohesive mobile swarm becomes a one-di-
mensional swarm, i.e., all members move along the same line,
legal directions of the leader could be set to
so that the swarm could later make turns in ways that avoid col-
lisions.

3) Alternative Convergence Conditions:Now, we consider
the case of using anotherfunction in (15). Assume that for a
scalar , is such that

if (39)

if (40)

if (41)

As shown in Fig. 6, these relationships are similar to those for
the function. However, the function has two different
bounds and in (39) and (41), which
guarantee the following members are in the-neighborhood of
desired comfortable distance of their leading neighbors after
each update step so that the following members can keep up
with the movements of their leading neighbors. Moreover, the

function is equal to 0 when the interneighbor distance is
already in the -neighborhood of the comfortable distance.
Note that here we assume since we choose
before.

Similarly, we will show that with the function, all mem-
bers can also be in a comfortable distance neighborhood from
their communicating neighbors during movements under some
constraints on the leader’s moving direction, moving frequency,
and the partial asynchronism measure, and constraints on the
leader’s moving step bound, the number of swarm members, the
comfortable distance neighborhood size, and the parameters of
the . Note that with the function, member 1 has to use the
“ wait steps strategy” instead of the “ wait steps
strategy” since member 1 cannot calculate the position infor-
mation of member 2 and 3 (it only knows they are inside the

Fig. 6. Functiong (e (t)� d) (solid) andg (e (t)� d) (dashed).

-neighborhood of the comfortable distance to their communi-
cating neighbors). It has to wait time indices more to
receive the position information in the case of the maximum
communication delay. In this case, we can modify the model in
(15) as shown in (42) at the bottom of the next page.

Theorem 4: For an -member -dimensional asyn-
chronous mobile swarm modeled by (42), where is

, , Assumption 2 (partial asynchronism) holds,
, , and the edge-leader (member

1) only moves in legal directions defined above via the “wait
steps strategy,” if

(43)

for a given , all the swarm members will be in the comfortable
distance neighborhood of their communicating neigh-
bors during the moving process, whereis the upper bound of
the edge-leader’s moving step size , is the comfortable
distance neighborhood size, is the partial asynchro-
nism measure, and is the parameter of func-
tion.

Proof: Similar to the proof of Theorem 2, we can find that
the maximum possible interneighbor distance between mem-
bers and is if is an odd number,
and is if is an even number, which is the
largest of all possible interneighbor distances in the time set.
Hence, we conclude that the interneighbor distance bound for

members is .
From (43), we have

and, from (10), we then have

for

which means all members will always be in the comfortable
distance neighborhood with their neighbors. So, all
members can keep the distance to their communicating neigh-
bors in the range of comfortable distance neighborhood even in
the worst case. Q.E.D.

Now, we consider the case with the function. Simi-
larly, member 1 only needs the information about the position of
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member 2 to decide its moving direction before further moving.
Therefore, it uses the “wait steps strategy.” So, we have
the following corollary.

Corollary 2: For a two-member -dimensional asyn-
chronous mobile swarm modeled by (44), as shown at the
bottom of the page, where is , Assumption 2 (partial
asynchronism) holds, , , and the
edge-leader (member 1) only moves to legal directions via the
“wait steps strategy,” if

(45)

for a given , the two members will be in the comfortable dis-
tance neighborhood during movements, whereis the
upper bound of the edge-leader’s moving step size , is
the comfortable distance neighborhood size, is the par-
tial asynchronism measure, and is the parameter
of function.

Proof: Similar to the proof of Corollary 1, it is easy to
find the maximum possible interneighbor distance of members
1 and 2 is equal to by analyzing the worst case. From
(45), the two members always keep their distance in the range
of comfortable distance neighborhood. Q.E.D.

Remarks 7:Notice that similar to Theorem 3, we can prove
that monotonically goes to zero for an-member -di-
mensional asynchronous cohesive mobile swarm satisfying the
conditions of Theorem 4.

Remarks 8:Notice that we can write equivalent theorems of
Theorems 2 and 4 as follows.

• With the same conditions in Theorem 2, assume that the
edge-leader (member 1) only moves to legal directions
defined above via the “wait steps strategy.”
Then, if

(46)

for a given , all members of the -member -di-
mensional asynchronous mobile swarm will be in the com-
fortable distance neighborhood of their commu-
nicating neighbors during movements.

• With the same conditions in Theorem 4, assume that the
edge-leader (member 1) only moves to legal directions
defined above via the “wait steps strategy.”
Then, if

(47)

for a given , all members of the -member -di-
mensional asynchronous mobile swarm will be in the com-
fortable distance neighborhood of their commu-
nicating neighbors during movements.

ProofsoftheaforementionedtheoremsaresimilartothoseofThe-
orems 2 and 4. Comparing these theorems with Theorems 2 and
4, we can see that in order to keep cohesiveness of the-member

if , ,

if , ,

if , or ,

if or , ,

if ,
otherwise.

if ,

if , ,

if , ,

if ,

(42)

if , ,

if , ,

if , or ,

if or , ,

if ,
otherwise

(44)
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mobile swarm in the presence of delays and asynchronism, if the
leaderusesastrategyofwaitingmore timestepsatoneposition, it
can move with a bigger step size in future updating time indexes.
On the other hand, if the leaderuses astrategyofwaiting less time
steps, it has to move with a smaller step size.

IV. SIMULATION STUDIES

Here, we will provide simulation examples to illustrate con-
vergence properties of -dimensional asynchronous swarms.
First, we will simulate a three-dimensional swarm converging
to be adjacent to a stationary member under the partial asyn-
chronism assumption in some finite time, which is summarized
in Theorem 1. Then, a simulation example of a three-dimen-
sional cohesive asynchronous mobile swarm, which satisfies all
the conditions in Theorem 2, will be given.

In the simulation, let represent the indices
of the sequence of real times. For convenience, we assume it
corresponds to the real time set on a
uniform grid of size 0.1 s at which one or more swarm members
update their positions. And we randomly select the time index
set , , at which the th member’s posi-
tion , , is updated. The , , are in-
dependent of each other for different. However, they may have
intersections so that two or more swarm members may move
simultaneously. Moreover, in order to satisfy the partial asyn-
chronism assumption, we assume and add constraints to
the updating time index set to guarantee each member up-
dates at least once in the time index interval and the index
delays in obtaining neighbor positions are bounded by.

A. Stationary Edge Member Asynchronous Swarms Simulation

Assume we have a three-dimensional ten-member asyn-
chronous swarm and initially (i.e, s), ten members from
member 1 to member 10 with a physical size are in order
located at the positions of (70, 70, 70), (60, 68, 65), (55, 60, 50),
(53,50,45), (30,50,40), (20,36,30), (18,20,25), (5,20,10), (8,
10,0), ( 8,0, 10)ona space. respectively.at ,
as shown in Fig. 7. Note that their initial positions satisfy all the
constraints required in Theorem 1. Assume the comfortable dis-
tance , and the sensing range of proximity sensors .
All members will update their positions in their updating time
sets except member 1 remains stationary. The communication
topology from member 10 to member 1 is fixed according to their
initial conditions. Assume the partial asynchronism assumption
holds for this swarm with and we choose a function
with a satisfying (1)–(3) to define the attractive and
repelling relationship. In particular,
if , and
if . Here, we choose since

is
required if , where and also we want
to allow a very small movement at any step. With all the above
conditions, we get the finite-time convergence according to
Theorem 1.

The results of the simulation are given by providing eight
plots of swarm member positions from s to s
as shown in Fig. 7. In the s plot, each member moves

Fig. 7. Simulation ofM = 3-dimensional asynchronous ten-member
asynchronous swarm with a fixed communication topology converging
behavior.

toward its communicating neighbor due to its attractive relation-
ship. In the s plot, the first six members already con-
verged to be in a comfortable distance to their communicating
neighbors. In the last two plots, all members already remain
stationary at positions adjacent to the position of member 1.
We provide all intermember distances of communicating neigh-
bors during the convergence process in Fig. 8. Clearly, all in-
terneighbor distances are larger than or equal to 10 (i.e., there
are no collisions) and converged to the comfortable distance 10
after s. It is interesting to note that the intermember dis-
tances donot asymptotically decrease at each step; sometimes
the interneighbor distances could increase, then later decrease
(this actually complicated the theoretical analysis in the last sec-
tion), which is essentially due to asynchronism and communi-
cation delays.

B. Asynchronous Mobile Swarm With an Edge-Leader
Simulation

Assume we have a three-dimensional ten-member asyn-
chronous mobile swarm and at the beginning ten members from
member 1 to member 10 with a physical size are in order
located at the positions of (71, 70, 70), (68.4, 61.4, 65.7), (62.8,
56.4, 59.1), (56.3, 51.5, 53.2), (49.7, 46.5, 47.6), (42.8,41.8,
42), (35.8, 37.3, 36.6), (28.7, 32.8, 31.1), (21.4, 28.4, 25.9),
(14, 24.1, 20.8) on a space, respectively, at ,
as shown in Fig. 9. Note that their initial positions satisfy all
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Fig. 8. Intermember distances of communicating neighbors in Fig. 7 during
the convergence process.

Fig. 9. Simulation ofM = 3-dimensional asynchronous ten-member
asynchronous mobile swarm with a fixed communication topology following
an edge-leader.

the constraints required in Theorem 2. Assume the comfortable
distance , and the comfortable distance neighborhood
size . Member 1 uses the “wait steps strategy” to
move only in legal directions defined by. We use the same
function as before. According to Theorem 2, the edge-leader’s
moving step is bounded by, where , in

Fig. 10. Change of� during movements of the swarm in Fig. 9.

order for the asynchronous mobile swarm to maintain cohe-
siveness, i.e., all mobile swarm members are at a comfortable
distance neighborhood [10], [15] from their neighbors while
the swarm moves. Hence, we choose .

The results of the simulation are given by providing eight
plots of swarm member positions from s to s as
shown in Fig. 9. We found that all mobile swarm members main-
tain a distance inside the comfortable neighborhood range [10],
[15] from their neighbors in all time indexes. Clearly, there are
no collisions during movements and the mobile swarm main-
tains cohesion. In addition, we show the change ofduring
movements of the swarm in Fig. 10. Obviously,monotonically
decreases to zero as time increases, which verifies the conclu-
sion of Theorem 3. Also, note that at s in Fig. 9, the first
five members already move in the same dimension. If we extend
the simulation time, all other members will gradually move on
the same dimension asgoes to zero so that the three-dimen-
sional ten-member asynchronous swarm becomes a one-dimen-
sional swarm.

V. CONCLUSION AND FUTURE DIRECTIONS

We constructed a mathematical model for an-dimensional
asynchronous swarm with a fixed communication topology
by putting identical single swarm members together. We
proved that all the intermember distances of communicating
neighbors in an -dimensional asynchronous swarm will
converge to the comfortable distance so that it can obtain
cohesion even in the presence of delays and asynchronism.
Moreover, an -dimensional asynchronous mobile swarm
following an edge-leader with a fixed communication topology
is modeled and different conditions under which it can maintain
cohesion during movements are provided. In addition, the
swarm movement flexibility is analyzed. Simulation studies
are given to illustrate swarm convergence properties. Note that
our analysis, which allows for finite-size swarm members and
ensures collision-free swarming, significantly complicates the
analysis compared to the case where point-size vehicles are
studied and collisions are allowed (e.g., as in [21] and [34]) and,
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in some cases, clearly cannot allow for as strong of stability
results. That is, as you would intuitively expect, asynchronism
and delays adversely affect swarm cohesion.

Swarm stability for the case where a communication topology
is dynamically generated or updated in a distributed fashion ac-
cording to the positions of swarm members will be studied in
the future. In particular, an interesting problem is how to form
and maintain an unbroken communication network dynamically
for the entire swarm so that the information through the swarm
can be always propagated effectively. Another possible direction
is to consider using other possible communication protocols in
the swarm model. For example, the token ring may be consid-
ered in the case of moderate numbers of swarm members. For
the case of large number of swarm members, the idea of subnet
may even be useful. Moreover, the study of the optimal motion
control strategies under some criteria of specific tasks is also a
potential research direction. It may be useful for a variety of ap-
plications since it provides how the swarm achieve some goal
in a optimal way besides avoiding collisions and staying inside
a comfort zone.
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