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SUMMARY

In this paper, a distributed reactive power control based on balancing strategies is proposed for a
grid-connected photovoltaic (PV) inverter network. Grid-connected PV inverters can transfer active power
at the maximum power point and generate a certain amount reactive power as well. Because of the
limited apparent power transfer capability of a single PV inverter, multiple PV inverters usually work
together. The communication modules of PV inverters formulate a PV inverter network that allows reactive
power to be cooperatively supplied by all the PV inverters. Hence, reactive power distributions emerge in the
grid-connected PV inverter network. Uniform reactive power distributions and optimal reactive power
distributions are considered here. Reactive power balancing strategies are presented for both desired
distributions. Invariant sets are defined to denote the desired reactive power distributions. Then, stability
analysis is conducted for the invariant sets by using Lyapunov stability theory. In order to validate the
proposed reactive power balancing strategies, a case study is performed on a large-scale grid-connected PV
system considering different conditions. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the alternating-current (AC) power grid, the phase difference between voltage and current leads
to the occurrence of reactive power. Reactive power serves the important role of maintaining volt-
age levels and accomplishing the transmission of active power in the power grid [1, 2]. Control and
optimization techniques for reactive power generation, absorption, and flow in existing power grids
have been given significant attention [3]. The current power grid is developing into a smart grid
with fault-tolerant, self-monitoring, and self-healing capabilities to intelligently deal with genera-
tion diversification, optimal deployment of expensive assets, demand response, energy conservation,
and so on [4]. The application of distributed generation (DG), such as grid-connected photovoltaic
(PV) systems, will also be increasingly used in the smart grid. At the end of 2013, the worldwide
total capacity of installed solar PV systems reached 139 GW [5] of which a large portion is grid-
connected PV systems [6]. In grid-connected PV systems, DC–AC inverters are used to transfer
active power generated by PV panels to the grid. The power rating of a PV inverter is usually from
10 to 500 kW. In large-scale grid-connected PV systems, for instance, solar farms with MW-scale
ratings, multiple PV inverters are connected in parallel to satisfy the requirement of transferring a
large amount of power [7–9].

Although certain standards [10] do not permit inverter-based DGs to regulate local voltage cur-
rently, in the future smart grid, reactive power will also be provided by DGs with smart inverters.
A variety of literature such as [11, 12] addresses the control and optimization problems of reactive
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power for grid-connected PV systems with a single DC–AC inverter. In [11], several reactive power
control methods and different PV inverters with modes to support reactive power have been com-
pared. In [12], an online optimal control strategy to minimize the energy losses of grid-connected
PV inverters is proposed. Research efforts have been provided for multiple PV inverters as well,
such as the reactive power optimization of multiple PV generators in a distribution network [13–16].
These optimization problems deal with the minimization of either voltage deviation of, or the power
loss between, distribution feeders. An adaptive control scheme is developed to solve the problem in
[13], and numerical methods are employed in [14–16]. For multiple inverters collocated in parallel,
the “droop control” method is widely used for load sharing [17, 18]. Droop control basically deter-
mines the load of each inverter based on the power rating and the slope of droop characteristics.
However, droop control does not have much flexibility to deal with different control and optimiza-
tion purposes. In large-scale grid-connected PV systems, nonuniform solar irradiation across the
whole system and tight apparent power limits of each inverter call for more sophisticated control.
As indicated in [19], the components of the future smart grid will have independent processors and
have the capability to cooperate and compete with others. Some smart PV inverters have communi-
cation modules installed, and a PV inverter network can be established to allow the application of
advanced control and optimization techniques.

Our work in this paper focuses on a distributed reactive power control strategy for a PV inverter
network. It proposes an approach that involves reactive power allocation across the PV inverters
for a variety of control purposes. Typically, each inverter has a classical pulse-width-modulation
controller with an inner current loop and an outer voltage loop, both using proportional-integral
controllers. In this control structure, the oscillating current and voltage in the abc frame are trans-
formed into a direct-quadrature reference frame. Then, the setpont of active and reactive power
can be controlled by using the quantities in d-q frame. However, detailed control schemes for indi-
vidual inverters are beyond the scope of this work, and we assume that each inverter is capable of
controlling itself properly for given active and reactive power set points.

The distributed reactive power control in this paper is based on the balancing strategies that
are similar to [20–24]. In [20, 21], load balancing strategies are adopted for a computer proces-
sor network to balance the tasks being processed. Similarly, task load balancing strategies are used
by networked autonomous air vehicles in [22]. In [23, 24], balancing strategies are designed to
achieve certain desired distributions of multiple agents among “habitats.” Because of the balanc-
ing strategies-based distributed control, all the individuals in the system are networked and can
cooperatively work together without a higher-level controller. This technique is also applicable for
the reactive power control of the grid-connected PV inverter network. Inverters in the network can
communicate with, and “pass reactive power to,” each other to either alleviate the stress of cer-
tain inverters or achieve any desired reactive power distribution. In Section 2, the system model,
including the grid-connected PV system model and the communication network model, is presented.
Section 3.1 provides the reactive power “passing strategies” for different desired reactive power dis-
tributions in the PV inverter network. These desired reactive power distributions are represented by
certain invariant sets, and these invariant sets are proven to be stable by using the Lyapunov sta-
bility theory. Then, the balancing strategy-based reactive power control for the grid-connected PV
inverter network is tested against a sample PV inverter network in Section 4. Simulation results are
shown for different initial conditions and desired reactive power distributions. The impact of topol-
ogy differences for the PV inverter network is evaluated in simulations as well. Finally, conclusions
are provided in Section 5.

2. THE SYSTEM MODEL

We first specify a system model for the PV inverter network in large-scale grid-connected PV sys-
tems. The system model is decentralized as the DC–AC inverters are separate entities that have
certain autonomy to regulate local active and reactive power generation, and communications among
the PV inverters allow them to formulate an inverter network. The entire model is in a discrete time
framework, and we assume all PV inverters use the same global time reference. We also assume that
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the dynamics and local control of individual PV inverters are much faster than the control for the
entire system. By such an assumption, we consider the inverters as multiple nodes in the network,
and we focus on the balancing strategies for the reactive power control of the overall system.

2.1. The grid-connected photovoltaic systems

Consider a grid-connected PV system with N 2 NC PV inverters that form an inverter network.
There are a considerable number of PV panels that are attached to each inverter. These PV panels
are usually connected together into a PV string then to the PV inverter. The system diagram is shown
in Figure 1. Let the continuous variable xi 2 R, i 2 ¹1; : : : ; N º be the amount of reactive power
of the i th PV inverter and Pi 2 RC be the amount of active power transferred by the same PV
inverter. Suppose that

PN
iD1 xi D QD , where QD is the reactive power demand from the utility

grid, which is known, but it could be time-variant (i.e., the reactive power demand of the grid varies
for different times of the day). Here, we denote that positive QD is the reactive power that inverters
supply to the grid, and negative QD is the reactive power that inverters absorb from the grid. Also,
we assume the same sign convention for the reactive power of individual inverter xi . The i th PV
inverter has limited capability to transfer active power and generate reactive power. We still use a
constant Ci > 0 to represent the current limit of the i th inverter. The value of Ci > 0 is optimally
designed based on the rating of the active power of the i th inverter. This implies a trade-off between
the inverter cost and the power transfer capability of the i th inverter. As the current of the i th PV
inverter is not allowed to exceed Ci , we have

Ci �

q
P 2i C x

2
i

3jV j
> 0 H)

�

q
9jV j2C 2i � P

2
i 6 xi 6

q
9jV j2C 2i � P

2
i ; i D 1; : : : ; N

(1)

where jV j represents the magnitude of the grid line-to-neutral voltage and is known. Then qmax
i Dq

9jV j2C 2i � P
2
i and qmin

i D �
q
9jV j2C 2i � P

2
i are the upper and lower bounds of xi . As we will

present reactive power balancing strategies, we use a discrete time formulation. Hence, we use xi .k/
to denote the reactive power xi at time k.

2.2. Communication network

We adopt a communication network for the DC–AC inverters of the grid-connected PV systems
that is similar to the ones for the systems given by [21] and [23]. There are different candidate

Figure 1. System diagram of the photovoltaic (PV) inverter network in grid-connected PV systems.
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topologies for the communication system of the DC–AC inverters (i.e., line, ring, and network).
We assume that the communication links and the topology are fixed. Also, we assume that the
communication links have sufficient capacity to transmit the required information, and the only
deficiency is a possible delay that occurs during the sensing process and information transmission.
We assume that the local control of the PV inverters’ dynamics is fast enough so that the possible
delays due to the local control operation are negligible. The communication network of these PV
inverters I D ¹1; 2; : : : ; N º is described by a directed graph G D .I;A/, where I represents the
DC–AC inverters in the network that we assume to be nodes, and A D ¹.i; j / W i; j 2 Iº is a set
of directed arcs that represents the communication links and A � I � I. For each i 2 A, there
must exist .i; j / 2 A such that each DC–AC inverter is guaranteed to be connected to the network,
and if .i; j / 2 A, then .j; i/ 2 A. We assume that .i; i/ … A, as each inverter does not need to
communicate with itself and does not balance reactive power with itself.

3. STABLE DISTRIBUTED REACTIVE POWER CONTROL BASED ON
BALANCING STRATEGIES

According to the operation mode, the balancing strategy varies. Here, we propose different balanc-
ing strategies via different operation modes and objectives. We will prove the balancing strategies
are stable with respect to an invariant set that represents the desired reactive power distribution.
First, we consider the case where the reactive power is uniformly balanced among the PV invert-
ers. Such a balancing strategy is able to alleviate the stress of each PV inverter and can be applied
in the night operation mode. Then, the balancing strategy for optimal reactive power distribution is
derived by modifying the balancing strategy for uniform reactive power distribution.

3.1. Uniformly distributed reactive power

Because of the limited capability of a single PV inverter, the amount of reactive power that one
inverter can generate under certain active power transferred, and certain power factor is bounded
below (capacitive reactive power) and above (inductive reactive power). Without loss of general-
ity, we define qmin

i and qmax
i to be the minimum and maximum reactive power that inverter i can

generate, respectively, and assume that qmin < 0 and qmax
i > 0. Notice that qmax

i and qmin
i are not

necessarily time-invariant, that is, their values can change when the environmental conditions of
inverter i change. Hence, we use qmax

i .k/ and qmin
i .k/ to denote the upper and lower bounds of the

reactive power of inverter i at time k. We focus on a simplex � D ¹x 2 RN W
PN
iD1 xi D QDº in

which the xi dynamics evolve, where we assume thatQD is constant and known. Time-varyingQD
only changes the initial conditions of the reactive power distribution, and the reactive power pass-
ing strategies for this case (which are similar to the ones we will be proposing) are not considered.
Here, we let U.k/ D ¹i 2 I W qmin

i .k/ < xi < qmax
i .k/º represent the set of inverters with unsatu-

rated reactive power, that is, in which the reactive power does not reach the bounds at time k, and
let S.k/ D I � U.k/ represent the set of inverters with saturated reactive power, that is, in which
the reactive power reaches the bounds. We present a class of reactive power passing strategies con-
sidering the reactive power bounds of inverters. Then, a distribution of reactive power is presented
by an invariant set and proved to be stable in the sense of Lyapunov under certain conditions.

3.1.1. Reactive power passing strategies. Let xi .k/ be the reactive power of inverter i at time k. For
any .i; j / 2 A, let xij .k/ be the amount of reactive power of inverter j that inverter i perceives at

time k. It is the reactive power information sent to inverter j from i . Define ˛i!ji to be the amount
of reactive power that inverter i passes to inverter j . By saying reactive power passing, we mean
that ˛i!ji is the amount of reactive power removed from inverter i when i passes to inverter j , and
it is also the amount of reactive power that adds to inverter j . Define ˛i!jj as the amount of reactive
power received by inverter j due to inverter i sending reactive power to j at time k. As the total
desired reactive power QD can be both inductive (positive) and capacitive (negative), we assume
that when the inverters are balancing a total amount of inductive reactive power, the reactive power
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being passed between inverters is capacitive , that is, whenQD > 0, we assume that ˛i!ji < 0. For
the case where the inverters are balancing a capacitive reactive power, we assume that the reactive
power being passed between inverters is inductive (positive), that is, whenQD < 0, we assume that
˛
i!j
i > 0. Let Ni D ¹j W .i; j / 2 Aº be the subset of the neighboring nodes of inverter i . Then,

the following conditions define a class of reactive power passing strategies for inverter i at time k
with the considerations of inverter bounds. When QD > 0, we assume that inverters can only pass
capacitive reactive power between each other.

(a1) ˛i!ji D 0, if xi .k/ � xij .k/ > 0 or if xi .k/ D qmax
i .k/;

(a2) xi .k/ �
P

¹j Wj2Ni º
˛
i!j
i 6 min¹xij .k/ C ˛

i!j
i ; qmax

i .k/ C ˛
i!j
i º; 8 j 2 Ni such that

xi .k/ � x
i
j .k/ < 0;

(a3) If ˛i!ji < 0 for some j , then ˛i!j
�

i 6 �ij� max
°h
xi .k/ � x

i
j�.k/

i
;
�
xi .k/ � q

max
i

�±
for

some j � D arg max
j 0

°
xij 0.k/ W j

0 2 Ni
±

;

where �ij 2 .0; 1/ for j 2 Ni is a constant that represents the proportion of reactive power dif-
ference that inverters try to reduce by passing from inverter i to j . The conditions of QD < 0 are
symmetric to the conditions of QD > 0 that are not presented here.

Condition (a1) indicates that inverter i will not pass any capacitive reactive power to its neigh-
boring inverter j if its reactive power perception about inverter j is greater than its own reactive
power, that is, if the reactive power i is greater than the reactive power perception of inverter j ,
inverter i will not increase the reactive power level of itself to decrease the reactive power level
of inverter j . Also, inverter i will not pass any capacitive reactive power to its neighboring invert-
ers if the reactive power of inverter i reaches the upper bound, that is, inverter i cannot take more
inductive reactive power for this case. Condition (a2) limits the amount of capacitive reactive power
that inverter i can pass to its neighbor nodes then limits the increase of the reactive power level of
inverter i . It indicates that after the reactive power transfer, the reactive power of inverter i must be
not higher than the reactive power perception of any of its neighbor inverters or its upper bound.
This condition excludes the oscillation of reactive power between inverters. Condition (a3) implies
that if inverter i passes some capacitive reactive power to its neighboring nodes, then it must pass
some non-negligible amount of capacitive reactive power to the neighboring inverter with maximum
reactive power level. Meanwhile, the reactive power of inverter i is guaranteed not to exceed the
upper bound.

3.1.2. Distribution of reactive power. The state equation of xi with the reactive power passing
strategies presented previously is

xi .k C 1/ D xi .k/ �
X

¹j W.i;j /2Aº

˛
i!j
i C

X
¹j W.i;j /2Aº

˛
j!i
i ; 8i 2 I (2)

Let X D � be the set of states and x.k/ D Œx1.k/; : : : ; xN .k/�> 2 X be the state vector, with xi .k/
the reactive power of inverter i at time k > 0. Then, the set

Xc D
®
x 2 X W for all i 2 I; either xi .k/ D xj .k/ for all .i; j / 2 A such that

qmin
i .k/ < xj .k/ < q

max
i .k/; xi .k/ > xj .k/ for all .i; j / 2 A such that

xj .k/ D q
max
j .k/; and xi .k/ < xj .k/ for all .i; j / 2 A such that

xj .k/ D q
min
j .k/I or xi .k/ D q

max
i .k/ or qmin

i .k/
¯ (3)

represents a distribution of the reactive power on the inverter network. Any distribution x 2 Xc is
such that for any i 2 I either xi D qmax.k/ when QD > 0, xi D qmin.k/ when QD < 0; or
if qmin

i .k/ < xi < qmax
i .k/, it must be the case that all neighboring inverters j 2 Ni such that

qmin
j .k/ < xj < qmax

j .k/ have the same reactive power levels as inverter i . In Xc , if xj D qmax
j .k/

when QD > 0 for j 2 Ni , then xj 6 xi ; if xj D qmin
j .k/ when QD < 0 for j 2 Ni , then
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xj > xi . Notice that when x.k/ 2 Xc , there is only one reactive power passing strategy that
satisfies conditions (a1)–(a3), that is, ˛i!jj D 0 for all i 2 I. Recall that for all x 2 X , there
exists a subset of inverters with unsaturated reactive power, denoted by U.k/. For any x 2 Xc ,
the subset U.k/ is not unique, and the specific equalized reactive power levels of inverters in this
subset are not always known as a priori or at any point before the set Xc is achieved. The set
U.k/ and the equalized reactive power levels emerge while the reactive power is distributed over
the inverters.

3.1.3. Emergence of inverter islands. According to the definition of Xc , it is possible that inverters
in the subset U.k/ are isolated (by the inverters with saturated reactive power) and have dif-
ferent reactive power levels. This could occur, for instance, if two inverters with high reactive
power levels are separated by an inverter with saturated reactive power, that is, xi�1.k/ ¤ xiC1,
xi .k/ D qmax

i .k/, and xi .k/ 6 min¹xi�1.k/; xiC1.k/º. Hence, depending on the graph’s topology,
there could be isolated “islands” of inverters of which the reactive power does not reach the bounds,
where only inverters belong to the same island have the same reactive power level. Moreover, notice
that the formation of inverter islands depends on the total reactive power, their initial distribution
x.0/, and the changes of environmental conditions, that is, qmax

i .k/ and qmin
i .k/.

3.1.4. Stability analysis. Let us consider the reactive power distribution defined by Equation (3).
As discussed previously, the invariant set consists of many elements that represent different reactive
power distributions, and some distributions can lead to saturated reactive power on certain inverters
(i.e., reactive power of that inverter hits the bounds). The next theorem shows that under certain
situations, there is no inverter with saturated reactive power, and the distribution represented by the
invariant set is unique.

Lemma 1 (Uniform distribution, unsaturated reactive power, uniqueness of invariant set)
If qmax

i and qmin
i are consistent with time k and the total amount reactive power satisfies

N maxi¹qmin
i º < QD < N mini¹qmax

i º, then the invariant set Xc satisfies jXcj D 1, and the invariant
set Xc is simplified to Xc D ¹x 2 X W for all i 2 I; xi .k/ D xj .k/ for all .i; j / 2 Aº.

Proof
See Appendix A. �

Lemma 1 implies the conditions under which there is no inverter with saturated reactive power
(i.e., no inverter’s reactive power hits the bounds) and the uniqueness of the invariant set. All invert-
ers will eventually have the same reactive power level, and the reactive power level only depends
on the number of inverters N and the total desired reactive powerQD . Then, the following analysis
considering inverter reactive power bounds is restricted to the following scenario:

Assumption 1 (Complete graph, consistent inverter constraints, saturated reactive power)
(i) The graph G D .I;A/ is fully connected.

(ii) The environmental conditions of inverters are consistent, that is, qmax
i and qmin

i are time-
invariant for all i 2 I.

(iii) The total amount reactive powerQD satisfies eitherN mini¹qmax
i º < QD <

PN
iD1 q

max
i for

QD > 0 or
PN
iD1 q

min
j < QD < N maxi¹qmin

j º for QD < 0.

Assumption 1 (i) indicates a complete graph in which every node is connected to other nodes; (ii)
guarantees the bounds of reactive power for each inverter are fixed and known; (iii) is the condition
such that the reactive power of certain inverters in the network will eventually reach either the
lower bound or upper bound, but QD is less than the greatest total reactive power capability of the
entire system.
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Lemma 2 (Complete graph, uniqueness of invariant set)
With conditions (i) and (ii) of Assumption 1 and any total amount of reactive power such thatPN
iD1 q

min
i < QD <

PN
iD1 q

max
i , the invariant set Xc satisfies jXc j D 1.

Proof
See Appendix A. �

Lemma 2 implies that for a fully connected graph topology, there are no isolated inverters with
different reactive power levels. The full connectivity of the inverters leads to reactive power equal-
ization across all inverters with unsaturated reactive power and the emergence in some cases (i.e.,
the cases given by condition (iii) of Assumption 1) of a set of inverters with saturated reactive power.

Lemmas 1 and 2 studied the characteristics of the invariant set Xc that represents the reactive
power distribution for different total reactive power amount and connectivity topologies of the net-
work. We now focus on the analysis of inverters approaching this set especially for the case that
some inverters have saturated reactive power.

Theorem 1 (Complete graph, emergence of saturated inverters, asymptotic stability in large)
With Assumption 1 and the reactive power passing strategies (a1)–(a3), the invariant set Xc is
asymptotically stable in large.

Proof
See Appendix A. �

Theorem 1 considers the inverters with saturated reactive power and studies the stability proper-
ties of the invariant set. With the reactive power passing conditions (a1)–(a3), Theorem 1 indicates
on a complete graph for the total reactive power QD that satisfies Assumption 1 the reactive power
distribution will eventually end in the invariant set Xc , that is, the reactive power of some inverters is
saturated at the bounds and other inverters equalize the reactive power level. We now assume more
restrictive reactive power passing conditions in order to study the rate of convergence to the desired
distribution. In particular, we assume

Assumption 2 ((Rate of occurrence))
Every B time steps, there is the occurrence of the reactive power passing behaviors that are defined
by conditions (a1)–(a3) for every inverter.

Then, the following theorem is derived.

Theorem 2 (Complete graph, emergence of saturated inverters, exponential stability)
With Assumptions 1 and 2, and the reactive power passing strategies defined by conditions (a1)–
(a3), the invariant set Xc is exponentially stable in large.

Proof
See Appendix A. �

3.2. Optimally distributed reactive power

Multiple capability-limited inverters in the network can cooperatively generate a large amount of
desired reactive power for the grid with the uniformly distributed reactive power balancing con-
ditions. Such conditions aim at achieving an equalized reactive power level on all inverters in the
system. Under some circumstances, the inverter constraints confine the reactive power of certain
inverters below the the equalized reactive power level of others when QD > 0 (above the equalized
reactive power level of others when QD < 0). We now modify the reactive power balancing con-
ditions to consider the optimality of the allocation of reactive power on inverters. We focus on an
optimally allocated reactive power profile that can achieve a maximum total “safety margin” of the
entire system. We now investigate the reactive power balancing conditions for such optimal reactive
power allocation strategies. Consider a PV inverter network of which the communication network is
defined by a directed graph G D .I;A/. The optimization problem is represented by Equation (4).
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min � sT D �
NX
iD1

2
64Ci �

q
P 2i C x

2
i

3jV j

3
75

s:t: h.x/ D
NX
iD1

xi �QD D 0

gi .xi / D xi �

q
9jV j2C 2i � P

2
i 6 0; i D 1; : : : ; N

giCN .xi / D �xi �

q
9jV j2C 2i � P

2
i 6 0; i D 1; : : : ; N

(4)

The optimal solutions of Equation (4) are represented as follows (the derivation of the optimal
solutions is beyond the scope of this paper):

� If max
i2I

´
�
q
9jV j2C2

i
�P 2
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Pi

P
i2I
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μ
6 QD 6 min
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μ
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optimal reactive power is
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μ
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where we assume that all inverters are sorted in a sequence such that
qmax
1

P1
6 qmax

2

P2
6 : : : 6 qmax

N

PN
,

and the number r , which is the number of inverters with saturated reactive power, is given by

r D arg min

´
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#
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where we assume that all inverters are sorted in a sequence such that
qmin
1

P1
> qmin

2

P2
> : : : > qmin

N

PN
,

and the number t , which is the number of inverters with saturated reactive power, is given by

t D arg min

´
t W

PiPN
iDtC1 Pi

"
QD �

tX
iD1

qmin
i

#
> qmin

i ; i D t C 1; : : : ; N

μ
(9)

We still focus on the same simplex � D ¹x 2 RN W
PN
iD1 xi D QDº and assume QD is constant

and known. In order to develop a class of passing strategies for the optimally allocated reactive
power, we rewrite Equation (5) as

x�i
Pi
D

QDP
i2I Pi

(10)
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Equation (10) implies that the ratio of optimally allocated reactive power to the active power of all
inverters with unsaturated reactive power is equal to the ratio of total reactive power to the total
active power. Hence, the reactive power passing conditions are now modified based on xi

Pi
instead

of the reactive power xi .

3.2.1. Reactive power passing strategies. In order to achieve a maximum “safety margin” of the
system, the reactive power passing strategies are based on the equalization of the ratio of reactive
power to the active power for each inverter. Also, because of the different capabilities of different
inverters, it is possible to have some inverters with saturated reactive power at the bounds in the
system. By taking these factors into account and assuming that the reactive power being passed
between inverter is capacitive (negative) when QD > 0 (inductive when QD < 0), the following
conditions define a class of optimally allocated reactive power passing strategies for inverter i at
time k with the considerations of inverter bounds. When QD > 0, we assume that inverters can
only pass capacitive reactive power between each other.

(b1) ˛i!ji D 0, if 1
Pi .k/

xi .k/ �
1

Pj .k/
xij .k/ > 0 or if xi .k/ D qmax

i .k/;

(b2) 1
Pi .k/

"
xi .k/�

P
¹j Wj2Ni º

˛
i!j
i

#
6 min

°
1

Pj .k/

h
xij .k/C ˛

i!j
i

i
; 1
Pi .k/

h
qmax
i .k/C ˛

i!j
i

i±
;

8 j 2 Ni such that 1
Pi .k/

xi .k/ �
1

Pj .k/
xij .k/ < 0 ;

(b3) If ˛i!ji <0 for some j , then ˛i!j
�

i 6�ij� max

²
2ŒPj� .k/xi .k/�Pi .k/x

i
j�
.k/�

Pi .k/CPj� .k/
;
�
xi .k/ � q

max
i

�³

where j � D arg max
j 0

²
xi
j 0
.k/

Pj 0 .k/
W j 0 2 Ni

³
;

The conditions of QD < 0 are symmetric to the conditions of QD > 0, which are not presented
here. Condition (b1) indicates that inverter i will not pass any capacitive reactive power to its neigh-
boring inverter j if its reactive power perception about inverter j is optimally greater than its own
reactive power, that is, if the ratio of reactive power to the active power of inverter i is greater than
the corresponding ratio of inverter j , inverter i will not increase the reactive power level of itself
to decrease the reactive power level of inverter j . Also, inverter i will not pass any capacitive reac-
tive power to its neighboring inverters if the reactive power of inverter i reaches the upper bound,
that is, inverter i cannot take more inductive reactive power for this case. Condition (b2) limits the
amount of capacitive reactive power that inverter i can pass to its neighbor nodes then limits the
increase of the reactive power level of inverter i . It indicates that after the reactive power transfer
the ratio of reactive power to active power of inverter i must not be higher than the corresponding
ratio of any of its neighbor inverters or the ratio of reactive power upper bound to active power of
itself. This condition excludes the oscillation of reactive power between inverters. Condition (b3)
implies that if inverter i is not optimally balanced with all of its neighbors, then it must pass some
non-negligible amount of capacitive reactive power to the neighboring inverter with maximum opti-
mal reactive power level. Meanwhile, the reactive power of inverter i is guaranteed not to exceed
the upper bound. Condition (b3) is derived from

1

2

�
1

Pi .k/
˛
i!j�

i C
1

Pj�.k/
˛
i!j�

i

�
6 �ij�

�
1

Pi .k/
xi .k/ �

1

Pj�.k/
xj�.k/

�
(11)

where j � D arg min
j 0

²
xi
j 0
.k/

Pj 0 .k/
W j 0 2 Ni

³
. Equation (11) directly implies that

˛
i!j�

i 6 2�ij�
Pj�.k/xi .k/ � Pi .k/x

i
j�.k/

Pi .k/C Pj�.k/
(12)

3.2.2. Distribution of optimal reactive power. The state equation of xi with the reactive power
passing conditions (b1)–(b3) is same as the one given by Equation (2). Let X D � be the set of
states and x.k/ D Œx1.k/; : : : ; xN .k/�

> 2 X be the state vector, with xi .k/ the reactive power of
inverter i at time k > 0. Then, the set
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Xd D
²
x 2 X W for all i 2 I; either

xi .k/

Pi .k/
D
xj .k/

Pj .k/
for all .i; j / 2 A such that

qmin
i .k/ < xj .k/ < q

max
i .k/;

xi .k/

Pi .k/
>
xj .k/

Pj .k/
for all .i; j / 2 A such that

xj .k/ D q
max
j .k/; and

xi .k/

Pi .k/
<
xj .k/

Pj .k/
for all .i; j / 2 A such that

xj .k/ D q
min
j .k/I or xi .k/ D q

max
i .k/ or qmin

i .k/

³
(13)

represents a distribution of the reactive power on the inverter network. Any distribution x 2 Xd
is such that for any i 2 I either xi D qmax.k/ when QD > 0, xi D qmin.k/ when QD < 0;
or if qmin

i .k/ < xi < qmax
i .k/, it must be the case that all neighboring inverters j 2 Ni such

that qmin
j .k/ < xj < qmax

j .k/ have the same ratio of reactive power to active power as inverter
i . In Xc , if xj D qmax

j .k/ when QD > 0 for j 2 Ni , then 1
Pj
xj 6 1

Pi
xi ; if xj D qmin

j .k/

when QD < 0 for j 2 Ni , then 1
Pj
xj > 1

Pi
xi . Notice that when x.k/ 2 Xd , there is only

one reactive power passing strategy that satisfies conditions (b1)–(b3), that is, ˛i!jj D 0 for all
i 2 I. Similar to the uniformly distributed reactive power case, for any x 2 Xd , according to
the definition of Xd , it is possible that inverters in the subset U.k/ are isolated (by the inverters
with saturated reactive power) and have different optimal reactive power levels, that is, the ratio of
reactive power to active power. Hence, there could be isolated “islands” of inverters in the network.
The formation of inverter islands depends on the total reactive power, their initial distribution, the
active power of each inverter, and the constraints on reactive power of each inverter, that is, qmax

i

and qmin
i .

Let us consider the reactive power distribution defined by Equation (13). The invariant set con-
sists of many elements that represent different optimal reactive power distributions, and some
distributions can lead to saturated reactive power on certain inverters (i.e., reactive power of
that inverter hits the bounds). The next lemma shows that under certain situations, there is
no inverter with saturated reactive power, and the distribution represented by the invariant set
is unique.

Lemma 3 (Optimal distribution, unsaturated reactive power, uniqueness of invariant set)
If Pi , qmax

i and qmin
i are consistent with time k for all i and the total amount reactive power satis-

fies maxi
°
qmin
i

Pi

±
< QDPN

iD1 Pi
< mini

°
qmax
i

Pi

±
, then the invariant set Xd satisfies jXd j D 1, and the

invariant set Xd is simplified to Xd D ¹x 2 X W for all i 2 I; 1
Pi
xi .k/ D

1
Pj
xj .k/ for all .i; j /

2 Aº.

Proof
See Appendix A. �

Lemma 3 implies the conditions under which there is no inverter with saturated reactive power
(i.e., no inverter’s reactive power hits the bounds) and the uniqueness of the invariant set. All invert-
ers will eventually have the same ratio of reactive power to active power, and the equalized ratio of
reactive power to active power only depends on the total active power

PN
iD1 Pi and the total desired

reactive power QD .
Next, let us assume a complete graph topology (i.e., every inverter connects to every other

inverter). By adding assumption, we can loose the assumption on QD , then we have the
following theorem:

Lemma 4 (Optimal distribution, complete graph, uniqueness of invariant set)
For a fully connected graph .I;A/ and any total amount of reactive power such that

PN
iD1 q

min
i <

QD <
PN
iD1 q

max
i , the invariant set Xd satisfies jXd j D 1.
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Proof
See Appendix A. �

Lemma 4 implies that for a fully connected graph topology, there is no isolated inverters with dif-
ferent reactive power to active power ratios. The full connectivity of the inverters leads to reactive
power to active power ratio equalization across all inverters with unsaturated reactive power and the
emergence (in some cases) of a set of inverters with saturated reactive power. Lemmas 3 and 4 stud-
ied the characteristics of the invariant set Xd that represents the optimal reactive power distribution
for different total reactive power amount and connectivity topologies of the network. We now focus
on the analysis of inverters approaching this set.

3.2.3. Stability analysis. Let us now consider again a general graph topology .I;A/ and assume
that every inverter is connected to the graph, but not every inverter connects to every other inverter.
Also, we assume that the environmental conditions of the system are consistent with time k, that is,
Pi , qmax

i and qmin
i are time-invariant.

Theorem 3 (Optimal distribution, asymptotic stability in large)
Given .I;A/ and the reactive power passing strategies (b1)–(b3), there exists a constant QD such

that the total desired reactive power QD satisfies maxi
°
qmin
i

Pi

±
< QDPN

iD1 Pi
< mini

°
qmax
i

Pi

±
, then the

invariant set Xd is asymptotically stable in large.

Proof
See Appendix A Because Xd is asymptotically stable in large, there is only one equilibrium dis-

tribution for each total amount reactive power QD which satisfies maxi
°
qmin
i

Pi

±
< QDPN

iD1 Pi
<

mini
°
qmax
i

Pi

±
. Thus, for any initial reactive power distribution, this equilibrium can be achieved. �

We now assume more restrictive reactive power passing conditions in order to study the rate of
convergence to the desired distribution. In particular, we assume

Assumption 3 (Rate of occurrence)
Every B time steps, there is the occurrence of the reactive power passing behaviors that are defined
by conditions (b1)–(b3) for every inverter.

Then, the following theorem is derived:

Theorem 4 (Optimal distribution, exponential stability)
Given .I;A/ and the reactive power passing strategies (b1)–(b3), there exists a constant QD such

that the total desired reactive power QD satisfies maxi
°
qmin
i

Pi

±
< QDPN

iD1 Pi
< mini

°
qmax
i

Pi

±
, then with

Assumption 3, the invariant set Xd is exponentially stable in large.

Proof
See Appendix A. �

It is shown in Theorems 3 and 4 the stability characteristics of the optimal reactive power
distribution Xd with assumptions on the total amount of reactive power of the system. We
now consider the stability of Xd for a more general QD but with the assumption of a
complete graph.

Theorem 5 (Optimal distribution, complete graph, emergence of saturated inverters, asymptotic
stability in large)
For a fully connected graph .I;A/, any total amount of reactive power that satisfies

PN
iD1 q

min
i <

QD <
PN
iD1 q

max
i , and the reactive power passing strategies (b1)–(b3), the invariant set Xd is

asymptotically stable in large.
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Proof
See A. Because we do not have the same restriction on QD as the one in Theorem 3, there can
be some inverters with saturated reactive power in the network. However, Lemma 4 indicates the
uniqueness of Xd for a fully connected graph. Then, any initial reactive power distribution will
eventually converge to the unique equilibrium Xd . The rate of the convergence to Xd with
Assumption 3 for this case is given by the following theorem: �

Theorem 6 (Optimal distribution, complete graph, emergence of saturated inverters, exponential
stability)
For a fully connected graph .I;A/, any total amount of reactive power that satisfies

PN
iD1 q

min
i <

QD <
PN
iD1 q

max
i , and the reactive power passing strategies (b1)–(b3), with Assumption 3 the

invariant set Xd is exponentially stable in large.

Proof
See Appendix A. �

4. SIMULATION: A CASE STUDY

Now, let us aim at a sample 1.5 MW grid-connected PV system with PV inverter network consisting
of 8 PV inverters. These PV inverters are two different types of inverters. The required data of these
inverters for the case study is shown in Table I. In order to distinguish each inverter from the others,
we index these inverters from 1 to 8. Specifically, we index all five type 1 inverters to be inverters
1, 2, 4, 6, and 7; index all three type 2 inverters to be inverter 3, 5, and 8. Hence, Ci D 301 A for
i D 1; 2; 4; 6; 7 andCi D 121A for i D 3; 5; 8. The nominal output voltage magnitude is 480 V AC,
line to line. Then, jV j D 480=

p
3 D 277:1V. Here, we only investigate the ring topology shown in

Figure 2 for the case that the reactive power is optimally distributed among all of the inverters for
a maximized “safety margin”. The optimal solutions indicate an equalized ratio between reactive
power and active power. So we will focus on the ratio instead of the value of reactive power. For the
optimal reactive power distribution, we consider a case that likely occurs for large-scale PV systems:
the partially shaded conditions. We assume that the solar panels of all type 1 inverters are partially
shaded by heavy clouds such that they have 0.1 solar irradiation. Also, we assume that the solar
panels of inverter 5 (which is type 2 inverter) has a 0.1 solar irradiation profile as well. Inverters 3
and 8 have the same 0.9 solar profile. The output active power of each inverter is

Pi D 0:1P
max
i D 0:1 � 250 D 25 kW; for i D 1; 2; 4; 6; 7

Pi D 0:1P
max
i D 0:1 � 100 D 10 kW; for i D 5

Pi D 0:9P
max
i D 0:9 � 100 D 90 kW; for i D 3; 8

(14)

Based on the active power given in Equation (14), the limits of reactive power of each inverter are

qmin
i D �

q
9jV j2C 2i � P

2
i D �248:99 kVar; qmax

i D �qmin
i D 248:99 kVar; i D 1; 2; 4; 6; 7

qmin
i D �

q
9jV j2C 2i � P

2
i D �100:1 kVar; qmax

i D �qmin
i D 100:1 kVar; i D 5

qmin
i D �

q
9jV j2C 2i � P

2
i D �44:94 kVar; qmax

i D �qmin
i D 44:94 kVar; i D 3; 8

(15)

Table I. Data of the inverters in the sample grid-connected PV system.

Type 1 inverter Type 2 inverter

Maximum output power 250 kW 100 kW
Nominal output voltage 480 V 480 V (AC, line to line)
Nominal output current 301 A 121 A
Nominal output frequency 60 Hz 60 Hz
Number of inverters 5 3
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Figure 2. The ring topology of the communication system of the DC–AC inverter network.

Figure 3. The ratio of optimally distributed reactive power to active power with saturated inverters for a ring
connection topology. The solid line of each subplot: the ratio of reactive power to active power; the dashed

line of each subplot: the ratio of reactive power lower bound to active power.

Then, the ratio of reactive power lower bound to active power and the ratio of reactive power upper
bound to active power for each inverter are

qmin
i

Pi
D
�248:99

25
D �9:9596;

qmax
i

Pi
D �

qmin
i

Pi
D 9:9596; for i D 1; 2; 4; 6; 7

qmin
i

Pi
D
�100:1

10
D �10:01;

qmax
i

Pi
D �

qmin
i

Pi
D 10:01; for i D 5

qmin
i

Pi
D
�44:94

25
D �0:4993;

qmax
i

Pi
D �

qmin
i

Pi
D 0:4993; for i D 3; 8

(16)

The total desired reactive power is stillQD D �200 kVar for this case, and the ratio of total reactive
power to total active power is
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Figure 4. The ratio of optimally distributed reactive power to active power with saturated inverters for a fully
connected graph. The solid line of each subplot: the ratio of reactive power to active power; the dashed line

of each subplot: the ratio of reactive power lower bound to active power.

QDPN
iD1 Pi

D
�200

25 � 5C 90 � 2C 10
D �

200

315
D �0:6349 (17)

Hence, Lemma 3 is not satisfied for this case, and there are saturated inverters in the system (which
are inverters 3 and 8). Figure 3 shows the reactive power balancing (to have an equalized ratio) for
partially shaded conditions with a ring topology of the system. It indicates that due to the saturated
inverters 3 and 8, inverters 1 and 2 have an equal ratio of the reactive power to active power while
inverters 4–7 have a different equalized ratio. This is because saturated inverters 3 and 8 isolate them
to form two islands. In order to avoid the emergence of inverter islands, a fully connected graph is
used. Figure 4 shows that the ratio of reactive power to active power of all unsaturated inverters are
equal for a fully connected graph.

5. CONCLUSIONS

In this paper, a distributed reactive power control based on balancing strategies is proposed for
the grid-connected PV inverter network. Reactive power balancing strategies are designed for uni-
form reactive power distribution and optimal reactive power distribution. Invariant sets are defined
to denote the desired reactive power distributions. By using the proposed reactive power balancing
strategies, the invariant sets are mathematically proved to be asymptotically stable and exponentially
stable under certain assumptions. Simulation results are derived from a case study for both reactive
power distributions by considering different initial conditions to validate the reactive power bal-
ancing control. Because the control strategies proposed in this paper is generic without considering
specific systems where the grid-connected PV inverter network works, one possible future research
direction is the distributed control development for PV inverter network in certain systems such as
the distribution systems.
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APPENDIX A: PROOFS OF THEOREMS

Proof of Lemma 1
If qmax

i and qmin
i are consistent with time k, and if N maxi¹qmin

i º < QD < N mini¹qmax
i º, for any

x 2 Xc , we have xi D QD=N , which implies that qmin
i < xi < qmax

i for all i 2 I, that is, the
reactive power of all inverters will not saturate at the bounds. Because we assume QD is constant,
there is only one reactive power level for all inverters, that is, QD=N . Hence, we conclude that
jXcj D 1.

Proof of Lemma 2
With fixed qmax

i and qmin
i for all i 2 I (as indicated by condition (ii) of Assumption 1), if

N maxi¹qmin
i º < QD < N mini¹qmax

i º, this leads to the case of 1; if N mini¹qmax
i º < QD <PN

iD1 q
max
i for QD > 0, or

PN
iD1 q

min
j < QD < N maxi¹qmin

j º for QD < 0, the reactive power of
some inverters saturate at the bounds. If in addition we assume a complete graph, that is, the case
given by condition (i) of Assumption 1, there are no “isolated” inverters because of some saturated
inverters. The unsaturated inverters are connected together and have the same reactive power level.
Moreover, if we assume there are r < N number of saturated inverters (this number depends onQD ,
qmax
i , and qmax

i ), then we know that the inverters with saturated reactive power are the first r inverters
in the sequence such that qmax

1 6 qmax
2 6 : : : 6 qmax

N for QD > 0 and qmin
1 > qmin

2 > : : : > qmin
N for

QD < 0. The unsaturated inverters have the same reactive power level .QD �
Pr
iD1 xi /=.N � r/.

Proof of Theorem 1
Recall that U is the subset of inverters with unsaturated reactive power and S is the subset of inverters
with saturated reactive power. The terms jU j and jSj denote the numbers of elements in U and S,
that is, the number of inverters with unsaturated reactive power and the number of inverters with
saturated reactive power, respectively.

First, let us consider the case that QD > 0. With Assumption 1, the invariant set becomes

XCc D
®
x 2 X W for all i 2 U ; xi .k/ D xj .k/; for all j 2 U I xi .k/ D qmax

i .k/ for all i 2 S
¯
(18)

Consider the state Nx 2 XCc , define Sc to be the subset of inverters such that for all i 2 Sc , Nxi D qmax
i

and define Uc to be the subset of inverters such that for all i 2 Uc , Nxi < qmax
i . As discussed

previously, we know that for any Nx 2 XCc ,

Nxi D q
max
i ; for all i 2 Sc

Nxi D
1

jUcj

2
4QD �

X
j2Sc

xj

3
5 ; for all i 2 Uc

(19)

and

qmax
i 6 1

jUc j

2
4QD �

X
j2Sc

xj

3
5 ; for all i 2 Sc (20)

Choose

�.x.k/;XCc / D inf

²
max
i2I
¹jxi .k/ � Nxi jº W Nx 2 XCc

³
(21)

and

V.x.k// D max
i2Uc

8<
: 1

jUc j
X
j2Uc

xj .k/ � xi .k/

9=
;C

X
i2Sc

jxi .k/ � q
max
i j (22)

From Equation (19), we know that
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�
�
x.k/;XCc

�
> 1
2

�
max
i2Uc
¹xi .k/º � min

i2Uc
¹xi .k/º

�
(23)

and

�
�
x.k/;XCc

�
6
�

max
i2Uc
¹xi .k/º � min

i2Uc
¹xi .k/º

�
C
X
i2Sc

jxi .k/ � q
max
i j (24)

The reason that Equation (24) holds is as follows:

� At time k, if min
i2Uc
¹xi .k/º 6 Nxi for i 2 Uc , then max

i2Uc
¹xi .k/º�min

i2Uc
¹xi .k/º > max

i2Uc
¹jxi .k/� Nxi jº.

It is obvious that Equation (24) holds;
� At time k, if min

i2Uc
¹xi .k/º > Nxi for i 2 Uc , then max

i2Uc
¹xi .k/º�min

i2Uc
¹xi .k/º 6 max

i2Uc
¹jxi .k/� Nxi jº.

However, max
i2Uc
¹xi .k/º � min

i2Uc
¹xi .k/º C

P
i2Sc
jxi .k/ � q

max
i j > max

i2Uc
¹jxi .k/ � Nxi jº, because for

this case max
i2Uc
¹jxi .k/ � Nxi jº 6

P
i2Sc
jxi .k/ � q

max
i j for i 2 Uc , that is, the maximum difference

between xi .k/ and the final equalized reactive power level of inverter i 2 Uc is less than the
total difference between current reactive power levels and the final saturated reactive power
levels of inverters in the subset Sc . In other words, because min

i2Uc
¹xi .k/º > Nxi for i 2 Uc ,

all inverters in the subset of Uc will decrease their reactive power levels to the final equalized
level by passing reactive power to inverters in the subset of Sc with the reactive power passing
strategies (a1)–(a3). Hence, max

i2Uc
¹xi .k/º�min

i2Uc
¹xi .k/ºC

P
i2Sc
jxi .k/�q

max
i j > max

i2Uc
¹jxi .k/� Nxi jº

implies Equation (24).

Equation (22) implies that

V.x.k// D
1

jUcj
X
j2Uc

xj .k/ � min
i2Uc
¹xi .k/º C

X
i2Sc

jxi .k/ � q
max
i j

6 max
i2Uc
¹xi .k/º � min

i2Uc
¹xi .k/º C

X
i2Sc

jxi .k/ � q
max
i j

(25)

Equation (23) implies that

2�.x.k/;XCc / > max
i2Uc
¹xi .k/º � min

i2Uc
¹xi .k/º

2�.x.k/;XCc /C
X
i2Sc

jxi .k/ � q
max
i j > max

i2Uc
¹xi .k/º � min

i2Uc
¹xi .k/º C

X
i2Sc

jxi .k/ � q
max
i j

(26)

We also know that

�.x.k/;XCc / > max
i2Sc
¹jxi .k/ � q

max
i jº

jSc j�.x.k/;Xc/ > jSc jmax
i2Sc
¹jxi .k/ � q

max
i jº >

X
i2Sc

jxi .k/ � q
max
i j

(27)

Hence, we obtain from Equations (25)–(27) that

V.x.k// 6max
i2Uc
¹xi .k/º � min

i2Uc
¹xi .k/º C

X
i2Sc

jxi .k/ � q
max
i j

6.2C jSc j/�.x.k/;XCc /
(28)

Notice that

1

jUcj
X
j2Uc

xj .k/ >
1

jUcj

�
max
i2Uc
¹xi .k/º C .jUc j � 1/min

i2Uc
¹xi .k/º

�
(29)
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Combining Equations (25) and (29), we obtain

V.x.k// > 1

jUcj

�
max
i2Uc
¹xi .k/º C .jUc j � 1/min

i2Uc
¹xi .k/º

�
� min
i2Uc
¹xi .k/º C

X
i2Sc

jxi .k/ � q
max
i j

D
1

jUcj

�
max
i2Uc
¹xi .k/º � min

i2Uc
¹xi .k/º

�
C
X
i2Sc

jxi .k/ � q
max
i j

D
1

jUcj

2
4max
i2Uc
¹xi .k/º � min

i2Uc
¹xi .k/º C jUcj

X
i2Sc

jxi .k/ � q
max
i j

3
5

> 1

jUcj
�
�
x.k/;XCc

�
(30)

Hence, Equations (25) and (30) imply that

1

jUc j
�
�
x.k/;XCc

�
6 V.x.k// 6 .2C jSc j/�

�
x.k/;XCc

�
(31)

Thus,

� For c1 D 1
2

�
max
i2Uc
¹xi .k/º � min

i2Uc
¹xi .k/º

�
> 0, it is possible to find a c2 D

1
jUc j

�
max
i2Uc
¹xi .k/º � min

i2Uc
¹xi .k/º

�
> 0 such that V.x.k// > c2 and �.x.k/;XCc / > c1;

� For c3 D

�
max
i2Uc
¹xi .k/º � min

i2Uc
¹xi .k/º

�
C

P
i2Sc

ˇ̌
xi .k/ � q

max
i

ˇ̌
> 0, it is possible to find a

c4 D .2C jSc j/c3 such that when �.x.k/;XCc / 6 c3, we have V.x.k// 6 c4;
� The function V.x.k// is non-increasing with the reactive power passing strategies (a1)–(a4).

The reasons are as follow:

– At time k, if min
i2Uc
¹xi .k/º 6 Nxi for i 2 Uc , then the average reactive power level

1
jUc j

P
j2Uc

xj .k/ tends to decrease to Nxi because of the capacitive reactive power passed from

the inverters in the subset of Sc . Also, because min
i2Uc
¹xi .k/º 6 Nxi , the inverter with the

reactive power of min
i2Uc
¹xi .k/º tends to pass capacitive reactive power to others to increase

its reactive power level that makes min
i2Uc
¹xi .k/º increase and �min

i2Uc
¹xi .k/º decrease, or

min
i2Uc
¹xi .k/º can decrease because of some capacitive reactive power it receives from invert-

ers in the subset of Sc . However, the reactive power increase of some inverters in the subset of
Sc cancels the decrease of min

i2Ic
¹xi .k/º. Now consider the term

P
i2Sc

ˇ̌
xi .k/ � q

max
i

ˇ̌
. Because

we assume the graph is complete, that is, each inverter (node) in the graph is fully connected
to other inverters, and Nxi > Nxj for i 2 Ic and j 2 Sc , then

P
i2Sc

ˇ̌
xi .k/ � q

max
i

ˇ̌
tends to

decrease because of the capacitive reactive power that the inverters in the subset Sc passes to
inverters in the subset of Uc , that is, inverters in the subset Sc tends to increase their reactive
power levels.

– At time k, if min
i2Uc
¹xi .k/º > Nxi for i 2 Uc , it is possible that min

i2Uc
¹xi .k/º decreases and

�min
i2Uc
¹xi .k/º increases. However, for this case, all inverters in the subset of Uc receives

capacitive power from inverters in the subset of Sc , then the decrease of min
i2Uc
¹xi .k/º is

not greater than the decrease of
P
i2Sc

ˇ̌
xi .k/ � q

max
i

ˇ̌
. Hence, the function V.x.k// is non-

increasing.

� Furthermore, with the reactive power passing strategies defined by (a1)–(a3) V.x.k//! 0 as
k ! 0 for all x.k/ 2 X .
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Then, we conclude that with the reactive power passing strategies defined by conditions
(a1)–(a3), the invariant set XCc D

®
x 2 X W for all i 2 U ; xi .k/ D xj .k/; for allj 2 U I xi .k/ D

qmax
i .k/ for all i 2 S

¯
is asymptotically stable in large. Similarly, we can also prove that the invari-

ant set X�c D
®
x 2 X W for all i 2 U ; xi .k/ D xj .k/; for all j 2 U I xi .k/ D qmin

i .k/ for all i 2 S
¯

is asymptotically stable in large for the case that QD < 0. Hence, the invariant set Xc is
asymptotically stable in large.

Proof of Theorem 2
First, let us consider the case that QD > 0. With Assumption 1, the invariant set becomes XCc that
is given in Equation (18). We choose �.x.k/;XCc / the same as the one in Equation (21) and the
Lyapunov function

V.x.k// D max
i2Uc

8<
:xi .k/ � 1

jUc j
X
j2Uc

xj .k/

9=
;C 1

jUcj
X
i2Sc

jxi .k/ � q
max
i j (32)

Equation (24) is rewritten as

�.x.k/;XCc / 6
�

max
i2I
¹xi .k/º � min

i2Uc
¹xi .k/º Cmax

i2Sc
jxi .k/ � q

max
i j

�
(33)

Equation (33) holds because

� it is obvious that max
i2Sc

ˇ̌
xi .k/ � q

max
i

ˇ̌
is identical with max

j2Sc
¹jxj .k/ � Nxj jº.

� Also, it is obvious that min
i2Uc
¹xi .k/º <D

1
jUc j

P
j2Uc

xj .k/, so max
i2I
¹xi .k/º � min

i2Uc
¹xi .k/º >

max
j2Uc
¹jxj .k/ � Nxj jº.

Hence, �.x.k/;XCc / D inf

²
max
i2I
¹jxi .k/ � Nxi jº W Nx 2 XCc

³
6

�
max
i2I
¹xi .k/º �min

i2I
¹xi .k/º

�
.

Equation (32) implies that

V.x.k// D max
i2Uc
¹xi .k/º �

1

jUcj
X
j2Uc

xj .k/C
1

jUcj
X
i2Sc

jxi .k/ � q
max
i j

6 max
i2Uc
¹xi .k/º � min

i2Uc
¹xi .k/º C

X
i2Sc

jxi .k/ � q
max
i j

(34)

Hence, from Equations (26), (27), and (34), we arrive at the same result as Equation (28), that is,
V.x.k// 6 .2C jSc j/�.x.k/;XCc /. Similar to Equation (30), we obtain

V.x.k// >max
i2Uc
¹xi .k/º �

1

jUc j

�
.jUc j � 1/max

i2Uc
¹xi .k/º C min

i2Uc
¹xi .k/º

�
C

1

jUcj
X
i2Sc

jxi .k/ � q
max
i j

D
1

jUc j

�
max
i2Uc
¹xi .k/º � min

i2Uc
¹xi .k/º

�
C

1

jUcj
X
i2Sc

jxi .k/ � q
max
i j

D
1

jUc j

2
4max
i2Uc
¹xi .k/º � min

i2Uc
¹xi .k/º C

X
i2Sc

jxi .k/ � q
max
i j

3
5

> 1

jUc j
�
�
x.k/;XCc

�
(35)

Hence, we have

1

jUcj
�
�
x.k/;XCc

�
6 V.x.k// 6 .2C jSc j/�

�
x.k/;XCc

�
(36)
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Let � D min
i;j2I
¹�ij º. For any i 2 I and k > 0, we know from condition (a2) that if the reactive

power passing occurs for inverter i , and if ˛i!ji < 0, then ˛i!ji 6 �
h
xi .k/ � x

i
j .k/

i
. We have

xi .k C 1/ 6 xij .k/C �
h
xi .k/ � x

i
j .k/

i
for j 2 Ni . If the reactive power passing does not occur

or ˛i!ji D 0, then xi .k C 1/ D xi .k/. It follows that in any case,

xi .k C 1/ 6 max
i2I
¹xi .k/º C �

�
xi .k/ �max

i2I
¹xi .k/º

�
; 8 i 2 I (37)

Because Nxi > max
j2Sc
¹qmax
j º for i 2 Uc , max

i2Uc
¹xi .k/º > max

j2Sc
¹qmax
j º always holds. Then, max

i2I
¹xi .k/º is

a non-increasing function of k. We now show via induction that

xi .k C t / 6 max
i2I
¹xi .k/º C �

t

�
xi .k/ �max

i2I
¹xi .k/º

�
; 8 i 2 I (38)

for all t > 0. When t D 1, Equation (38) is turned to be Equation (37). Now, we assume that
Equation (38) holds for an arbitrary t and show that Equation (38) also holds for the case of t C 1.
According to Equation (37) for any i 2 I at time k C t C 1, we have

xi .k C t C 1/ 6 max
i2I
¹xi .k C t /º C �

�
xi .k C t / �max

i2I
¹xi .k C t /º

�

6 max
i2I
¹xi .k/º C �

�
xi .k C t / �max

i2I
¹xi .k/º

�

6 max
i2I
¹xi .k/º C �

�
max
i2I
¹xi .k/º C �

t

�
xi .k/ �max

i2I
¹xi .k/º

�
�max

i2I
¹xi .k/º

�

6 max
i2I
¹xi .k/º C �

tC1

�
xi .k/ �max

i2I
¹xi .k/º

�
(39)

Thus, Equation (38) must be valid for all t > 0.

� Fix i 2 Uc and k > 0, we now show that reactive power of all neighbors of i are bounded from
above for all k0, k0 > k C B . Specifically, we will show that

xj .k
0/ 6 max

i2I
¹xi .k/º C �

k0�k

�
xi .k/ �max

i2I
¹xi .k/º

�
; 8 k0 > k C B; j 2 Ni (40)

Because we assume a fully connected graph, Equation (40) is turned into

max
i2I

®
xi .k

0/
¯
6 max

i2I
¹xi .k/º C �

k0�k

�
xi .k/ �max

i2I
¹xi .k/º

�
; 8 k0 > k C B; i 2 Uc (41)

There are times kp > k; p 2 ¹1; 2; : : :º such that the reactive power passing occurs for inverter
i , and the reactive power passing does not occur for k0 ¤ kp . We know from Assumption 2 that
k 6 k1 < k C B , kp�1 < kp < kp�1 C B; 8 p 2 ¹2; 3; : : :º. Now let us consider two cases:

– Let us consider a time kp , p 2 ¹1; 2; : : :º, and j 2 Ni such that xj .kp/ > xi .kp/, that is,
at time kp , inverter i passes a non-negligible amount of capacitive reactive power to inverter
j . According to condition (a2), we have

xj .kp/ �
X
r

˛j!rr 6 xr.kp/C ˛j!rr ; 8 r 2 Nj such that xj .kp/ < xr.kp/ (42)

Equation (42) implies that

xj .kp/ �
X
r

˛j!rr 6 xr�.kp/C ˛j!r
�

r� ; for some r 2 ¹r W xr > xr 0 ; 8 r 0 2 Nj º (43)
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From time kp to kp C 1, we have

xj .kp C 1/ D xj .kp/ �
X
r

˛j!rr C
X
r 0

˛
r 0!j
r 0 ;

8 r; r 0 2 Nj such that xj .kp/ < xr.kp/ and xj .kp/ > xr 0.kp/
(44)

As i 2 Nj , that is, inverter i is one of the neighboring inverter of inverter j , and xj .kp/ >
xi .kp/, Equation (44) becomes

xj .kp C 1/ D xj .kp/ �
X
r

˛j!rr C
X
r 0;r 0¤i

˛
r 0!j
r 0 C ˛

i!j
j (45)

Equations (43)–(45) imply that

xj .kp C 1/ 6 xr�.kp/C ˛j!r
�

r� C
X
r 0;r 0¤i

˛
r 0!j
r 0 C ˛

i!j
j (46)

From condition (a3), we know that ˛i!jj 6 �
�
xi .kp/ � xj .kp/

�
for i 2 Uc ; because we

assume a fully connected graph, ˛j!r
�

r� 6 �
�
xj .kp/ � xr�.kp/

�
for j 2 Uc . Thus, by

applying these two equations for Equation (45) and using the fact that
P

r 0;r 0¤i

˛
r 0!j
r 0 6 0,

we obtain

xj .kp C 1/ 6 xr�.kp/C ˛j!r
�

r� C
X
r 0;r 0¤i

˛
r 0!j
r 0 C ˛

i!j
j

6 xr�.kp/C �
�
xi .kp/ � xj .kp/

�
C �

�
xj .kp/ � xr�.kp/

�
D xr�.kp/C �

�
xi .kp/ � xr�.kp/

�
6 max

i2I
¹xi .k/º C �

�
xi .kp/ �max

i2I
¹xi .k/º

�
(47)

By applying Equation (38) to xi .kp/ in Equation (47), we have

xj .kp C 1/ 6 max
i2I
¹xi .k/º C �

�
max
i2I
¹xi .k/º

C�kp�k
�
xi .k/ �max

i2I
¹xi .k/º

�
�max

i2I
¹xi .k/º

�

D max
i2I
¹xi .k/º C �

kp�kC1

�
xi .k/ �max

i2I
¹xi .k/º

� (48)

If we apply Equation (38) to xj with k D kp C 1 and t D k0 � kp � 1, we obtain

xj .k
0/ 6 max

i2I
¹xi .kp C 1/º C �

k0�kp�1

�
xj .kp C 1/ �max

i2I
¹xi .kp C 1/º

�

6 max
i2I
¹xi .k/º C �

k0�kp�1

�
max
i2I
¹xi .k/º C �

kp�kC1 Œxi .k/

�max
i2I
¹xi .k/º

�
�max

i2I
¹xi .k/º

�

D max
i2I
¹xi .k/º C �

k0�k

�
xi .k/ �max

i2I
¹xi .k/º

�
; 8 k0 > kp C 1

(49)

– Let us consider time kp , p 2 ¹1; 2 : : :º, and j 0 2 Ni such that xj 0.kp/ 6 xi .kp/, that is,
inverter i does not pass a non-negligible amount of capacitive reactive power to inverter j 0.
In this case, it is obvious from Equation (38) with k D kp and t D k0 � kp that
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xj 0.k
0/ 6 max

i2I
¹xi .kp/º C �

k0�kp

�
xj .kp/ �max

i2I
¹xi .kp/º

�

6 max
i2I
¹xi .k/º C �

k0�kp

�
xi .kp/ �max

i2I
¹xi .k/º

� (50)

for all k0 > kp . From Equation (38) with t D kp � k, it is also clear that

xi .kp/ 6 max
i2I
¹xi .k/º C �

kp�k

�
xi .k/ �max

i2I
¹xi .kp/º

�
(51)

It follows from Equations (50) and (51) that

xj 0.k
0/ 6 max

i2I
¹xi .k/º C �

k0�kp

�
max
i2I
¹xi .k/º C �

kp�k

�
xi .k/

�max
i2I
¹xi .kp/º

�
�max

i2I
¹xi .k/º

�

D max
i2I
¹xi .k/º C �

k0�k

�
xi .k/ �max

i2I
¹xi .k/º

�
; 8 k0 > kp

(52)

Notice that at each time kp , p 2 ¹1; 2; : : :º, for any i 2 Uc and any j 2 Uc , one of the two cases
shown previously must be valid for a fully connected graph. Also, for certain i 2 Uc and certain
j 2 Uc , one of the two cases must occur every B steps. Hence, if we choose kp D k1 and
k0 > kp , Equations (50) and (52) indicate that Equation (40) is valid for all k0 > kCB , j 2 Ni .
Also, because we assume a fully connected graph and max

i2Uc
¹xi .k

0/º D max
i2I
¹xi .k

0/º, Equation

(40) is turned into Equation (41). As we made no assumptions to the contrary, Equation (41) is
valid for any i 2 Uc . Hence, we can replace xi .k/with min

i2Uc
¹xi .k/º, and Equation (41) becomes

max
i2I
¹xi .k

0/º 6max
i2I
¹xi .k/º C �

k0�k

�
min
i2Uc
¹xi .k/º �max

i2I
¹xi .k/º

�
; 8 k0 > k C B (53)

� Next, fix i 2 Sc and k > 0, similar to the analysis for Equation (38), we obtain from condition
(2a) that

xi .k C t / 6 qmax
i C � t

�
xi .k/ � q

max
i

�
; 8 i 2 Sc (54)

– Similar to the analysis for inverter i 2 Uc , we consider a time kp , p 2 ¹1; 2; : : :º,
and j 2 Ni such that xj .kp/ > xi .kp/, that is, at time kp , inverter i passes a non-
negligible amount of capacitive reactive power to inverter j . Equations (42)–(46) also
apply to j 2 Ni . Because i 2 Sc , according to condition (a3), we know that ˛i!jj 6
� max

®�
xi .kp/ � xj .kp/

�
;
�
xi .kp/ � q

max
i

�¯
� Let us consider the case that

�
xi .kp/ � xj .kp/

�
>

�
xi .kp/ � q

max
i

�
, that is,

xj .kp/ 6 qmax
i . Then, ˛i!jj 6 �

�
xi .kp/ � xj .kp/

�
. Consider j 2 Uc , then

˛
j!r�

r� 6 �
�
xj .kp/ � xr�.kp/

�
, the following analysis is the same as the one for

the case that i 2 Uc , and we directly obtain the same result as Equation (49). As
max
i2I
¹xi .k/º > q

max
i for any i 2 Sc , Equation (49) is turned into

xj .k
0/ 6max

i2I
¹xi .k/º C �

k0�k
�
xi .k/ � q

max
i

�
; 8 k0 > kp C 1 (55)

� Let us consider the case that
�
xi .kp/ � xj .kp/

�
<

�
xi .kp/ � q

max
i

�
, that is,

xj .kp/ > qmax
i . Then, ˛i!jj 6 �

�
xi .kp/ � q

max
i

�
. Consider j 2 Uc , using the fact

that ˛j!r
�

r� 6 0 and
P

r 0;r 0¤i

˛
r 0!j
r 0 6 0 Equation (47) is rewritten as
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xj .kp C 1/ 6 xr�.kp/C ˛i!jj

6 max
i2I
¹xi .k/º C �

�
xi .kp/ � q

max
i

� (56)

By applying Equation (54) to xi .kp/ in Equation (56) with t D kp � k, we arrive at

xj .kp C 1/ 6max
i2I
¹xi .k/º C �

h
qmax
i C �kp�k

�
xi .k/ � q

max
i

�
� qmax

i

i
6max

i2I
¹xi .k/º C �

kp�kC1
�
xi .k/ � q

max
i

� (57)

If we apply Equation (38) to xj with k D kp C 1 and t D k0 � kp � 1, we obtain

xj .k
0/ 6max

i2I
¹xi .kp C 1/º C �

k0�kp�1

�
xj .kp C 1/ �max

i2I
¹xi .kp C 1/º

�

6max
i2I
¹xi .k/º C �

k0�kp�1
h
qmax
i C �kp�kC1

�
xi .k/ � q

max
i

�
� qmax

i

i
Dmax

i2I
¹xi .k/º C �

k0�k
�
xi .k/ � q

max
i

�
; 8 k0 > kp C 1

(58)

– Let us consider time kp , p 2 ¹1; 2; : : : ; º and j 0 2 Ni such that inverter i 2 Sc does not pass
a non-negligible amount of capacitive reactive power to inverter j 0. It is either the case that
xj 0kp < xi .kp/ or xi .kp/ D qmax

i . If it is the case that xj 0kp < xi .kp/, by conducting a
similar analysis to the case that i 2 Uc and xj 0kp < xi .kp/, we can derive the same result as
Equation (58). If it is the case that xi .kp/ D qmax

i , it is obvious that Equation (58) still holds.

As Equation (58) is valid for all j 2 Uc , we have

max
i2Uc
¹xi .k/º 6 max

i2I
¹xi .k/º C �

k0�k
�
xi .k/ � q

max
i

�
; 8 k0 > kp C 1 (59)

Because every B time steps at least one of the two cases discussed previously must occur,
Equation (59) must be valid for all k0 > k C B . Also, because we made no contrary to xi for
any i 2 Sc , Equation (58) is modified to Equation (60):

max
i2Uc
¹xi .k/º 6 max

i2I
¹xi .k/º C �

k0�k min
i2Sc
¹xi .k/ � q

max
i º ; 8 k

0 > k C B (60)

By adding Equation (60) to Equation (53), we obtain

max
i2I
¹xi .k

0/º 6max
i2I
¹xi .k/º C

�k
0�k

2

�
min
i2Uc
¹xi .k/º

�max
i2I
¹xi .k/º C min

i2Sc
¹xi .k/ � q

max
i º

�
; 8 k0 > k C B

(61)

Using the fact that xi .k/ 6 qmax
i for all i 2 Sc , Equation (61) implies that

max
i2I
¹xi .k/º �max

i2I
¹xi .k

0/º

>�
k0�k

2

�
max
i2I
¹xi .k/º � min

i2Uc
¹xi .k/º � min

i2Sc
¹xi .k/ � q

max
i º

�

D
�k
0�k

2

�
max
i2I
¹xi .k/º � min

i2Uc
¹xi .k/º Cmax

i2Sc
jxi .k/ � q

max
i j

�
; 8 k0 > k C B

(62)
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Notice that at any moment max
i2I
¹xi .k/º D max

i2Uc
¹xi .k/º. By applying Equation (32) to V.x.k// and

V.x.k0//, we have

V.x.k// � V.x.k0//

D max
i2I
¹xi .k/º �max

i2I
¹xi .k

0/º �
1

jUcj
X
j2Uc

xj .k/

C
1

jUcj
X
i2Sc

jxi .k/ � q
max
i j C

1

jUcj
X
j2Uc

xj .k
0/ �

1

jUc j
X
i2Sc

ˇ̌
xi .k

0/ � qmax
i

ˇ̌

D max
i2I
¹xi .k/º �max

i2I
¹xi .k

0/º �
1

jUcj
X
j2Uc

xj .k/ �
1

jUcj
X
i2Sc

xi .k/

C
1

jUcj
X
i2Sc

qmax
i C

1

jUc j
X
j2Uc

xj .k
0/C

1

jUcj
X
i2Sc

xi .k
0/ �

1

jUcj
X
i2Sc

qmax
i

(63)

It is obvious that 1
jUc j

P
j2Uc

xj .k/ C
1
jUc j

P
i2Sc

xi .k/ is consistent with time. Hence, by applying

Equation (62) and Equation (33), Equation (63) is turned into

V.x.k// � V.x.k0// D max
i2I
¹xi .k/º �max

i2I
¹xi .k

0/º

>�
k0�k

2

�
max
i2I
¹xi .k/º � min

i2Uc
¹xi .k/º Cmax

i2Sc
jxi .k/ � q

max
i j

�

>�
k0�k

2
�.x.k/;XCc /; 8 k0 > k C B

(64)

Equation (36) indicates that c1�.x.k/;XCc / 6 V.x.k// 6 c2�.x.k/;XCc /, where c1 D 1
jUc j and

c2 D .2 C jSc j/, and Equation (63) indicates that V.x.k// � V.x.k0// > c3�.x.k/;XCc / for all

k0 > k C B , where c3 D
�k
0
�k

2
. It is obvious that c3

c2
2 .0; 1/. Hence, the invariant set XCc is

exponentially stable in large. Similarly, we can prove that the invariant set X�c is exponentially
stable in large for the case whenQD < 0. Hence, with Assumptions 1 and 2, and the reactive power
passing conditions (a1)–(a3) and (b1)–(b3), the invariant set Xc is exponentially stable in large.

Proof of Lemma 3
The proof of Lemma 3 is similar to Lemma 1 and is not presented here.

Proof of Lemma 4
The proof of Lemma 4 is similar to Lemma 2 and is not presented here.

Proof of Theorem 3
The proof of Theorem 3 is similar to Theorem 1 and is not presented here.

Proof of Theorem 4
The proof of Theorem 4 is similar to Theorem 2 and is not presented here.

Proof of Theorem 5
The proof of Theorem 5 is similar to Theorem 1 and is not presented here.

Proof of Theorem 6
The proof of Theorem 6 is similar to Theorem 2 and is not presented here.
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