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Abstract In this paper, an optimal strategy is proposed for the reactive power alloca-
tion in large-scale grid-connected photovoltaic systems. Grid-connected photovoltaic
systems with direct current to alternating current inverters are able to supply active
power to the utility grid as well as reactive power. The active power, extracted by
the direct current to alternating current inverters, is usually controlled to be around
the maximum power point of the photovoltaic array attached to it. For large-scale
grid-connected photovoltaic systems with multiple direct current to alternating cur-
rent inverters, due to the limited apparent power transfer capability of each inverter,
the reactive power needs to be allocated among the direct current to alternating cur-
rent inverters in a proper way. The proposed method achieves the maximum reactive
power transfer capability of the entire system by applying classic Lagrange multiplier
method. The sufficient conditions of the optimal reactive power allocation strategy are
provided and mathematically proved. The proposed optimal reactive power allocation
strategy is then tested in a case study against a sample large-scale grid-connected
photovoltaic system.

Communicated by David G. Hull.

B Zhongkui Wang
wang.1231@osu.edu

Kevin M. Passino
passino@ece.osu.edu

Jin Wang
wang@ece.osu.edu

1 Department of Electrical and Computer Engineering, The Ohio State University, 2015 Neil Ave,
205 Dreese Lab, Columbus, OH 43210, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-015-0778-9&domain=pdf


762 J Optim Theory Appl (2015) 167:761–779

Keywords Grid-connected photovoltaic systems · Lagrange multiplier · Reactive
power allocation · Smart grid · Smart inverters

Mathematics Subject Classification 49M37 · 90C30 · 90C90

1 Introduction

In the current power grid, the control of voltage levels, which allows active power to
be transferred, is accomplished by controlling the generation, absorption, and flow of
reactive power [1]. Traditional reactive power generation units consist of capacitor
banks, Static Var Compensators (SVC), and STATic COMpensators (STATCOM) [2].
In order to plan these reactive power generation units in an effective and efficient
way, many optimization techniques have been employed to conquer the allocation and
control challenges. For instance, the conventional methods include linear program-
ming (LP), nonlinear programming (NLP), andmixed-integer nonlinear programming
(MINLP; the intelligent approaches include simulated annealing (SA), evolutionary
algorithms (EA), genetic algorithms (GA) [2].

In the future smart grid, distributed generation (DG) will provide a large amount of
active power generation and participate in reactive power generation as well. Among
all of the distributed generation resources, grid-connected photovoltaic (PV) electricity
and energy generation systems have a significant increase worldwide. At the end of
2013, the worldwide total capacity of installed solar PV systems reached 139 GW [3].
These installed PV energy conversion systems contain a large portion of large-scale
grid-connected PV systems, which are being developed to hundreds of MW level [4].
The largest installed large-scale grid-connected PV plant in the world is the Agua
Caliente Solar Project in Arizona, USA, with an installed capacity of 247 MW, and it
will be built to have a total capacity of 397 MW. There are also large-scale PV plants
with larger capacity that are under construction, such as the Desert Sunlight Solar
Farm (550 MW) in Riverside County, California, USA, the Topaz Solar Farm (550
MW) in San Luis Obispo County, California, USA, the Golmud Solar Park (200 MW
installed, 370MWbeing constructed) inQinghai, China. In large-scale grid-connected
PV systems, due to the limited efficiency and power conversion capability of a single
PV panel, multiple PV panels are connected together in series to form a PV string, and
multiple PV strings are connected in parallel to form a large PV array. The connection
to the utility grid of large-scale PV plants is realized by inverters. Typical centralized
PV inverters in MW-level grid-connected PV systems have a power rating under 500
kW, and some PV inverters with large capacity may have a power rating up to 700
kW [5,6]. One centralized PV inverter cannot handle the connection of the entire
PV system with the grid in MW-level large-scale grid-connected PV systems. Hence,
several inverters are connected in parallel, as the interface between the large-scale PV
system and the utility grid [5–8].

The new topology of large-scale grid-connected PV systems imposes new chal-
lenges on existing active power generation of large-scale PV systems, as well as
reactive power generation. For instance, nonuniform solar irradiation would lead to
multiple peaks of the large-scale PV array’s power–voltage (P–V) curve [9], and tra-
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ditional maximum power point tracking (MPPT) methods lead a failure to seek the
maximum power point (MPP) of the entire system. Hence, distributed control tech-
niques were developed to solve the multiple-peak problem under the partially shading
condition by applying multiple direct current to direct current (DC–DC) converters
inside the PV array, such that each converter is able to guarantee the maximum active
power of the PV string connected to it [10]. Additional problems associated with
active power control of grid-connected PV systems have been also discussed. In [11],
a dynamic programming (DP) optimization approach is used to minimize the cost
of peak-shaving service of the grid-connected PV systems with energy storage ele-
ments, and the structure of a power supervisor based on an optimal predictive power
scheduling algorithm is also proposed. Although certain standards [12] do not permit
inverter-based DGs to regulate local voltage currently, more and more research has
been focusing on reactive power generation of DGs with smart inverters, especially
grid-connected PV systems. A variety of literature such as [13–15] addresses the con-
trol and optimization problems of reactive power for gird-connected PV systems with
a single direct current to alternating current (DC–AC) inverter. In [13], several reactive
power control methods and different PV inverters’ working modes to support reactive
power have been compared. Different challenges of reactive power control by PV
inverters are discussed in [14], and control schemes associated with the problems are
presented. In [15], an online optimal control strategy to minimize the energy losses
of grid-connected PV inverters is proposed. A decentralized nonlinear autoadaptive
controller is designed for such an objective. Corresponding to the distributed control
techniques for the active power of large-scale PV systems, a similar approach has been
also applied to the reactive power control for large-scale grid-connected PV systems,
i.e., inside a large-scale grid-connected PV system, and multiple DC–AC inverters are
used for the connection of PV strings with the grid. In [16], a distributed coopera-
tive control algorithm is developed to regulate the real and reactive power outputs of
multiple PV generators in a distribution network. Although the capacity of large-scale
grid-connected PV systems is tremendously increased and new inverter topologies
have been proposed, the reactive power generation, allocation, and control problems
in the MW-level large-scale PV systems with multiple PV inverters have not been
studied much.

In this paper, we propose an optimization strategy for the reactive power allocation
of a systemwithmultiple PV inverters. Under such an optimal allocation strategy, these
PV inverters intend to cooperatively provide reactive power support to the grid, while
simultaneously achieving maximum power transfer capability of the entire system.
We provide the analytical form of the allocation strategy and mathematically prove
the strategy is optimal by using optimization tools. We develop the optimal strategy
for reactive power allocation into an algorithm and test such an algorithm in a case
study.

2 Real and Reactive Power of Grid-Connected PV Systems

Consider a grid-connected PV system with m ∈ N+ DC–AC inverters. For each
inverter, there is one PV string connected to the utility grid through it. Let the con-

123



764 J Optim Theory Appl (2015) 167:761–779

tinuous variable Qi ∈ R, i ∈ {1, . . . ,m}, be the amount of reactive power of the
i th DC–AC inverter. Suppose that

∑m
i=1 Qi = QD , where QD is the reactive power

demand of the utility grid, which is known. Here, we define positive QD to be the
reactive power that the grid-connected PV systems supply to the grid and negative
QD to be the reactive power that the grid-connected PV systems absorb from the
grid.

2.1 Grid-Connected PV Systems

Let us consider one single DC–AC inverter with the PV string connected to it, as
shown in Fig. 1. In Fig. 1, the PV string is connected to the utility grid through the
three-phase DC–AC inverter. We assume that there is a MPPT control for the PV
string. Due to the DC–AC inverter, the system shown in Fig. 1 is able to supply not
only active power, but also reactive power to the utility grid. As we do not focus on the
circuit level of such a system, we assume the inverter is ideal; i.e., there is no power
loss on it. We also assume that the PV array generates the maximum power to the
grid, and the system is able to supply/absorb reactive power to/from the grid because
of the DC–AC inverter. Figure 1 only shows one inverter in the gird-connected PV
systems. Nowwe consider the entire grid-connected PV systemwith multiple DC–AC
inverters. The system topology diagram is shown in Fig. 2.

Fig. 1 System diagram of the
grid-connected PV systems with
one single DC–AC inverter

PV string

with MPPT
control

3-phase
DC-AC
inverter

inverter control
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Grid

Fig. 2 System diagram of the
grid-connected PV systems with
multiple DC–AC inverters
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2.2 Real and Reactive Power Capability Functions

Consider the i th DC–AC inverter in the system shown in Fig. 2. The inverter has
limited capability to transfer real and reactive power. Suppose that CLMT

i > 0 is a
constant, that we use to represent the current limit of the i th inverter. We assume that
the size of the i th DC–AC inverter is optimally designed; i.e., the value of CLMT

i is
optimally selected based on the rating of the active power of the PV string attached
to the i th inverter, such that the i th inverter does not have much additional current
margin. Such design for the i th inverter reduces cost, but it makes the power transfer
capability of the i th inverter limited. Let |V | > 0 denote the line-to-neutral voltage
magnitude of the grid voltage, and |V | is usually known. Let si be the power transfer
capability function for the i th inverter, which is expressed as

si = CLMT
i −

√
P2
i + Q2

i

3|V | , (1)

where the term
√
P2
i + Q2

i /(3|V |) stands for the current of the i th inverter and Pi is
the active power generated by the PV array. It is obvious that the current of the inverter
cannot exceed the limit CLMT

i . This requires the capability function si ≥ 0. In (1), the
capability function si actually calculates the current margin of the i th inverter; i.e.,
how much more current the inverter is able to take. Hence, (1) provides a method to
define the power transfer capability of the i th inverter. As the PV array is connected
to the grid through the DC–AC inverter, the active power transferred by the inverter is
assumed to be at the MPP of the PV array. Another candidate capability function is

si =
√
P2
i + Q2

i

3|V |CLMT
i

. (2)

The capability function in (2) represents the ratio between the inverter current and the
current limit, which is similar to the one given by (1). In this paper, we use (1) to show
our results (by using (2), we would obtain similar results).

2.3 Reactive Power Allocation for the Grid-Connected PV Systems

In Fig. 2, there are a total number ofm DC–AC inverters that are capable of transferring
real and reactive power to the grid. The total power capability function is defined as

sT :=
m∑

i=1

si =
m∑

i=1

⎛

⎝CLMT
i −

√
P2
i + Q2

i

3|V |

⎞

⎠ . (3)

In (3), sT represents the total current margin of the entire system. As Pi is the MPP of
the i th PV string, which is known; we need to seek an optimal allocation method for
Qi , i ∈ {1, . . . ,m}, such that the total power capability of the system is maximized.
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As discussed above, since the power capability function si needs to be nonnegative
and |V | and CLMT

i are positive constants, we have

√
P2
i + Q2

i − 3|V |CLMT
i ≤ 0, i = 1, . . . ,m. (4)

The value of the i th inverter’s reactive power Qi can be both positive and negative.
Positive Qi means the i th inverter is providing reactive power to the grid, and a negative
value of Qi means it is absorbing the reactive power from the grid. So we can expand
(4) as

Qi −
√
9|V |2(CLMT

i )2 − P2
i ≤ 0, i = 1, . . . ,m

−
√
9|V |2(CLMT

i )2 − P2
i − Qi ≤ 0, i = 1, . . . ,m. (5)

Clearly, (5) gives the upper and lower bounds of Qi , i = 1, . . . ,m. If the replacements
of Qi = −Qi and QD = −QD are made, then the analysis of QD > 0 is same as
QD < 0, only except for sign convention. Hence, we simplify the problem by only
considering the analysis of the positive part. Combining the reactive power balance
equation

∑m
i=1 Qi = QD , the reactive power allocation problem is formulated as

follows,

min

⎡

⎣−sT = −
m∑

i=1

⎛

⎝CLMT
i −

√
P2
i + Q2

i

3|V |

⎞

⎠

⎤

⎦

s.t. h(Q) =
m∑

i=1

Qi = QD

gi (Qi ) = Qi −
√
9|V |2(CLMT

i )2 − P2
i ≤ 0, i = 1, . . . ,m.

(6)

3 Optimal Reactive Power Allocation Strategy

In (6), the total reactive power generated by all the DC–AC inverters is equal to the grid
demand QD . Hence, the allocation strategy of the reactive power for those inverters
partially depends on QD . Moreover, (5) shows the limits, i.e., upper and lower bounds,
of the reactive power of the i th inverter Qi . Now let us consider two cases.

3.1 Optimal Allocation Strategy for Small Reactive Power Demand

For relatively small reactive power demand QD , we assume that the optimally allocated
reactive power Q∗

i , i = 1, . . . ,m, satisfies (5).Next theoremprovides values for the so-
called relatively small reactive power demand QD , and if the reactive power demand of
the grid satisfies the values, then the optimal allocation strategy given by the theorem
applies.
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Theorem 3.1 For i = 1, . . . ,m, the reactive power profile

Q∗
i = Pi

∑m
i=1 Pi

QD (7)

is the optimal reactive power allocation strategy of (6), whenever QD satisfies

max
i=1,...,m

{
Qmin

i

Pi

m∑

i=1

Pi

}

≤ QD ≤ min
i=1,...,m

{
Qmax

i

Pi

m∑

i=1

Pi

}

, (8)

where Qmin
i = −

√
9|V |2(CLMT

i )2 − P2
i and Qmax =

√
9|V |2(CLMT

i )2 − P2
i .

As indicated by Theorem 3.1, when (8) holds, the optimal reactive power of the i th
inverter is proportional to its active power. The power capability function of the entire
system sT is

sT =
m∑

i=1

CLMT
i −

√(∑m
i=1 Pi

)2 + Q2
D

3|V | . (9)

If we replace QD by u, then the optimal cost parameterized by u is sT (u) that is given
by (9). Then, the gradient of sT (u), ∇sT (u), is the negative of the Lagrange multiplier
parameterized by u; i.e., ∇ p(u) = −λ(u). The Lagrange multiplier is the gradient of
the optimal cost function with respect to the level of the constraint.

3.2 Optimal Allocation Strategy for Large Reactive Power Demand

When (8) does not hold, we say that the reactive power demand QD is “relatively
large.” Obviously, we cannot use Theorem 3.1 to find the optimal reactive power for
each inverter. For this case, the optimal reactive power of some inverters will reach
the limits. To find the optimal reactive power allocation strategy for this case, we
need to know which inverters’ reactive power will reach the limits. Then, we have the
following theorem.

Lemma 3.1 With QD > 0 suppose there are r ∈ N+, r ≤ m, inverters with reactive
power Qi that hits the upper bound Qmax

i ; then, these inverters are the first r inverters
in the order that

Qmax
1

P1
≤ Qmax

2

P2
≤ · · · ≤ Qmax

m

Pm
, (10)

where

r = argmin

{

r : Pi
∑m

i=r+1 Pi

(

QD −
r∑

i=1

Qmax
i

)

< Qmax
i , i = r + 1, . . . ,m

}

.

(11)
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Based on Lemma 3.1, we have the optimal allocation strategy for the reactive power
when the reactive power demand QD does not satisfy (8).

Theorem 3.2 If (8) does not hold, with QD > 0 suppose all the inverters are in the
order given in (10), and there are r ∈ N+, r < m, inverters with reactive power Qi

that hits the upper bound; then, for i = 1, . . . ,m, the reactive power profile

Q∗
i = Qmax

i , i = 1, . . . , r,

Q∗
i = Pi

∑m
i=r+1 Pi

(

QD −
r∑

i=1

Qmax
i

)

, i = r + 1, . . . ,m,
(12)

is the optimal reactive power allocation strategy of (6);

Theorem 3.2 indicates that if the reactive power demand QD does not satisfy (8),
then the optimal reactive power profile will make some inverters’ reactive powers hit
their limits and, for other inverters, that the reactive power do not reach the limits; the
optimal strategy will allocate the reactive power to be proportional to the active power.

4 Implementation: Algorithm and Case Study

In this section, we will apply the optimal reactive power allocation strategy proposed
in Sect. 3 for a sample grid-connected PV system. First, we introduce an optimal
reactive power allocation algorithm for grid-connected PV systems; then, we provide
a sample grid-connected PV system and test the algorithm against it in simulation.

4.1 Algorithm for Optimal Reactive Power Allocation

The optimal reactive power allocation strategy proposed above is developed into an
algorithm as follows:

1. Evaluate if (8) holds.
2. If (8) holds, then the reactive power of all the inverters is calculated by (7).
3. If (8) does not hold (it means the reactive power of some inverters reaches the

limits), then sort all the inverters in the order given by (10).
(a) The reactive power of the first inverter in the new order is (Qmax

1′ ).1

(b) For i = 2′ . . . ,m′, evaluate

QD −
i−1∑

j=1′
Q j ≤ min

j=i,...,m′

⎧
⎨

⎩

Qmax
j

Pj

m′
∑

j=i

Pj

⎫
⎬

⎭
. (13)

1 The subscript 1′ means it is the first inverter in the new order.
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Table 1 Data of the inverters in the sample grid-connected PV system

Type 1 inverter Type 2 inverter

Maximum output power 250kW 100kW

Nominal output voltage 480V 480V (AC, line to line)

Nominal output current 301A 121A

Nominal output frequency 60Hz 60Hz

Number of inverters 30 25

(c) If (13) holds, then

Qi = Pi
∑m′

j=i Pj

(

QD −
i−1∑

j=1′
Q j

)

. (14)

(d) If (13) does not hold, then Qi = Qmax
i .

4.2 Case Study

In order to validate the optimal reactive power allocation algorithm, we will compare
the algorithmwe presented above with algorithms based on an even allocation strategy
to show its optimality.

Now consider a 10 MW grid-connected PV system with two types of DC–AC
inverters included. The required data of these inverters for the case study are shown
in Table 1. In this system, we have a total of m = 55 of DC–AC inverters. Assume
that for i = 1, . . . , 30, CLMT

i = 301 A and CLMT
i = 121 A for i = 31, . . . , 55. The

nominal output voltage is 480 V AC, line to line. Then, |V | = 480/
√
3 = 277.1 V.

Let us consider the condition that all the solar panels in the system have same solar
irradiation level. The solar irradiation profile we employed in the simulation is shown
in Fig. 3, which provides the solar irradiation of 8 hours during a day. From t = 2 h to
t = 5 h, it becomes cloudy such that the solar irradiation level is lower than it under
a clear condition. The entire solar profile is noisy with a small random noise added.
For such a given solar irradiation profile, we compare the algorithm based on optimal
reactive power allocation strategy with two algorithms based on an evenly distributed
reactive power allocation strategy.

The first algorithm is so-called flexible even distribution of the reactive power:

1. The reactive power demand of the grid is evenly divided intom parts, and each part
is QD/m.

2. Ifmax
i

{Qmin
i } <= QD/m <= min

i
{Qmax

i }, then the reactive power of each inverter
is QD/m.

3. If the amount of reactive power QD/m exceeds the limits of some inverters, then
for these inverters, the reactive power equals the limit (i.e., upper limit if QD > 0,
lower limit if QD < 0); other inverters will evenly allocate the remaining reactive
power demand.
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Fig. 4 Total power transfer capability: shown from t = 1 h to t = 7h, expressed in kVA. The top curve
is the power transfer capability for the optimal allocation algorithm, and the bottom one is for the flexible
even distribution algorithm

In the simulation, we set the reactive power demand of the grid to be QD = −3 MW.
The total power transfer capability obtained from simulation for the algorithm based
on optimal allocation strategy and the flexible even distribution allocation algorithm
is shown in Fig. 4. We observe from Fig. 4 that the optimal allocation algorithm
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Fig. 5 Total active power transferred. The top curve is for the optimal allocation algorithm, and the bottom
one is for the strict even distribution algorithm

is capable of transferring more power than the flexible even distribution algorithm.
The flexible even distribution algorithm indicates that if the reactive power of some
inverters reaches the limits, then other inverters will take more reactive power.

Next, we will compare the algorithm for the optimal allocation strategy with the
so-called strict even distribution algorithm. For the strict even distribution algorithm,
each inverter takes exactly QD/m of reactive power. The inverters ofwhich the reactive
power reaches the limits do not allocate extra reactive power on other inverters, but
sacrifice certain amount of transferred active power instead. For a solar profile given
in Fig. 3, the total transferred active power for both algorithms is shown in Fig. 5. It
is obvious that the optimal allocation strategy algorithm transfers more active power
than the strict even distribution algorithm when the solar irradiation level is high. It is
worth pointing out that the total power transfer capability of the strict even distribution
algorithm is higher than the one of the optimal allocation strategy algorithms at some
points. However, it is because that the strict even distribution algorithm sacrifices
much active power instead.

5 Conclusions

Based on the power capability function we defined for the grid-connected PV systems
with multiple DC–AC inverters, we proposed the optimal allocation strategies for
the case that no inverter’s reactive power reaches the limits when the reactive power
demand is small, and for the case that some inverters’ reactive powers reach their limits
when the reactive power demand is large. We have provided the analytical solution
of the reactive power allocation strategies. Moreover, we mathematically proved the
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strategies are optimal. In order to seek the inverters with reactive power that hits its
limits, an order has been used to sort all the DC–AC inverters for the identification.
Finally, we introduced an algorithm based on the optimal allocation strategy and
compared such an algorithm with two other algorithms to show its optimality in a case
study. One possible future direction is to develop the control schemes for the optimal
allocation strategies we proposed here and apply the control techniques in simulation
or for real systems.

Appendix: Proofs of Theorems and Lemmas

Proof of Theorem 3.1 Here, we use Lagrange multiplier method [17] to solve the
problem given in (6) and only consider the positive part. Let Q = [

Q1, . . . , Qm
]T,

the Lagrangian function is constructed as follows,

L(Q, λ, μ) = −
m∑

i=1

⎛

⎝CLMT
i −

√
P2
i + Q2

i

3|V |

⎞

⎠+ λ

(
m∑

i=1

Qi − QD

)

+
m∑

i=1

μi

(

Qi −
√

9|V |2 (CLMT
i

)2 − P2
i

)
(15)

where λ, μ j , j = 1, . . . ,m are Lagrange multipliers. As for this case we assume
the reactive power of the i th inverter Qi satisfies (5) with strictly inequalities, the
inequality constraints are inactive. Hence, the Lagrangian function in (15) becomes

L(Q, λ) = −
m∑

i=1

⎛

⎝CLMT
i −

√
P2
i + Q2

i

3|V |

⎞

⎠+ λ

(
m∑

i=1

Qi − QD

)

(16)

Let the gradient of the Lagrangian function (16) ∇QL(Q, λ) = 0, we have

Qi

3|V |
√
P2
i + Q2

i

= −λ, i = 1, . . . ,m (17)

From (17), we know that Qi and λ have opposite signs, and |V | and Pi are both
positive, so we obtain

Qi = − 3|V |Piλ
√
1 − 9|V |2λ2 (18)

If we substitute (18) into
∑m

i=1 Qi = QD , we obtain one equation with λ as the only
variable,

− 3|V |Piλ
√
1 − 9|V |2λ2

m∑

i=1

Pi − QD = 0 (19)
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By solving (19), we have

λ2 = Q2
D

9|V |2
(

(
∑m

i=1 Pi )
2 + Q2

D

)

As Qi and λ have opposite signs, it is obvious that QD and λ also have opposite signs.
Then, λ is expressed as follows,

λ = − QD

3|V |
√

(
∑m

i=1 Pi )
2 + Q2

D

(20)

Substituting (20) in (17), we have the reactive power Q∗
i , i = 1, . . . ,m,

Q∗
i = Pi

∑m
i=1 Pi

QD, i = 1, . . . ,m (21)

To guarantee Q∗
i in (21) is the optimal reactive power for the i th inverter, and we need

to the Hessian of the Lagrangian function to be positive definite [17]. The Hessian of
the Lagrangian function is

∇QQL(Q∗, λ∗) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P2
1

3|V |(P2
1 +Q2

1

)3/2 0 · · · 0

0
P2
2

3|V |(P2
2 +Q2

2

)3/2 · · · 0

...
...

. . .
...

0 0 · · · P2
m

3|V |(P2
m+Q2

m)
3/2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where λ∗ is the one given in (20). For all y 	= 0 such that ∇(
∑m

i=1 Qi − QD)Ty = 0,
we have

yT∇QQL
(
Q∗, λ∗) y =

m∑

i=1

P2
i

3|V | (P2
i + Q2

i

)3/2 y
2
i > 0

Hence, the Hessian of the Lagrangian function is positive definite. So Q∗
i given by

(21) is the optimal reactive power profile. To let the inactive inequalities assumption
hold, we need Q∗

i to satisfy the first inequality of (5) (for positive Qi ). Then, we have

Pi
∑m

i=1 Pi
QD ≤

√

9|V |2 (CLMT
i

)2 − P2
i , i = 1, . . . ,m (22)

As (22) needs to hold for all inverters, we obtain

QD ≤ min
i=1,...,m

⎧
⎨

⎩

√

9|V |2 (CLMT
i

)2 − P2
i

Pi

m∑

i=1

Pi

⎫
⎬

⎭
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for positive Qi , similarly we can prove the negative part, which proves (8). 
�
Proof of Lemma 3.1 Suppose that all the inverters are already sorted in the order given
by (10) and in such an order the reactive power of the first r − 1 inverters already hit
their upper bounds. Now consider the assumption that the reactive power of the r th
inverter does not reach its upper bound, i.e., Qr < Qmax

r , and the reactive power of
the (r + 1)th inverter hits its upper bound, i.e., Qr+1 = Qmax

r+1. As indicated by the
assumption, the reactive powers Qr and Qi , i = r + 2, . . . ,m, do not hit their upper
bounds, and according to Theorem 3.1 for these m − r reactive powers, we have

Qi = QD −∑r−1
i=1 Qmax

i − Qmax
r+1

∑m
i=1 Pi −∑r−1

i=1 Pi − Pr+1
Pi , i = r, r + 2, . . . ,m (23)

For the r th inverter, we substitute (23) into Qr < Qmax
r , then we have

QD −∑r−1
i=1 Qmax

i − Qmax
r+1

∑m
i=1 Pi −∑r−1

i=1 Pi − Pr+1
Pr < Qmax

r (24)

The (r+1)th inverter’s reactive power Qr+1, by the assumption, hits the upper bounds.
If we apply Theorem 3.1 and calculate Qr+1 by using a manner similar to (23), the
reactive power Qr+1 will exceed the upper bound Qmax

r+1. Based on this, we have such
inequality

QD −∑r−1
i=1 Qmax

i
∑m

i=1 Pi −∑r−1
i=1 Pi

Pr ≥ Qmax
r+1 (25)

As Pi > 0, i = 1, . . . ,m, from (24) and (25) we obtain

QD −∑r−1
i=1 Qmax

i − Qmax
r+1

∑m
i=1 Pi −∑r−1

i=1 Pi − Pr+1
<

Qmax
r

Pr
(26)

and

QD −∑r−1
i=1 Qmax

i
∑m

i=1 Pi −∑r−1
i=1 Pi

≥ Qmax
r+1

Pr+1
(27)

Subtract the left-hand side of (26) by the left-hand side of (27), we obtain the following
inequality

QD −∑r−1
i=1 Qmax

i − Qmax
r+1

∑m
i=1 Pi −∑r−1

i=1 Pi − Pr+1
− QD −∑r−1

i=1 Qmax
i

∑m
i=1 Pi −∑r−1

i=1 Pi

= (QD −∑r−1
i=1 Qmax

i )Pr+1 − (
∑m

i=1 Pi −∑r−1
i=1 Pi )Qmax

r+1

(
∑m

i=1 Pi −∑r−1
i=1 Pi − Pr+1)(

∑m
i=1 Pi −∑r−1

i=1 Pi )
≥ 0 (28)
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The reason that (28) holds is that from (25) we know

(

QD −
r−1∑

i=1

Qmax
i

)

Pr+1 ≥
( m∑

i=1

Pi −
r−1∑

i=1

Pi

)

Qmax
r+1

and the denominator of the second line of (28) is obviously positive. Hence,

QD −∑r−1
i=1 Qmax

i − Qmax
r+1

∑m
i=1 Pi −∑r−1

i=1 Pi − Pr+1
≥ QD −∑r−1

i=1 Qmax
i

∑m
i=1 Pi −∑r−1

i=1 Pi
(29)

From (25), (26), and (29), we have the following inequality,

Qmax
r

Pr
>

QD −∑r−1
i=1 Qmax

i − Qmax
r+1

∑m
i=1 Pi −∑r−1

i=1 Pi − Pr+1
≥ QD −∑r−1

i=1 Qmax
i

∑m
i=1 Pi −∑r−1

i=1 Pi
≥ Qmax

r+1

Pr+1
(30)

The inequality in (30) shows Qmax
r
Pr

>
Qmax
r+1

Pr+1
which contradicts the order in (10). Hence,

the assumption that Qr < Qmax
r , while Qr+1 = Qmax

r+1 is invalid. Then, we conclude
that when QD > 0 the first r inverters’ reactive power Qi , i = 1, . . . , r in the
order given in (10) hit their upper bounds. For the rest m − r inverters, the following
inequality holds,

Pi
∑m

i=r+1 Pi

(

QD −
r∑

i=1

Qmax
j

)

< Qmax
i , i = r + 1, . . . ,m (31)

Thus, r is the minimum number that makes (31) hold. 
�

Proof of Theorem 3.2 We use Lagrange multiplier method [17] to prove this theorem.
The Lagrangian function is the one given in (15). We have two cases. The reactive
power demand QD > 0. For this case, all the inverters are in the order given in (10).
By Lemma 3.1, we know that those r inverters with reactive power that hits the upper
bound are the first r inverters in that order. Hence, the inequality constraints

gi (Qi ) = Qi −
√

9|V |2 (CLMT
i

)2 − P2
i ≤ 0, i = 1, . . . , r

are active. For i = 1, . . . , r , we have
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Qi = Qmax
i , i = 1, . . . , r (32)

and by taking the gradient of (15) we have

μi = − Qi

3|V |
√
P2
i + Q2

i

− λ, i = 1, . . . , r (33)

For those m − r inverters with inactive inequality constraints, we have

Qi

3|V |
√
P2
i + Q2

i

+ λ = 0, i = r + 1, . . . ,m (34)

Also, we have the equality constraints which we are

r∑

i=1

Qi +
m∑

i=r+1

Qi − QD = 0 (35)

From (34), we obtain,

Qi = − 3|V |Piλ
√
1 − 9|V |2λ2 , for i = r + 1, . . . ,m (36)

Substitute (32) and (36) in (35), and we obtain

r∑

i=1

Qi − 3|V |λ
√
1 − 9|V |2λ2

m∑

i=r+1

Pi − QD = 0

3|V |λ
√
1 − 9|V |2λ2 = −QD −∑r

i=1 Qi
∑m

i=r+1 Pi

9|V |2λ2
(

m∑

i=r+1

Pi

)2

=
(

QD −
r∑

i=1

Qi

)2 (
1 − 9|V |2λ2

)

9|V |2λ2
(( m∑

i=r+1

Pi

)2

+
(

QD −
r∑

i=1

Qi

)2 )

=
(

QD −
r∑

i=1

Qi

)2

(37)

From the second line of (37), we know that λ has the opposite sign of QD −∑r
i=1 Qi .

In this case, λ is negative. As Qi = Qmax
i , i = 1, . . . , r . Hence,

λ = − QD −∑r
i=1 Q

max
i

3|V |
√

(
∑m

i=r+1 Pi )
2 + (QD −∑r

i=1 Q
max
i )2

(38)

Substitute (32) and (38) in (36), and we obtain (12).
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For this case,

μ j > 0, ∀ j ∈ A(Q) (39)

where A(Q) = { j | g j (Q) = 0} is the index set that the inequality constraints are
active. Now we show the reason why (39) holds. We assume some inverters’ reactive
powers hit their upper bounds, (8) does not hold. Then, consider the inverters in the
order given by (10). For i = 1, . . . , r , Qi = Qmax

i , then

Qmax
i <

Pi
∑m

i=1 Pi
QD, i = 1, . . . , r

The reactive power Qi , i = 1, . . . , r , reaches its upper bound, so the amount of
reactive power Pi∑m

i=1 Pi
QD − Qmax

i , i = 1, . . . , r , will be allocated on other inverters.

Hence,

Q j ≥ Pi
∑m

i=1 Pi
QD, j = r + 1, . . . ,m (40)

Then, we obtain

Qmax
i

Pi
<

Q j

Pj
, i = 1, . . . , r, j = r + 1, . . . ,m (41)

From (33) and (38), μ∗
i is expressed as

μ∗
i = QD −∑r

i=1 Q
max
i

3|V |
√(∑m

i=r+1 Pi
)2 + (

QD −∑r
i=1 Q

max
i

)2

− Qmax
i

3|V |
√

P2
i + (

Qmax
i

)2
, i = 1, . . . , r

(42)

Since QD − ∑r
i=1 Q

max
i > 0 and Qmax

i > 0, we can turn (42) into the following
form,

μ∗
i = 1

3|V |
√( ∑m

i=r+1 Pi
QD−∑r

i=1 Q
max
i

)2

+ 1

− 1

3|V |
√(

Pi
Qmax
i

)2

+ 1

, i = 1, . . . , r
(43)

Now consider the denominators of those two terms in (43). From (12), we know that

Pj

Q j
=

∑m
i=r+1 Pi

QD −∑r
i=1 Q

max
i

, j = r + 1, . . . ,m
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From (41), we know that

Pj

Q j
<

Pi
Qmax

i

Hence, in (43) the denominator of the first term is smaller than the denominator of the
second term. Then, we conclude that μ j > 0, ∀ j ∈ A(Q). For all y 	= 0 such that
∇h(Q)Ty = 0, and ∇g j (Q)Ty = 0, ∀ j ∈ A(Q), we have

∇QQL(Q∗, λ∗, μ∗) =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P2
1

3|V |(Q2
1+P2

1

)3/2 0 · · · 0

0
P2
2

3|V |(Q2
2+P2

2

)3/2 · · · 0

...
...

. . .
...

0 0 · · · P2
m

3|V |(Q2
m+P2

m)
3/2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(44)

and

yT∇QQL(Q∗, λ∗, μ∗)y =
m∑

i=1

P2
i

3|V | (Q2
i + P2

i

)3/2 y
2
i > 0 (45)

The Hessian of the Lagrangian function is positive definite. Hence, the reactive power
profile given by (12) is the optimal allocation reactive power profile when (8) is not
satisfied. 
�
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