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1. Introduction

The field of cooperative control has the lofty aim of enabling
a group of autonomous agents to either accomplish an objective
in a more efficient manner than they could as individuals or do
complex tasks that a single agent could never perform alone. One of
the main goals of cooperative control is to establish organizational
frameworks in which the capabilities of these groups are more than
just those of their component agents, and there are a number of
proposed applications for this type of research such as autonomous
military robots and flexible manufacturing systems (Beard &
McClain, 2003; Frazzoli & Bullo, 2004; King, Kuwata, Alighanbari,
Bertuccelli, & How, 2005; Lum, Rysdyk, & Pongpunwattana,
2006; Moore & Passino, 2008; Scheutz, Schermerhorn, & Bauer,
2005). Nonetheless, all of these applications involve the key
ingredients of either distributed action and/or distributed decision
making and make use of the principle of comparative advantage.
The concept of comparative advantage comes from the field of
economics (Ricardo, 1996, originally published in 1817) and is
essentially an observation of the fact that since people possess
different natural talents it is to their advantage to specialize in
the tasks they perform well and trade their services for those of
others instead of attempting to meet all their needs themselves.
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By doing so, a society can produce much more than they would
be able to without cooperating in this way. Just as human society
consists of diverse individuals, many envisioned systems from the
cooperative control field incorporate different types of agents and
so they should be able to exploit those differences in order to
improve the performance of the group. This, of course, depends on
the development of proper algorithms for interaction between the
agents, much in the same way that tools such as money and legally
enforceable contracts provide a reliable basis for human economic
interaction.

To date, many cooperative control problems have focused
on groups of homogeneous agents (i.e., each agent has the
same physical manifestation and/or computing ability) (Beard &
McClain, 2003; Frazzoli & Bullo, 2004; Moore & Passino, 2008).
In these setups the differences between the agents are entirely
related to their current state (most commonly just their position
in the environment) and thus an agent’s comparative advantage
for certain tasks may vary over time as its state changes. For
instance, in a group of mobile robot agents the speed or ability
of an agent to accomplish a certain task will usually depend
on its distance to that task (relative to the other agents) and a
common problem is to decide how the agents should be assigned to
various tasks in order to optimize some performance measure (e.g.,
minimize total mission time, maximize rate of task completion,
etc.). Other, more sophisticated, cooperative control scenarios will
involve a group of heterogeneous agents in which the dynamics
or capabilities of the individual agents may differ (King et al.,
2005; Lum et al., 2006; Scheutz et al., 2005). Teams of military
robots, for example, may consist of both ground and air vehicles
and these may differ not only in their ability to maneuver through
their environment but also in the functions they are able to
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perform. To date, it appears that most attempts to tackle problems
involving heterogeneous agents have focused primarily on using
combinatorial optimization techniques in order to generate agent-
task assignments (Alighanbari, Kuwata, & How, 2003; King et al.,
2005). While a valid approach for many problems, this sort of
method suffers from the need for excessive computational power
as the size of the problem increases.

An area of research involving heterogeneous agents that has
received less attention than those already mentioned views the
individual agents as resources which must be properly allocated
to different tasks in order to maximize their effectiveness. In a
control hierarchy this is the level above the one concerned with
the actual execution of particular tasks (i.e., the level previously
discussed) and is not so much about what to do with a certain
group of agents as it is about creating these groups in the first place.
This team formation problem has been addressed by some authors,
but to make the problem mathematically tractable they are usually
forced to resort to the simplifying assumption that each agent can
be represented by a single relative value (Finke & Passino, 2007).
For example, an agent that travels twice as fast or can accomplish
tasks at twice the rate as another agent would have two times as
much value. Alternatively, there may be a certain benefit associated
with an agent-team assignment, but again for simplicity the fact
that this benefit may depend on which other agents are assigned
to that team is mostly ignored so that various algorithms for the
standard assignment problem (Bertsekas & Tsitsiklis, 1997a) can be
applied. So, while these simplifying assumptions may make sense
for some problems, they fail to adequately address many important
scenarios. Consider, for example, a hunter-killer scenario in which
two types of military robots must work together to identify and
destroy enemy targets. In this scenario the hunter robot would be
a lighter, faster vehicle in charge of finding and confirming targets
which a more heavily armed but less nimble killer robot would
then attack. If the battlefield is large it will most likely be organized
into smaller sectors and the goal would be to determine the proper
assignment of hunter and killer vehicles for each sector (given
a fixed number of available vehicles of each type). This problem
can become very complex because of the coupling between all the
factors involved. The correct number of hunter vehicles for a sector
will depend on the rate potential targets appear, what fraction of
those are actual enemy targets, and how many killer vehicles are in
the sector to handle the identified targets. Conversely, the correct
number of killer vehicles depends on how fast enemy targets
are being identified which depends in turn on the rate potential
targets appear and how many hunter vehicles are in the sector to
investigate those targets.

These types of team formation problems have also been
addressed in the field of behavioral ecology where, from an
evolutionary perspective, the division of labor and the emergence
of teams in an animal society may be viewed as the outcome
of the allocation process of its working force (e.g., in honey
bees where the hive must allocate its foraging workforce by
determining the proportion of explorers, employed foragers, and
resting bees (Anderson & Franks, 2001)). Thus, the team formation
problem may be formulated as an optimization process, where
each animal adopts a strategy (e.g., a type of task) that optimizes
its fitness in the sense that a unilateral deviation from this strategy
would result in fitness degradation, thereby relating to a notion
called the ideal free distribution (IFD). The IFD characterizes an
equilibrium distribution where all animals achieve equal fitness,
and no animal can increase its fitness by unilateral deviation from
one strategy to another. In particular, the IFD is optimal in the sense
that it is a Nash equilibrium and an evolutionarily stable strategy
(ESS) (Cressmann & Kfivan, 2006).

In the past decades many models based on the IFD concept have
been developed, trying to explain how different animal groups be-
have in different environments. In social foraging by honey bees,

for instance, the hive achieves an IFD-like distribution with the
allocation of foragers being approximately proportional to nectar
source relative profitability despite the fact that each bee acts only
on local knowledge of the available nectar sources (Seeley, 1995).
Similar models which characterize the dynamic allocation of the la-
bor force and how honey bees “organize” themselves through sim-
ple local rules have been introduced and validated (see Passino and
Seeley (2008) and references therein). Understanding how optimal
distribution patterns can be achieved by a group driven only by lo-
cal rules allows us to overcome excessive computational power re-
quirements which inhibit combinatorial optimization techniques
to solve large-scale problems. Here, we develop a similar bio-
inspired approach in that we define specific local rules which guar-
antee that the group as a whole achieves an optimal distribution.
We will use a generic terminology for IFD concepts, one that is ap-
propriate for biology and engineering. In what follows, habitats,
food sources, resource sites, areas, etc. are referred to as tasks and
the term resource is associated with entities capable of physical
motion such as animals, vehicles, robots, or aircraft. Our frame-
work can be viewed as a generalized IFD model which allows us
to study not only the distribution of a set of resources over a given
set of tasks, but also takes into account that multiple types of re-
sources may influence every task differently.

2. Problem statement
2.1. Basic problem

This section uses the terms tasks and resources. Resources are
the individual agents (which are of varying type) and tasks can
be any well defined purpose to which a team of agents can be
assigned. The tasks are numbered from 1 to n and the different
resource types are numbered from 1 to m. This paper assumes
that the number of resource units of each type is large enough to
approximate the amount of a specific resource applied to a specific
task as a continuous variable (as in Bertsekas and Tsitsiklis (1997b)
and Burgess and Passino (1998)). Let R = [0, o)™ be the space of
all possible resource combinations that could be applied to a task
and let r; = [rir,...,Tim]" € R be the resource vector applied
to task i (where rj; is the amount of a resource type j applied to
task i). Let A. C R" denote the m(n — 1) dimensional simplex
defined by the equality constraint Zle r; = ¢, where c is a vector
[c1,...,cm]" € R and ¢; > 0 denotes the total available amount
of resource j. Let the performance of the application of resource
allocation r; to task i be given by the utility functionf; : R — [0, c0)
and let the total utility function f : R" — [0, o0) be equal to
Y. fi.lettingr = [r],...,r,]", the objective is to maximize
f(r) subjecttor € A..

2.2. Conditions on utility functions

Based on some reasonable assumptions common in economic
theory, this paper will require each utility function f; to satisfy
three conditions. First, adding resources to a task must always
increase the produced utility (i.e., for any x,h € &R, fi(x + h)
> fi(x)). Second, each f; must be continuously differentiable on
all of R. Finally, each f; satisfies a condition of decreasing average
returns with respect to increasing magnitudes of resource additions
or exchanges. This condition is a generalized version of the law of
diminishing returns (Fére, 1980; Menger, 1979) and in words states
that adding or exchanging resources in any fixed proportion results
in a lower average utility increase as the magnitude of the resource
change increases. Mathematically,

fi(ri + ah) — fi(ry) - fi(ri + bh) — fi(ry)
a b
VheR™",Va,beR:b>a>0andr; + ah, r; + bh € R. (1)

s VT',‘ € R,
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To look at this requirement another way, use the algebraic
substitutionsr = x,h = £*,and 9 = 1 — E and rewrite (1) as
filox+ (1 -0)y) > 0f(x)+(1 —0)fi(y),Vx,ye R, V0 €(0,1)
to see that (1) is equivalent to saying each function f; is strictly
concave on R. This is a useful property because it means that the
total utility function is also strictly concave and thus must have a
uniquely defined maximum on A..

2.3. Optimality conditions

For convenience, let s;;(r;) be equal to the partial derivative of
fi with respect to resource j evaluated at the resource vector r;. In
economics, s;; is referred to as the marginal utility function of task i
with respect to resource j (the notation s;; is used here to emphasize
the connection to the suitability functions of Finke and Passino
(2007)). Because of the conditions placed on the functions f;, the
functions s; are continuous on R, strictly decreasing, and non-
negative (so s; is bounded on R as well). To make the later analysis
tractable, this paper assumes that each function s; is Lipschitz
continuous on R (thus imposing an additional constraint on f;).
Since f is strictly concave it follows from Bertsekas (1995) that the
optimal point of f given resource constraint c, denoted as r*, is the
only point belonging to the set

AT ={reA |Vike{l,....,n},Vje{l,...,m},

sij(ri) < sii(re) = 1 = 0}. (2)
In words this means that when r = r* it must be the case that
every task with a positive amount of a resource j will have the same
marginal utility with respect to that resource and that this marginal

utility must be at least as great as that for any task completely
without resource j.

3. Discrete event system algorithm

In this section we present an algorithm to solve the problem
of Section 2 based on a discrete event system (DES) framework.
In this algorithm resources are transferred in discrete quantities
and at discrete time instants. The algorithm is analyzed using
the modeling methodology and the stability theories presented
in Burgess and Passino (1998), albeit in abbreviated form. Resource
transfers will happen at discrete points intimet = 0, 1, 2, ... and
the algorithm is defined by the following two rules governing those
transfers:

(1) Only one transfer of one particular resource will occur at each
time step (a transfer of one resource type j from one source
task i to one destination task k). For convenience let «(t) be
the triplet (i, k, j) for the transfer occurring at time step t. For
this work, a(t) = (i, k, j) must satisfy the following conditions
at each time t:

Sk](rkj(t)) - Slj(rl](t)) > Sy (rk]’ ) — Sitj! (rl (1)),
nyandallj’ € {1,..., m}. (3)

Meaning the largest marginal utility difference in the system is
addressed at each time step.

Let u;(t) > 0 denote the amount of resource j passed from task
i to task k at time ¢, and let u(t) be a vector in R with u;(t) as
the jth entry and all other entries equal to zero. The size of u;(t)
must satisfy

si(ri(t) — u(t)) < sij(re(t) + u(t)) (4)
and one of the two following conditions:
Sij (e (8) + u(t)) — sy(rit) — u(t))

=< Vi (S (e (£)) — si5(ri(t)))
for some fixed yy; € [0, 1) (5)
u;(t) = ry(t). (6)

foralli’, kK € {1,...,

—
N
—

Meaning that the marginal utility difference between task i
and k w.r.t. resource type j cannot reverse sign and either that
difference must be reduced by at least a certain proportion or
task i must give all of its resource type j to task k.

Theorem 1. The point r* is an equilibrium of the DES model and has
a region of asymptotic stability equal to A..

Proof. To prove stability of this algorithm we will use the
candidate Lyapunov function V(r) = f@0*) — f(r) =
ZL] (ﬂ(ri*) —ﬂ(rl-)). By definition V(r) is strictly convex so it
must be that V(r) = 0 if and only if r = r* and so Theorem
7.12 of Miller and Michel (1982) guarantees the existence of
a class X function of r'r that bounds V(r) from below. Also,
since each f; has continuous and bounded partial derivatives it
must be that V(r) is Lipschitz continuous, so there must exist
some constant L allowing us to choose Lr'r as an upper bound
on V(r). Thus V(r) is positive definite and decrescent on A..
Having confirmed the validity of V(r) as a Lyapunov function,
now fix t and analyze the difference in V (r) between time steps
letting (i, k,j) = o«(t). Define AV(r(t)) as V(r(t + 1)) —
V(@) = firi@) — it + 1)) + fi(r(t)) — filne(t + ).
Since all marginal utility functions are Lipschitz continuous there
exists a constant L such that [s;;(x) —s;;(y)| < L|x—y|. Because only
one resource type is being exchanged per time step and because
the individual utility functions are strictly increasing w.r.t. their
arguments, simple geometric arguments result in bounds on the
two basic terms of AV (r(t)) as follows,

ri(t)
FEO) e+ ) = [ 0o
ri(t)—u(t)
e .1 2
< w(Osy(r(e + 1y — HEED =S OO )
T (6)+u(t)
flnde + 1) — fun(©) = / s4(0)do
Tk ()
. — Sy 2
> uj(t)sgi(re(t + 1)) + L5 (ne(t)) = Sy (et + DI (8)

2L
which means AV (r(t)) can be bounded from above by a function
ofr(t)and r(t + 1),
AV(r(t))
_ ([Szj(ri(f + 1)) — s ()12 + [ski(re(t)) — sii(re(t + 1)1
2L

+ Ui () [ski (rie(t + 1)) — s3(ri (¢ + 1))]) . (9)

There are two cases to consider, (a) u;(t) = r;(t) or (b) u;(t) <
r;j(t). In the first case it is not guaranteed to have any particular
decrease in s;; — s;; between time step t and t 4 1. In the second
case, the second term of (9) can be ignored because s;;(r.(t + 1))
— s;i(ri(t 4+ 1)) could be equal to zero, so it is the case that

AV(r(t))

L+ 1) — sij (i () + [ski(1e(8)) — s (et + )12
2L

(10)

Using the inequality a*+-b* > 1 (a+b)?, condition (5), and defining
Yy = Maxy Yy, manipulation of (10) yields

Y
AV (D) < —(147”)

[si (1 (£)) = si5(ri ()] (11)

In order to address the stability of the system, note that the
inequality (9) shows that V (r(t)) is a non-increasing function w.r.t.
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time and since V is bounded from below (by zero) there must exist
ascalar g > Osuch that V(r(t)) — qast — oo.If ¢ = 0 then
because V is continuous and zero only at the global optimum it
must be that r(t) converges to r* and the theorem holds. Assuming
q > 0, then because V is continuous, r(t) converges to an w-limit
set £2(r(t)) which is a subset of the level set S; = {x € A,
V(x) = q}. Take any point 7 in £2(r(t)) (i.e., so that V(r) = q > 0)
and show that there exists a time index t such that V(r(t)) < 0,
which contradicts the fact that V(r(t)) > 0 for all ¢t and thus
proves that ¢ = 0 and r(t) — r*. Now, sincer € £2(r(t)) there
exists, by definition, an infinite sequence of times T C N such
that {r(t)};er — 7. Since all the marginal utility functions are
continuous it is also the case that

{sij(re () — 83 (T (E)) }eer — sk (Th) — 53(T) € R (12)

for all task-task-resource combinations (i, k, j). Let us define a set
A = argmaxgrj Sk(T) — s;(T) (ie, the set of all task-task-
resource combinations having the maximum positive marginal
utility difference at 7). As a consequence of (12) and Rule 1 of the
algorithm there must exist a time index t such that «(t) € A for
allt € TN [r,00) = Tj. Let us take one triplet @ € A such that
T, = {t € T; : «(t) = o} is an infinite set. From this point on let
the indices i, k, and j be those of the triplet «. Let T, be partitioned
into two sets T4 and T such that for all t € T4 the condition (5)
holds and for all t € Ty it does not. Consider first what happens
at time indices in Ty. Since 7 # r* and because of the choice of &
it is the case that s;(Tx) — s;j(f;) = 84 > 0 and accordingly that
{skj(ri(t)) — sij(1i(t))}eer, — 4. Thus there exists a time index 4
such that s (1 (t)) — s;(ri(t)) > %SA forallt € TaN[t4, 00) =T,
Since condition (5) holds for all t € Ty, it must be that (11) applies
forall t € T,. Accordingly,

1-— 2
AV(r(t)) < _%[Skj(rk(t)) — s(1ri(0))]?
— )2 2

which is to say that after time index 74, every resource transfer that
occurs at times in T; results in a decrease in V (r(t)) that is bounded
away from zero by a fixed constant. Finally, consider what happens
at time indices in Tp. As stated, at these times condition (5) does not
hold, and as a consequence of this it is the case that (a) u;(t) = r;;(t)
and (b) sy; (i (t) +u(t)) —s;(r;(t) —u(t)) > 0.In this case AV (r(t))
may be bounded from above by the second term of (9), i.e.,

AV(r(t)) < —rj(O)[si(re(t) + u(t)) — s;(ri(t) — u(0))]. (14)

Because (14) is a continuous function of r(t) it is true that at times
t € Ty it converges to the value —7[sy; (T + 1) — s;;(T; — 1) ], where
u in this case is the R vector with 7 as the jth entry and all other
entries equal to zero. Since the above quantity is negative, for any
8g > Osuch that —6g > —T[s;(Tx + u) — s;;(r; — u)] there exists
a time index 7 such that for all times t € T N [t3, 00) = T},
AV (r(t)) < —3g.Now,since V(r(t)) is non-increasing at each time
t, and since

Y
Y ave) < - Z%

teT,UTy teT,

8A2+ 8 15
(5) D o (15)

1
teTy

is unbounded it must be that at some finite time index t it will
be the case that V(r(t)) < 0. Since V(r) is non-negative for all
r € A, this is a contradiction. Hence ¢ = 0 and r(t) — r*.
Because V is positive definite and decrescent on A, and decreases
monotonically to zero the system is asymptotically stable in that
region (Burgess & Passino, 1998). O

4. Conclusions and future directions

This paper has introduced a new optimization problem
formulation in cooperative control involving team formation using
agents of more than one fundamental type. An algorithm was
developed that can be used to solve this problem under certain
assumptions and it was analytically proven that this algorithm
converges to the optimal team formation. The assumptions of this
paper are commonly made in problems of this type, but they
are not very representative of real world scenarios, particularly
the assumptions of zero communication delays and continuous
resource variables. Thus the algorithm presented here is only
a first step in a potentially large area of research. However,
using a discrete resource model complicates the problem in that
the optimal formation may not be reachable (see Bertsekas and
Tsitsiklis (1997b) and Burgess and Passino (1998) for example) and
because the concept of marginal utility becomes more complicated
without the use of derivatives. It would also be prudent to
consider models that involve decentralized decision making and
the communication delays and or noise (e.g., estimation error) that
occur in those scenarios, although adding these features greatly
complicates the analysis of these models.
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