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Abstract

A genetic algorithm (GA) uses the principles of evolution, natural
selection, and genetics to offer a method for parallel search of complex
spaces. In this paper we develop a GA that can perform on-line adap-
tive parameter estimation for linear and nonlinear systems. First, we
show how to construct a genetic adaptive parameter estimator where a
GA evolves a best set of parameter estimates in real time for a model
with a known structure. Next, we use several examples to illustrate
the operation and performance of the genetic adaptive parameter esti-
mator. We begin by showing how its performance compares to that of
the conventional recursive least squares technique for two linear system
examples. Next, we compare the GA to recursive least squares for a
nonlinear ball on a beam system model. Finally, we examine the use
of the GA for estimating vehicle parameters in an automated highway
system (AHS) application.
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1 Introduction

The genetic algorithm (GA) has been used in a large number of applications,
in areas ranging from economics and game theory to control system design.
It is a stochastic process which attempts to find an optimal solution for a
problem by using techniques that are based on Mendel’s genetic inheritance
concept and Darwin’s theory of evolution and survival of the fittest. GAs
have been used for parameter estimation and system identification [1, 2].

In this paper, we provide a new set of examples of parameter estima-
tion and a comparative analysis with conventional methods. The goal of
the first two examples is to show that the GA can perform adaptive pa-
rameter estimation in cases that are suitable for the recursive least squares
method. This would support the use of the GA as an alternative method in
cases where recursive least squares may be difficult to tune. In addition, we
show that the GA can be used in cases where conventional methods may fail
(nonlinear plants, for example). In particular, we use the GA to estimate
parameters for a nonlinear ball on a beam system. In this example, the GA
estimated model is compared to an approximate linear model that is esti-
mated by recursive least squares. In a final example, we examine the ability
of the GA to estimate specific parameters for a nonlinear automated high-
way system (AHS) application. Since the specific AHS parameters (rather
than an overall estimated model) are of interest, recursive least squares is
not used.

2 Relevant Background: A Base-10 Genetic Algo-

rithm

In order for the GA to find the optimal solution to a particular problem,
the parameters that comprise a solution must be encoded into a form upon
which the GA can operate. To borrow a term from biology and genetics,
any set of parameters which may be a solution to the given problem is called
a chromosome, and the individual parameters in that possible solution are
called traits. Since the GA will most likely be implemented on a digital
computer, each trait must be encoded with a finite number of digits (called
genes). The more genes in a given trait (or in a chromosome), the longer the
GA will take for encoding and decoding purposes and in other operations,
so a reasonable length should be chosen. The entire set of chromosomes (i.e.
the entire set of candidate solutions to the given problem) upon which the
GA will operate is called a population.

Here, it is important to discuss the assignment of the individual genes.



A particular gene can take any one of a given number of values (called
alleles). The GA described in [3] is a base-2 GA, in which all traits are
encoded as binary numbers and all genes may take a value of 0 or 1. For
this study, however, a base-10 GA is used, in which each gene can take any
value from 0 to 9 (an extra gene representing sign ± may be required for each
trait). The base-10 approach was chosen for this study because it simplified
the encoding/decoding procedure, and it provided for easy and intuitive
monitoring of the dynamics of the operation of the GA. Simplification of
the encode/decode procedure is especially important here since we are using
the GA in a real-time system where encoding and decoding must occur
within the sampling interval. Note that none of the techniques presented
after this point require the use of a base-10 GA—a base-2 GA could just as
easily be used. In the discussion th at follows, however, any mention of the
GA implies a base-10 approach.

To evolve the best solution candidate (or chromosome), the GA employs
the genetic operators of selection, crossover, and mutation for manipulating
the chromosomes in a population. A brief description of these operators
follows, and a more detailed description can be found in [3, 4, 5]. The
GA uses these operators to combine the chromosomes of the population in
different arrangements, seeking a chromosome that maximizes some user
defined objective function (called the fitness function). This combination of
the chromosomes results in a new population (i.e., the next generation). The
GA operates repetitively, with the idea that, on average, the members of the
population defining the current generation should be as good (or better) at
maximizing the fitness function than those of the previous generation. The
most fit member of the current generation (i.e., the member with the highest
fitness function result, or “fitness value”) at the time the GA terminates is
often taken to be the solution of the GA optimization problem.

The first genetic operator used by the GA for creating a new generation
is selection. To create two new chromosomes (or children) two chromosomes
must be selected from the current generation as parents. As is seen in
nature, those members of the population most likely to have a chance at
reproducing are the members that are the most fit. The technique used in
[3] for selection uses a “roulette wheel” approach. Consider a roulette wheel
that is partitioned according to the fitness of each chromosome. The more
fit chromosomes occupy a greater portion of the wheel and are more likely
to be selected for reproduction. In [1], a selection method is chosen so that
a given segment of the population corresponding to the most fit members
(i.e. the D most fit members) are automatically selected for reproducing.
Therefore, the least fit members have no chance of contributing any genetic



material to the next generation. Of the D most fit members of the curre nt
population, parents are randomly chosen, with equal probability. The latter
method of selection is used in this study.

Once two parents are selected, the crossover operation is used. Crossover
mimics natural genetics (i.e. “inheritance”) in that it causes the exchange
of genetic material between the parent chromosomes, resulting in two new
chromosomes. Given the two parent chromosomes, crossover occurs with a
user defined probability pc. According to [3], if crossover occurs, a randomly
chosen “cross site” is determined. All genes from the cross site to the end
of the chromosome are switched between the parent chromosomes, and the
children are created. Another approach to crossover, one that is used in
[1] and in this study, is that crossover occurs exactly once (i.e. pc = 1) for
every trait, with the cross site within that trait chosen randomly. That is, all
genes between the cross site and the end of the trait are exchanged between
the parent chromosomes. Crossover helps to seek for other solutions near
solutions that appear to be good.

After the children have been created, each child is subjected to themuta-
tion operator. Mutation occurs on a gene by gene basis, each gene mutating
with probability pm. If mutation does occur, the gene that is to mutate will
be replaced by a randomly chosen allele (in this case, a randomly chosen
value between 0 and 9). The mutation operator helps the GA avoid a local
solution to the optimization problem. If all of the members of a population
should happen to converge to some local optimum, the mutation operator al-
lows the possibility that a chromosome could be pulled away from that local
optimum, improving the chances of finding the global optimum. However,
since a high mutation rate results in a random walk through the GA search
space, pm should be chosen to be somewhat small. We have found, how-
ever, that in some instances in real-time systems, we need a slightly higher
mutation rate. This is the case since the fitness function depends on the dy-
namically changing state of a system, so the locality of an optimum is time
dependent and we must ensure that the GA is readily capable of exploring
new opportunities for maximizing the time-varying fitness functions.

If a chromosome is generated by crossover and mutation, it is possible
that one or more of its traits will lay outside of the allowable range(s). If this
occurs, each trait that is out of range should be replaced with a randomly
selected trait that does fall within the allowable range.

In addition to selection, crossover, and mutation, a fourth operator can
be used by the GA. This operator, known as elitism, causes the single most
fit chromosome of a population to survive, undisturbed, in the next gener-
ation. The motivation behind elitism is that after some sufficiently small



amount of time, a candidate solution may be found to be close to the optimal
solution. To allow manipulation of this candidate solution would risk un-
satisfactory performance by the GA. Therefore, with elitism, the fitness of a
population (seen as the fitness of the best member of the population) should
be a nondecreasing function from one generation to the next. If elitism
is selected, the most fit member of the current generation is automatically
chosen to be a member of the next generation. The remaining members are
generated by selection, crossover, and mutation. Notice, also, that this frees
us to raise the mutation probabilty since we know that we have a good solu-
tion available. In [1] , as well as in this study, elitism can involve more than
just one member. That is, a certain number ρ ·D (possibly more than one)
of the most fit members will survive in the next generation without manip-
ulation by crossover or mutation. If the most fit member would point to a
local optimum in the GA search space, but a slightly less fit member points
to the global optimum, they might both survive in the next generation with
this new form of elitism.

To initialize the GA, a chromosome length must be chosen, along with
the length and position of each trait on the chromosome. The allowable
range for each trait must also be specified. The population size (denoted N )
must be specified, along with the method of generating the first population.
The individual members may be randomly generated, or they may be ini-
tialized to some set of “best guesses.” In this study, a randomly generated
initial population is always used. In addition, pc and pm must be specified.
After this initialization, the GA can operate freely to solve its optimization
problem.

3 Genetic Adaptive Parameter Estimation

Consider a general system

ẋ = G(x, u; θ) (1)

where x is a vector describing the state of the system, u is the system input,
θ is a vector containing the parameters that describe the system, and G is
a function that relates x, u, and θ and defines the operation of the system.

Since the GA is a technique often implemented on a digital computer,
it generally operates in discrete time. A more appropriate definition of the
general system is then written

x(k + 1) = F

(
x(k), u(k); θ

)
(2)



if θ is a time-invariant vector, which will be the case in the applications
studied in this paper. Note that the function F in Equation 2 is not the
same as G in Equation 1. The GA-based parameter estimator assumes that
the structure of the function F in Equation 2 is known and operates on the
equation

x̂(k + 1) = F

(
x̂(k), u(k); θ̂(k)

)
(3)

where θ̂(k) is the estimate of the true system parameter vector θ at time k,
and x̂(k) is the state of this estimated system.

The way in which the GA operates on Equation 3 is as follows. Consider
the block diagram shown in Figure 1. Each parameter estimate in the

Genetic
Adaptive
Parameter
Estimator

+
−^

^^^

u(k)

^

x(k)

x(k)
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x(k+1) = F[x(k),u(k);0(k)]

0

x(k+1) = F[x(k),u(k);0]

Figure 1: Block diagram for a general GA-based parameter estimator.

vector θ̂(k) is encoded by the GA as a trait on a chromosome. Therefore,
each chromosome completely represents a set of parameter estimates θ̂(k)
and hence it completely represents an estimated system (since the structure
of F is assumed to be known). Since the GA works with a population of
chromosomes, the block in Figure 1 representing the estimated system can
be thought of as a population of candidate systems. The GA employs the
selection, crossover, mutation, and elitism operators on this population of
candidate systems to evolve a system that best represents the true system.
At any time k, the current set of parameter estimates θ̂(k) will be provided
by themost fit chromosome in the population at time k (i.e. the chromosome
with the highest fitness value at time k).

In this case, the fitness function for the GA is chosen to minimize the



squared error between the state x(k) of the actual system and that of the
estimated system x̂(k) over a window of the W +1 most recent data points.
However, since themaximally fit member is sought, the fitness function takes
the form

J = α− 1
2
ETE (4)

where

E =



ek−W

ek−W+1
...
ek


 , (5)

with ek = x(k) − x̂(k) for k > 0 and ek = 0 for k ≤ 0. To guarantee that
each member has a positive fitness value, α is selected to be the highest
1
2E

TE of any member of the population at time k (i.e., the 1
2E

TE of the
worst member of the population).

The GA uses the current population of parameter estimates, along with
the past and present values of the input u(k), to generate past and present
estimated system states x̂(k). Note that the value of x̂(k−W ) (representing
the beginning of the current window of data) is set equal to x(k −W ). A
window of x̂ values (i.e. x̂(k − W ), x̂(k −W + 1), . . . , x̂(k)) is generated
for each candidate set of parameter estimates, and hence each candidate
is assigned a fitness value according to Equations 4 and 5. Using these
fitness values, the GA is able to select which candidates will be used as
parents for generating the next population (or generation) of candidate sets
of parameter estimates.

3.1 Computational Issues

In order to assess our ability to implement an algorithm (such as the genetic
adaptive state estimator) in real time, computational complexity must be
examined. For any given generation, let na represent the number of add
operations that must take place. Also, let nm, ri, and rf , represent the
numbers of multiply operations, random integer generations, and random
floating point number generations that must take place, respectively. The
values for na and nm are of primary interest in determining the complexity
of the fitness calculation procedure, while ri and rf are of primary interest
in terms of generating the next population of chromosomes.



First, we focus on fitness calculation. When looking at the W + 1 most
recent data points, each population member must undergo W + 1 add op-
erations, which will correspond to a calculation of the error between the
actual system output and the estimated system output for each data point.
Then, W + 1 mulitply operations will be carried out, as the squared error
is of sole interest here. All of the squared errors over the window will be
added together, resulting in another W add operations. This leads to a total
of 2W + 1 add operations and W + 1 multiply operations for each member
(in a population of size N ) to generate ETE. (Therefore, W + 2 multiply
operations are necessary for 1

2E
TE calculation for each member.)

Each member is examined, and after α is determined, N add operations
are implemented to perform the remainder of the J = α− 1

2E
TE calculations

for the population. In all,

na = 2N (W + 1) (6)
nm = N (W + 2)

are the numbers of add and multiply operations, respectively, that must take
place for a population at any given generation. Depending on the encoding
and decoding procedures used for chromosome manipulation, these numbers
require some adjustment.

In order to determine how many random number generations must take
place, we must look at the remainder of the operation of the GA (i.e., se-
lection, crossover, and mutation). Since every two children are generated
by two randomly chosen parents (from the pool of the best D population
members), each child can be thought of as the result of one random selec-
tion from the pool of D possible parents, on average. Recalling that ρ · D
members survive in the next population by elitism, N−ρ ·D random integer
generations then take place due to parent selection. For every two children
generated, nt crossover operations will occur, where nt is the number of
traits on a chromosome. This means that nt

2 (N − ρ · D) random integer
generations will occur due to crossover operations. Finally, the number of
mutation operations taking place in a given population can range from zero
to ng(N −ρ ·D), with an average value of pm ·ng(N −ρ ·D), where ng is the
number of genes per chromosome. Therefore the number of random integer
generations ri needed to produce a new population lay in a range

(
nt

2
+ 1)(N − ρ ·D) ≤ ri ≤ (

nt

2
+ ng + 1)(N − ρ ·D) , (7)

with an average value

r̄i = (
nt

2
+ pm · ng + 1)(N − ρ ·D) . (8)



Since it is possible that mutation or crossover will lead to traits that
lay outside the allowable ranges, the GA may be required to replace faulty
traits with new, randomly generated traits. This will result in the generation
of random floating point numbers. The number of random floating point
number generations rf will lay in a range

0 ≤ rf ≤ nt(N − ρ ·D) . (9)

To examine the operation of a genetic adaptive parameter estimator
consider the following examples.

4 A Linear Example

Consider a linear system with the following discrete time transfer function

H(z) =
Y (z)
U(z)

=
K

z3 − az2 − bz − c
, (10)

which has the following difference equation

y(k) = Ku(k− 3) + ay(k − 1) + by(k− 2) + cy(k− 3) . (11)

The estimation of K, a, b, and c will be studied in each of the following five
cases.

Case 1: K = 256.3, a = 0.55, b = 0.43, and c = −0.0475. This plant has
poles at −0.5 (somewhat fast), 0.1 (fast), and 0.95 (somewhat slow).

Case 2: K = 374.8, a = 1.14, b = 0.4416, and c = −0.59248. Two of the
poles in this case are found at 0.92, and the other pole is at −0.7.

Case 3: K = 875.1, a = 2.94, b = −2.8812, and c = 0.941192. All three
of this plant’s poles are found at 0.98.

Case 4: K = 12.6, a = −0.24, b = −0.0192, and c = −0.000512. All
three of this plant’s poles are found at −0.08.

Case 5: K = 172.3, a = 1.92, b = −1.2288, and c = 0.262144. All three
of this plant’s poles are found at 0.64.

Parameter estimation is performed with noise as the training signal. In
particular, at each sample, the training signal can take a random value be-
tween −1.0 and 1.0 (with a uniform distribution). Parameter estimation is
performed using both recursive least squares and GA methods, and com-
parisons between the two are provided.



4.1 Recursive Least Squares

The recursive least squares approach begins with rewriting the difference
equation in the form

yk = φT
k θ , (12)

where

yk = y(k) , (13)

φk =



u(k − 3)
y(k − 1)
y(k − 2)
y(k − 3)


 ,

and

θ =



K

a
b

c


 .

Since θ̂ is updated with the acquisition of each new training data point
(i.e., at each time step), it actually should take the form θ̂(k) where

θ̂(k) =



K̂(k)
â(k)
b̂(k)
ĉ(k)


 (14)

which is the current set of parameter estimates.
At each time step, y(k) is used with φk to generate θ̂(k) according to the

update equation

θ̂(k) = θ̂(k − 1) + P (k)φk

(
yk − φT

k θ̂(k − 1)
)

, (15)

where

P (k) =
1
λf

(
P (k − 1) − P (k − 1)φk

(
λfI + φT

kP (k − 1)φk

)−1

φT
kP (k − 1)

)
.

(16)
Here, λf is a “forgetting factor” that gives higher weight to more recent
data points (0 < λf ≤ 1). That is, the most recent data point will be



weighted with λf , while the n̄th most recent data point will be weighted by
λn̄

f . Initially, λf = 1 is chosen to give all data equal weight.
To initialize the recursive least squares algorithm, θ̂(0) and P (0) are

needed. Since a positive definite matrix must be chosen for P (0), an accept-
able choice is α̃I where α̃ � 0. For recursive least squares estimation of the
five linear plants defined above, α̃ = 25000.0 has been chosen. All of the
elements of θ̂(0) were initialized to be zero. The results of the estimation of
these plants can be seen in Figures 2 through 7, where the recursive least
squares (RLS) algorithm is compared to the GA based approach which will
be described below. In all cases except Case 4, the recursive least squares
estimates were quite quick to converge. In theory, the estimates of Case 4
should converge, although this convergence was shown to be quite slow in
simulation. By adjusting λf from 1 to 0.95, the parameter convergence for
Case 4 was greatly assisted, as can be seen in Figure 6.

4.2 Genetic Algorithm

Recall the fitness function defined in Equations 4 and 5. Here, we have
ek = y(k) − ŷ(k) for k > 0 and ek = 0 for k ≤ 0. The fitness function for
the linear plant under discussion is then written

J = α−1
2

k∑
j=k−W

(
y(j)−K̂(k)u(j−3)−â(k)ŷ(j−1)−b̂(k)ŷ(j−2)−ĉ(k)ŷ(j−3)

)2

,

(17)
where all ŷ(j) in the window for time k are generated according to the
equation

ŷ(j) = K̂(k)u(j − 3) + â(k)ŷ(j − 1) + b̂(k)ŷ(j − 2) + ĉ(k)ŷ(j − 3) . (18)

After some tuning, the following GA parameters were used for parameter
estimation of the linear plant described above.
Case 1: N = 30, pm = 0.2, D = 20, ρ ·D = 2, W = 20, and gt = 10.
Case 2: N = 50, pm = 0.4, D = 30, ρ ·D = 4, W = 50, and gt = 20.
Case 3: N = 100, pm = 0.2, D = 60, ρ ·D = 10, W = 50, and gt = 20.
Case 4: N = 20, pm = 0.2, D = 10, ρ ·D = 2, W = 20, and gt = 10.
Case 5: N = 50, pm = 0.5, D = 30, ρ ·D = 4, W = 20, and gt = 20.
In all cases, the trait for K̂ was allowed in the range [−1000.0,1000.0], and
the traits for â, b̂, and ĉ were allowed in the range [−10.0,10.0].

Originally, all of the GA parameters were chosen to be the same as those
of Case 1, as a small population size, window length, and number of gener-
ations per time period would lead to a GA that is not very demanding in



terms of computational resources. In cases where those parameter choices
seemed insufficient for convergence of the GA estimates, the following pro-
cedure was used to tune the GA. First, the window length W was extended
in order to allow the GA to look at more training data for evaluating the
fitness of the population members. The goal of this step was a more ac-
curate picture of the fitness of each member and an increased probability
that the best members would be selected for mating. The window length
would continue to be increased until it no longer seemed effective (i.e. until
improvement in convergence for the GA estimates was no longer obvious).

After the W tuning was completed, the population size N was increased,
with the idea that a larger population would allow for a greater chance that
some estimates would fall closer to the actual values at GA initialization. A
secondary goal of increasing N was that the random search features inherent
in the GA would have a better chance of finding a path to convergence if
allowed to operate more frequently, which should be the case with a larger
number of members upon which to operate. Naturally, the number of mem-
bers D selected for mating was increased with N , as was the number of
members ρ · D that would survive in the next generation. As with W , N
was increased until it was no longer deemed effective.

At this point, pm was increased. By increasing the randomness of the
GA’s search, an increased probability of finding a path to convergence
seemed likely. As a last resort, the number of generations per time pe-
riod gt was increased, as this seemed like a “brute force” attempt at con-
vergence. Essentially, a higher gt might have facilitated convergence in a
shorter amount of time, but it would not necessarily reduce the number of
generations required. In addition, increasing gt would lead to a heavy de-
mand on computational resources. Once it was no longer effective to tune gt,
the entire GA tuning procedure could be repeated as long as improvements
were exhibited.

Since the genetic algorithm is a stochastic approach to optimization,
there are no strict guidelines as to how to tune it. The procedure described
above is an ad hoc approach—there may be other procedures that will work
as well or better, depending on the situation in which the genetic algorithm
is used. However, it seemed logical to use this procedure.

The results are shown in Figures 2 through 7 where the GA is compared
to the recursive least squares algorithm. Although the performance of the
GA would vary slightly from one execution to the next, the results shown
represent a typical GA execution. In Case 1, the GA and RLS algorithm
performed comparably. In Cases 2 and 5, the GA was successful, although
outperformed by the RLS algorithm. In Case 3, the GA was significantly
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Figure 2: Comparison of the GA (bottom plot of each part) to the RLS
algorithm (top plot of each part) for fixed parameter linear system, Case 1.
Dotted lines indicate values of ideal parameters while solid lines represent
parameter estimates.

outperformed by the RLS algorithm, as no combination of GA parameter
values was found (even after some extensive tuning) that would yield accept-
able results. It was expected that the RLS algorithm would perform well for
parameter estimation of a linear plant. In three of the four aforementioned
cases, the GA was somewhat competitive with the RLS algorithm. In Case
4, the GA converged very quickly, even after N was reduced from the initial
value of 30. It is interesting to note that before λf was adjusted, the RLS
algorithm required a very long time to converge for a few of the parameters.
However, after λf was adjusted, the GA no longer outperformed the RLS
algorithm. These results were not surprising. Theoretically, recursive least
squares should always succeed for linear plants, but the GA seems to be
able to provide a possible alternative in cases where recursive least squares
is slow to converge.
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Figure 3: Comparison of the GA (bottom plot of each part) to the RLS
algorithm (top plot of each part) for fixed parameter linear system, Case 2.
Dotted lines indicate values of ideal parameters while solid lines represent
parameter estimates.

5 A Linear Example With a Varying Parameter

In Cases 1 and 2 of Section 4, both the GA and the RLS algorithm succeeded
in estimating the plant parameters. It is interesting to see how each of the
algorithms would perform if some parameter of the plant was not fixed at a
constant value. Cases such as this do exist. Consider an automobile braking
system, as in [6]. There is a noticeable difference in the response of “cold”
brakes from that of “warm” or “hot” brakes. This would tend to indicate
some parameter (or group of parameters) that changes as friction causes the
brakes to heat up. The ability to detect changing parameters could lead to
the design of controllers that would adapt to those changes. In the braking
system example, the design of such an adaptive controller could lead to
brake performance that feels the same to the driver, regardless of whether
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Figure 4: Comparison of the GA (bottom plot of each part) to the RLS
algorithm (top plot of each part) for fixed parameter linear system, Case 3.
Dotted lines indicate values of ideal parameters while solid lines represent
parameter estimates.

the brakes are cold or hot.
Therefore, the parameter K was chosen to vary in Cases 1 and 2 in the

following manner. In Case 1, K varied from 200.0 to 300.0, and in Case
2, K varied from 300.0 to 450.0. Note that with both the RLS and the
GA based estimator, there are no guarantees that the parameter estimates
will converge to the ideal ones. The GA and the RLS algorithm used for
estimating the parameters of these two plants were the same as those used
for Cases 1 and 2 of Section 4. Since there were varying parameters to
track, it made sense to use the “forgetting factor” λf and convert this into
a “weighted” RLS approach. As a result, λf = 0.9 was used. (For the sake
of comparison, when λf = 1 was used, the RLS had a great deal of difficulty
tracking K. As a result, the estimates â, b̂, and ĉ also suffered.) The results
are given and compared in Figures 8 and 9. The results shown for the GA
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Figure 5: Comparison of the GA (bottom plot of each part) to the RLS
algorithm (top plot of each part) for fixed parameter linear system, Case 4.
Dotted lines indicate values of ideal parameters while solid lines represent
parameter estimates.

represent a typical GA execution.
Note that the GA was able to respond to the variation of the parameter

K in both cases, although the estimate K̂ was noisy compared to that of
the weighted RLS algorithm. There is still no guarantee that either algo-
rithm will yield parameter estimates that converge to the actual parameters,
but there seems to be some evidence here that the GA may be a valuable
alternative method for on-line estimation when there is the possibility of
parameter variations.

6 The Ball on a Beam System

A third example in which the GA can be compared to the recursive least
squares approach is the ball-beam system. This system consists of a beam
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Figure 6: Comparison of the GA (bottom plot of each part) to the RLS
algorithm with λf = 0.95 (top plot) for fixed parameter linear system, Case
4. Dotted lines indicate values of ideal parameters while solid lines represent
parameter estimates.

with a groove in the center along the length of the beam. A ball is placed in
this groove and a control system must vary the tilt of the beam so that the
position of the ball follows a reference position. The beam is 31 units long (a
unit being the distance—approximately 0.75 cm—between the photo-diodes
used to determine ball position). Position 0.0 refers to the left end of the
beam, while position 31.0 refers to the right end of the beam. The angle of
the beam is measured from the horizontal, with counter-clockwise being the
positive direction. The mathematical model of the system is

ẋ1 = x2 , (19)

ẋ2 = a1u + a2tan
−1(a3x2)(e−a4x2

2 − 1) .
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Figure 7: Comparison of the GA (bottom plot of each part) to the RLS
algorithm (top plot of each part) for fixed parameter linear system, Case 5.
Dotted lines indicate values of ideal parameters while solid lines represent
parameter estimates.

Here, the state x1 refers to the ball position, and the input u refers to the
angle of the beam. The parameters a1, a2, a3, and a4 are to be estimated in
this example. The actual values are a1 = −514.96, a2 = 9.84, a3 = 100 and
a4 = 104. These values were determined experimentally using a ball-beam
set up in our laboratory.

Since the least squares technique works best for linear systems, a linear
system that might approximate the ball-beam model must be proposed for
recursive least squares estimation. Since the RLS algorithm must estimate
the parameters of the linear approximation, the actual parameters of the
nonlinear ball-beam model will still be unknown (to the RLS algorithm).
However, the parameters of the linear approximation may be useful enough
for on-line controller design (i.e. adaptive control [7]).

As mentioned before, the GA has the advantage of not being restricted to
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Figure 8: Comparison of the GA (bottom plot of each part) to the RLS
algorithm with λf = 0.9 (top plot) for varying parameter linear system,
Case 1. Dotted lines indicate values of ideal parameters while solid lines
represent parameter estimates.

parameter estimation for linear systems. Therefore the actual parameters of
the ball-beam model, a1, a2, a3, and a4, can be estimated (recall Equations
19 and 20).

Using a forward looking difference, a discrete time approximation to the
ball-beam model is

x1(k + 1) = x1(k) + Tx2(k) , (20)

x2(k + 1) = x2(k) + Ta1u(k) + Ta2tan
−1(a3x2(k))(e−a4x2

2(k) − 1) ,

where T is the sampling period. Here, T = 0.01 is chosen for all identification
investigations.
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Figure 9: Comparison of the GA (bottom plot of each part) to the RLS
algorithm with λf = 0.9 (top plot) for varying parameter linear system,
Case 2. Dotted lines indicate values of ideal parameters while solid lines
represent parameter estimates.

6.1 Recursive Least Squares

Since a linear approximation to the ball-beam model must be used, and
since there are two states in the ball-beam model (i.e. the system is second
order), consider a second order model

H(z) =
âz2 + b̂z + ĉ

z2 + d̂z + ê
(21)

where the parameters â, b̂, ĉ, d̂, and ê are to be determined. H(z) is a
transfer function from the input u (the angle) to an output (the ball position)
which is denoted by y. This model can be written in terms of a difference
equation

y(k) = âu(k) + b̂u(k − 1) + ĉu(k− 2) + d̂y(k− 1) + êy(k − 2) . (22)



The signs for d̂ and ê have been reversed for simplicity in writing the differ-
ence equation.

For the recursive least squares algorithm, consider

yk = y(k) , (23)

φk =




u(k)
u(k − 1)
u(k − 2)
y(k − 1)
y(k − 2)


 ,

and

θ̂ =




â

b̂
ĉ

d̂
ê


 .

For this system, α̃ = 25000.0 was used to initialize the P (0) matrix in the
RLS algorithm, and all parameters in θ̂(0) were initialized to zero. The value
of λf was chosen to be 1, corresponding to a “standard” RLS algorithm. For
the sake of comparison, a weighted RLS algorithm with λf = 0.9 was also
used, but the results were much more noisy than those of the standard RLS
algorithm, indicating that it was not very useful to adjust λf away from 1
in this case. The training input was a noise signal with a range of ±6.0
degrees (± π

30 radians), and the sampling period T was chosen to be 0.01
seconds. Every 0.1 seconds, a new random value from that range was used
as the angle input to the ball-beam system. The initial ball position was
15.0 units.

An hour of ball-beam operation was simulated (see Figure 10), and the
following estimates were obtained: â ≈ 0, b̂ = 0.00003, ĉ = −0.0515, d̂ =
1.7612, and ê = −0.7612. The validity of these estimates was tested as the
approximate linear system was compared to the nonlinear system with GA
estimated parameters in Figure 13.

For the purpose of verification, four test input signals were used. The
first was a sinusoid with a frequency of 0.15 Hz, an amplitude of π

60 , and a
phase of 180 degrees. The second test signal was a sinusoid with a frequency
of 0.5 Hz, an amplitude of π

40 , and a phase of 180. The third test signal was
a square wave with a period of 0.24 seconds and an amplitude of π

35 . The
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Figure 10: On-line RLS estimation of the parameters for the approximate
ball-beam model.

first half-cycle of this signal (which is negative) was shortened from 0.12
seconds to 0.094 seconds. The final test signal was another square wave
with a period of 0.9 seconds and an amplitude of π

90 . The first half-cycle of
this signal (which is also negative) was shortened from 0.45 seconds to 0.425
seconds. Note that the RLS estimated model behaved rather poorly for all
test signals.

6.2 Genetic Algorithm

An advantage for the GA in this case is that a nonlinear model structure
can be used, and its parameters can be tuned (i.e. no linear approximations
need to be made). Assuming the structure of the ball-beam model is known
to be the structure in Equations 19 and 20, the parameters a1, a2, a3, and
a4 can be identified.

The fitness function of Equations 4 and 5 can be used here, again with
ek = y(k)−ŷ(k) for k > 0 and ek = 0 for k ≤ 0. The value of yk is the current
ball position of the actual ball-beam system, and ŷk is the current ball



position of the identified model (using â1, â2, â3, and â4). If the structure
of the model is known, it can be assumed that the physical laws used to
determine this model would give some insight into the ranges of â1, â2, â3,
and â4 that should be chosen for GA operation. For this reason, â1 was
allowed in the range [−2000.0,0.0], â2 was in the range [0.0,30.0], â3 was in
the range [0.0,300.0], and â4 was in the range [0.0,20000.0].
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Figure 11: GA parameter estimation for the ball-beam model (ten minute
execution). Dotted lines indicate values of the ideal parameters while solid
lines represent parameter estimates.

The GA parameters used here were as follows: N = 70, pm = 0.2,
D = 20, ρ · D = 2, W = 10, and gt = 1. These parameters were initially
chosen to be small, for computational efficiency. Then they were tuned
according to the procedure described in Section 4.2. A sampling period T of
0.1 seconds was used, and the noise signal used was the same training signal
used with the RLS algorithm. The parameter ranges for â1, â2, â3, and â4

were identical to those used by the GA in the off-line case. Two separate
GA executions are shown in Figures 11 and 12. Figure 11 corresponds to a
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Figure 12: GA parameter estimation for the ball-beam model (one hour
execution). Dotted lines indicate values of the ideal parameters while solid
lines represent parameter estimates.

GA execution over a ten minute period and Figure 12 corresponds to a GA
execution over a period of one hour.

In both cases, â1(k), â2(k), and â3(k) converge to the correct values of
−514.96, 9.84, and 100.0, respectively. Also in both cases, the behavior of
â4(k) is quite erratic and does not seem to converge to any value. It is
interesting to see that, although the GA seems unable to cause convergence
for â4(k), it is able to effect exact convergence for the other three parameters.
Note that the general behavior shown in Figures 11 and 12 is typical of any
GA execution, although each execution will differ slightly from another (due
to the stochastic nature of the GA).

To compare the GA estimation with that of the RLS algorithm, the
one-hour GA execution was used. For â4(k), an average was taken over the
entire one hour estimation and a value of 10427.32 was used. The same four
test signals used for the RLS algorithm were used for the GA. The results
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Figure 13: Testing GA and RLS parameter estimates for the ball-beam
model. The position error is the error between the ball position for the
actual ball-beam model and that of the estimated model, using the same
test signal and initial conditions.

of the comparison are seen in Figure 13. The linear approximation with
the RLS estimated parameters exhibited poor performance in all four tests,
while the GA estimated system showed very good performance in all four
tests. This should be expected, again noting that the GA could directly
estimate parameters of the nonlinear model, while the RLS algorithm could
only estimate parameters of an approximate linear model.

This provides some evidence that a GA based estimator may be a viable
candidate as a parameter estimator for nonlinear systems. It is important
to point out, however, that this comparison of GA to the RLS algorithm
is somewhat weak in that the GA was unable to find convergence for the
parameter â4(k). Testing the system (even with an average value of â4(k))
implies that â4(k) did converge to some value. If a different range with
respect to this parameter was chosen for the GA, a different average value



may have been obtained and the results of the comparison tests may have
been quite different. The real value of the GA is seen in its ability to
estimate the other three parameters, indicating that the GA may provide
an alternative method of parameter estimation for nonlinear systems in some
(but not all) cases.

7 An Automated Highway System

To solve some of the problems caused by the current rise in traffic congestion,
research is being done to develop “automated highway systems” (AHS) that
are more safe (see e.g., [8, 9]). In the AHS, a “platoon” of vehicles can be
driven automatically with onboard controllers. These controllers enable each
vehicle to track the velocity of the vehicle directly ahead while maintaining
a specific following distance.

Consider the state variables δ, v, and f , where δi refers to the distance
between the ith and i− 1st vehicles (also called the intervehicle spacing), vi

refers to the velocity of the ith vehicle, and fi refers to the driving or braking
force applied to the ith vehicle. The ith vehicle follows the i − 1st vehicle.
Using these state variables, the model for the ith vehicle can be written

δ̇i = vi − vi−1 (24)

v̇i =
1
mi

(−Aρv
2
i − di + fi)

ḟi =
1
τi

(−fi + ui)

where mi is the mass of the ith vehicle, Aρ is an aerodynamic drag constant,
di is a constant frictional force for the ith vehicle, τi is the engine/brake time
constant for the ith vehicle, and ui is the control input for the ith vehicle
[8]. Nominal values for the constants are Aρ = 0.3Ns2/m2, di = 100N , and
τi = 0.2s. The controller used to specify ui in this study is a proportional-
derivative (PD) controller with yi = −(δi +λvi) used as an input and a goal
of driving yi to zero. The value λ = 0.9 is used, corresponding to a desired
intervehicle spacing of roughly one vehicle length per 10 mph.

Using a forward looking difference, the model for the ith vehicle is then
written

δi(k) = δi(k − 1) + T

(
vi(k− 1)− vi−1(k − 1)

)
(25)

vi(k) = vi(k− 1) +
T

mi

(
−Aρv

2
i (k − 1)− di + fi(k − 1)

)



fi(k) = fi(k − 1) +
T

τi

(
−fi(k − 1) + ui(k− 1)

)
,

with the following control law

yi(k) = −
(
δi(k) + λvi(k)

)
(26)

ui(k) = Kpiyi(k) +
Kdi

T

(
yi(k)− yi(k − 1)

)
.

The PD controller parameters for the ith vehicle are Kpi and Kdi , and T is
the sampling period (here T = 0.01 is chosen).

In this example, it would be useful if certain parameters of the model
could be estimated. One such parameter is the vehicle mass mi, as each
vehicle in a platoon would have a different mass. This is, of course, due
to the fact that the number of passengers in a vehicle can vary, as can
the payload carried by that vehicle. Having an accurate estimate of the
mass of a vehicle can be useful in tuning a controller for that vehicle, as
stopping distance and required braking force depend on that mass (a higher
mass would indicate a larger stopping distance and required braking force).
The recursive least squares algorithm is not as useful here as the AHS is a
nonlinear system. Any parameters estimated by the RLS algorithm would
be parameters of an approximate linear system and may not make sense
in terms of the actual parameters to be estimated (especially at highway
speeds where the term Aρv

2
i will have a significant influence).

7.1 Vehicle Mass Estimation

For this AHS study, a platoon of four vehicles is used. Actually, a fifth
vehicle is involved, as the lead vehicle follows a “virtual” vehicle. That is,
the controller for the lead vehicle uses its own velocity as well as a virtual
intervehicle spacing for generating a control input to govern the behavior of
the lead vehicle.

The masses of the four vehicles are m1 = 1576.0kg, m2 = 1061.0kg,
m3 = 1413.0kg, and m4 = 1234.0kg. The di and τi parameters for all
vehicles are set to the nominal values for this mass estimation study. After
some tuning, the following PD controller values were used: Kp1 = 1088.0,
Kd1 = 1525.9, Kp2 = 1411.0, Kd2 = 1654.2, Kp3 = 714.1, Kd3 = 1493.1,
Kp4 = 1523.5, and Kd4 = 1352.5. The operation of the AHS can be seen
in Figures 14 and 15, where the thin solid line in Figure 14 indicates the
velocity profile of the “virtual” vehicle ahead of the lead vehicle. The dotted
lines in both figures indicate the behavior of the lead vehicle (or first vehicle



in the platoon). The dashed lines indicate the behavior of the second vehicle.
The dash-dot lines indicate the behavior of the third vehicle. And the thick
solid lines indicate the behavior of the fourth and final vehicle in the platoon.
The intervehicle spacing errors are shown in Figure 15. Notice that they are
all less than 0.8 meters, so safe AHS operation is achieved.

Each vehicle employs its own GA for the mass estimation problem. That
is, four separate GAs are operating in this study. Each GA uses the fitness
function found in Equations 4 and 5, with ek = y(k) − ŷ(k) for k > 0 and
ek = 0 for k ≤ 0. In this case, y(j) and ŷ(j) have the following form for the
ith vehicle

y(j) =

[
δi(j)
vi(j)

]
(27)

ŷ(j) =

[
δ̂i(j)
v̂i(j)

]
.

The states δ̂i(j), and v̂i(j) that correspond to the beginning of a window of
data are initialized to the values of δi(j) and vi(j) at the beginning of that
window. This procedure is the same as that used in the previous windowed
GA applications.

However, there is a difference from previous windowed GA applications
in that the state fi is assumed not to be directly measurable. One must
find some way to initialize f̂i(j) at the beginning of a data window using
only the measurable quantities δi(j) and vi(j). Referring to Equations 25,
a possible equation for f̂i(j) initialization (for the data window at time k)
can be written

f̂i(j) =
m̂i(k)
T

(
vi(j + 1)− vi(j)

)
+ Aρv

2
i (j) + di , (28)

where m̂i(k) is the current mass estimate for the ith vehicle at time k. Since a
window of past data values is used, vi(j+1) is available for this initialization
procedure. Note that as m̂i(k) converges to mi, this initialization becomes
more accurate. Equation 28 has been found to work quite well, as will be
seen below.

The parameters chosen for the GA vehicle mass estimation were as fol-
lows: N = 30, pm = 0.3, D = 20, ρ·D = 2, W = 50, and gt = 1. Again, they
were found by tuning the GA according to the procedure discussed in Sec-
tion 4.2. The mass estimates m̂i were allowed in the range [1000.0,1600.0].
The results of the estimation are shown in Figure 16. Note how quickly
the mass estimate for each vehicle was able to converge to the exact mass



of that vehicle. In all cases, complete convergence occurred in less than 1
second. This seems to provide additional evidence for the utility of the GA
in nonlinear system parameter estimation.

7.2 Multiple Parameter Estimation

Although the GA worked quite well for the estimation of a single parameter
within the AHS, it is important to realize that parameters such as di and τi
may exhibit variations that one may want to estimate. Such variations could
result in faulty estimates m̂i. In addition, if the engine or brakes undergo
any type of degradation or failure there will be noticeable differences in
the constant frictional force di or in the engine/brake time constant τi (or
both). Clearly, being able to estimate these additional parameters can be
useful, not only in maintaining accurate estimates of mi, but also in the
early detection of brake or engine problems. Therefore, the GA should be
used to estimate these parameters as well.

However, instead of using a single GA to estimate all three parameters,
three parallel GAs are used on each vehicle, each estimating one parameter.
One reason for this is that additional parameters to be estimated by a sin-
gle GA might lead to a larger required population. Another reason is that
adding parameters to a GA raises the dimension of the GA’s search space,
reducing the likelihood for quick convergence. In addition, if it is possible
that the fitness function used by GA favors any of the parameters to be
estimated, the convergence of the remaining parameters may suffer. Finally,
since the fitness function seeks the combination of the parameter estimates
that best describes the system, there is no guarantee that the individual
parameters will converge to their correct values. Since the individual pa-
rameters (not their combination) are of interest in this case, the choice is
made to use a separate GA for each parameter. Thus, twelve GAs are in
operation, three GAs on each of the four vehicles in the platoon.

For this case, the same values of mi used in the single parameter mass
estimation are used. The values of di and τi may differ from the nominal
values used in the single parameter mass estimation. In fact, the values used
for those parameters are as follows: d1 = 103.4N , τ1 = 0.22s, d2 = 84.1N ,
τ2 = 0.21s, d3 = 100.0N , τ3 = 0.42s, d4 = 119.6N , and τ4 = 0.35s.

The fitness function used for each GA is identical to that for the single
parameter mass estimation. The f̂i(j) initialization equation used is Equa-
tion 28 with di replaced by d̂i(k). In addition, each GA for a given vehicle
has access to the current estimates from the other two GAs for that vehicle.
For example, the GA generating the current estimate m̂1(k) has access to
the most recent estimates d̂1(k) and τ̂1(k) from the GAs generating those



estimates, and vice versa. For the first generation, before estimates of the
other two parameters are available, the nominal values are used (for m̂i, the
nominal value of 1300.0kg is used).

The following parameters were used for all GAs: N = 40, pm = 0.4,
D = 20, ρ · D = 2, W = 1000, and gt = 1 (with twenty time samples
elapsing between successive generations). The simplest method of tuning
the parameters for twelve GAs was to use the same parameter value for every
GA, as if only one GA needed to be tuned. The actual tuning procedure used
was the same as that used in previous sections. Successive generations were
chosen to be twenty time samples apart in order to improve the likelihood
that such a window length W could be implemented in real time, as it
was found that this large a window length improved the convergence of all
estimates. The estimates m̂i were allowed in the range [1000.0,1600.0], the
estimates d̂i were allowed in the range [80.0,120.0], and the estimates τ̂i
were allowed in the range [0.2,0.5]. A sampling period T of 0.01 seconds
was used, and the same Kpi and Kdi parameters from the single parameter
mass estimation were used.

The results are shown in Figures 17 through 19. Note that all of the GAs
performed quite well. A slight fluctuation appears in the estimates of vehicle
number 3 at the end of the simulation, but note from Figure 14 that the
velocities and intervehicle spacings stay constant at this point. This would
indicate that the estimation works best when the states of the system are
varying (i.e. some excitation is provided). To overcome this problem, the
GA could be redefined in such a way that it would not adapt during steady
state operation. At any rate, there seems to be enough evidence here for the
GA as a possible alternative for nonlinear system parameter estimation.

To verify the validity of Figures 17 through 19, 100 simulations were
executed. In each simulation, a “squared error sum” was calculated for
each of the three estimates on each vehicle. This squared error sum is a
summation, over the entire simulation, of the error between the parameter
estimate and the actual parameter. In other words,

Esκ =
mg∑
k=1

(
κ− κ̂(k)

)2

, (29)

where κ is the parameter in question, κ̂(k) is the estimate of κ at time
sample k, and mg is the total number of time samples in the simulation.

Average, minimum, and maximum squared error sums over all 100 sim-
ulations were recorded for all of the parameters. These results are given
in Tables 1 through 3. From most of the maximum and minimum values
given, it seems that the corresponding parameters exhibit squared error



sums that remain within a “reasonable range” of the average values. For a
few of the parameters, the average values are somewhat close to the min-
imum values but far away from the maximum values. This implies that
for those parameters, nearly all of the simulations provided squared error
sums within a reasonable range of the average values, with a few simulations
generating squared error sums well outside reasonable range. Finally, for a
few parameters, the average values were somewhat far away from minimum
and maximum values. For these parameters no conclusions can be made as
to whether the squared error sums generally remained within a reasonable
range of the average values.

The squared error sums corresponding to Figures 17 through 19 resemble
the average squared error sums and are given in Table 4. Upon examining
several executions of the GA�, it would seem improbable for any given exe-
cution to generate a squared error sums table that almost exactly matches
the table of average values. Figures 17 through 19 (and Table 4) correspond
to a typical case. In this representative case, the Esmi

and Esdi
values fall

reasonably close to the average values, while the Esτi
values may tend to

stray from those average values. Examining the figures, it seems that even
with this behavior, the parameter estimates can be expected to converge
reasonably to the ideal parameter values. This serves as further evidence
for the GA as a reasonable parameter estimation tool for nonlinear systems.

Table 1: Average squared error sums for GA AHS parameter estimation.
avg Esmi

avg Esdi
avg Esτi

Vehicle 1 2300749.2 5365.180 0.18766
Vehicle 2 458925.6 357.520 0.00230
Vehicle 3 2059526.6 5498.766 0.66574
Vehicle 4 295475.8 1574.246 0.06249

8 Concluding Remarks

In this study, we introduced a novel genetic adaptive parameter estimation
technique and studied its performance for four cases—two linear cases, a
nonlinear ball on a beam system, and a nonlinear automated highway system
(AHS) application. For the linear cases and for the ball on a beam system,
the performance of an average GA execution was compared with that of the



Table 2: Minimum squared error sums for GA AHS parameter estimation.
min Esmi

min Esdi
min Esτi

Vehicle 1 1421365.2 4506.865 0.05075
Vehicle 2 409574.4 295.361 0.00066
Vehicle 3 734650.1 4450.025 0.15376
Vehicle 4 148538.2 1569.669 0.02341

Table 3: Maximum squared error sums for GA AHS parameter estimation.
max Esmi

max Esdi
max Esτi

Vehicle 1 15885661.0 6226.874 2.54984
Vehicle 2 528768.0 560.942 0.01153
Vehicle 3 7951851.3 7273.442 2.31489
Vehicle 4 1415352.3 1589.753 0.93605

Table 4: Squared error sums for GA AHS parameter estimation shown in
Figures 17 through 19.

Esmi
Esdi

Esτi

Vehicle 1 1436288.9 5218.439 0.05944
Vehicle 2 456692.8 339.943 0.00111
Vehicle 3 2276631.3 5754.204 1.04031
Vehicle 4 317209.5 1580.793 0.03016

recursive least squares technique. The GA appeared able to perform the
task of parameter estimation for almost all of the linear examples, although
it was generally outperformed by recursive least squares. For the ball on a
beam system, the GA easily outperformed recursive least squares, as was
to be expected because recursive least squares was forced to estimate an
approximate linear model. For the AHS application, the GA alone was
studied (since specific parameters were of interest and since it is a nonlinear
system), and except for a few easily correctable instances, the parameter
tracking was quite good. From these three cases, evidence can be gathered
that may point to the existence of the GA as an alternative method for



parameter estimation, particularly in nonlinear cases.
Clearly, however, further research of the GA as a state estimation tool

is needed. Among this research, possible topics could include

• Alternative fitness function formulations,

• Mathematical stability, convergence, and robustness analysis,

• Actual implementation issues (e.g., processor speed, memory resources,
possible hardware operations, etc.), and

• Tuning procedures for the GA.

Due to the computational complexity of the GA, it seems logical to at-
tempt conventional approaches for parameter estimation before employing
the GA, especially for linear systems. From the results in this study, how-
ever, there is evidence that the GA does provide a viable alternative when
other techniques encounter difficulty, particularly when dealing with nonlin-
ear systems.
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Figure 14: Velocity profiles for a four car AHS platoon.
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Figure 15: Intervehicle spacing errors for a four car AHS platoon.
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(a) Estimation of m1. (b) Estimation of m2.
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(c) Estimation of m3. (d) Estimation of m4.

Figure 16: GA vehicle mass estimation for AHS. All estimates remain con-
stant over the full 200 second simulation. Dotted lines indicate ideal masses
while solid lines represent mass estimates.



0 20 40 60 80 100 120 140 160 180 200
1300

1350

1400

1450

1500

1550

1600

Time (sec)

V
eh

ic
le

 1
 M

as
s 

E
st

im
at

io
n 

(k
g)

0 20 40 60 80 100 120 140 160 180 200
1000

1050

1100

1150

1200

1250

1300

1350

1400

Time (sec)

V
eh

ic
le

 2
 M

as
s 

E
st

im
at

io
n 

(k
g)

(a) Estimation of m1. (b) Estimation of m2.

0 20 40 60 80 100 120 140 160 180 200
1000

1100

1200

1300

1400

1500

1600

Time (sec)

V
eh

ic
le

 3
 M

as
s 

E
st

im
at

io
n 

(k
g)

0 20 40 60 80 100 120 140 160 180 200
1050

1100

1150

1200

1250

Time (sec)

V
eh

ic
le

 4
 M

as
s 

E
st

im
at

io
n 

(k
g)

(c) Estimation of m3. (d) Estimation of m4.

Figure 17: GA multiple parameter mass estimation for AHS. Dotted lines
indicate ideal mass values while solid lines represent mass estimates.
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(c) Estimation of d3. (d) Estimation of d4.

Figure 18: GA multiple parameter d estimation for AHS. Dotted lines indi-
cate ideal friction values while solid lines represent friction estimates.
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(a) Estimation of τ1. (b) Estimation of τ2.
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(c) Estimation of τ3. (d) Estimation of τ4.

Figure 19: GA multiple parameter τ estimation for AHS. Dotted lines in-
dicate ideal time constant values while solid lines represent time constant
estimates.
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