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Abstract
Foraging theory has been the inspiration for several decision-making algorithms for task-processing agents facing random
environments. As nature selects for foraging behaviors that maximize lifetime calorie gain or minimize starvation probabil-
ity, engineering designs are favored that maximize returned value (e.g. profit) or minimize the probability of not reaching
performance targets. Prior foraging-inspired designs are direct applications of classical optimal foraging theory (OFT).
Here, we describe a generalized optimization framework that encompasses the classical OFT model, a popular competitor,
and several new models introduced here that are better suited for some task-processing applications in engineering. These
new models merge features of rate maximization, efficiency maximization, and risk-sensitive foraging while not sacrificing
the intuitive character of classical OFT. However, the central contributions of this paper are analytical and graphical
methods for designing decision-making algorithms guaranteed to be optimal within the framework. Thus, we provide a
general modeling framework for solitary agent behavior, several new and classic examples that apply to it, and generic
methods for design and analysis of optimal task-processing behaviors that fit within the framework. Our results extend
the key mathematical features of optimal foraging theory to a wide range of other optimization objectives in biological,
anthropological, and technological contexts.
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1. Introduction

Foraging theory has been a source of inspiration for opti-
mization (Passino 2002, 2005), autonomous vehicle control
(Andrews et al. 2004; Quijano et al. 2006; Andrews et al.
2007a; Pavlic and Passino 2009), and distributed resource
allocation (Finke et al. 2006; Andrews et al. 2007b; Finke
and Passino 2007; Quijano and Passino 2007). In each case,
automated agents prosecute tasks that are analogous to food
encountered by animals in the environment. Just like food,
tasks can be scarce, are encountered randomly, carry a ran-
dom handling time, and carry a random value that is analo-
gous to calorie content. In addition, when an agent chooses
to prosecute a task, it may face increased risk of harm dur-
ing the handling of the task (e.g. from fatigue or from forces
analogous to predation). Just as natural selection will favor
animal behaviors that maximize lifetime calorie content or
minimize the probability of starvation, engineering design
favors decision-making algorithms that maximize accumu-
lated value or minimize the probability of not reaching
performance targets. Thus, by translating from biological
currencies (e.g. calories) to engineering currencies (e.g.
dollars), foraging behaviors shown to be advantageous in

nature become optimal algorithms for engineered agents in
random environments.

Unfortunately, although an autonomous agent may be
easily viewed as a forager, the objectives favored by natural
selection are not necessarily good models for optimization
in engineering. For example, an eagle in flight may select
from prey it encounters so that it maximizes calories over its
lifetime. However, an autonomous air vehicle (AAV) with a
finite number of packages to deposit on targets has a much
shorter time horizon and thus will prioritize its targets dif-
ferently. Nevertheless, the simplicity of the intuitive results
from optimal foraging theory (OFT) makes it attractive for
the design of autonomous decision-making algorithms. In
this paper, we identify the key structures responsible for
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that simplicity so that optimization objectives that better
fit engineering scenarios can lead to similar foraging-like
designs. Thus, this paper extends the work of Andrews
et al. (2007a) who applied the principle results of classical
optimal foraging theory directly to AAV cases.

In particular, we describe a generalized framework for
the analysis and design of optimal autonomous behav-
iors of solitary task-processing agents. We also give algo-
rithms for designing behaviors within this framework that
are guaranteed to meet sufficiency conditions for optimal-
ity. Our framework encompasses two popular models of
optimal foraging, which include the prey and patch mod-
els that inspired existing solitary agent designs (Andrews
et al. 2004; Quijano et al. 2006; Andrews et al. 2007a).
Four additional models that also fit within the framework
are introduced to handle cases that are unfit for classical
foraging analysis but are applicable for engineered agent
design. Thus, the framework and the generalized optimal-
ity algorithms allow for the rapid development of optimal
behaviors in new solitary agent contexts (e.g. more appli-
cable for engineering design than science). However, they
also provide methods for comparing behaviors that are opti-
mal under different utility functions. For example, we show
that when finite-lifetime success thresholds are introduced
into optimization objectives, the resulting behaviors have
the same form of classical OFT but prioritize targets in an
order that varies with the size of the success threshold.

The paper is structured as follows. In Section 2, we intro-
duce the Markov renewal–reward process that character-
izes a generic solitary task-processing agent and define the
advantage-to-disadvantage function, which is an abstract
optimization objective that encapsulates several aspects of
existing foraging theory. We also describe the models used
in classical OFT and show that their objectives have the
structure of an advantage-to-disadvantage function. In addi-
tion, we provide motivating examples from the literature
of existing applications of foraging theory to engineering.
In Section 2.3, we define four new optimization objectives
that have an advantage-to-disadvantage structure. Each of
these new objectives models a special finite-lifetime task-
processing agent with an intake threshold for success (e.g.
a military autonomous air vehicle performing automated
target processing with a finite arsenal that must reach an
accumulated target value by the time its arsenal is depleted).
Two of these finite-event models are inspired by classical
rate (CR) maximization (Charnov 1973, 1976; Stephens
and Krebs 1986), and two are inspired by efficiency max-
imization. These finite-lifetime objectives may better fit
behaviors for autonomous agents that have short missions
than the classical OFT that has inspired existing decision-
making algorithms. In Section 3, a graphical approach
to multivariate optimization of advantage-to-disadvantage
functions is discussed, and a more rigorous quantitative
approach is explored in Section 4. Algorithms based on
that approach are given in Appendix A that are guaran-
teed to find an optimal task-processing behavior for par-
ticular scenarios. A summarized comparison of optimal

behaviors found by those algorithms for each of the six
example advantage-to-disadvantage functions is given in
Section 5. In addition, simulation results are given that
show how behaviors developed with the methods in this
paper have better performance in finite-lifetime scenarios
when compared with conventional foraging-inspired task-
choice behaviors. Finally, some concluding remarks and
suggestions for future research are given in Section 6.

2. Model of an autonomous task-processing
agent

In this section, we present a model of a task-processing
agent and show how it generalizes several foraging-
inspired optimization problems from robotics and computer
science. The summary of the bio-inspired engineering
applications is given in Section 2.1, and the related opti-
mization problem from classical foraging theory is pre-
sented in Section 2.2. Then, in Section 2.3, we present four
new optimization objectives that are better fits to model
desirable behaviors for task-processing agents with finite
lifetimes. As these objectives each fit within the general-
ized framework, they can be solved with the generalized
methods described in Sections 3 and 4. Moreover, conver-
sion from a classical OFT-inspired decision-making imple-
mentation involves little more than a change of parameters.
This conversion process is emphasized in Section 5, which
compares the results of applying the analytical methods in
Section 4 to each of the example optimization objectives
described here.

Consider an autonomous agent that can complete n ∈
{1, 2, . . . } types of tasks. For task type i ∈ {1, 2, . . . , n},
the agent processes pi ∈ [0, 1] fraction of encountered
type-i tasks and spends an average of τi ≥ 0 time process-
ing each selected type-i task. So task-processing behavior
is completely characterized by vectors p � [p1, p2, . . . , pn]T

and τ � [τ1, τ2, . . . , τn]T. Next, let R be the set of the real
numbers, R≥0 be the set of non-negative real numbers, and
R≥0 � R≥0 ∪ {∞}. For each type i ∈ {1, 2, . . . , n}, con-
straints on feasible behaviors are modeled with constants
p−

i , p+
i ∈ [0, 1] and τ−

i , τ+
i ∈ R≥0 so that the feasible set of

behaviors is

F � {( p, τ ) ∈ [0, 1]n × R
n
≥0 : p−

i ≤ pi ≤ p+
i ,

τ−
i ≤ τi ≤ τ+

i , i ∈ {1, 2, . . . , n}}, (1)

which is a convex separable polyhedron. The opti-
mal behavior will maximize the generic advantage-to-
disadvantage function (Pavlic 2007)

J ( p, τ ) � A( p, τ )

D( p, τ )
�

a +
n∑

i=1
piai( τi)

d +
n∑

i=1
pidi( τi)

, (2)
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where a ∈ R and d ∈ R are constants and ai : [τ−
i , τ+

i ] �→
R and di : [τ−

i , τ+
i ] �→ R are functions of time τi associated

with type i ∈ {1, 2, . . . , n}.

2.1. Background: foraging-inspired
task-processing agents

OFT was popularized by Stephens and Krebs (1986). It is
based on the work of Charnov (1973), and recently updated
results and new applications have been summarized by
Stephens et al. (2007). OFT assumes that a solitary forager
goes through Markov renewal cycles of searching for and
responding to foraging opportunities. At every encounter,
the forager’s energy stores will rise or fall based on the for-
ager’s behavior, the environment, and the encountered item.
In particular, each prey type i ∈ {1, 2, . . . , n} is encoun-
tered at rate λi, and those encounters that are chosen for
processing have an average gain gi( τi) and average cost
ci( τi). During the search time between encounters, the for-
ager pays cost cs/λ where λ � λ1 + λ2 + · · · + λn (i.e. 1/λ

is the average time between encounters, and cs is the cost
paid per unit time searching). If the forager is viewed as an
autonomous task-processing agent, then the prey it encoun-
ters are the tasks it must choose whether and how long to
process. Stephens and Krebs (1986) describe two popular
special cases of the general problem:

(i) The prey model. In this case, it is assumed that tasks (i.e.
prey) come in lumps that have fixed processing times
(i.e. processing-time bounds are such that τ−

i = τ+
i > 0

for each type i). The agent (i.e. forager) must only select
whether to process or ignore the task.

(ii) The patch model. In this case, it is assumed that the
agent processes every encountered task (i.e. preference
bounds p−

i = p+
i = 1 for each type i), but each encoun-

tered task is a clumped patch of prey with decreasing
marginal returns (e.g. due to depletion of prey within
the patch). Hence, the agent must decide how long to
process each task.

As described in the selection of examples below, these
ecological models of a solitary forager have been used
to inspire optimal designs of autonomous mobile vehicles
(Andrews et al. 2004, 2007a; Pavlic and Passino 2009),
resource allocation strategies for distributed temperature
regulation (Quijano et al. 2006), and Web sites that attract
attention of humans on the Internet (Pirolli and Card 1999;
Pirolli 2005, 2007). In this work, we show how the forager
is a special case of a more general task-processing frame-
work. The solutions we provide for this framework apply to
a wider set of applications than the original foraging and
foraging-inspired cases. Moreover, this generalized frame-
work can be used as a tool to compare the operation and
efficacy of different policies.

2.1.1. Autonomous mobile vehicles Andrews et al. (2007a)
show how both the prey and patch models described by

Stephens and Krebs (1986) can be used to model an AAV
(e.g. for military or surveillance applications). In partic-
ular, they consider a Dubins’s car (Dubins 1957) model
of an air vehicle (e.g. a fixed-wing vehicle that travels at
a constant speed and has a maximum turn radius). As it
sweeps over the ground, an on-board sensor detects rela-
tively slow targets below the vehicle. The agent responds to
each target detection either with ignorance or by choosing
to complete a task for a certain amount of time. Some tasks
have a fixed processing time (e.g. dropping bombs or food),
and other tasks can be processed continuously by the agent
(e.g. reconnaissance). Processing each task is costly to the
agent (e.g. due to additional fuel use), but completing a task
returns a value to the agent’s designer (e.g. dollars of profit
or some currency encoding priority).

Just as prey can be grouped into types based on returned
net energy gain and handling time, these tasks can be
grouped into n types based on net value gi( τi) −ci( τi)
and processing time τi for each type i ∈ {1, 2, . . . , n}.
Furthermore, Andrews et al. (2007a) use results from
Stone (1975) to show that if a vehicle encounters a cluster
(i.e. patch) of high-value targets that it may process contin-
uously, the accumulated value gi( τi) −ci( τi) of processing
the targets in patch type i ∈ {1, 2, . . . , n} over time τi is
the area under a decaying exponential (i.e. the density of
targets in the patch decays due to the depletion of remain-
ing tasks after processing). Thus, patches of tasks have
diminishing marginal returns just like patches of prey in for-
aging models. So descriptions of optimal animal foraging
behavior are also recipes for optimal vehicle task-type (i.e.
prey model) and processing-length (i.e. patch model) poli-
cies. Andrews et al. (2007a) use flying-vehicle simulations
to verify that policies generated by both the prey model
and the patch model perform well in stochastic environ-
ments; however, the analogy can be applied to autonomous
underwater, outer-space, or ground vehicles as well. For
example, a domestic autonomous ground vehicle that can
collect trash, clean floors, and organize furniture faces ran-
dom tasks in its environment that it must choose whether to
process or momentarily ignore while searching for a more
valuable task.

On-line implementation of OFT-inspired behaviors.
In both the prey-model application described by
Andrews et al. (2007a) as well as the temperature
regulation example described in the following, the
encounter rates with each task type must be estimated
before the prey-model algorithm is used at each encounter
to determine whether tasks should be processed or ignored.
When encounter rates are available, the prey-model
algorithm can be completed in linear time that scales
with the number of task types. In addition, the ratio of
the number of encounters with a type to the total time
will asymptotically converge to the true encounter rate
in the environment, and so a simple method exists for
estimating the encounter rate. Although this on-line
implementation of the prey model is relatively simple to
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implement, Pavlic and Passino (2010) present a much
simpler decision-making heuristic that converges to prey-
model-optimal behavior without the need for encounter
rate estimation. In particular, they show that an asymptot-
ically optimal forager needs only to compare its present
accumulated gain–total time ratio to the gi/τi ratio of each
encountered task to determine whether the task should
be processed or ignored. This heuristic is the natural
extension of the conventional patch model implementation
to the prey-model case. Thus, on-line implementa-
tions of OFT-inspired decision-making are suitable for
autonomous agents with strict timing requirements and
simple computational abilities.

2.1.2. Resource allocation: distributed temperature regu-
lation Quijano et al. (2006) develop a method for applying
the prey model to distributed resource allocation, and they
test their strategies in a working physical temperature con-
trol experiment. Their apparatus consists of eight zones that
each include a temperature sensor and a heating element.
The zones are arranged so that there is significant cross cou-
pling (i.e. heat from one zone causes the temperature to rise
not only at its local sensor but also on the sensors of nearby
zones). This apparatus could be a model of a large room
with multiple temperature actuators or a building with mul-
tiple rooms. Assuming that at most one heating element can
be energized at a time, Quijano et al. design a policy for a
centralized controller that determines which if any heating
element should be activated at each time so that all zones
achieve a single desired temperature.

This temperature regulation problem connects to forag-
ing theory by using a ‘foraging for error’ method such as
that described by Passino (2002, 2005). At each instant of
time, there is an error associated with each zone represent-
ing the difference between the desired temperature and the
temperature at its sensor. Quijano et al. (2006) create an
error index that maps all errors to a finite set of integers;
that is, they generate a mapping i( e) from error magnitude
e ∈ R to error type i ∈ {1, n}. For each error type i, they
also associate a value gi and a heating time τi that both
are monotonically increasing with error magnitude (i.e. a
higher error magnitude is associated with a higher value
and a higher heating time). The centralized controller ran-
domly chooses which zone to monitor at each time. Hence,
it encounters each error type just as a forager encounters
prey types. At each encounter with error e, it identifies the
error type i( e) and the associated value gi(e) and heating
time τi(e) and uses the prey model to determine whether to
activate the zone for the τi(e) heating time or to move to the
next zone. Quijano et al. actually implement four such error
foragers simultaneously and show that the resulting strategy
achieves uniform temperature regulation across all zones
and rejects temperature disturbances even under delays and
sensor noise.

Similar foraging-inspired resource-allocation algorithms
could be used on mobile agents deployed on factory floors

that must balance queues of raw materials. If a raw mate-
rial is loaded into a physical queue from one end only, the
queue will frequently be overloaded on that end. A mobile
robot that must move around the queue to shift resources
from one location to another could prioritize its movements
based on the height of each location in the queue compared
to the average height. Those areas with the greatest off-
average error would be highest value and thus would attract
the greatest attention from the re-allocation agent.

2.1.3. Web design Pirolli (2007) gives a summary of so-
called ‘information foraging’ analyses of human behavior
on the Internet that are based on classical optimal forag-
ing theory. In one example, humans are viewed as foragers
that accumulate information from Web sites that are viewed
as patches of information, and it is assumed that humans
will allocate time in each Web patch according to optimal
foraging theory. Hence, Web developers must organize con-
tent on their Web pages in order to maximize the time an
optimal information forager should spend using their sites.
For example, one of the key results of the patch model of
optimal foraging theory is that foragers will spend less time
in all patches if the average time between patch encoun-
ters decreases. In particular, the forager leaves each patch
when the patch marginal returns fall below a particular
threshold, and that threshold increases as the search time
between patches decreases. Likewise, if fast search engines
return several relevant responses to a search query, the
information-foraging human will spend very little time vis-
iting each site before moving to the next site in the search
results. Consequently, Web sites designed to retain visi-
tors for as long as possible (e.g. to maximize exposure to
advertisements) must dynamically arrange content based on
the search request so that the site sustains a high level of
marginal returns of relevant information.

2.2. Classical optimal foraging objective

In Section 2.1, we described several examples of how OFT
has been used in the technological design of autonomous
vehicles, resource allocation algorithms, and dynamic Web
sites. Here, we summarize the classical OFT optimization
objective and show how it is a special case of the advantage-
to-disadvantage function. We also show how a related but
different optimization objective favored by some behavioral
ecologists is also an advantage-to-disadvantage function.
Later, in Section 2.3, we present other optimization objec-
tives that are better suited for engineering applications (e.g.
AAV delivery schedules when there are a finite number of
packages to deliver to a random set of targets).

OFT studies behaviors that maximize Darwinian
fitness, which is an unmeasurable quantity in general.
Charnov (1973) and Pyke et al. (1977) suggest that the life-
time rate of total gain to total time is a sufficient fitness
surrogate because it predicts behaviors that achieve maxi-
mal foraging gain for minimal foraging time, which are the
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two objectives from the classic optimization model of natu-
ral selection (Schoener 1971). Unfortunately, for any finite
lifetime, this optimization objective strongly depends on
precise knowledge of how gain and time covary (Charnov
1973; Pavlic 2007). So lifetimes are assumed to be very
long (i.e. practically infinite with respect to prey handling
and search times) so that the sensitivity of the optimization
objective to the covariances is vanishingly small.

In particular, Charnov (1973) assumes that encounters
with each type come from an independent Poisson count-
ing process. So the process describing all encounters is the
merged Poisson process, and the energetic intake is mod-
eled by a Markov renewal–reward process corresponding
to this merged process. Over a long time, to maximize
both cycle gain and number of cycles, the optimal foraging
behavior ( p, τ ) ∈ F should maximize the stochastic limit of
total gain to total time (Pavlic 2007). That is, the behavior
should maximize the rate(

n∑
i=1

λipi (gi( τi) −ci( τi) )

)
− cs

1 +
n∑

i=1

λipiτi

, (3)

which matches Equation (2) with

a � −cs, ai( τi) � λi (gi( τi) −ci( τi) ) ,

d � 1, and di( τi) � λiτi. (4)

The prey model lets τ−
i � τ+

i for each task type i ∈
{1, 2, . . . , n} and finds the optimal p ∈ [0, 1]n, and the
patch model lets p−

i � p+
i � 1 for each patch type i ∈

{1, 2, . . . , n} and finds the optimal τ ∈ [0, ∞)n (Stephens
and Krebs 1986).

The expectation of ratios. Some observational evidence
(e.g. Nonacs 2001) contradicts predictions from the
marginal value theorem (MVT), which is the principle
result of the patch model (Charnov 1973, 1976; Stephens
and Charnov 1982; Stephens and Krebs 1986). In response,
arguments from Templeton and Lawlor (1981) have been
used as fodder for expectation-of-ratios (EoR) (Harder
and Real 1987; Bateson and Kacelnik 1996; Bateson and
Whitehead 1996) objective functions of the form

n∑
i=1

λi

λ
pi

gi( τi) −ci( τi) − cs

λ

1
λ

+ τi
, (5)

which matches Equation (2) with

a � 0, ai( τi) � λi

λ

gi( τi) −ci( τi) − cs

λ

1
λ

+ τi
, d � 1,

and di( τi) � 0.

These two optimization objectives are significantly differ-
ent, but because they are advantage-to-disadvantage func-
tions, they can both be analyzed with the generic methods
presented in this work.

2.3. New objectives for finite-event scenario

The success of classical OFT to describe animal foraging
behavior is not uniform across species and environments.
Likewise, some applications will be ill suited for solutions
inspired by OFT. In Section 2.3.1, we focus on criticisms
of the OFT formulation for cases where task-processing
agents cannot be assumed to have unending operation.
Then, in Section 2.3.2, we introduce a novel optimization
model of an autonomous task-processing agent that may
better fit applications that are less suitable for OFT.

2.3.1. OFT inadequacies in finite-lifetime models Classi-
cal foraging theory is not well suited for modeling finite
lifetimes where either success thresholds must be met or
only a finite number of tasks can be processed. For exam-
ple, a small bird may perish from the heat lost during the
night if it does not eat enough during the day. Likewise,
an AAV dispatched for a finite periods of time (e.g. due to
daily fuel constraints) may fail each mission if it ignores
too many tasks with a low marginal return (e.g. by avoid-
ing low-profit-per-time tasks in favor of waiting for high-
profit-per-time tasks, it may return too little overall profit
in its finite mission time to justify its overall fuel cost).
In the infinite lifetime case, future opportunities are cer-
tain, and so waiting can be a beneficial tactic. However, in
the finite-lifetime case, future opportunities are uncertain,
and so successful foragers should be biased toward present
returns.

To handle cases with survival thresholds over short times,
Stephens and Charnov (1982) describe a risk-sensitive for-
ager that maximizes the probability that a net gain threshold
will be achieved by some critical time. This risk-sensitive
foraging model is also used by Andrews et al. (2007a) for an
AAV application where the vehicle is given a value thresh-
old it must reach by the end of its mission time. Initially, the
AAV specializes on targets that have a high value-to-time
ratio. However, at the end of its life, if it has not accu-
mulated enough value to reach its goal threshold, it begins
to generalize on all targets it encounters. Hence, the risk-
sensitive behavior is a perturbation of the rate-maximizing
behavior that becomes most pronounced at the end of life
(i.e. at the end of an agent’s mission). However, the risk-
sensitive model not only uses limiting forms of the mean
and variance of the accumulated gain, but it is also based
on results that follow from the central-limit theorem. Hence,
even though the formulation is meant to prescribe behaviors
for short-lifetime agents, it is based on assumptions that are
only true for agents with long lifetimes.

As discussed by Wajnberg (2006), OFT can be used
to describe the behavior of an insect that searches for
hosts to lay her eggs in. However, it is best suited to
model this scenario when typical lifetimes are too short to
deplete the egg supply. However, several studies have shown
that egg-limited parasitoids are not uncommon (Rosenheim
and Rosen 1991; Minkenberg et al. 1992; Fletcher et al.
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1994; Prokopy et al. 1994; Rosenheim 1996; Heimpel and
Rosenheim 1998). Furthermore, in AAV applications where
packages (e.g. bombs or food bundles) are dropped on tar-
gets, the mission will likely be limited by the number of
packages able to be stored within the AAV. In Section 2.3.2,
we develop a simple task-processing model that fits within
the advantage-to-disadvantage framework and accounts for
both success thresholds and limitations on number of tasks
processed.

2.3.2. Autonomous agent model for finite-event scenario
Consider a task-processing agent similar to that described
in Section 2.1. That is, consider an agent that encounters n
types of tasks where a task of type i ∈ {1, 2, . . . , n} is char-
acterized by its Poisson encounter rate λi, processing pref-
erence pi, average processing time τi, average gain g( τi),
and average cost c( τi). That agent pays an average search
cost cs/λ between encounters, where λ � λ1 + · · · + λn

is the encounter rate of the Poisson process resulting from
merging the n independent encounter processes for each
task type. However, also let N ∈ {1, 2, . . . } be the number
of processed encounters in a mission duration. For exam-
ple, a forager may need to eat or store N items to survive
over winter, or a female may have N eggs to lay in encoun-
tered hosts, or an AAV must deliver one of N packages to
each deserving target. In each case, the time to complete
each mission is finite and random, but the number of tasks
completed in each mission is fixed at N .

Instead of considering the Markov renewal process that
renews at each encounter at a rate of λ1 + · · · + λn, it is
convenient to focus on the Markov renewal process that
renews at every processed encounter at the lower rate of
p1λ1 + p2λ2 + · · · + pnλn. The agent mission can be rep-
resented by either process, but many cycles of the former
process may complete during a single cycle of the latter
process. Hence, for this finite-event agent, the expectation
of total net gain G( N), cost C( N), and time T( N) are given
by

E( G( N) ) = N

(
n∑

i=1

λipi (gi( τi) −ci( τi) )

)
− cs

n∑
i=1

λipi

, (6)

E( C( N) ) = N

(
n∑

i=1

λipici( τi)

)
+ cs

n∑
i=1

λipi

, (7)

and

E( T( N) ) = N

1 +
n∑

i=1

λipiτi

n∑
i=1

λipi

. (8)

These statistics can then be combined to form optimization
objectives suitable for different applications. In particular,
the finite-event agent can maximize

(i) Excess rate. Because mission durations are finite by def-
inition, success thresholds can be added. Let GT ∈ R

be a gain penalty charged to the agent after its N pro-
cessed encounters (e.g. an autonomous vehicle must
accumulate GT dollars of profit from the first N tasks
it randomly encounters and picks for processing). That
is, GT is the value threshold the agent must reach to
be dispatched on another mission. This threshold will
often be positive, but it may be negative (e.g. it may
be a handicap allowed to the agent). In this case, opti-
mal behaviors maximize the ratio of excess net gain
to total time, which is the advantage-to-disadvantage
function

E( G( N) ) −GT

E( T( N) )

=

(
n∑

i=1

λipi

(
gi( τi) −ci( τi) −GT

N

))
− cs

1 +
n∑

i=1

λipiτi

. (9)

In this case, decreasing threshold GT to zero or increas-
ing the number of cycles N will make their effect on the
optimal behavior negligible. In particular, as N → ∞,
finite-event excess-rate (ER) maximization is equiva-
lent to classical infinite-time rate maximization. That is,
when future opportunities are certain, choices should
be made based on the balance between returned gain
and required processing time (i.e. marginal rate). How-
ever, when future opportunities are uncertain (i.e. low
N) or the threshold for success is high (i.e. high GT ),
the optimal behavior shifts toward high-gain tasks that
better guarantee meeting the success threshold. That
is, when the agent is at risk of not meeting its suc-
cess threshold, it spends relatively more time processing
(i.e. earning gain for certain) and relatively less time
searching.

(ii) Time-discounted net gain. Classical OFT describes
behaviors that simultaneously maximize net gain and
minimize foraging time. The relative importance of
time minimization over gain maximization is varied in
order to minimize the opportunity cost (Houston and
McNamara 1999) of each activity. That is, the opti-
mal rate of gain represents the maximum gain that can
be returned for each unit of time. An OFT behavior
accumulates gain in each activity only if there is no
other activity that could return more mean gain for that
amount of time. Hence, the optimal rate of gain repre-
sents the gain–time tradeoff that minimizes opportunity
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cost. Instead, the gain–time tradeoff can be fixed a pri-
ori. In particular, an optimal behavior might maximize
the advantage-to-disadvantage function

E( G( N) ) −GT − w E( T( N) ) =

N

(
n∑

i=1

λipi

(
gi( τi) −ci( τi) −GT

N
− wτi

))
− cs − w

n∑
i=1

λipi

,

(10)

where discount rate w ∈ R is a constant representing the
relative importance of the time objective over the gain
objective. In cases where p−

1 = p−
2 = · · · = p−

n = 0, we
assume that cs + w ≥ 0 to avoid the pathological case
where it is best for the forager not to do any process-
ing. We include the threshold GT for completeness, but
it only shifts the objective function by a constant value,
and so it has no impact on the optimal solution. That is,
when maximizing ER above, the relative value of gain
and time float with the environment and the success
threshold; for high thresholds in environments where
encounters return relatively low gain, high-gain oppor-
tunities have a greater value. In this case, because the
relative gain–time value is fixed, the success threshold
has no effect on optimal solutions.

(iii)Excess efficiency. Stephens and Krebs (1986) criticize
using efficiency (i.e. benefit-to-cost) objectives because
they neglect the impact of time and do not differenti-
ate between behaviors that bring large gains at large
costs and small gains at small costs. However, efficiency
is a commonly used metric in engineering applica-
tions. In addition, in our finite-event model, the impact
of time is explicitly modeled by cost functions, and
gain thresholds help to differentiate between high-gain–
high-cost and low-gain–low-cost behaviors. So we can
define an efficiency metric that answers both concerns
of Stephens and Krebs. Let GT

g ∈ R be a minimum total
gross gain required for success. An optimally efficient
behavior will maximize the advantage-to-disadvantage
function

E( G( N) ) + E( C( N) ) −GT
g

E( C( N) )
=

n∑
i=1

λipi

(
gi( τi) −GT

g

N

)

cs +
n∑

i=1

λipici( τi)

.

(11)

Again, decreasing threshold GT
g or increasing number of

cycles N sufficiently will make their impact on the opti-
mal behavior negligible. If the task-processing agent is
given a low success threshold or a large number of tasks
to complete, it should not greatly perturb its behavior
from the pure efficiency maximizer.

(iv)Cost-discounted gain. Just as the gain–time tradeoff
can be fixed a priori, so can the gain–cost tradeoff.
In particular, an optimal behavior could maximize the
advantage-to-disadvantage function

E( G( N) ) + E( C( N) ) −GT
g − w E( C( N) ) =

N

(
n∑

i=1

λipi

(
gi( τi) −GT

g

N
− wci( τi)

))
− wcs

n∑
i=1

λipi

, (12)

where discount rate w ∈ R is a constant representing the
relative importance of the cost objective over the gain
objective. Again, we assume that cs + w ≥ 0 in cases
where p−

1 = · · · = p−
n = 0 to avoid the pathological

case, and we include the GT
g threshold for completeness.

These four optimization objectives are all advantage-to-
disadvantage functions, and they will be graphically exam-
ined in the examples from Section 3. Results of the
application of the algorithms described in Section 4 will be
given in Section 5.

3. A graphical optimization approach

It can be instructive to study advantage-to-disadvantage
functions graphically, especially when those functions lack
properties required for analytical tractability. Here, we
extend the graphical optimization approach described by
Stephens and Krebs (1986) to arbitrary advantage-to-
disadvantage functions with arbitrary constraints. We use
insights from the graphical process to compare and contrast
the example optimization objectives discussed in Section 2.
An analytical optimization approach is given in Section 4
along with algorithms that are guaranteed to find an optimal
task-processing behavior for certain scenarios.

Because Equation (2) is a ratio, its value can be depicted
as the slope of a line, and so optimization is finding the
line with the steepest slope. This process is illustrated in
Figure 1. Here, the shaded area is constructed by plotting
the point (

∑n
i=1 pidi( τi) ,

∑n
i=1 piai( τi) ) for every ( p, τ ) ∈

F . For each of those points, the slope of the line con-
necting it to the point ( −d, −a) is equal to the advantage-
to-disadvantage function for the corresponding behavior.
So optimization consists of rotating a ray originating from
( −d, −a) from −90◦ toward 90◦ and stopping at the angle
just before the ray leaves the shaded region for the last time.
If ( −d, −a) is within the shaded region, the ray will never
leave the region between −90◦ and 90◦ of rotation, and so
the 90◦ ray should be used. In general, the shaded region
need not be convex nor connected, but it should be closed
(e.g. it could be a finite set of points).
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Fig. 1. Graphical optimization of an advantage-to-disadvantage
function. Each point in the shaded region corresponds to a differ-
ent feasible behavior ( p, τ ), and the slope of the line connecting
that point to ( −d, −a) is the value of the objective function J ( p, τ )
for that behavior. Hence, the three open circles correspond to three
distinct behaviors that result in the same suboptimal rate J−. An
optimal behavior falls on the ( −d, −a)-ray with the greatest posi-
tive slope. Here, the filled circle corresponds to the unique optimal
behavior that results in the optimal rate J∗, which is the slope of
the corresponding ( −d, −a)-ray.

3.1. Optimization of the classical objective

For the following, let

λ �
n∑

i=1

λi, g �
n∑

i=1

λi

λ
pigi( τi) , c �

n∑
i=1

λi

λ
pici( τi) ,

and τ �
n∑

i=1

λi

λ
piτi.

The average time between encounters is 1/λ, and λi/λ is
the probability that an encounter is with a task of type
i ∈ {1, 2, . . . , n}. The expected processing gain, process-
ing cost, and processing time for a single encounter are g,
c, and τ , respectively, and the rate of gain in Equation (3) is
equivalent to(

n∑
i=1

λi

λ
pi (gi( τi) −ci( τi) )

)
− cs

λ

1

λ
+

n∑
i=1

λi

λ
piτi

=
g − c − cs

λ
1

λ
+ τ

. (13)

For all i ∈ {1, 2, . . . , n}, assume that λi/λ is constant with
respect to λ (i.e. an encounter density); this assumption
assists in the qualitative analysis of the impact of param-
eter changes on the optimal ( p, τ ) behavior. Increases in
the optimal τ or g reflect increased preferences for higher
processing times or processing gains, respectively.

Graphical optimization of this function is shown in
Figure 2 for a given search cost cs and encounter rate
λ. As the average interarrival time 1/λ or search cost cs

increases, the point ( −1/λ, cs/λ) anchoring the ray with
slope J∗ will move to the left. Consequently, the point of
tangency between the ray and the feasible behavior frontier
will move to the right. That point corresponds to the opti-
mal combination of average processing time τ and average
net processing gain ( g − c). If cs or 1/λ increase to beyond

Fig. 2. Graphical optimization of the classical optimization objec-
tive. As search cost cs or interarrival time 1/λ increases, the mean
processing time τ will increase.

the point where cs/λ matches the ( g − c)-peak of the feasi-
ble behavior frontier, the optimal average processing time τ

will continue to increase although the optimal average net
processing gain ( g − c) decreases.

In words, small increases in search cost cs/λ cause
the optimal processing time to increase in order to return
more average processing gain from each encounter. How-
ever, large increases in search cost cs/λ cause the optimal
processing time per encounter to increase in spite of the
resulting decreasing average processing gain per encounter.
In this region of decreasing average processing gain, the
increased average processing time preempts the very costly
searching (i.e. rather than adding gain from processing,
search cost is being removed by searching relatively less).
This effect is a result of opportunity cost minimization;
there is less opportunity cost for additional processing when
searching is itself very costly. Processing tasks not only
accumulates gain, but it prevents the loss of gain through
searching. A task-processing agent ceases processing a task
when it is likely that a task with higher marginal returns
will be found quickly. However, when there is a long time
between encountered tasks, it is better to burn fuel process-
ing a task longer than burning fuel searching for a new task
because gain is accumulated while processing but not while
searching.

3.2. Optimal behaviors from alternative
objectives

For simplicity in this graphical analysis, assume the special
case of patch problems (i.e. p−

i = p+
i = p∗

i � 1 for each
i ∈ {1, 2, . . . , n}). These results can be extended to prey-
model problems by translating increased task-processing
times to increased preference for task types with higher
processing times; these prey-model effects (e.g. prefer-
ence reversal) are explored in Section 5 after the analytical
methods in Section 4 are introduced. Consider finite-event
maximization of the following:
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(i) Excess rate. In this case, Equation (9) is

n∑
i=1

λi (gi( τi) −ci( τi) ) −
n∑

i=1

λi
GT

N
− cs

1 +
n∑

i=1

λiτi

=
g − c −

(
GT

N
+ cs

λ

)
1

λ
+ τ

, (14)

which is equivalent to Equation (13) with the per-cycle
search cost cs/λ augmented by the per-cycle average
success threshold GT/N . That is, in the patch case,
every finite-event task-processing agent that maximizes
ER can be transformed into an equivalent infinite-time
rate maximizer by increasing search cost. So increas-
ing threshold GT or decreasing number of cycles N will
have the same effect on the finite-event ER maximizer
as increasing search cost cs on the infinite-time rate
maximizer, and Figure 2 also describes this case. This
result is consistent with the idea that thresholds induce
an exploration cost which is reduced when future oppor-
tunities are certain. That is, because the agent receives
no gain while searching, searching is a less desirable
activity when high gain thresholds must be met.
Stephens and Charnov (1982) present a risk-sensitive
model of foraging behavior that predicts the optimal
combination of gain mean and variance to maximize
the probability of reaching a critical energetic thresh-
old. Stephens and Krebs (1986) show that optimal
risk-sensitive processing times will be:

• greater than rate-maximized processing times
when the energetic threshold is less than expected
gain; hence, present gains are increased to reduce
lifetime gain variance (i.e. reduce uncertainty);

• less than rate-maximized processing times when
the energetic threshold is greater than expected
gain; hence, lifetime gain variance is increased
(i.e. to increase probability of very high accu-
mulated gain) by increasing number of lifetime
encounters at the cost of reduced lifetime mean
gain;

• identical to rate-maximized processing times
when the energetic threshold is equal to expected
gain.

So the time-limited task-processing agent trades per-
encounter gain with number of encounters to maximize
the probability of reaching a success threshold.
The ER task-processing model modifies the CR max-
imizing model in a similar way. However, this model
has a fixed number of encounters and a variable time,
and the gain success threshold is essentially a forced
cost. Consequently, results are opposite the expected

results from risk-sensitivity theory. In particular, when
the success threshold is:

• positive, the agent increases processing times;
in this context, a positive threshold implies that
the agent suffers a loss from each processed
encounter, and so the opportunity cost of more
processing time is reduced; the agent delays the
next encounter in order to mitigate the effect of
the next positive threshold;

• negative, the agent decreases processing times;
in this context, a negative threshold implies that
the agent receives a gain from each processed
encounter, and so the opportunity cost of more
processing is increased; at this heightened cost,
the agent cannot afford to spend more time pro-
cessing when future negative thresholds are left to
be encountered;

• zero, the agent behaves like a CR maximizer.

(ii) Time-discounted net gain. Under the patch assump-
tion, the time-discounted net-gain (TDNG) objective
function in Equation (10) does not have a convenient
slope-maximizing graphical interpretation; however, a
different graphical method can be used, and this method
reveals a relationship between time-discounted net-
gain maximization and rate maximization. In particular,
Equation (10) in the patch case is equivalent to

N((g − c) − wτ)︸ ︷︷ ︸
(∗)

− N

(
cs

λ
+ w

1

λ
+ GT

N

)
.︸ ︷︷ ︸

(∗∗)

Because N > 0 and ( ∗∗) is constant, TDNG optimiza-
tion is identical to optimization of ( ∗) �( g − c) −wτ .
So possible solutions come from the dark upper fron-
tier in Figure 2, which corresponds with the behaviors
that maximize ( g−c) for a given τ and minimize τ for a
given g−c (i.e. the behavior will be Pareto optimal with
respect to these two optimization objectives). The par-
ticular solution from this frontier is dependent on the
selection of w ∈ R, which is a cost rate that converts
time into gain.
Graphical TDNG optimization is shown in Figure 3.
Just as in Figure 2, each point in the shaded area of
Figure 3(a) is the pair ( τ , g − c) corresponding to a par-
ticular ( p, τ ) behavior. In this example, the frontier of
the shaded area is smooth and continuous, and so it can
be represented as a differentiable function ( g − c) ( τ ),
and the optimal processing average processing time τ ∗

is the point where ( g−c)′ ( τ ∗) = w and ( g−c)′′ < 0. So
optimization of smooth frontiers is depicted as finding a
point of deceleration that is tangent to a line with slope
w. Two such lines are shown in Figure 3(a); the thick
portions of those lines correspond to ( cs, λ) combina-
tions where TDNG and rate maximization are equiva-
lent. As discussed by Houston and McNamara (1999),
if w is set to the maximal value of Equation (14) (i.e. the
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Fig. 3. Time-discounted net-gain optimization. The shaded area
used in graphical rate maximization is also used in (a); however,
the optimal TDNG behavior corresponds to the point of tangency
with a line of slope w. Here, the steeper cost rate w1 > w2 is
associated with a shorter average time τ1∗ < τ2∗ because time
is more expensive. As shown in (b), for a given w, the optimal
TDNG τi is the point of tangency between of tangency between
gi( τi) −ci( τi) and a line of slope w.

maximum long-term rate of gain), the corresponding
gain–time tradeoff will also maximize long-term rate of
gain.
In Section 4, we give precise analytical methods for
optimization of this function. Meanwhile, we observe
that because ( g − c) −wτ is a weighted sum, then
for each type i ∈ {1, 2, . . . , n}, the optimal processing
time τ ∗

i is the point that maximizes gi( τi) −ci( τi) −wτi.
So TDNG optimization is equivalent to the decoupled
optimization of the n versions of this expression. In
particular, for each i ∈ {1, 2, . . . , n}, if the optimal
processing time τ ∗

i ∈( τ−
i , τ+

i ), then it must be that
g′

i( τi) −c′
i( τi) = w and g′′

i ( τi) −c′′
i ( τi) < 0. So opti-

mization of each type has an identical structure to the
optimization of the aggregate. As shown in Figure 3(b),
each optimal processing time is the point of tangency
with a line of slope w. As shown by the dark line seg-
ments in Figure 3(a), once the optimal processing time
is found for every type, the line with slope w that inter-
sects ( τ ∗, ( g − c)∗ ) can be used to find the set of ( cs, λ)
combinations that lead to the same optimal behavior in
the rate-maximizing case.

(iii)Excess efficiency. The graphical optimization approach
shows that efficiency maximization and rate maximiza-
tion can have similar optimal solutions. In these patch
problems, Equation (11) is

n∑
i=1

λigi( τi) −
n∑

i=1

λi

GT
g

N

cs +
n∑

i=1

λici( τi)

=
g − GT

g

N
cs

λ
+ c

, (15)

which resembles Equation (14) and has optimization
depicted by Figure 4(a).

Fig. 4. Optimization based on efficiency. In (a), excess-efficiency
maximization is shown to be similar to excess-rate maximiza-
tion. Here, as search cost cs or interarrival time 1/λ increases,
the mean processing cost c will increase. So long as processing
cost increases are due to processing time increases, mean process-
ing time τ will also increase. This result qualitatively matches
what is expected for rate maximization. In (b), cost-discounted
gain (CDG) optimization is shown for one particular type, i ∈
{1, . . . , n} with linear processing cost. In this example, the type’s
processing cost ci( τi) is depicted as a linear function c′

iτi, which
makes CDG optimization identical to TDNG optimization when
each type’s processing time is scaled by c′

i.

In particular, if the processing cost functions are mono-
tonically increasing with time, changes in the envi-
ronment associated with increases in optimal-rate pro-
cessing time will also be associated with increases
in optimal-efficiency processing time. The efficiency
defined by Equation (15) is equivalent to a long-term
rate of gain after time has been converted to a different
currency. In this case, those currency conversions vary
among types and the environment.

(iv)Cost-discounted gain. Under the patch assumption, the
cost-discounted gain (CDG) function in Equation (12)
is

N (g − wc) − N

(
cs

λ
+ GT

g

λ

)
,

which is maximized at the same point as g − wc. As in
TDNG optimization, optimization of each type can be
decoupled from the other types. In particular, for each
i ∈ {1, 2, . . . , n}, each optimal processing time τ ∗

i max-
imizes gi( τi) −wci( τi). In the special case where pro-
cessing costs are linear in time, optimization is depicted
by Figure 4(b). That is, optimization is nearly identical
to the TDNG case except that the processing time in
type i ∈ {1, 2, . . . , n} is scaled by c′

i.

So not only can each of the finite-event optimization objec-
tives be optimized using similar methods, but they all have
results that are qualitatively identical to CR maximization
results. Hence, these optimization objectives can be used
to model behaviors that do not perfectly fit the classical
foraging model.

The EoR objective in Equation (5) apparently does not
have a convenient structure for graphical optimization.
In Section 4, we give analytical strategies for its opti-
mization. Meanwhile, to motivate a graphical optimization
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method, we observe that because Equation (5) is a weighted
sum, then it can be shown that optimization of Equa-
tion (5) reduces to optimization of ( gi( τi) −ci( τi) −cs/λ) /

( 1/λ+τi) for each i ∈ {1, 2, . . . , n}. Each of these functions
is an advantage-to-disadvantage function nearly identical to
Equation (14) when n = 1, and so the standard graphical
optimization procedure can be applied to each type sepa-
rately. However, although EoR optimization can be com-
pleted separately for each type i ∈ {1, 2, . . . , n}, the optimal
processing times are still related by global parameters cs

and λ.

4. An analytical optimization approach

The graphical approach described in Section 3 makes qual-
itative predictions about average behaviors but is inappro-
priate for more precise investigations. Here, we apply a
more rigorous analysis approach. In particular, we describe
the mathematical structure of smooth objective functions at
points of optimality. In Appendix A, we provide detailed
descriptions of algorithms that are guaranteed to find these
points of optimality. However, for brevity, in this sec-
tion we connect the characterization of a generalized task-
processing optimum to the popular algorithms used in OFT-
type applications. Finally, we summarize the application of
algorithms from Appendix A to the example advantage-
to-disadvantage functions described in Section 2, and we
list some observations about important similarities and
differences in the results.

4.1. Characterization of optimal behaviors

Here, we must characterize the optimality of Equation (2)
over the set of behaviors in Equation (1). We give conditions
that guarantee that a behavior is a strict local maximum of
Equation (2). If the optimization objective is strictly con-
vex, these conditions describe its unique global maximum.
Our analysis uses Lagrange multiplier theory (Bertsekas
1995), and so we assume that ai and di are twice contin-
uously differentiable for each type i ∈ {1, 2, . . . , n} in an
open neighborhood of the optimal behavior.

Take some feasible behavior ( p∗, τ ∗) ∈ F , and let
A∗ � A( p∗, τ ∗) and D∗ � D( p∗, τ ∗). For each type j ∈
{1, 2, . . . , n}, assume that

p∗
j =

{
p−

j if D∗aj( τ ∗
j ) < A∗dj( τ ∗

j ) ,

p+
j if D∗aj( τ ∗

j ) > A∗dj( τ ∗
j ) .

(16)

Because pj = p−
j or pj = p+

j for each type j ∈ {1, 2, . . . , n},
we call Equation (16) the extreme-preference rule. In addi-
tion, for each type j ∈ {1, 2, . . . , n}, assume that

τ−
j < τ ∗

j < τ+
j and

⎧⎪⎨
⎪⎩

D∗a′
j( τ ∗

j ) = A∗d′
j( τ ∗

j )

and

D∗a′′
j ( τ ∗

j ) < A∗d′′
j ( τ ∗

j ) ,

(17a)

or

τ ∗
j = τ−

j and D∗a′
j( τ ∗

j ) < A∗d′
j( τ ∗

j ) , (17b)

or

τ ∗
j = τ+

j and D∗a′
j( τ ∗

j ) > A∗d′
j( τ ∗

j ) . (17c)

The condition in Equation (17a) ensures that the interior
coordinate is at a stationary point of the objective func-
tion with local convexity. The conditions in Equations (16),
(17b), and (17c) ensure that the extreme coordinates sit on
downward slopes at the edge of the objective function. So
Equations (16) and (17) define sufficiency conditions for
optimality. Under these conditions, ( p∗, τ ∗) must be a strict
local maximizer. If Equation (2) is convex everywhere, then
the behavior is its unique global maximizer.

4.2. Motivating interpretations

Detailed algorithms for finding points that meet the
described optimality conditions are given in Appendix A.
Here, we show how the conditions in Equations (16)
and (17) are natural generalizations of familiar classical for-
aging theory and present summaries of the existing OFT
algorithms to motivate the general cases in Appendix A.
Elements of these two cases can be found in each of the
generalized algorithms. In particular, task types are ranked
by some generalized profitability and then partitioned into
take-most and take-few sets, and processing times are found
through some generalized marginal value theorem.

4.2.1. Prey model as optimal task-type choice: profitability
ordering When applied to Equation (3) for the prey-model
case (i.e. when it is given that τ+

i = τ−
i = τ ∗

i and p−
i = 0

and p+
i = 1 for each type i), the extreme-preference rule in

Equation (16) is equivalent to

p∗
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if
gj(τ

∗
j )−cj(τ

∗
j )

τ∗
j

<

(
n∑

i=1
λip

∗
i (gi(τ

∗
i )−ci(τ

∗
i ))

)
−cs

1+
n∑

i=1
λip

∗
i τ∗

i

,

1 if
gj(τ

∗
j )−cj(τ

∗
j )

τ∗
j

>

(
n∑

i=1
λip

∗
i (gi(τ

∗
i )−ci(τ

∗
i ))

)
−cs

1+
n∑

i=1
λip

∗
i τ∗

i

,

(18)

which is the familiar zero–one rule (Stephens and Krebs
1986) where aj( τ ∗

j ) /dj( τ ∗
j ) is the profitability gj( τ ∗

j ) /τ ∗
j of

type j ∈ {1, 2, . . . , n}. This rule states that if task types are
indexed by profitability so that

g1( τ ∗
1 ) −c1( τ ∗

1 )

τ ∗
1

>
g2( τ ∗

2 ) −c2( τ ∗
2 )

τ ∗
2

> · · · >
gn( τ ∗

n ) −cn( τ ∗
n )

τ ∗
n

,

then there is a critical k∗ ∈ {0, 1, . . . , n} such that

p∗
j =

{
1 if j ≤ k∗

0 if j > k∗.
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Fig. 5. Graphical summary of the prey-model result. For a task
type i ∈ {1, 2, 3, 4, 5}, the average processing time τ∗

i and average
net gain g∗

i are plotted as a dot. The maximum long-term rate of
gain J∗ is the slope of the dashed line which separates the pro-
cessed types, 1, 2, and 3, from the ignored types, 4 and 5. The
profitability of each type is the slope of the dotted line connecting
the origin to its (gain, time)-coordinate.

That is, k∗ partitions the set of types {1, 2, . . . , n} into a take-
all set {1, 2, . . . , k∗} and a take-none set {k∗ + 1, . . . , n}.
Moreover, it is the optimal rate J∗ � J ( p∗, τ ∗) that
partitions the profitabilities in the same manner. That is,

g∗
1

τ ∗
1

> · · · >
gk∗

τ ∗
k∗

> J∗ >
gk∗+1

τ ∗
k∗+1

> · · · >
g∗

n

τ ∗
n

where optimal net gain g∗
j � gj( τ ∗

j ) −cj( τ ∗
j ) for each j ∈

{1, 2, . . . , n}. This relationship is depicted in Figure 5 for a
case with n = 5.

Key results from this analysis are that:

• There is an ordering of task-type preference that is
invariant of the environment. If it is optimal to exclude
tasks of type k, tasks of type � > k must also be
excluded. Similarly, if it is optimal to include tasks of
type k, tasks of type j < k must also be included. This
ordering does not depend on the encounter rates nor the
cost of search.

• As the maximum long-term rate of gain J∗ decreases
(e.g. due to a global decline in encounter rates or an
increase in search cost), the optimal task-processing
strategy should be more inclusive (i.e. more types
should be included in the take-all set). Likewise, as
the maximum long-term rate of gain J∗ increases, the
optimal strategy should be more exclusive.

Moreover, the zero–one rule means that finding the optimal
take-all set of task types involves a combinatorial search
through a set of 2n different p preference profiles. How-
ever, because of the invariant task-type ordering, there are
at most n + 1 possible p vectors that must to be checked
(i.e. the preference vectors [0, 0, . . . , 0]T, [1, 0, . . . , 0]T,
[1, 1, . . . , 0]T, …, and [1, 1, . . . , 1]T).

4.2.2. Patch model as an optimal processing-time choice:
marginal value When Equation (17) is applied to
Equation (3) for the patch model case (i.e. when it is given
that p−

i = p+
i = p∗

i = 1 and τ−
i = 0 and τ+

i = ∞ for each
type i), Equation (17a) is equivalent to

τ ∗
j > 0 and g′′

j ( τ ∗
j ) −c′′

j ( τ ∗
j ) < 0

and

g′
j( τ ∗

j ) −c′
j( τ ∗

j ) =

(
n∑

i=1
λip∗

i

(
gi( τ ∗

i ) −ci( τ ∗
i )
))− cs

1 +
n∑

i=1
λip∗

i τ
∗
i

,

(19)
which is the familiar marginal value theorem (Charnov
1973, 1976). Consider the special single-type patch case
where n = 1, p−

1 = p+
1 = 1, τ−

1 = 0, and τ+
1 = ∞.

Then Equation (19) is equivalent to

g′
1( τ ∗

1 ) −c′
1( τ ∗

1 ) =
(
g1( τ ∗

1 ) −c1( τ ∗
1 )
)− cs

λ1
1
λ1

+ τ ∗
1

. (20)

In addition, the graphical analysis in Figure 2 of this case
degenerates so that all behaviors fall on the bold Pareto
frontier, and that frontier traces the shape of the net gain
function τ1 �→ g1( τ1) −c1( τ1). The resulting graph is
exactly the situation described by Equation (20). That is,
the optimal task-1 processing time τ ∗

1 occurs at the point of
tangency between the function g1 − c1 and a ray originating
from the point ( −1/λ1, cs/λ1).

5. Examples: theory and application

Here, we examine the consequences of objective function
choice on the design of decision-making behaviors for task
processing. In particular, we apply methods from Section 4
to the example functions from Section 2. In Section 5.1, the
salient theoretical differences between the resulting opti-
mal behaviors are compared. In Section 5.2, the results
from a mobile agent simulation are presented to compare
the performance of a conventional foraging-inspired task-
selection behavior with a similar behavior developed using
the refined methods described in this paper.

5.1. Comparison of theoretical results

Applying the behavioral-design algorithms from Section 2
and Appendix A yields the generalized profitabilities and
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MVT conditions summarized in Table 1. In each case,
task types are assigned indices ordered by decreasing max-
imum generalized profitability, and any interior optimal
processing time will satisfy the generalized MVT condi-
tion. Comparing each row reveals features distinctive to
each associated objective function, and noting similarities
reveals important structural features of classes of objective
functions.

The classical MVT condition in the first row states that
the optimal processing time occurs when the instantaneous
rate of gain in each patch drops to the long-term rate of
gain. This feature is mirrored in generalized MVT condi-
tions for the ER case in the second row as well as the excess
efficiency (EE) case in the fourth row. For all three cases,
the optimal behavior for one task type is coupled to the
optimal behavior for another task type due to the mutual
effects on the environmental average. This feature is due
to the presence of decision variables in the denominator
of the corresponding advantage-to-disadvantage objective
functions.

Because the corresponding advantage-to-disadvantage
functions do not have decision variables in their denomina-
tors, the generalized MVT condition for the TDNG case, the
CDG case, and the EoR case state that the optimal process-
ing times can be determined independently of each other
(i.e. processing time determination is separable). However,
the optimal times are modulated by a common environ-
mental parameter. In the TDNG and CDG cases, it is the
discount factor w that represents the relative importance of
gain maximization and time or cost minimization. Hence,
in these two cases, the encounter rates and search cost have
no impact on the optimal behavior. Thus, by fixing the dis-
count factor, the opportunity cost of searching is also fixed
and thus does not vary with the environment. However, in
the EoR case, even though optimal processing times can be
determined independently, they all simultaneously respond
to changes in search cost or encounter rates in a qualita-
tively similar way as the optimal processing times in the
classical case. In fact, for the single-type patch case, the
EoR and classical cases match.

In Section 3, it was shown how in the patch case, ER opti-
mization is identical to classical optimization if the cs/λ

search cost is augmented by the GT/N per-task thresh-
old. However, as shown in the second row of the table,
in prey or general cases, the profitability ordering for the
ER and classical cases will not match. In the patch case,
higher success thresholds imply longer optimal process-
ing times because of a greater premium on accumulating
gain to reach the threshold. Similarly, for the general ER
case, higher success thresholds lead to a shift in profitability
orderings toward task types with higher gain. For example,
classical long-term rate maximization does not differenti-
ate between two task types with ( g1( τ1) , τ1) =( $5, 5 s) and
( g2( τ2) , τ2) =( $25, 25 s). However, when given a threshold
of GT = $10 over N = 1 tasks, ER maximization properly
prefers the latter task type that is guaranteed to reach the

GT = $10 threshold. Maximization of the EE objective has
a similar feature; as the gross threshold per task GT

g /N ratio
increases, task types with greater gross gain are preferred
more.

The invariance of profitability ordering is a key result of
classical OFT. Although the risk-sensitive foraging model
of Stephens and Charnov (1982) that is applied to an
autonomous vehicle problem by Andrews et al. (2007a)
does predict that time-limited foragers facing success
thresholds will tend to generalize and include task types that
would otherwise be excluded by a rate maximizer, it does
not predict that foragers should ever change specializations.
However, the ER maximization analysis above suggests that
task types that a task-processing agent would specialize
on at low thresholds may be excluded entirely from very
high threshold cases. A similar preference reversal is also
predicted by a stochastic dynamic programming analysis
of foragers facing mortality (i.e. finite lifetimes) by
Iwasa et al. (1984). As discussed in Section 2.3.1, the
risk-sensitive models of Stephens and Charnov (1982) still
make subtle assumptions about long task-processing mis-
sions with many tasks processed. Hence, the invariance of
task-type ordering may be a result of the many-task long-
run-time assumptions present in popular foraging mod-
els. In engineering applications where there are relatively
few tasks or high success thresholds, bio-inspired task-type
ordering should be evaluated carefully.

5.2. Simulation results

Table 2 shows simulation results from for five different
finite-event task-choice (i.e. prey-model) strategies with
each of four different net gain success thresholds. These
simulations are similar to those by Andrews et al. (2007a) of
a fixed-wing AAV searching continuously over an area for
tasks to process (e.g. targets for package deposit, objects to
collect); however, they apply equally as well to other mobile
vehicle scenarios.

The statistics in the tables were generated from 300
Monte Carlo samples for each of the 5 × 4 cases. The three
rows that correspond to each gain threshold GT show the
mean and standard error of the mean (SEM) for total net
gain and total time accumulated in each run as well as the
percentage of runs where the total gain met or exceeded
the success threshold. Each run terminated immediately
after the simulated agent completed exactly N = 300
tasks. The particular numerical details of the simulation
(e.g. encounter rates, gains, times) are given in the cap-
tion of the table. Because the simulation represents a task-
choice problem (i.e. lumped tasks where each task type
has fixed mean processing time and net gain), the aver-
age net gain ( gi( τi) −ci( τi) ) for each task type i has been
abbreviated gi.

Along with the five strategies used to generate Table 2,
some additional trivial strategies that are relatively simple
to analyze can be used as benchmarks. For example:
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Table 1. Sample optimization results for type i ∈ {1, 2, . . . , n}. The six rows correspond to the five objective functions discussed:
long-term rate of gain (Classical), excess rate (ER), time-discounted net gain (TDNG), excess efficiency (EE), cost-discounted gain
(CDG), and expectation of ratios (EoR). Likewise, JER and JEE refer to the ER and EE objective functions, and J refers to the classical
optimization objective. In all cases, an optimal behavior will have types ranked by maximum generalized profitability and will meet the
generalized MVT condition for interior processing times.

Objective Generalized profitability Generalized MVT condition

Classical gi(τi)−ci(τi)
τi

g′
i( τi) −c′

i( τi) = J ( p, τ )

ER gi(τi)−ci(τi)−GT /N
τi

g′
i( τi) −c′

i( τi) = JER( p, τ )
TDNG gi( τi) −ci( τi) −wτi g′

i( τi) −c′
i( τi) = w

EE
gi(τi)−GT

g /N
ci(τi)

g′
i(τi)

c′
i(τi)

= JEE( p, τ )

CDG gi( τi) −wci( τi) g′
i( τi) = wc′

i( τi)

EoR
gi(τi)−ci(τi)− cs

λ
1
λ
+τi

g′
i( τi) −c′

i( τi) = gi(τi)−ci(τi)− cs
λ

1
λ
+τi

Table 2. Simulation results for prey-model-inspired agent simulation. Statistics are generated by taking 100 Monte Carlo samples of
a mobile agent with a mission that ends after processing N = 300 tasks. Each agent faces an environment with a search cost rate
cs = 0.1 value currency per unit time and five prey-model task types described by the 3-tuples ( λ1, g1, τ1) =( 0.5, 30, 10), ( λ2, g2, τ2) =
( 0.25, 50, 20), ( λ3, g3, τ3) =( 0.4, 80, 35), ( λ4, g4, τ4) =( 0.1, 100, 110), ( λ5, g5, τ5) =( 0.8, 55, 50) of encounter rate (per unit time),
average net gain (value currency), and average process time (unit time). Five different task-choice scenarios are tested: the ‘Take all’
strategy processes all encountered tasks; the classical rate (CR) strategy uses the standard prey model from classical OFT; the excess
rate (ER) strategy uses a prey model based on ER maximization; the estimated classical rate (eCR) strategy uses a simple heuristic
described by Pavlic and Passino (2010) that converges to the prey-model result; the estimated excess rate (eER) uses a modified form of
the eCR heuristic applied to ER maximization. The four scenarios shown differ in their success threshold GT . Each �G row gives the
sample mean and standard error of the mean (SEM) for the total accumulated gain for each of the five different strategies in each of the
four different scenarios. Similarly, the �T rows give the sample mean and SEM for total time, and the @GT rows give the proportion
of runs that met or exceeded the corresponding success threshold GT . Particularly notable @GT rows have been emphasized in bold.

N = 300 tasks per mission, 100 Monte Carlo samples

G
T

=
6,

00
0 Take all CR ER eCR eER

�G: 16,555 ± 35 10,954 ± 17 20,520 ± 24 11,172 ± 113 16,534 ± 46
@GT : 100% 100% 100% 100% 100%

�T : 11,107 ± 42 4,399 ± 9 9,242 ± 13 4,541 ± 55 9,855 ± 32

G
T

=
9,

00
0 Take all CR ER eCR eER

�G: 16,565 ± 30 10,946 ± 16 20,473 ± 25 11,218 ± 128 18,119 ± 38
@GT : 100% 100% 100% 98% 100%

�T : 11,119 ± 42 4,391 ± 8 9,227 ± 13 4,567 ± 63 11,668 ± 43

G
T

=
13

,5
00 Take all CR ER eCR eER

�G: 16,642 ± 33 10,958 ± 16 25,153 ± 11 11,270 ± 103 18,647 ± 44
@GT : 100% 0% 100% 5% 100%

�T : 11,158 ± 38 4,393 ± 8 15,645 ± 42 4,586 ± 50 12,779 ± 46

G
T

=
16

,5
00 Take all CR ER eCR eER

�G: 16,546 ± 34 10,993 ± 16 25,141 ± 14 10,965 ± 91 18,796 ± 39
@GT : 55% 0% 100% 0% 100%

�T : 11,092 ± 40 4,421 ± 8 15,605 ± 53 4,440 ± 43 13,120 ± 44

(a) An agent seeking to achieve its GT success threshold
in its N runs could wait to accept only tasks of the
type 4 because that type has the highest average net
gain g4 = 100. For each of these N tasks, there is

a cs search cost per unit time and an average search-
ing time of 1/λ4 = 10 time units; so the average
total gain after N = 300 tasks is ( N) ( g4 − cs/λ4) =
( 300) ( 100 − 0.1/0.1) = 29700, and the average total
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time is ( N) ( τ4 +1/λ4) =( 300) ( 110+1/0.1) = 36,000
time units. This strategy meets each of the four GT

thresholds given, but each mission is much longer. In
particular, despite having an average mission time of
more than double the average mission time of the ER
strategy for the GT = 16,500 case, it returns less than
20% more value.

(b) An agent could wait to accept only tasks of type 1
because that type has the highest profitability (i.e. net
gain–processing time ratio). For N = 300 tasks, the
average total gain is then 8,940, and the average total
time is 3,600 time units. Despite the high total gain–
total time ratio of this strategy, it completes the N =
300 tasks so quickly that it does not meet three of the
example GT thresholds from Table 2.

(c) An agent could wait to accept only tasks of type 3
because that type has the highest ER profitability for
the GT = 16,500 and N = 300 case (i.e. arg maxi( gi −
GT/N) /τi = 3). In this case, the average total gain
is then 23,925, and the average total time is 11,250
time units. This simple strategy achieves all four suc-
cess thresholds in less than a third of the time required
for the strategy in (a) that also is uniformly successful.

Both of the single-type strategies in (a) and (b) are suc-
cessful, but they depend upon a low search cost rate cs

and a high encounter rate for their preferred task type. If
the environment is relatively sparse in tasks of the desired
type, the agent will engage primarily in costly searching
as it ignores encounters with other types that may be more
frequent. A better strategy is to balance the benefits of wait-
ing for more profitable types with the benefits of reducing
costly search time. In addition, reducing the time of mis-
sions allows mobile agents to be re-deployed more quickly
thus increasing the value returned overall.

Hence, the strategies in Table 2 represent different meth-
ods of prioritizing all task types to achieve success thresh-
olds to avoid pitfalls of the single-type case.

• The take-all strategy is provided as a multiple-type
benchmark. An agent following the take-all strategy
does not discriminate; the agent processes every task
encounter and the mission ends after exactly N encoun-
ters. As this strategy does not depend upon the success
threshold GT , its performance does not vary across dif-
ferent GT selections. Consequently, for GT = 16,500,
the strategy does worse than others that avoid low-gain
tasks and instead search longer for high-gain tasks.

• The CR strategy uses the classic prey-model algorithm
for task-type choice. In this simulation, the strategy uses
a priori knowledge of the encounter rate λi and the prof-
itability gi/τi of each task type i to group task types
into take-all and take-none sets. The encounter rates
could also be estimated as in Andrews et al. (2007a);
however, this idealized case is presented here for com-
parison with the estimated classical rate (eCR) strategy
described in the following. Because the CR strategy is

based on a rate-maximization assumption, the CR strat-
egy has a very high total gain–total time ratio. Hence,
for missions limited by time as opposed to number of
tasks, it would likely return relatively high gain. How-
ever, when task-processing opportunities are limited,
the strategy gives too much priority to task types with
low processing times.

• The ER strategy uses the generalized prey-model algo-
rithm for task-type choice. That is, it is identical to the
CR strategy except that the realized net gain from each
task type i is gi − GT/N . Consequently, its task-choice
priorities vary with GT . Thus, moving from GT = 9,000
to GT = 13,500 causes a shift in task-choice priorities
that leads to a behavior mode that has a longer total mis-
sion time but also returns a higher total gain. As with
the CR strategy, the ER simulation here is performed
with a priori knowledge of encounter rates to compare
its performance with the estimated excess rate (eER)
strategy described in the following.

• The eCR strategy uses the simple behavioral heuris-
tic described by Pavlic and Passino (2010) to make
process–ignore decisions. The heuristic makes no use
of encounter rates. Instead, it compares the recognized
profitability to the present total gain–total time ratio in
order to determine whether an encountered task should
be processed. The eCR strategy has similar performance
to the CR strategy.

• The eER strategy modifies the eCR behavioral heuristic
to match the ER maximization case. Consequently, its
performance follows behind the performance of the ER
strategy.

Thus, the ER and eER strategies show that simple
strategies exist that adapt to different mission success
thresholds by waiting longer for high-gain tasks without
depending on maximally long mission times. Moreover, the
intuitive nature and simple implementation of these strate-
gies is ported from classical OFT through the generalized
framework described in this paper.

6. Conclusions

In this paper, we have summarized several applications
of foraging-inspired decision making in robotics (e.g.
autonomous air vehicles) and computer science (e.g.
resource allocation, Web design), and we demonstrate that
while the resulting algorithms are intuitive and simple to
implement, the OFT optimization objectives themselves
may not match engineering problems. We then introduce
a single advantage-to-disadvantage optimization objective
that generalizes several of the existing objectives used in
OFT, and we also give four new models of finite-run-
time optimality and show how each of them are spe-
cial cases of advantage-to-disadvantage optimization. Each
finite-run-time objective function includes a success thresh-
old that mixes elements of CR maximization with shortfall
minimization (i.e. risk sensitivity). In addition, these four
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models provide optimization frameworks for the design
of task-processing agents that can only engage in a finite
number of tasks (e.g. a vehicle that can only deliver a
finite number of packages to a practically infinite number
of possible targets). As we show in simulation, the gen-
eral framework allows for the design of decision-making
algorithms with similar attractive structures as OFT-
inspired algorithms but better performance in engineering
applications.

We also show how a generic optimization framework pro-
vides a substrate on which different optimal task-processing
behaviors can be compared. For example, our analysis
shows a relationship between rate and efficiency maximiza-
tion, two approaches that are usually viewed in opposition
to each other. In addition, our analysis shows how the intro-
duction of success thresholds challenges the invariance of
task-type preference ordering, which is a key result of clas-
sical optimal foraging theory. These comparisons reveal
which key features of different optimization metrics can
lead to vastly different behaviors in application.

Most applications of foraging theory to engineering
focus on problems amenable to finding the optimal prey
(i.e. task-type) choice or patch residence time (i.e. task-
processing time). However, Pavlic and Passino (2009) apply
foraging behaviors described by Gendron and Staddon
(1983) to a fixed-wing AAV that may also choose its search
speed. In this case, the speed of the vehicle affects its detec-
tion accuracy. Increased speed increases the encounter rate
with task types that are easy to detect but decreases the
encounter rate with task types that are difficult to detect, and
so predicting the optimal combination of task-type choice
and search speed is non-trivial. A further complication is
that increased speed can have increased costs (e.g. in fuel or
calories). Pavlic and Passino are able to extend the methods
of Gendron and Staddon from two task types to an arbi-
trary number of task types, but it comes at the cost of a
simplistic model of detection accuracy. However, the opti-
mization objective is an advantage-to-disadvantage func-
tion with an additional decision variable representing search
speed. Extending the methods described here to handle this
case is a valuable future direction that should provide more
insights into complex task-processing behavior (e.g. when
more realistic models of detection accuracy are included).
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Appendix A: Algorithms for finding
an optimal behavior

Now that we have characterized optimal behaviors, we
present three algorithms that find an optimal behavior

( p∗, τ ∗) ∈ F for a task-processing agent when certain
assumptions are met. Because each algorithm has different
requirements than the others, one algorithm may apply to
one task-processing scenario better than another. However,
all three share the following characteristics:

• For each type i ∈ {1, 2, . . . , n}, the functions ai and di

are assumed to be twice continuously differentiable.
• The types are ordered by maximum generalized prof-

itability so that

max
τ1∈[τ−

1 ,τ+
1 ]

{
a1( τ1)

d1( τ1)

}
> max

τ2∈[τ−
2 ,τ+

2 ]

{
a2( τ2)

d2( τ2)

}
> · · ·

> max
τn∈[τ−

n ,τ+
n ]

{
an( τn)

dn( τn)

}
.

Determination of this ordering is not simple to do in
general, but the assumptions for each case below greatly
simplify the task. In two of the three cases, the maxi-
mum generalized profitability ai/di occurs at τi = τ−

i
for all i ∈ {1, 2, . . . , n}. In the other case, maximizing
ai/di is equivalent to either maximizing or minimizing
ai for all i ∈ {1, 2, . . . , n}.

• To satisfy the extreme-preference rule from
Equation (16), the n types are partitioned into a
high-preference set and a low-preference set. An
optimal pool size k∗ ∈ {0, 1, . . . , n} exists so that
the k∗ types with the highest profitabilities form
the high-preference set and the n − k∗ other types
form the low-preference set. In particular, for each
type i ∈ {1, 2, . . . , n} and each k ∈ {0, 1, . . . , n}, the
conditional preference pk

i is so that

pk
i �

{
p+

i if i ≤ k,

p−
i if i > k,

(21)

and the optimal behavior ( p∗, τ ∗) will have p∗
j = pk∗

j for
all j ∈ {1, 2, . . . , n}.

So after ordering the types appropriately, each algorithm
finds an optimal pool size and a set of optimal processing
times for that pool size.

A.1. Generalized prey algorithm

Stephens and Krebs (1986) describe a prey-model algo-
rithm that finds a ( p∗, τ ∗) to optimize Equation (3) when
τ ∗ is known a priori (i.e. it is constrained to a single point
by the environment). Because τ ∗

i is fixed, the functions ai

and di are replaced with constants ai( τ ∗
i ) and di( τ ∗

i ),
respectively. Here, we present a generalized version of the
algorithm that does not fix τ ∗. Instead, we only require
that the function di is constant and non-zero for each type
i ∈ {1, 2, . . . , n}.

Assume that for distinct types j, k ∈ {1, 2, . . . , n},
(i) The function dj is constant and non-zero.
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(ii) Functions dj and dk have the same sign, and constant d
is either zero or also has this sign.

(iii)If d = 0, then a < 0.
(iv)If dj is positive, then aj has a maximum, and if dj is neg-

ative, then aj has a minimum (i.e. profitability function
aj/dj has a maximum).

These assumptions guarantee that the objective function has
a maximum.

Using (iv), for each type j ∈ {1, 2, . . . , n}, let τ ∗
j be the

point that maximizes the generalized profitability function
aj/dj. Also assume that:

(v) The indices are ordered by generalized profitability so
that

a1( τ ∗
1 )

d1( τ ∗
1 )

>
a2( τ ∗

2 )

d2( τ ∗
2 )

> · · · >
an( τ ∗

n )

dn( τ ∗
n )

.

Finally, to ensure strict local convexity of the solution,
assume that:

(vi)For any k ∈ {0, 1, . . . , n − 1},

a +
n∑

i=1
pk

i ai( τ ∗
i )

d +
n∑

i=1
pk

i di( τ ∗
i )

�= ak+1( τ ∗
k+1)

dk+1( τ ∗
k+1)

,

where pk
i is defined by Equation (21). By these assumptions,

there is an optimal pool size k∗ ∈ {0, 1, . . . , n} such that

So k∗ can be found iteratively by choosing the smallest k ∈
{0, 1, . . . , n − 1} that satisfies the underbraced expression
( ∗). Then, the behavior ( p∗, τ ∗) with

p∗
j � pk∗

j =
{

p+
j if j ≤ k∗,

p−
j if j > k∗

for each type j ∈ {1, 2, . . . , n} will be optimal. That is, the
optimal behavior gives highest preference to the k∗ types
with highest profitability and ignores the other n−k∗ types.
So given the n generalized profitabilities, an optimal behav-
ior can be found by iterating through no more than n + 1
candidate behaviors.

A.2. Alternative generalized prey algorithm

The algorithm in Appendix A.1 cannot be used with the
EoR function in Equation (5) because it has di ≡ 0 for each
type i ∈ {1, 2, . . . , n}. Here, we provide a similar algorithm
to handle this case and others so long as d �= 0. The algo-
rithm assigns an infinite generalized profitability to each

type i ∈ {1, 2, . . . , n} with di ≡ 0 and treats all other types
in the same manner as in Appendix A.1. That is, types are
ranked by their extended generalized profitabilities.

Assume that for distinct types j, k ∈ {1, 2, . . . , n},
(i) The function dj is constant and possibly zero.
(ii) The constant d �= 0.
(iii)If dj �= 0, then it has the same sign as d.
(iv)If d is positive, then aj has a maximum, and if d is neg-

ative, then aj has a minimum (i.e. function aj/d has a
maximum).

These assumptions are nearly identical to those in Appendix
A.1. Here, cases with d = 0 are excluded in order to include
cases with di ≡ 0 for at least one type i ∈ {1, 2, . . . , n}.

Take ( p∗, τ ∗) ∈ F . Using (iv), let τ ∗
j be the point that

maximizes aj/d for each type j ∈ {1, 2, . . . , n}. Also assume
that:

(v) The indices are ordered by extended generalized prof-
itability so that there exists some �, u ∈ {0, 1, . . . , n+1}
with � < u and

dj( τ ∗
j ) = 0 and

aj( τ ∗
j )

d
> 0 for each type j ∈ {1, . . . , �}

and

a�+1( τ ∗
�+1)

d�+1( τ ∗
�+1)

>
a2( τ ∗

�+2)

d2( τ ∗
�+2)

> · · · >
au−2( τ ∗

u−2)

du−2( τ ∗
u−2)

>
au−1( τ ∗

u−1)

du−1( τ ∗
u−1)

and

dj( τ ∗
j ) = 0 and 0 >

aj( τ ∗
j )

d
for each type j ∈ {u, . . . , n}.

For strict local convexity of the solution, assume that:

(vi)For each type k ∈ {�, � + 1, . . . , u − 2},

a +
n∑

i=1
pk

i ai( τ ∗
i )

d +
n∑

i=1
pk

i di( τ ∗
i )

�= ak+1( τ ∗
k+1)

dk+1( τ ∗
k+1)

where pk
i is defined by Equation (21). By these assumptions,

the optimal pool size k∗ ∈ {�, � + 1, . . . , u − 2} is so that

So k∗ can be found iteratively by choosing the smallest k ∈
{�, �+1, . . . , u−2} that satisfies the underbraced expression
( ∗). Then, the behavior ( p∗, τ ∗) with

p∗
j � pk∗

j =
{

p+
j if j ≤ k∗,

p−
j if j > k∗
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for each type j ∈ {1, 2, . . . , n} will be optimal. So the opti-
mal behavior can also be found with a search through no
more than n + 1 candidates.

A.3. Generalized patch algorithm

The algorithms in Appendices A.1 and A.2 cannot be used
with Equation (3) in the patch case because the function
di( τi) � τi for each type i ∈ {1, 2, . . . , n} (i.e. it is not con-
stant). Here, we give a generalized patch algorithm that can
be used when each generalized profitability function comes
from a certain class of decreasing functions.

Assume that for distinct types j, k ∈ {1, 2, . . . , n}:
(i) The profitability function is strictly decreasing so that

( aj( τj) /dj( τj) )′ < 0 for any τj ∈( τ−
j , τ+

j ).
(ii) The convexities of aj and dj are such that

( a′
j( τj) /d′

j( τj) )′ < 0 for any τj ∈( τ−
j , τ+

j ).
(iii)For any τj ∈( τ−

j , τ+
j ), dj( τj) �= 0 and

• if dj( τj) > 0, then d′
j( τj) > 0 (i.e. positive func-

tions are rising);
• if dj( τj) < 0, then d′

j( τj) < 0 (i.e. negative func-
tions are falling).

So the magnitude of dj is non-zero and increasing
everywhere on its interior.

(iv)For any τj ∈( τ−
j , τ+

j ) and any τk ∈( τ−
k , τ+

k ), dj( τj) and
dk( τk) have the same sign, and constant d is either zero
or also has this sign.

These assumptions allow for the case where di( τ−
i ) = 0

for some type i ∈ {1, 2, . . . , n}. So to guarantee that the
objective function is well defined, also assume that:

(v) If d1( τ−
1 ) = d2( τ−

2 ) = · · · = dn( τ−
n ) = 0, then d �= 0.

By the assumptions, for each type i ∈ {1, 2, . . . , n}, the prof-
itability function ai( τi) /di( τi) will be well defined for all
τi ∈( τ−

i , τ+
i ), but it may have a singularity at τi = τ−

i , and
so we extend the initial profitability so that

ai( τ−
i )

di( τ−
i )

� lim
τi→τ−

i

ai( τi)

di( τi)
.

When there is no singularity or when the singularity is
removable, this limit will be finite. That is, the types can
be partitioned into a set with unbounded profitabilities and
a set with bounded profitabilities whose bounds can be
ordered. So assume that

(vi)The indices are ordered so that there exists some � ∈
{0, 1, . . . , n − 1} where

aj( τ−
j )

dj( τ−
j )

= ∞ for each type j ∈ {1, . . . , �}

and

∞ >
a�+1( τ−

�+1)

d�+1( τ−
�+1)

>
a2( τ−

�+2)

d2( τ−
�+2)

> · · · >
an−1( τ−

n−1)

dn−1( τ−
n−1)

>
an( τ−

n )

dn( τ−
n )

.

Next, for each type j ∈ {1, 2, . . . , n} and any k ∈
{0, 1, . . . , n}, define τ k

j so that

a′
j( τ k

j )

d′
j( τ k

j )
=

a +
n∑

i=1
pk

i ai( τ k
i )

d +
n∑

i=1
pk

i di( τ k
i )

or let

τ k
j �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ−
j if

a′
j( τ k

j )

d′
j( τ k

j )
<

a +
n∑

i=1
pk

i ai( τ k
i )

d +
n∑

i=1
pk

i di( τ k
i )

,

τ+
j if

a′
j( τ k

j )

d′
j( τ k

j )
>

a +
n∑

i=1
pk

i ai( τ k
i )

d +
n∑

i=1
pk

i di( τ k
i )

where pk
i is defined by Equation (21). These definitions rep-

resent a generalized marginal value theorem. That is, τ k
i

represents the optimal patch residence time in patches of
type i given that the optimal pool size is k; it is well defined
by the assumption in (ii). Again, to guarantee strict convex-
ity of the objective function at the optimal behavior, assume
that:

(vii)For any k ∈ {�, � + 1, . . . , n − 1},

a +
n∑

i=1
pk

i ai( τ k
i )

d +
n∑

i=1
pk

i di( τ k
i )

�= ak+1( τ−
k+1)

dk+1( τ−
k+1)

.

Finally, define optimal pool size k∗ ∈ {�, � + 1, . . . , n} so
that

So k∗ can be found iteratively choosing the smallest k ∈
{�, �+1, . . . , n−1} that satisfies the underbraced expression
( ∗). At each iteration, the processing times are chosen using
the generalized marginal value theorem. Then, the behavior
( p∗, τ ∗) with

τ ∗
j �

{
τ−

j if j ≤ �,

τ k∗
j if j > �,

and p∗
j � pk∗

j =
{

p+
j if j ≤ k∗,

p−
j if j > k∗

for each type j ∈ {1, 2, . . . , n} will be optimal. So finding the
behavior is equivalent to solving no more than n+1 general-
ized marginal value theorem (i.e. patch) problems where the
highest profitabilities are chosen as high preference types in
each iteration.
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