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Experimental Studies in Nonlinear Discrete-Time
Adaptive Prediction and Control

Raúl Ordóñez, Jeffrey T. Spooner, and Kevin M. Passino

Abstract—This paper presents implementation results using
recently introduced discrete-time adaptive prediction and control
techniques using online function approximators. We consider
a process control experiment as our test bed, and develop a
discrete-time adaptive predictor for liquid volume and a dis-
crete-time adaptive controller for reference volume tracking. We
use Takagi–Sugeno (TS) fuzzy systems as our function approxi-
mators, and for both prediction and control we investigate the use
of a least-squares update of the fuzzy system’s parameters.

I. INTRODUCTION

DISCRETE-time adaptive predictors and controllers have
been studied in which the system is linear with unknown

parameters, or the system nonlinearities are known and linear in
a set of unknown parameters (see, e.g., the classic work [1]). The
work in [2]–[6] uses on-line function approximation to develop
discrete time adaptive predictors and controllers for the case
when the unknown coefficients do not enter linearly or when the
form of the system dynamics is poorly understood. In the func-
tion approximation approach, a suitable parameterized nonlin-
earity such as a fuzzy system or neural network is tuned online to
approximate the unknown portion of the plant dynamics. Using
this approach, the focus is on function approximation rather than
parameter estimation, and no knowledge of parameterized phys-
ical nonlinearities is assumed. Neural networks or fuzzy systems
are especially good candidates for being used as tunable nonlin-
earities since they satisfy the universal approximation property
(i.e., they can be tuned to approximate an arbitrary continuous
function defined on a compact set to an arbitrary degree of accu-
racy, but the achievable accuracy depends on the size and form
of the approximator structure), but other conventional approxi-
mator structures such as polynomials could also be used, as in
[7]–[10].

Some neural or fuzzy predictor schemes have already been
developed and applied [11]–[16], and similar schemes have
been used for system identification [17] and signal processing
[18], [19]. However, there is in general a definite need for
additional experimental evaluations of prediction schemes that
are developed to achieve stable operation. Similarly, for control
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there have been a variety of adaptive methods developed for
discrete-time nonlinear systems. For instance, neural networks
and fuzzy system based methods were studied in [20]–[25]
for discrete-time systems. Reference [26] presents an adaptive
control method for nonlinear discrete-time systems with input
deadzone. In [27], [28] adaptive neural network controllers
are presented for a class of single-input–single-output (SISO)
strict-feedback discrete time nonlinear systems, and [29] con-
siders the multiple-input–multiple-output (MIMO) case.

Moreover, conventional (i.e., nonfuzzy/neural) methods were
studied in [30]–[40], among others. Reference [41] deals with
adaptive control of a class of discrete-time parametric-strict-
feedback nonlinear systems with additive white noise, where the
control law is designed based on weighted least squares and on
recursive adaptive predictors, whereas [42] presents adaptive in-
verse schemes for systems with multisegment piecewise-linear
nonlinearities. In [43], the authors study methods for velocity
estimation from discrete and quantized position samples using
adaptive windowing. References [44] and [45] use linear ma-
trix inequality (LMI) and techniques for control of linear
or nonlinear discrete time systems with delays.

Most of the studies using online approximation-based
schemes, both in the prediction and in the control fields, are
purely theoretical. While a few instances of new stable control
or prediction methods validated by implementation exist (for
example, see [12], [13], and [46]–[50]), it seems to hold true
that the literature contains a large number of untested (or,
rather, never implemented) methods whose practical value has
not been evaluated except to the extent to which the respective
assumptions needed for stable operation can be related to
control practice.

Within this paper, experimental studies are conducted that
apply the discrete-time adaptive prediction and control tech-
niques developed in [2], [3]–[6] (hereafter referred to as the
“companion work”) to a process control experiment test bed.
The experiments conducted here seek to determine, in the first
place, whether update of an approximator where the tuned
parameters enter nonlinearly may be more advantageous, in
a practical situation, than a linear in the parameters update.
Second, our study tries to find out how advantageous the addi-
tion of adaptation to an existing control system may be. Third,
our general objective is to show how to pick the various pa-
rameters of the adaptive schemes to achieve good performance.
In Section III, we develop an adaptive predictor system for
liquid volume in the process control experiment. In Section IV,
a discrete-time adaptive controller is applied to the problem
of volume reference tracking. For convenience, the relevant
prediction and control theorems used in the implementation
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Fig. 1. Process control experiment.

will be given, without proof, together with the corresponding
reference.

II. THE PROCESS CONTROL EXPERIMENT

The process control experiment we use has been designed
to resemble systems found in chemical processes where liquid
volume control is performed. First we study prediction of a
closed-loop system, where we use a simple, nonadaptive fuzzy
controller as an illustration, and design a predictor of liquid
volume. For control, we use the same fuzzy controller, and then
allow it to adapt, to show the potential advantages of an adaptive
system over a nonadaptive one. For a description of how a va-
riety of control approaches work for this experiment, see [46].

A. Experimental Setup

The process control experiment, schematically shown in
Fig. 1, consists of two tanks. The first one, called “fill tank”
contains a liquid whose volume we wish to control. We denote
the liquid volume by and measure it in gallons. When full,
the fill tank contains ten gallons of liquid. Note that rather
than measuring liquid volume directly, we measure liquid
level instead, since volume is directly proportional to level due
to the tanks’ geometry. The reference input, a desired liquid
volume, is denoted by . The second tank, also of ten gallons
capacity, is called “reservoir tank,” and contains the liquid that
the controller will pump into and out of the fill tank in order to
bring the liquid volume to its desired value.

There are two pumps that serve as system actuators. The first
one is a variable rate direct current (dc) pump, denoted by ,
which pumps liquid from the reservoir tank into the fill tank.
The second one is an alternating current (ac) pump, denoted by

, which can only be turned on or off, and is used to remove
liquid from the fill tank. The control input to the system is a
single voltage , where a sufficiently large positive value (of at
most 10 V) will cause the dc pump to transfer liquid into the
fill tank, and any negative value (at least 10 Volts) will cause
the ac pump to turn on and remove liquid from the fill tank.
Notice the asymmetry caused by the different operation of the
pumps: The dc pump has a dead zone, above which the liquid
flow is approximately a linear function of (see the next section
on modeling); the ac pump, on the other hand, is turned on to
maximum power by any negative , regardless of its magnitude.
The combined behavior of the pumps when is close to zero
in magnitude make it very challenging to maintain volume at
a steady value with small tracking error: the dead-band of

and the all-or-nothing functioning of conspire to make the
closed-loop system oscillate around the desired volume .

The process control experiment can be modeled as a first
order difference equation; nevertheless, the real plant is a com-
plex nonlinear system, therefore well suited for testing of the
potential of our chosen prediction and control techniques. In
addition to the dead zone of the dc pump and the control asym-
metry mentioned previously, both pumps have saturation non-
linearities which are difficult to characterize. Furthermore, the
pumps introduce significant electrical noise and delays into the
system. Finally, there is sensor noise, which occurs when liquid
is pumped into and out of the fill tank and waves are produced
in the liquid surface which, in turn, cause the level-measuring
Styrofoam ball to oscillate.

B. Model

In this section, we develop an approximate mathematical
model of the experiment. The purpose of this model is not to
provide an accurate representation of the plant, but rather to
illustrate qualitatively the complexity of the system, on one
hand, and to provide a justification for the design choices made
for the predictor and control systems of liquid volume, on the
other.

The process control experiment may be represented by the
first-order nonlinear difference equation

(1)

where is a time index, is a voltage input (ranging between
10 and 10 V) which drives the pumps and , and

represents the combined effects of the pumps and . Ex-
perimentally, we have found that can be approximated by

(2)
where . This function is plotted
in Fig. 2. It was derived from the experimentally determined
characteristics of the combined dc and ac pumps (see [46] for
details, as well as continuous time treatment of this plant). In-
deed, for negative values of the ac pump is activated in an
approximately on-off manner. Similarly, the dc pump is turned
on when is positive, but only after a dead-band of approxi-
mately 1 V. The experimental characteristic is clearly piecewise
continuous and noninvertible due to the several constant-valued
sections it has (e.g., when ). To get around this issue, we
defined the approximation (2). Notice that (2) is invertible and
differentiable everywhere. The invertibility of (2), in particular,
is important for the development of the discrete time adaptive
controller (note from the Appendix that the error dynamics have
to be expressible in the form (27), whose existence depends on
the invertibility of the function through which the control enters
the system dynamics).

As mentioned before, we will not be overly concerned with
the accuracy or lack thereof of the discrete-time representation
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Fig. 2. Combined effect of pumps.

of the plant, since we would like, in the case of the adaptive
predictor, to take care of the “modeling” work by adaptively
approximating the plant dynamics. Similarly, the adaptive con-
troller should be able to compensate for our lack of information
about the plant. Nevertheless, the model provides us with an im-
portant parameter of the plant: Its relative degree, which is equal
to one. In both prediction and control it is necessary to know the
relative degree in order to specify the adaptation law; further, in
the particular case of the predictor, the relative degree sets a limit
to the maximum number of steps in the future for which we are
able to predict the plant output.

C. Takagi–Sugeno (TS) Fuzzy Systems

To present the notation to be used in the remainder of the
paper we will briefly overview the definition of TS fuzzy sys-
tems [51]. Let denote a fuzzy system with input and
parameter vector . Then

(3)

Here, singleton fuzzification of the input is
assumed; the fuzzy system has rules, and is the value of the
membership function for the antecedent of the rule given
the input . It is assumed that the fuzzy system is constructed
in such a way that for all . The parameter

is the consequent of the rule, which in this work will be
taken as a linear combination of Lipschitz continuous functions

, , so that

(4)
Define , let

(5)

and

...
. . .

... (6)

Then, the nonlinear equation that describes the fuzzy system can
be written as

(7)

and . The vector contains those parameters of
that we are interested in tuning. We will consider two cases:
may contain the entries in matrix , in which case the fuzzy

system is said to be linearly parameterized and we have a linear
in the parameters update; on the other hand, may contain the
centers and spreads of the input membership functions in ad-
dition to the entries of , and in this case the fuzzy system is
nonlinearly parameterized and, correspondingly, we have a non-
linear in the parameters update. In the remainder of this paper
we will refer to the coefficients in and in the input member-
ship functions separately when we describe the way in which the
fuzzy systems are updated, and it should be understood from
the context that the vector will contain the coefficients ap-
propriate for either the linear or the nonlinear in the parameters
updates, depending on the case at hand.

D. Nominal Control System

The controller used for volume reference tracking is the last
piece to complete the system’s description. Since the process
control plant is a slow system, we use a sampling time of 1 s.
We use a nonadaptive TS fuzzy controller, which serves a double
purpose: For prediction, it provides us with data from the plant
under closed-loop control; for control, it establishes a baseline
of comparison, to be able to assess how much improvement the
adaptation mechanism is bringing to our tracking objectives.

The fuzzy controller has only one input, the tracking error
, with a gain of 5.0, and eleven Gaussian

membership functions uniformly distributed over the interval
, all with spreads equal to 0.2. The outermost member-

ship functions are saturated, and the output is computed using
center average defuzzification. We set the system to have eleven
rules, and we choose . The controller output can then
be computed from (7), where, in order to avoid confusion with
the predictor, we will use the notation to denote the ma-
trix of the controller’s consequent coefficients.

The design we settled on for the controller has consequent co-
efficients , , where is the
th column of . As the reader will see in the next section,

this controller performs poorly for the process control experi-
ment. It presents a highly oscillatory behavior, poor tracking,
and high sensitivity to measurement noise. From the point of
view of prediction, this is a desirable feature, because it makes
the prediction task more challenging (the closed-loop system
behavior becomes more complex to predict due to poor perfor-
mance of the controller); similarly, this fuzzy controller allows
for a clear illustration of the improvements in performance that
adaptation can provide: the controller has enough structure to
do a much better control job, but its initial specification is not a
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TABLE I
RULE BASE FOR THE PROCESS CONTROL PREDICTOR

good choice. Adaptation, however, is able to exploit the poten-
tial of the TS fuzzy system much better than our original design,
as will be shown in Section IV.

III. DISCRETE-TIME ADAPTIVE PREDICTION

A. Predictor Design Process

We notice that the process control model (1) has a relative de-
gree of one. Therefore, our predictor will be able to provide us
with , the predicted liquid level one step ahead of the
current time. Now, we would like not to have to make any as-
sumptions on the plant dynamics: for instance, we do not want
to be concerned with whether the system is feedback lineariz-
able (the model (1) is not, since the input does not enter in an
affine manner), or whether it has a particular functional struc-
ture; it is enough to know there exists some mapping between
input and output that we will attempt to approximate. The direct
adaptive prediction scheme (summarized in the Appendix) re-
quires no explicit assumption on plant dynamics’ structure, and
is therefore the best choice in this case (note that if we knew
with enough certainty that the plant’s input–output equation is
affine in the control, then the indirect scheme might be more
appropriate, since then the plant’s structure could be exploited
more explicitly).

We use a TS fuzzy system to produce . We choose
the current level and control input, and as inputs to
the fuzzy system, and we let
(we found it necessary to include all these past outputs in the
predictor’s consequent to achieve good performance). For both
inputs we choose eleven Gaussian membership functions, ini-
tially uniformly distributed over the interval , with equal
spreads of 0.2 (we use scaling gains, 1/7 and 1/10 for and

, respectively, to normalize the inputs to this interval). We
saturate the outermost membership functions, and the output is
computed using center average defuzzification. For the infer-
ences, we utilize the rule-base shown in Table I. The labels
denote the fuzzy set for the input, where corre-
sponds to the leftmost, and to the rightmost fuzzy set.
Each entry of the table corresponds to one output function ,

, where , and is the th column of
, which will denote the matrix containing the consequent

coefficients of the predictor fuzzy system. We initialize
with 0.1 everywhere except the first row, for which we choose

(see below for some re-
marks on the initialization of ). As an example, consider
the rule for that is inside of a box in Table I,

is is

where we evaluate the and operation using minimum.
Nonlinearity of the system and the measurement noise

seemed to require a rapidly converging predictor. For this
reason, although computationally intensive, we decided to use
the least-squares update law for our adaptive predictors, since
the sampling time of 1 second used in implementation is long
enough to allow for computation. Furthermore, the update is
applied both to the matrix of output coefficients and to
the input membership functions’ centers and spreads.

Another important design issue is the bound for the represen-
tation error of the predictor fuzzy system (please see the Ap-
pendix), which in turn affects the size of the time-varying dis-
continuous dead-zone used in the least-squares update law. Un-
fortunately, there is currently no clear analytic way of choosing
this bound, especially when dealing with a complex physical
system. Therefore, we again resorted to a pragmatic approach:
We treated this bound as a parameter to be tuned. In general one
would want to have an approximator with a large enough struc-
ture, so that the representation error is small. In our case, the rep-
resentation error could be larger than what it would be if we only
adjusted , since the input centers and spreads appear non-
linearly in the update scheme. However, we adopted the point
of view that the added structural richness of the fuzzy system
would in fact improve its approximation capabilities, and there-
fore reduce the representation error rather than enlarge it. The
results we obtained seemed to corroborate our pragmatic design
strategy: we found that letting the representation error bound

be as small as 0.001 yielded good results, as shown in the
next section. Following these guidelines, we found that it is in-
deed more advantageous to update both the matrix and the
centers and spreads of input membership functions, as the reader
will see in the next section. For completeness, we use standard
projection to keep the predictor’s parameters bounded within a
suitably large region. We found that the parameters never ap-
proached the boundary of this region, so that the projection is
never actually activated. The same is the case with the adaptive
controller in the next section.

The theoretical background for the discrete-time techniques
we are using here establishes that transient performance of the
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Fig. 3. Prediction with update of C and input membership functions.

predictor (or the controller, as in Section IV) can be greatly im-
proved if the initial choices for the coefficients of the approx-
imator, a TS fuzzy system in this case, are close to the ideal
values. Unfortunately, these ideal values may not be unique, and
it may be difficult to guess them. This situation may force the
designer to resort, yet again, to pragmatics and intuition. In our
case, the size of the vector made the initial choice of a
challenging design issue. Our rationale was that, since we could
not determine which, if any, of the past values of liquid volume,
or the control input, should have a greater impact on the approx-
imator output, the best guess (under such a lack of information)
would be to set all coefficients initially equal, but with a small
magnitude. Some testing of this strategy proved successful, and
we settled for the value 0.1, as mentioned before. Note, how-
ever, that although effective in this case, a simple strategy like
this one will most likely not generalize well.

B. Experimental Results

We chose a reference liquid volume that takes the values 5, 6,
7, and 6 gallons periodically, each value for a duration of 60 s.
Fig. 3 shows the results for one step ahead prediction where the
matrix and the centers and spreads of input membership
functions are updated; the top plot contains the actual (dashed
line) and predicted (solid line) liquid levels, and the bottom plot
presents the prediction error. Notice that the error is relatively
large during the first half of the first cycle, and then decreases
rapidly.

Fig. 4 shows prediction results when only the coefficients in
are updated, what corresponds to having a linear in the

parameters update. One should observe that in this case, too,
prediction is successful, but the predictor has noticeably more
problems, especially when the liquid volume is not too oscilla-
tory (e.g., between times 300 and 500 hundred s).

Subjective observations such as these are best analyzed and
corroborated numerically. To do so, we note that the first 20 s
of both the linear and the nonlinear in the parameters prediction
errors exhibit a rather large transient, in particular in relation
with the behavior thereafter. For this reason, we ignore the first
20 s of the data and examine the first and second order statistics
of the square errors. Table II shows the results.

Clearly, the nonlinear in the parameters update of the pre-
dictor yields more desirable performance. The mean square
error is reduced by about 41% when a nonlinear in the pa-
rameters update is employed. Likewise, the standard deviation
is smaller by about 20% with respect to the linear in the
parameters update. Thus, we conclude that, although both
configurations yield an acceptable performance, in this case a
nonlinear in the parameters update of the predictor is preferable
because of its improved prediction ability.

IV. DISCRETE-TIME ADAPTIVE CONTROL

A. Controller Design Process

Next, we consider discrete-time adaptive control for the
process control experiment. We will make use of the fuzzy
controller detailed in Section II, with the purpose of illustrating
how adaptation may be able to improve the performance of an
existing control design, especially when one has to deal with
a complex physical plant for which an adequate design based
purely on intuition and experience may not suffice.

Before proceeding, we need to decide on the kind of adap-
tive controller to use: Indirect or direct. Indirect adaptive con-
trol relies on the plant being feedback linearizable. However,
the control does not enter the plant in an affine way; rather,
it enters nonlinearly, as can be seen in (1), which invalidates
the indirect choice. Therefore, we apply the direct adaptive ap-
proach in the companion work, for which existence of an ideal
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Fig. 4. Prediction with update of C only.

TABLE II
MEAN AND STANDARD DEVIATION OF THE SQUARE PREDICTION ERRORS

control is assumed such that the tracking
error dynamics can be expressed as

, where
is bounded away from zero by known constants, and is an
unknown, bounded function.

In order to put the error dynamics in the required form of (27),
notice that we can let for some

. Now, let .
With these choices,

(8)

(9)

so that, with and , the
error dynamics are in the appropriate form. Note that since (2) is
invertible for all , we may select an ideal control that feedback
linearizes the plant dynamics, (1). In particular, let

. We observe that, since

(10)

we can guarantee the existence of such that the error dy-
namics satisfy the required form. The function is con-
tinuous but unbounded for unbounded , but given the practical
constraint that must lie between 10 and 10 V, a bound exists
for within this interval. Note, finally, that since

we are not constrained to applying gradient update, but are also
able to use least-squares for direct adaptive control (please refer
to the companion work for details). As we did in the prediction

case, we will again resort to least-squares update for our con-
trol purposes, because the faster error convergence is a very
desirable feature in control applications. Least-squares is com-
putationally expensive, but our fuzzy system is small enough to
allow real-time implementation for our given sampling rate.

B. Experimental Results

We will now allow the fuzzy controller described in
Section II-D to adapt, in order to find out how, if at all, adap-
tation is able to improve the closed-loop performance. Fig. 5
shows, with greater detail, the tracking performance of the
nonadaptive fuzzy controller used in the previous section. The
top plot contains the reference and the real liquid volumes; the
second, the tracking error; and the lower plot, the control input.
Observe, in the first place, that the control is bounded between

1 and 1, which is due to the fact that the output membership
functions (the first row of the matrix of coefficients, ) are
distributed between 1 and 1 (please refer to Section II for a
description of the controller) and a gain of 1 is used for the
output of the fuzzy system. Note that the controller is highly
oscillatory, in particular when the reference volume increases
(a result of the asymmetry of the actuators and of the measure-
ment noise). Observe, also, that even when the control input
is smoother, the tracking error tends to be a nonzero constant.
In general, this design presents several shortcomings, like low
noise rejection, poor steady-state tracking, and chattering.

Fig. 6 shows the tracking results when least-squares adapta-
tion is used for the discrete-time system. Here, we only con-
sider the case where a nonlinear in the parameters update is per-
formed, i.e., update of the output coefficients in matrix ,
as well as the centers and spreads of the input membership
functions. Note how steady-state chattering is greatly reduced,
even during the first period, and then is even further minimized
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Fig. 5. Nonadaptive fuzzy controller for the process control experiment.

Fig. 6. Direct discrete-time adaptive control for the process control experiment.

as adaptation proceeds. Similarly, the overall magnitude of the
error is reduced with respect to Fig. 5, and tends to become
smaller with time. In general, tracking performance appears to
be improved by means of the adaptation mechanism.

Again, we would like to obtain an objective measure to con-
firm these observations. Here, we will use the absolute value

of the tracking error, rather than the square error, in order to
remove the disproportionate bias introduced by the instances
when the error is larger than one in magnitude. Table III sum-
marizes the results. In this case, the results are not as clearly
manifest from these statistics as in the prediction case. The mean
absolute error is reduced by about 20% by the use of adaptation,
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Fig. 7. Frequency contents of the control signals.

TABLE III
MEAN AND STANDARD DEVIATION OF THE ABSOLUTE

VALUE OF THE TRACKING ERRORS

but the standard deviation increases. In order to obtain further
insight into the performance of the two controllers, we analyze
the frequency content of the control signals produced by each
one.

Examining Fig. 7 one notes that both controllers are compa-
rable at low frequencies; however, the nonadaptive controller
exhibits a peak at about 0.25 Hz which does not appear in the
adaptive counterpart. Given the slowness of the plant dynamics
(recall that the sampling period is one second), this peak occurs
at a relatively high frequency, and it is reflected in the frequency
content of the plant output (not shown for brevity). The effects
of this peak are evident upon examination of the output for the
nonadaptive case in Fig. 5. One observes large “patches” of
rapidly oscillating liquid level (the chattering referred to above).
These patches are noticeably reduced in the adaptive control
case. Clearly, the lower frequency content of the adaptive con-
troller is beneficial not only in that average tracking is improved,
but also in reducing mechanical stress to the actuators and the
plant itself. Using adaptation on the original design does, then,
yield a clear and concrete benefit (keeping in mind that coming
up with a better nonadaptive design for this plant is not neces-
sarily straightforward).

V. CONCLUDING REMARKS

In this paper, we presented implementation results for the dis-
crete-time prediction and control techniques in the companion

work. We investigated application of the techniques to one ex-
perimental test bed, a process control system, for which we con-
structed direct adaptive prediction and control systems. For the
predictor, our results suggest that, in some cases, a nonlinear in
the parameters update may be more advantageous than a linear
one, in the sense that a smaller mean square error is achieved.
The control case illustrates how the addition of adaptation may
result in an improved tracking performance, especially when the
controller design task is complicated by the presence of com-
plex nonlinearities and significant levels of measurement noise.
The average tracking error of the adaptive controller is reduced
with respect to the nonadaptive case, and moreover, the adaptive
controller displays a significantly more band limited frequency
content, thus potentially reducing mechanical wear of the plant.

APPENDIX

DIRECT ADAPTIVE PREDICTION AND CONTROL SUMMARIES

The direct adaptive prediction and control theorems we use
are for systems which may be placed in the form described by

(11)

where is smooth, is the state vector, is the (scalar)
input, is the (scalar) output, and is the delay between
the input and output. The state vector may be, in general, of the
form

for some and .

Direct Adaptive Predictor:

The direct adaptive predictor [2], [6] will use past and current
inputs and outputs of the plant to determine how the plant will
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behave in the future. To develop the direct adaptive predictor,
we first express (11) as

(12)

(13)

where we wish to predict the system output at time where
. The signal is used to allow for the possibility

of incorporating some a priori knowledge of what the system
output will be at time (the subscript “ ” on stands for
“known;” it is not a time index), while

represents the unknown portion of the plant dynamics which
will be approximated online. All the results to follow also hold
if for all . Using an ideally adjusted fuzzy system
or neural network, the plant dynamics may be expressed as

(14)

Here, is the error in representing the discrete time system
with an approximator of finite size, where

and . Here, is a vector of ideal coefficients that are
chosen which ensure that will be minimized. This
may be expressed as

(15)
where and are the compact sets in which and are
contained, respectively. The compact convex set is the region
which contains feasible parameter sets for . The predictor of
the output of the system at time is

(16)
and we assume that a standard “projection” method is used to
ensure that , .

The parameter error is described by , so
that using (14) and (16) the prediction error becomes

where . Also, since

(17)

where . The term
is bounded by for some . Define

, such that if is a bounded sequence, then
for all . The term is used here

instead of just since for multilayered neural networks
(or fuzzy systems with adjustable input membership functions),

is a result of both the ideal approximation error and the
linearization in terms of the parameters. The linearization term
is on the order of which can be shown to be bounded. If
approximation schemes for which the adjustable parameters

appear linearly are used, then the term vanishes.
The assumptions required when using the direct adaptive
predictor are summarizd as follows.

Assumption 1: The plant output is defined by (12), with states
and input . An approximator structure is

defined such that there exists some so that if is a
bounded sequence, then where .

Note that when using a predictor, we assume that the plant
states and control signal are bounded (some controller may be
needed to achieve this). Otherwise, the compact sets and
used in the definition of the ideal parameters [see (15)] may not
be bounded, requiring an infinitely large approximator (since the
approximator must have only a finite approximation error over
the whole space).

The direct adaptive predictor will use a discontinuous dead
zone, defined as

if
if
if

(18)

where is the size of the dead zone. In order to implement
the least squares adaptation, we define an error signal, , as
follows:

(19)

where

(20)

Finally, we define as

if
otherwise

(21)

Theorem 1: Given the error dynamics (17) with appropriate
assumptions satisfied, then the adaptation law

(22)

will ensure that
1)

;
2) .

Additionally, if , for
, some finite constants, then

3) .
Remark 1: The condition

is satisfied if the plant states and control signal are bounded, so
that is bounded when is bounded, which is satisfied because
of result (2) in the theorem.

Direct Adaptive Control:

The control objective is to have the plant output, , follow
some reference signal, . We define the tracking error to be
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. For the direct adaptive control approach
[2], [3], [5], we will not place strict requirements upon the dy-
namics of the plant. Instead, we require that there exist some

(where we assume that is known)
that is continuous in its arguments such that the error dynamics
may be expressed as

where is such that

where and are known constants related to the plant dy-
namics, and for some known .

To develop the error dynamics for the direct adaptive control
case first express as

(23)

where and represent the unknown and
known portions of the ideal control law, respectively. It should
be noted that the signal is not required for implementa-
tion and we may assign , . We may represent

as

(24)

where

(25)
and is the convex compact set of allowable controller pa-
rameters, is the compact set through which the state may
travel (we do not restrict its size a priori), and is the space
through which the reference input may travel (we assume that

is bounded). The current estimate of the ideal controller is
given by

(26)

where the current parameter set will be updated online
and a projection algorithm can be used to make sure that

.
Defining the parameter error as , the

output error dynamics may be expressed as

(27)

where . The term
is again bounded by . Define ,

such that if is bounded, then
for all .

Assumption 2: There exists some that is
continuous in its arguments such that the error dynamics may
be expressed as ,

where , where and are known
constants, and for some known . An
approximator structure is defined such that there exists some
so that if is bounded, then where . The
reference model has bounded output such that for

and is known.
The requirement that be known is needed due to the

delay between the plant input and output. If the desired output
trajectory is defined by , then we may let
so that the plant output will converge to . This
implies that the plant output will actually converge to a delayed
version of the desired trajectory. For many applications this will
be suitable.

Similar to the predictor, we define the error signal

(28)

where now

(29)
Finally, is defined as in (21).

The direct adaptive control theorem using least squares is
very similar to Theorem 1. We state it for completeness.

Theorem 2: Given the error dynamics (27) with appropriate
assumptions satisfied, then the control law (26) together with
adaptation law (22) will ensure that

1)

;
2) .

Additionally, if , for
, some finite constants, then

3) .
Remark 2: For the direct adaptive controller, the condition

is satisfied automatically
when a fuzzy system with adjustable output membership func-
tions is used as defined in (5) since for that case . With

bounded (where is a vector of adjustable weights), we have
bounded so is also satis-

fied for feed forward neural networks with saturating activation
functions. Since we use projection for each case we know that

is bounded.
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[37] M. Krstić, I. Kanellakopoulos, and P. Kokotović, Nonlinear and Adap-
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