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Adaptive Neural/Fuzzy Control for Interpolated
Nonlinear Systems

Yixin Diao and Kevin M. PassindSenior Member, IEEE

Abstract—Adaptive control for nonlinear time-varying systems instance, the class of systems consisting of an interpolation of
is of both theoretical and practical importance. In this paper, we nonlinear dynamic equations in the strict feedback form and
propose an adaptive control methodology for a class of nonlinear qctryct backstepping control laws tailored to each of the

systems with a time-varying structure. This class of systems is d . ts of th i t a1 [9

pomposed of interpolatio_ns o_f nonlinear sqbs_ystems whiqh are dynamic components o h e nonlinear system [8], [,]' .
input—output feedback linearizable. Both indirect and direct Note that for the adaptive control problem of nonlinear time-
adaptive control methods are developed, where the spatially varying systems, only a class of systems in the strict feedback
localized models (in the form of Takagi-Sugeno fuzzy systemsform are considered and only limited results exist so far. In
or radial basis function neural networks) are used as online this paper, we consider a more general class of nonlinear time-

approximators to learn the unknown dynamics of the system. - N . .
Without assumptions on rate of change of system dynamics, the varying systems, which is input-output feedback linearizable

proposed adaptive control methods guarantee that all internal and present stable adaptive control approaches using the online
signals of the system are bounded and the tracking error is learning capabilities of radial basis function neural networks.
asymptotically stable. The performance of the adaptive controller This class of systems is large enough so that it is not only of
is demonstrated using a jet engine control problem. theoretical interest but also of practical applicability. The idea of

Index Terms—Adaptive control, nonlinear systems, online using function approximation structures with universal approx-

approximation, stability analysis. imation properties (such as neural networks or fuzzy systems)
to deal with arbitrary continuous nonlinearities has been widely
I. INTRODUCTION used in adaptive control for nonlinear systems [10]. In fact, on-

o line approximation-based stable-adaptive neural/fuzzy methods
A DAPTIVE control has been employed in situations whergaye peen significantly impacted by the work in [11]-[15] using
little a priori knowledge of the plant is known. Adaptiveneyral networks as approximators of nonlinear functions, the
control has _als_o been ysed to compensate for onlln(_e system\_pgrk in [16]—[20] using fuzzy systems for the same purpose, and
rameter variations, which may arise due to changes in operatiig work in [11], and [12] using dynamical neural networks. The
points, component faults, plant deterioration, etc. The genefglyral and fuzzy approaches are most of the time equivalent,
methodology of adaptive control for time-varying systemgitfering between each other mainly in the structure of the ap-
is to treat the effects of parameter variations as U”mOde!ﬁS)ximatorchosen. Indeed, to try to bridge the gap between the
perturbations so that it turns into a robustness problem [Heyral and fuzzy approaches several researchers (e.g., in [20])
This methodology has been applied to linear time-varyingiroduce adaptive schemes using a class of parameterized func-
systems, where the parameters vary slowly and smootifyns that include both neural networks and fuzzy systems. As
or discontinuously (i.e., jumps) but the discontinuities occyp the approximator structure, linear in the parameter approxi-
over large intervals of time [2]-[4]. Adaptive control formators are used in [13], [16], [19], [20], and nonlinear in [12],
nonlinear time-varying systems has also been studied by SO&), [15]. Finally, most of the papers [11]-[19] deal with in-
researchers. In [5], the authors studied adaptive control foygect adaptive control (trying first to identify the dynamics of
class of nonlinear time-varying systems in the strict feedbagke systems and then generating a control input according to
form with unknown unmodeled time-varying parameters Qe certainty equivalence principle), whereas very few authors
disturbances (whose bounds are known) and used the ba@k ., [20] and [21]) face the direct approach (directly generating
stepping design method. Similar work has also been preseniiedl control input to guarantee stability), because it is not always
in [6] and [7]. Besides controlling the nonlinear time-varying|ear how to construct the control law without knowledge of the
system as a whole, another control methodology is to exP'@Ustem dynamics.
the internal time-varying structure of nonlinear systems, for | this paper, we present an adaptive control methodology for
a class of nonlinear systems that depends on exogenous sched-
uling variables. This class of systems consists of interpolations
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localized in the sense that only the part of the approximator  1l. SPATIALLY LOCALIZED MODEL ARCHITECTURE

parameters corresponding to the region of the SCthUIIngIn neurobiological studies, the concept of localized informa-

space” is updated every time. Furthermore, besides 'nd'“ﬁ%tn processing in the form of receptive fields has been known

adaptive control, we also design and analyze direct adaptive . .
: . . . _and demonstrated by experimental evidence (e.g., locally tuned
control in this paper, which usually shows better transien . e ]
. : d overlapping receptive fields have been found in parts of the
behavior because it seems to learn and adapt faster (proba ) ) :
ebral cortex, in the visual cortex and in other parts of the

due to the fact that it has less parameters to be tuned). Bgth. hich ts that such local | . & it i
indirect and direct adaptive control methods developed h %am),w Ich suggests that such local learning otiers afternative

are, to our knowledge, the first of their kinds in this Ccmtex{:lomputational opportunities to learning with “global basis func-
To approach the nonlinear control problem by stud intlons," such as the multilayer perceptron neural network with

sim |ifi§(;) localized approximations of tF;]e lant t)r/1e cor?/tro gmoidal activation functions [28]. Inspired by these biological

metFr)lodolé)gy studied ESre shares some corr?mon’ views of gccl:)nunterparts, the radial basis function neural network model has

scheduling control, which deals with nonlinear systems that " presented, which can be defined by

are linearized along reference trajectories or operating points M

[24], [25]. Gain scheduling control is widely used in industrial y=Fuap(z,0)=> bRi(x) (1)

applications, but so far only local stability results exist due to i=1

Fhe difficulty of s.’tat."“ty analysis. Oth.er rglated results exisy here y is the output of the radial basis function network,

in the parallel distributed compensation literature [26], [27], 01,2 zn]" holds then inputs and; = 1,2 M

where authors assume the existence of a model consistingr OTresle’nti\Z 'r'e7cen iive field unitspThe vect_oﬁ ’h(’)iaé’ the

interpolations of linearized system dynamics (which are vali P P '

within a subset of the state space or other relevant operat ag:amete”rs of the “receptive field_units,” which consist of the
space). Linear controllers are designed within these regioﬁ e_ngth _parame_:teréyi and possibly the parameters Of. the
and then interpolated with the same interpolation structure dial basis fun,Ct'onSRi(,x ) (aka., rad.|a| response functions
the system. The class of time-varying systems studied in s kernel fgnctlons, .defl_nlng the activation e>l(te'nts of the.
paper is related to the system studied in the parallel distributef"eSPonding receptive fields with the characteristics that their
compensation literature. However, instead of interpolatif§SPONses decrease monotonically with distance from a central
controllable linear systems (obtained by local linearizatidpint)- There are several possible choices for the receptive
within divided subspaces), in the spirit of [8] and [9] (but nofiéld functions E;(x). Typically, Gaussian-shaped functions
restricted to the strict feedback form), here, we focus on usi§e used for analytical convenience, that is

feedback linearizable nonlinear systems as the “pieces” to form 1

the “global” nonlinear system by interpolation. Note that to Ri(z) = exp <—§(a: — ) Di(w — Ci)) 2
achieve global stability of parallel distributed compensation

approach, a single positive definite matrix that simultaneousyhere ¢; = [cf,ch,...,ct]7 parameterize the loca-
stabilizes all combinations of linear subsystems needs 10 fgs of the receptive fields in the input space and
found (which is not trivial), usually, relying on linear matrixyy.  _ diag((1/0%)?,(1/08)?,... (1/0i)?) determine

inequalities (LMIs) optimization methods. By interpolatingne shapes (or relative widths) of the receptive fields. Note
feedback linearizable nonlinear systems, not only can LMla; rather than computing the output of the radial basis
optimization be avoided, but also the adaptation mechanigi,qtion network with the simple sum as in (1), there are also

can be incorporated so as to guarantee asymptotic stability %{I]t%rnatives, for instance, by computing a weighted average
deal with model uncertainty. Furthermore, this class of system

is large enough (compared to the nonlinear system in the strict M
feedback form as studied in [8] and [9]) so that it may have ;biRi(w)
more practical applicability. This will be shown via our jet y=Fp(@,0) == —. 3)
engine example where a model in the strict feedback form (or > Ri(x)
=1

an interpolation of such models) cannot be used to adequately
represent the engine, whereas our feedback linearizable mageteover, to improve modeling flexibility of the radial basis
can do this quite well. function networks, it is also possible to further define the

This paper is organized as follows. The spatially localizeglyength parametets to be parametric functions
model architecture of radial basis function neural networks

and Takagi—Sugeno fuzzy systems is discussed in Section I, bi(z) = a0+ 121+ -+ + G nTn (4)
which serve adinear in the parametepnline approximators.

In Section 111, the details of the problem formulation for a clas¢herea; ;, i = 1,2,...,M, andj = 1,2,...,n are strength

of input-output feedback linearizable time-varying nonlinedtinction parameters.

systems are given. The adaptive algorithms and system stabilityAnother type of spatially localized model is the
analysis are presented in Sections IV and V for both indirebakagi—-Sugeno fuzzy system. The fuzzy system facili-
and direct schemes. Section VI describes the applicationtédes the emulation of human intelligence by modeling human
a jet engine control problem to illustrate the performance obgnitive processes in the form of rules and inference mecha-
the proposed adaptive neural/fuzzy control methods. nisms. Abstracted from the qualitative description of premise
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representation, inference and defuzzification, the mathematidhlis will facilitate the derivation of adaptive laws and the
formula of the Takagi—Sugeno fuzzy system can be defined lapalysis of system stability.

R
gi(z)pi(x) [ll. A CLASS OFNONLINEAR SYSTEMSWITH A TIME-VARYING
y=F,(x,0) = =— (5) STRUCTURE
Z i () Consider a class of nonlinear systems consisting of an inter-
=1 polation of nonlinear subsystems
9i(x) =a; 0+ a; 121+ -+ ATy (6)
L 1 {x;—ct 2 N ) N )
piw) = [Jexp | =5 ( — ) 7 = <Z f%m)ﬁ%v)) + <Z g%x,we(v)) w (9)
j=1 J i=1 i=1
]\T . .
wherey is the output of the fuzzy system = [y, 2, ..., 7,] " Y= Z h(z,v)€(v) (10)
holds then inputs, and; = 1,2,..., R representR different i=1

rules [29]. The shapes of the membership functions are chosen

_ T
to be Gaussian and center-average defuzzification and proczl’,‘ﬁf@fere”’j = [e1, 250 ’“7"]_ is the (measurable) state vectar,
are used for the premise and implication in the structure of tﬁethe (scalar) input, angdlis the (scalar) output of the system.

fuzzy system. The;(z),7 = 1,2,..., R are called consequentThe functi_onsf”(a:, v), 5_}2(“7’ v) andh”_(a:, v) repiresent smooth
functions of the fuzzy system, where thg; are the parameters.Iocal nonlinear dynamics. The functioggv) (¢(v) > 0) are

The premise membership functiops(x) are assumed to be smpoth interpola_tion functiops, = 1,2, N sp_lit the do-
well-defined so that® ji; () # 0 for all . The parameters main ofv into IV different nonlinear subregions ands a vector

c; andaj are the centers and relative widths of the membersh% exogenous scheduling variables which are measurable and
functions, respectively, for thigh inputs and théth rules. bounde((all. ; . - i .
Actually, the radial basis function neural networks previously Let Lgh (x,v) be thedth Lie derivative of/*(z,v) with

N ; .

described (2), (3), and (4) are functionally equivalent to tH&SPect tog(z,v) = 3., g’(x,v)¢’ (U);V that is, for ex-
Takagi-Sugeno fuzzy systems defined by (5), (6), and (7). @ple,Lyh'(z,v) = ((Oh'(z,v))/0x)T 30, ; ¢ (z,v)& (v),
see this, suppose that we let the number of receptive field unit$h’ (z,v) = Ly[Lgh’(z,v)], and so on. For conve-

equal to the number of rules (i.el/ = R), let the receptive nience of derivation, we definel4r'(z,v) to be the
field strength functions same as the consequent functions (ih modifieerie derivative of hi(x,v) with respect to
b;(z) = g;(x)) and choose the parameters of the radial basf$x,v) = Zf‘zl f7(z,v)¢ (v), that is

functions same as those of the premise membership functions

(i.e.,R;(x) = u;(x)). In this case, the radial basis function net- : Ri(z,v)Ei(v) O (x,v) T
work is identical to the Takagi—Sugeno fuzzy system. Note tht 1 (2, v) = i v
. £§(v) v
the tunable parameter vectérin (3) or (5) can be composed ; TN
of both radial basis function (or premise membership function) + <8h (, ”)> Z £z, ) (v)
parametersj ando—j and strength function (or consequent func- dx =

tion) parameters, ;. This is referred to asonlinear in the pa-

rameterapproximator. Anonlinear in the parametespatially and, for exampleL3h'(x,v) = L;[Lsh'(x, v)]. Next, we give
localized model can be tuned by a variety of gradient methothe definition of the “strong relative degree,” that is, a system is
such as the steepest descent method and Levenberg—Marqueidito have a strong relative degigfl < d < n) if

method. Alternatively, we may decompose the parameter vector

into a linear par®; consisting of the strength (or consequent) XV 4 4 N 4

function parameters and a nonlinear partcomposed of the ZLth(va)ﬁz(U) = ZLgthZ(%U)gz(U)

radial basis function (or premise membership function) param- =! =1 N
eters. By having the tunable parameter veétbe composed of L Z L, 2hi (2, )€ (v)
a;,; only and specifying the parametefsando? in advance, 4 ~ vy ’
. . . " . . 1=
we will have alinear in the parameteradial basis function net- -0

work (or Takagi—Sugeno fuzzy system)

andy> | LyL$ hi(z,v)é'(v) # 0 for all z andv. Note that
we use both the standard amadifiedLie derivatives to provide

Note that thelinear in the parameteradial basis function a compact representathn here. . _

networks or Takagi—Sugeno fuzzy systems also have the Capnder the aforementioned defmmons_, if the system repre-
pabilities of forming an arbitrarily accurate approximation téented by (9) and (10 has a strong relative dedreken

any continuous nonlinear function, so that in the following N : T

adap_tlve control mechanisms, we will use _them as online ap- g :Z []Li(x7v)§i(v) + <M) #€i(v)

proximators to learn the unknown dynamics of the system. pet ey

Yy = Frog(,0) = Fyo(2,6) = 67 ¢(x). (8)
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+ <%)T@£i(v)l EJ\: <—hz @) (U)]>T@

:é Rz, v)E N (v) + <W>Tw‘(v) +Z <ahz z,v ) ij £ )E (W) w)
*(%)Tgﬁw,vw(v)s%wl :Zﬁ;h( n e, +Z(8h ) e
£y [(%)T gj<x,v>sf<v>si<v>] u +Z (2t fo £ 0)E )
NZZI = o ‘
=" Lyhi(z,0)€ (v) IZthZ(%v)ﬁz(v)
& &

so that the previous normal form can be rewritten as
and so on, so that the system dynamics may be written in the

normal form as (1 =Co = Lyh(z,t)

N > =C3 = L}h(z,1t)
=G =Y Lh'(z,0)¢(v)
=1

a1 =Ca =L h(z,1)

b =G =Y Lihi(x,v)¢ (v) Ca =L4h(z,t) + L,LE Az, tyu
= 7T :fO(Cvﬂvt)
N which is the same as the normal form of the time-varying sys-
Ca1 =Ca = Ziiflhi(%v)g(v) tems [30], [31]. Therefore, there exists the diffeomorphism so
i—1 that the normal form can be obtained from (9) and (10) by a
N change of variables.
Ca _ZthZ z,0)E (v) + ZL L R (2, 0)E (v)u Although the class of nonlinear systems studied here is a
i=1 special case of the general time-varying systems, the advantage
—fo(Q ™, v) of using this interpolated form is to exploit the internal structure

4 i of the time-varying dynamics so that they can be separated
with ¢ € R, 7 € R"7“ and¢; = y. Note that the class of jnto known scheduling functiong’(v) (which could be fast
nonlinear systems we consider here is actually a special casgk-varying) and unknown local nonlinear dynamics consisting

a general class of nonlinear time-varying systems of f(z,v), ¢'(z,v), andh’(z,v). By using an interpolated on-
line approximation-based adaptive control strategy, we expect
& =f(x,t) +g(z,t)u (11) that the local nonlinear dynamics may be approximated more
y =h(x,t) (12) accurately by corresponding online local approximators so that

the performance of adaptive control can be improved, of course,
and there exists certain kind of equivalence between the Idethe cost of the increase of computational complexity. More-

derivatives previously defined and the ones for the time-varyiyer, by using the scheduling functions to explicitly represent
systems [30], [31]. In particular, we have the known but fast time-varying dynamics as the interpolation
between local subsystems, the interpolated adaptive controller

T is expected to handle a class of fast time-varying systems
Lyh(z,t) = <%) g(x,t) without assumption on rate of change of system dynamics.
N ; T The normal form decomposes the system states into an ex-
= <M) g(z, )¢ (v) ternal part; and an internal part. For the external part, if we
= dx let (¥ denote thelth derivative ofy, it can be rewritten as
N ‘ ‘ N
= ZLth(a:,v)gz(v) y(d) _ Z (Ozi(t) + Ozi(a:,v)) gzw)
=1 =1
and
T @ @
Libte) =i + () F0 *Z Al + @) @ 13)
xr

NCAY on\ " ] where o/, (t) and gi(¢t) are “known” local dynamics of the
vt (1) system (which are assumed to be boundedis bounded) and
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o'(z,v) and 3(x,v) represent nonlinear local dynamics ofire the optimal parameters and,(z,v) and wi(z,v) are
the plant that are unknown. We assume that for some knoapproximation errors which arise whexi(z, v) and Bz, v)

By > 0, we havelsi(t) + (z,v)| > 8§ so that it is always are represented by finite size approximators (with specific
bounded away from zero (for convenience we further assumgproximator structures). We assume that

that 3;(t) + B(x,v) > 0, however, the following analysis ‘ ‘

may easily be modified for systems which are defined with |wi (@, v)| <Wi(w) (21)
Bi(t) + pi(z,v) < 0 as well). The external part may be |wh(z,v)| SWh() (22)
stabilized by the control (which we will show later), while ‘

the internal part is made uncontrollable by the same contrfhereW; () andis(x) are known state dependent bounds on

By having¢ = 0 in the inner part, the “zero dynamics” of thethe errors in representing the actual system with approximators.
system are given by This assumption is generally hold according to the universal ap-

proximation property of neural networks and fuzzy systems by
7 = fo(0, 7, %) (14) properly defining the approximator structures and parameters.
We also define parameter errors to be
If the plant is of relative degreé= n, then there are no zero dy-

namics (i.e., no internal paxf). Alternatively, if the relative de- 6! (t) =6 (t) — 6 (23)
greed < n, we assume that the zero dynamics are exponentially é@(t) zeg(t) — 9@*_ (24)
attractive so that if we have some contrdb let¢ bounded, this ' ' '
also ensures boundednessrof We want to design a control system which will cause
the outputy(t) and its derivativegy(t), ...,y () to track
I\V. INDIRECT ADAPTIVE CONTROL a desired rdeference trajectory,,(t) and its derivatives
The online learning abilities of fuzzy systems or neural net* (1), - "y’(")(t)' respectively, which we assume to be

works are considered here to approximate the unknown Iog unded. The reference trajectory may be defined by a refer-

dynamics of the nonlinear system. In particular,lthear in the ence signal whose first derivatives are measurable, or by any

parameterTakagi—Sugeno fuzzy systems (or radial basis funreference input(#) passing through a reference model, with
tion networks) are taking the form of relatlve degree equal to or greater thann particular, a linear

reference model may be
C}i(%v) Iefij(t)%(%U) (15) Yuls)  q(s) a0
B (@, v) =057 (£)¢is(z, v) (16) R) ~ ps) S ipaas Tt gp &

where the parameter vectat§(¢) and6(t), i = 1,2,..., N wherep(s) is the pole polynomial with stable roots.

are assumed to be defined within the compact parameter setshe indirect adaptive control law is designed as

1, and{)g, respectively. (Refer to Section Il for an explanation

on how neural networks or fuzzy systems can be put into this U = Uce + Ugi (26)
form.) In addition, we define the subspage C R" as the space

through which the state trajectory may travel under closed-lo¥fhich is comprised of a “certainty equivalence” control term
control (we are making na priori assumptions here about thetce @nd a “sliding mode” control terra,;

size of S,.). Note that besides the tunable parameters contained

in the vectorsd;,(t) and#j(t) that are adjusted online by the Uee =—
update laws, it is also very important to properly specify the 3
structure parameters such as the centers and shapes of the mem- i=1
bership functions (or receptive fields). Although these structure <

[Bi) + iz, 0)] €(v)

parameters are defined in advance and will not affect the sta-
bility of the adaptive controller, the choice of these parameters

t)+ &' (z,0)] €i(v)+l’(t)> @7)

should have a reasonable cover (e.g., with uniformly distributed Wi(z) + W@( ) Iucel} £i(v)
centers) of the state spafg so as to accurately approximate " :zz sgn(c,).  (28)
the system dynamics. # i ?
We also define the actual system as 71;1 Bh&'(v)
o (x,v) =0T ¢ (o, 0) + W (2, ) (17) The certainty equivalence term is used to exploit the approx-
B (z,v) =075 T ¢y, v) + wh(z,v) (18) imated system dynamic&’(x,v) and Bi(x,v) to construct
’ ’ the feedback controller. It may also take advantaga pfiori
where knowledge of system dynamies,(¢) and 3;(t) so as to sim-

o ‘ plify the unknown dynamics and facilitate the online learning

6 = arg min <Sup 6T bl (x,v) —o/’(a:,v)|> (19) process. Noting the existence of approximation inaccuracy,

05.€% \=es, the sliding mode control term is introduced to compensate

¥ —arg min <Sup |9 % 2,v) — /3i($’v)|> (20) for approximation errors, improve system robustness and
05695 \zcs guarantee system stability.
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Let the tracking error be(¢) = v, (¢) — y(¢) and a measure Proof: Consider the Lyapunov function candidate
of the tracking error be, (t) = @ V() + ky_oed=2(t) +
-+ k1é(t) + koe(t), that is, in the frequency domaie,(s) = 1 1 &
L(s)e(s) with L(s) = s©@=1 4+ ky 052 4o 4 ks + ko Vi=geitg ) 00wl +5) 05Qu,  (82)
whose roots are chosen to be in the (open) left-half plane. Also, i=1 i=1
for convenience, we later let(¢) = ¢, () — e{9(t). Notice that
our control goal is to drive,(¢) — 0 ast — oo and the shape
of the error dynamics is dictated by the choice of the desi
parameters irl(s). We define

Using vector derivatives and following [20] and [32], the time
&givative of (32) is

N . N .
Vi=e.to+ D 0T QLOL+ >0 QLEL. (33)
=1

v(t) = yr(r(li) + nes + €5 (29) i=1
with n>0asa design parameter. Note thaté, (t) = é (t) — @ (t) and thedth derivative of the
Consider the update laws output error is(¥) = 7 — 4@ so that
. . ) : — (d) _ (D)
Bi(t) = — Qi i, )est (v) (30) Ealf) = eslt) Fom —v (34)
yi (1) _ i =1 i
O5(t) = = Qs Pz, v)esuced’ (v) (31)  and from (13), (26), (29), and (27), the equation shown at the

‘ ‘ bottom of the next page holds true. Also, from (15)—(18), (23),
whereQ);, and@; are positive definite and diagonal and serve aind (24), we have
adaptation gains for the parameter updates £afg represent

the effects of interpolated adaptive laws, that is, the degree of N o ‘ ‘
parameter adaptation of the local approximator is up to the ex-  ¢s = — n¢,s + Z [93’;% (z,v) — wy(x, U)} §'(v)
tent of involvement of that subregion indicated §yv). Note i=1

that the aforementioned adaptation laws do not guarantee that N O 4 4

0i, € Q, andf’, € Q5 so that we will use a projection method +> [923 Pz, v) — wb(%v)} £ (v)uce

to ensure this, in particular, to make sure {hg(t) + Bz, v) > Z:}

& = ST [B0) + 5, )] €0

It is also worthy to mention that although in the proposed
interpolated adaptive controller the number of receptive fields

(or fuzzy rules) is increased as a result of dividing the systegypstitute the aforementioned equation into (33) and assume
into several local subsystems, it is not the same as having @RSt the ideal parameters are constant (which is achieved by
pair of global approximator (i.eq* and/*) with the increased havingw’, (z, v) andw’, (-, v) in (17) and (18) represent approx-
size of the parameter vectors. This is because for the propog@étion errors from the time-varying part of system dynamics)

interpolated adaptive controller, as the sources of the fa$f a5 — ¢¢ and@i. = é%. and substitute (30) and (31) into
time-varying dynamics is known and measurable, they are * * s s

plicitly expressed as the scheduling variables. Thus, only local

i=1

system dynamics need to be approximated (which are usually N
unknown but not fast time-varying) and the adaptive controller  v: —. ¢+ Z G [—Qfx_l(/)fl (z,v)e,€ (U)}
is expected to handle the fast time-varying dynamics. However, i1
for the scheme where only one single pair of approximators is N
used, the information on the sources of the fast time-varying +>67Q) [—Qé_1¢é(x,v)esuc€£i(v)}
dynamics is not extracted so that the system dynamics appear to i=1
be unknown and fast time-varying in a whole, which increases N ‘
the difficulty of online learning and adaptation. =ezé, — Z 6. oL (z, v)e.&'(v)

Theorem 1: Consider the nonlinear system (9) and (10) with i=1
strong relative degred. Assume that: 1), (¢) and 3 (¢) in oo .
(13) are bounded if is bounded, 2)3i(¢) + Bi(x,v) > S - 29@ ¢, v)esE" (V)tee

=1

for some knowngy > 0, 3) |wi(z,v)] < Wi(z) and

i < i i i i N ) )
|w’8(ar,1'J)| < W"’((j;) with known W (x) and Wj(x), 4) - Z [ (,0) +w§($,v)uce] £i(v)e,
Ym (), Um(t), ..., ym (t) are measurable and bounded, P
5) x(t),y(t),y(t),...,y 9" (¢t) are measurable. and 6) N
1 < d < n with the zero dynamics exponentially attractive _ Z [/312(0 + /32‘(%1})] £ (v)ugies.
or d = n. Under these conditions there exist indirect adaptive P

control laws (26), (27), and (28) and update laws (30) and (31)
such that all internal signals are bounded and the tracking eriMstice that we did not consider a projection modification to the
¢ is asymptotically stable. previous update laws. Clearly, sinég € and%* € Qg,
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when the projection is in effect it always results in smaller pa-
rameter errors that will decrea%é so that

M>

> [Wite) + Wi@)uee ] €0)

Il
R

7

/ les]
N

N " ]

23 Wi, v) + wh(e, v)uee] £ (v)es PO

=1

/\
Mz

N ‘ ‘ < [Wa) + Wila)luce|] € (v)]es|.
= [B®) + B, v)] € (v)usic,. (35) i=1
i=1
Note that Thus, by substituting the aforementioned equation into (35) we
haveV; < —ne? which means/; is a nonincreasing function
[ L(z) +w o (x, V)it € of time, so that the measure of the tracking egois bounded.

As e,(s) = L(s)e(s) and L(s) is a stable function with the
degree off — 1, we know that the tracking error and its deriva-
(W) + Wh(z)|ucel] le] tives e, ¢, ..., e are bounded. Since the reference trajec-
tory y,,, and its derivativeg,,, .. ., ,(,‘f_l) are assumed to be
bounded, the system outpytand its derivativey, . . ., 341

v)
< [l )] + e, o] e
<

and¢i(v) > 0, we have

N are bounded. Hencé,is bounded and, thus, is bounded. Be-
Z (z,v) + w@(aj V) hee £ (v)e, sides, the fact tha] is negative semidefinite also implies that
im1 parameter estimatior®g, and % are bounded. Therefore, the
N ‘ boundedness af'(z, v), #(z, v), o, (t) andgL (¢) assures that
Z )+ Wi@)|ucel] €(v)les]. .. andw,; and hence: are bounded.
=1 To show asymptotic stability of the output, note that
Also, note thats;(t) + f'(z,v) > /3” > 0 so that - -
YL B+ 8@ )] ) = XL @) > 0 / nedt < — / Vidt = V;(0) — Vi(oo)  (36)
and, considering (28), we have 0 0
N
_ this establishes that, € Lo (Ly = {z(t) : [°22(t) <
; [51(0) + (e, 0)] & () usics oo}) sinceV;(0) and V;(oc) are bounded. Sincesoandés are
N bounded and@, € L., by Barbalat's Lemma, we have asymp-
_ Z Bi(t) + Bi(x U)] £ () totic stability of e,, which implies asymptotic stability of the
Pl tracking errore (i.e., lim; .., ¢ = 0). O

N N
- <Z [oh(®) + (2, 0)] €(0) + 3 [B(6) + B'(2,0)] €0 e + m)

= e, + <u<t> —éai( RO Ei;[m )+ Bz, 0)] € u> Za 5,v)é
+Z (5 (,0) = (2, )] € @w)uee - z [BL(t) + B (2, 0)] € (v)uai

= — e, + <1/(t) - éa;(t)gi(v) + z:; [, () + &' (2, v)] €' (v ) Z o (2, 0)€ (v
+ Z (5 (,0) = (2, )] € @w)uee - z [BL(t) + B (2, 0)] € (v)uai

= — e, + Z )+ ﬁ; [/31 z,v) - fila v)] £ (0)ttee

N
=SB + B, v)] € (v)u.

i=1
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V. DIRECT ADAPTIVE CONTROL Theorem 2:Consider the nonlinear system (9) and
.0) with strong relative degreed. Assume that 1)

In addition to the assumptions we made in the indirect ada ‘ ‘ 4 .
< By < pix,v) < Pt for some known positive con-

tive control case, we requirg (t) = o4 (t) = 0forall¢t > 0 ) ; .
and that there exist positive constaﬁg];and/}Z such that < stants ffy and f5;, 2) (37) holds for some known function
Bi < pi(z,v) < pifori=1,2,..., N.Also, we assume that B'(@) = O"3)|wu($’v”"2| < Wiz, v) with known W, (z, ),
we can specify some functioﬂi(x) > 0 such that 4) yn(t), Um(t), ..., ym’(t) are measurable and bounded,
. . - 5) a(t), y(t),4(t),...,y 4 V(t) are measurable, and 6)
‘dﬁ (z,0)¢' (W) | Bi(2)¢(v) 37) 1 £ d < n with the zero dynamics exponentially attractive
dt - or d = n. Under these conditions there exist direct adaptive
for all z andv. We know that there exists some ideal controllegontrol laws (43), (41), and (44), and the update law (45) such
1 that all internal signals are bounded and the tracking erisr
uwt = _— < ZO‘ &, 0)E () + v(t )) (38) asymptotically stable.
Z Bi(z, v)EH(v) Proof: Analogous to [20], consider the following Lya-
= punov function candidate
wherer/(t) is defined the same as that in the indirect adaptive

=1

N
control case. Let Vi=— ! e+ % > 6.TQLE. (46)
ingi( 23 Bi(x,v)€ (v i=

; —Zu o X B 0)E )
N Take the time derivative
QZ*T : .’L' v, ]/) N d8i(z ) (v
z::[ ‘ . ; %eg
; i i Va= — . s — = 2
+ul (1) +wu<x,v,u>}£ ()  (39) N

. . N
‘ > Biz,v)Eiv) 2 [2 /3i(x,v)§i(v)}
wherew;, is a known part of the controller (e.g., one that was =1 i=1
designed for the nominal system) and N
+> 6.7 QuL6;  (47)
0* = arg Hmip < sup |9@T¢i(x,v, v) — (u™* — u2)| i=1
2 C8% \zCS,,vCS, .
(40) Note thate,(t) = ¢é,(t) — /¥ (¢) and thedth derivative of the
so thatw?, (, v, ) is the approximation error. We assume thatutput error is=@ = 4 — @ so that
|wi (z,v,v)] < Wi(z,v), whereW(z,v)isaknownboundon

- — d d
the error in representing the ideal controller. The approximation &s(t) = es(t) +ys —y'?
of the ideal controller can be represented by and from (13), (29), (43), and (38), and by noting thitt) =
X . . . Bi(t) = 0, the first equation at the bottom of the next page holds
i=Y [0 ¢l (x,0,0) +ui(B)] £ (v) (41) true. Also, from (41), (39), and (42), we have
i=1
where the parameter vectéff(¢) is updated online and the pa- () = _ ‘ 3i i
rameter error is &) e ;[ (z,0)E ()
§i (+) — @i i* N , ,
) = = e 3 [T )~ )] €0
Consider the direct adaptive control law J=1
U/Ia,—’—usd (43) _2/3 ./L'rU U’Sd
which is the sum of the approximation to the ideal control law
4 and a sliding-mode control term Substitute this equation into (47), and substitute (45) into (47)
‘ ‘ and note thaf’, = 6’ , then we get the second equation shown
; Bi(z)¢' (v) fes|]  w ‘ ‘ at the bottom of the next page. After we consider the projection
Usg = | =2 ~ — + Z W (z,v)¢"(v) | sgn(es)  modification to the update law, we have
[E Pi&i(v )} = o ne?
} (44) = & 7 7
and we use the update law El P, v)§H(v)
S i1, i y ) .
0.(t) = Q. ¢lu(x,v,v)e.l (v) (45) o 4 (e 0)E ()
. i o . ) E dt €s N
where?, is positive definite and diagonal agéi(v) represent _ i=1 Zw 2,0, )6 (v) | es—esttsa.

the effects of interpolated adaptive laws. We also use a projec- ; ; i1
tion method to ensure théf, € Q,. 2 El GOl (U)
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Substitute (44) into the previous equation, and note that

N ) )
dg* (z,v)E (v
AT

N

_ Zz; Zw 31:111/5Z v) | es
2> /3i<x,v>£i<v>}
% d,@i(xg;)fi('v) |C | N
< ‘=1N 5 +Z |w T,U,V |£Z les|
2|3 penee]
N .
;Bz(w)é’z(v) les] N ‘
<| = 7+ 2 Wiz )€ ) | el
2|3 pee)|

since¢’(v) > 0 and note thab < 3} < fi(x,v) < /3, so that
we have
2
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Therefore,V, is a nonincreasing function of time. This gives
the same type of stability result that we obtained in the indirect
case. O

Remark: Note that most of the papers [11]-[19] deal with in-
direct adaptive control, whereas very few authors (e.g., [20] and
[21]) face the direct approach, because it is not always clear how
to construct the control law without knowledge of the system dy-
namics. Here, we design the direct adaptive control law based
on the feedback linearizing law [20], and then generalize it to
the interpolated systems. Asymptotic stability of the output has
also been obtained without assumptions on rate of change of
system dynamics. Compared to indirect adaptive control, direct
adaptive control usually shows better transient behavior because
it may learn and adapt faster (probably due to the fact that it has
less parameters to be tuned).

VI. SIMULATION EXAMPLES: JET ENGINE CONTROL

To study the effectiveness of the proposed adaptive control
methods, we apply them to the component level engine cycle
model (CLM) of an aircraft jet engine (General Electric
XTE46), which is a simplified, unclassified version of the

e (48)
:Zlfii(w’v)ﬁi(v)
és(t) =es(t) + (v(t) —nes — 65)

<Za (z,v)¢ (v —I—Z/Jzazv

(it 4+ usd)>

=—7ne, + < Za (z,v)E (v Zﬁzxvﬁz )

—Zﬁ”wvé’z U

N

Zﬁzxv

N

U/sd

=—7nes — Zﬁi(w, U)SZ(U) (6 —u*) — Zﬁi(w, U)Si(v)usd.

i=1

i=1

. CS
Vd_z\

; B (2, 0)€H ()

N N
(—nes = > B (@) ()Y [%%i(%m V) — wi(x,v,v) }

i=1 j=1

N i i
3 df'(z,0)8" (1) 2
dt s

i=1

N

T DAL [

i=1

2|3 a0 )]

N
2

dBi (za)E (v
§t e,

Z /JZ x,v)€ u5d>

¢ (x, v, 1/)65£i(v)}

__ — Tjcs _ i=]ir 2
ST Bz, )¢ (v) 2 [; /3i(x,v)€i(v)}

i=1

N
- Z w’i (.’L’, v, V)Si(v) Cs

i=1

— CsUsd-
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original “integrated high performance turbine engine teckengine health situation. In order to build a “global” engine
nology” (IHPTET) engine [33]. The CLM of the XTE46 is model (actually, it is a “regional” model valid in the “climb”
a thermodynamic simulation package developed by Generagion), we conduct nonlinear interpolation among a grid of
Electric Aircraft Engines (GEAE). This is a sophisticatedhese local models. The global engine model can be viewed
highly nonlinear dynamic model where each engine componéathave a hierarchical learning structure, where we perform
is simulated. The reason that GEAE developed such a “pap@esal learning to approximate the local engine dynamics and
engine” was in order to facilitate the design and analysis ofterpolate these local models to generate the global model.
engine control systems before installing them for actual flightslote that the nonlinearity of the engine is different at dif-
Thus, the component level model is quite complicated and fent operating conditions and for different engine health
accurate that it can be used as the “truth model” in the contituations. Moreover, the operating condition of the engine
simulation to represent the real engine. is defined by four variables: the altitude (ALT), the mach
In order to apply the proposed adaptive control strategy tmmber (XM), the difference of temperature (DTAMB), and
the jet engine, we start from developing a “design model.” Ttthe throttle setting represented by power code (PC). The health
CLM for the XTE46 aircraft engine is a multiple-input—-mul-of the engine is described by ten quality parameters including
tiple-output nonlinear system (involving schedules, look-ughe flows and efficiencies of the fan (ZSW2 and SEDM2), the
tables and partial differential equations). However, GEAEompressor (ZSW7D, SEDM7D, ZSW27, and SEDM27) and
(the authority on this engine) indicates that the key singl&irbines (ZSW41, ZSE41, ZSW49, and ZSE49). Therefore,
input—single-output (SISO) loop (i.e., fuel flow to fan speedlthough it is theoretical possible to approximate the engine
loop) is not tightly coupled with other loops. Therefore, to focudynamics by building one fuzzy system, it is not feasible in
our theoretical studies, we could assume that the fundamemtedctice because of the huge amounts of data. Furthermore,
engine dynamic characteristics of interest are representedthy advantage of taking this hierarchical model form is that
a SISO, combustor fuel flow to fan rotor speed system (whitbe engine dynamics can be separated into an unknown but
the other two input variables, the exhaust nozzle area and ghewly time-varying part (the local engine dynamics) and a
variable area bypass injector area, could be properly schedutedwn but fast time-varying part (the operating condition).
as functions of the power level and the inlet temperature). Tis facilitates the application of the interpolated adaptive
develop the design model for the XTE46 engine, we condumintroller to handle the fast time-varying dynamics caused by
nonlinear system identification to approximate local engirtee rapid change in the operating conditions.
dynamics. Based on the transient data generated by the CLMThe general form of the model can be described as shown in
a number of local nonlinear models are constructed, each(49)—(54) at the bottom of the page, where= WF36 is the
which is in the structure of Takagi-Sugeno fuzzy systensystem input (the combustor fuel flow) and= [x1, 2] =
and is corresponding to a specific operating condition afdNL,XNH]' represents the system states (the fan rotor speed

& =f(z,c,p) +9(z,c,plu (49)
Y =T (50)
and
N
Zl i (.’L’, civpi) ui(cv p)
flz,e,p) ="=— (51)
‘—231 /M,(C, p)
N
p g(xvcivpi)ui(cvp)
gz, c,p) ==— (52)
; p1i(c, p)
R
/21 [aj,0 (i, pi) + aj1(ci,pi) 21 + a2 (¢, pi) T2] M, (1)
i(xvcivpi) :J_ R (53)
> (1)
j=1
R
Z ;.3 (Civpi)ﬁj (351)
gz, ciupi) =" (54)
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and core rotor speed), which are positive since the speed canmbére x(¢) and y(¢) are measurable according to the prop-
be negative and: € S, (a valid speed region). The vectorerties of the component level engine model. By studying
c = [ALT,XM,DTAMB,PJT represents the known operatingdynamics of the developed nonlinear model, we know that
condition of the engine and g1(z,c,p) > 0.32 so that we can sty = 0.32. The nonlinear
p = [ZSW2, SEDM2, ZSW7D, SEDM7D, ZSW27, system dynamics are separated imfo = 9 local regions

+ according to the operating condition variables which are
SEDM27,ZSWA41 ZSE41 ZSW49 ZSE4g measurable. We use our developed engine model to represent

represents the unknown quality parameter vector. The valube local nominal model dynamies, (c, po, t) and 3 (c, po, t)
of ¢; and p; specify the nodes where we establish the loclly setting the quality parameters to be the nominal vaduend
models. The functiong = [fi, f>]" andg = [g1,92]" are they are bounded if is bounded since the model is in the form
2 x 1 function vectors obtained through fuzzy interpolation anaf a Takagi—Sugeno fuzzy system. The unknown dynamics
ui(c, p) are interpolating membership functions. The functions®(x, ¢, p) and 3i(z,c,p) describe the model uncertainties
f= [fl,f 1" andg = [gl,g] are 2x 1 function vectors caused by nominal model inaccuracy and system changes
obtained through nonlinear system identification and are in tfiéme-varying characteristics). They are approximated by 18
form of Takagi-Sugeno fuzzy systems, wherg), a1, a;» radial basis function networks (nine fér and nine for/).
anda; 5 are 2x 1 parameter vectors of the (linear) consequehtach radial basis network has eleven receptive field units. The
functions and: .(x; ) are membership functions describing locainputs to the neural networks include two state variables and the
nonlinearity with respect to; . (Refer to [32] and [34] for more parameters are updated online to capture the unknown system
details on how we have developed the nonlinear engine modghamics. Note that the stable adaptive controller will ensure
using Takagi—Sugeno fuzzy systems). the stability ofz; and the uniform exponential attractivity of
By inspecting the parameters that result from the identifihe engine zero dynamics will ensure the stability of the un-
cation process, we found thaf ,(ci, pi) > o 5(ci,p;) > 0 controllable state:,. Since the relative degree of the system is
anda? ,(c;,pi) < ab,(ci,pi) < Oforanyi = 1,2,...,N, 1,the error dynamics are simple,(t) = e(t) ande(t) = 0).
j = 1,2,..., R. Basically, these sign conditions explain somé&he reference trajectory is defined by passing a reference signal
physical dynamics of the engine. In particular, the relationshigzrough a linear reference model,(s)/R(s) = 3/(s + 3)
among the state variables and the input variable are relevaatthaty,,(t) andy,,(t) are measurable and bounded. Taking
for stability analysis of the system. For instance, we hai@to account the engine dynamics, the model uncertainty is
both al 5(c;,p;) > 0 anda?s(c;,p;) > 0, which indicate described byi¥;, = 0.005 and W} = 0.005. Note that we
that if the fuel flow is increased, both the fan rotor speed argé@nnot explicitly know the model uncertainty so that the
the core rotor speed will be increased. These constraints parameterd¥/, and W@ are treated as design parameters and
the model parameters are important to design and analyeed by trial and error to achieve good control performance. In
the stable adaptive control system. For example, by knowiagdition, the adapta'uon gains are tuned talje Y= be—8
}3(ci,pi) > 0 for any operating conditions and qualityand Qi ' = le — 17 and the design parameter = 1.
parameters (ang: (x;) > 0 and EJ iy (x1) # 0 by Generally, we start the tuning process based on the nonlinear
the definition of 'i'akagl _Sugeno fuzzy systems), we obtafngine model (the design model) that we have developed using
gl(g; ci,pi) > 0 and thusg; (z,¢,p) > 0 for all z, ¢, p. This nonlinear system identification techniques. We first remove
implies the “relative degree” of the engine is one. In additiohie adaptation mechanism (by setting the adaptation gains
more details on how to use these relationships to determfi§ezero) and tune the approximation error bourifig and
the exponentially attractive zero dynamics of the engine c&Ks in order to stabilize the system. At this initial step, the
be found in the stability analysis part of [32]. Finally, notépproximation error bounds are usually large because they
that via similar nonlinear identification studies we showef@uantifies the unknown system dynamics at this moment. Next,
that an interpolation of strict feedback form models could n#te increase the adaption gains to add the online learning ability
adequately represent the engine dynamics. to the adaptive controller and reduce the approximation error
We develop an adaptive controller for the engine contrgpunds subsequently. The aforementioned procedure is iterated
problem using the indirect method. We choose to implemelrhfﬂt" certain good control performance has been achieved and
the indirect controller because we could facilitate the indirefgrther increasing the adaptation gains may cause oscillation.
adaptive controller by using our developed models to represétterwards, we apply the controller to the component level
nominal system dynamics in different regions. Consider ttigodel simulation of the XTE46 engine and do some further

engine in the form of tuning. This XTE46 simulator has been developed by GEAE
. to be very complicated and accurate so that the simulation
y =f;§a:,c, p) +g1(z. ¢, pu (55)  conducted on this simulator is very close to that on the real
:Z (ai (e, po,t) + iz, ¢ p)) £i(e) engine for actual flights.
po ke AT S T To assess the performance of the adaptive controller we let

N the component level engine model run at a scenario where the
+ Z (/3;; ¢, po,t) + Bz, ¢, p)) g (56) altitude (ALT) varies from 12500 to 17 500 (i.e., ALF 12500

= for first 2 sec; then the altitude is linearly increased from 12 500
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formance with that of a “single” adaptive controller (where the
adaptive control law is not in the interpolated form but is driven
by one pair of online approximators, thatis = 1 in (27) and
(28)) [31]. As shown in Fig. 2, the fast time-varying nature of
altitude change makes it difficult for the online approximators
to adapt fast enough, which results in deteriorated performance
(as indicated by arrows 1, 2, and 3), even though the adaptation
scheme does have apparent effects when system dynamics are
not fast time-varying (as indicated by arrows 4, 5, and 6).

Clearly, the interpolated strategy introduced in this paper
(Fig. 1) performs much better than the single adaptive con-
troller (Fig. 2). Essentially, it provides a method to exploit the
structure inherent in the class of models that we consider in
the paper. Since this class is one that is the product of known
nonlinear identification procedures, the methodology presented
here provides a particularly practical approach to control a
class of nonlinear time-varying systems.

VII. CONCLUSION

In this paper, we have proposed an online approxima-
tion-based adaptive control methodology for a class of
nonlinear systems with a time-varying structure. This class of
systems is composed of interpolations of nonlinear subsys-
tems which are input—output feedback linearizable. Without
assumptions on rate of change of system dynamics, stable
indirect and direct adaptive control methods were presented
with analysis of stability for all signals in the closed-loop as
well as asymptotic tracking. The performance of the adaptive
controller was demonstrated using a jet engine control problem.
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