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Adaptive Neural/Fuzzy Control for Interpolated
Nonlinear Systems

Yixin Diao and Kevin M. Passino, Senior Member, IEEE

Abstract—Adaptive control for nonlinear time-varying systems
is of both theoretical and practical importance. In this paper, we
propose an adaptive control methodology for a class of nonlinear
systems with a time-varying structure. This class of systems is
composed of interpolations of nonlinear subsystems which are
input–output feedback linearizable. Both indirect and direct
adaptive control methods are developed, where the spatially
localized models (in the form of Takagi–Sugeno fuzzy systems
or radial basis function neural networks) are used as online
approximators to learn the unknown dynamics of the system.
Without assumptions on rate of change of system dynamics, the
proposed adaptive control methods guarantee that all internal
signals of the system are bounded and the tracking error is
asymptotically stable. The performance of the adaptive controller
is demonstrated using a jet engine control problem.

Index Terms—Adaptive control, nonlinear systems, online
approximation, stability analysis.

I. INTRODUCTION

A DAPTIVE control has been employed in situations where
little a priori knowledge of the plant is known. Adaptive

control has also been used to compensate for online system pa-
rameter variations, which may arise due to changes in operating
points, component faults, plant deterioration, etc. The general
methodology of adaptive control for time-varying systems
is to treat the effects of parameter variations as unmodeled
perturbations so that it turns into a robustness problem [1].
This methodology has been applied to linear time-varying
systems, where the parameters vary slowly and smoothly,
or discontinuously (i.e., jumps) but the discontinuities occur
over large intervals of time [2]–[4]. Adaptive control for
nonlinear time-varying systems has also been studied by some
researchers. In [5], the authors studied adaptive control for a
class of nonlinear time-varying systems in the strict feedback
form with unknown unmodeled time-varying parameters or
disturbances (whose bounds are known) and used the back-
stepping design method. Similar work has also been presented
in [6] and [7]. Besides controlling the nonlinear time-varying
system as a whole, another control methodology is to exploit
the internal time-varying structure of nonlinear systems, for
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instance, the class of systems consisting of an interpolation of
nonlinear dynamic equations in the strict feedback form and
construct backstepping control laws tailored to each of the
dynamic components of the nonlinear system [8], [9].

Note that for the adaptive control problem of nonlinear time-
varying systems, only a class of systems in the strict feedback
form are considered and only limited results exist so far. In
this paper, we consider a more general class of nonlinear time-
varying systems, which is input-output feedback linearizable
and present stable adaptive control approaches using the online
learning capabilities of radial basis function neural networks.
This class of systems is large enough so that it is not only of
theoretical interest but also of practical applicability. The idea of
using function approximation structures with universal approx-
imation properties (such as neural networks or fuzzy systems)
to deal with arbitrary continuous nonlinearities has been widely
used in adaptive control for nonlinear systems [10]. In fact, on-
line approximation-based stable-adaptive neural/fuzzy methods
have been significantly impacted by the work in [11]–[15] using
neural networks as approximators of nonlinear functions, the
work in [16]–[20] using fuzzy systems for the same purpose, and
the work in [11], and [12] using dynamical neural networks. The
neural and fuzzy approaches are most of the time equivalent,
differing between each other mainly in the structure of the ap-
proximator chosen. Indeed, to try to bridge the gap between the
neural and fuzzy approaches several researchers (e.g., in [20])
introduce adaptive schemes using a class of parameterized func-
tions that include both neural networks and fuzzy systems. As
to the approximator structure, linear in the parameter approxi-
mators are used in [13], [16], [19], [20], and nonlinear in [12],
[14], [15]. Finally, most of the papers [11]–[19] deal with in-
direct adaptive control (trying first to identify the dynamics of
the systems and then generating a control input according to
the certainty equivalence principle), whereas very few authors
(e.g., [20] and [21]) face the direct approach (directly generating
the control input to guarantee stability), because it is not always
clear how to construct the control law without knowledge of the
system dynamics.

In this paper, we present an adaptive control methodology for
a class of nonlinear systems that depends on exogenous sched-
uling variables. This class of systems consists of interpolations
of nonlinear dynamic equations in feedback linearizable form
and it may represent systems with a time-varying nonlinear
structure, which is, indeed, a generalization of the class of
feedback linearizable systems traditionally considered in non-
linear adaptive control literature [20], [22], [23]. To generalize
stable adaptive fuzzy/neural control [20], following the general
approach in [8] and [9], the adaptive laws applied here are
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localized in the sense that only the part of the approximator
parameters corresponding to the region of the “scheduling
space” is updated every time. Furthermore, besides indirect
adaptive control, we also design and analyze direct adaptive
control in this paper, which usually shows better transient
behavior because it seems to learn and adapt faster (probably
due to the fact that it has less parameters to be tuned). Both
indirect and direct adaptive control methods developed here
are, to our knowledge, the first of their kinds in this context.

To approach the nonlinear control problem by studying
simplified, localized approximations of the plant, the control
methodology studied here shares some common views of gain
scheduling control, which deals with nonlinear systems that
are linearized along reference trajectories or operating points
[24], [25]. Gain scheduling control is widely used in industrial
applications, but so far only local stability results exist due to
the difficulty of stability analysis. Other related results exist
in the parallel distributed compensation literature [26], [27],
where authors assume the existence of a model consisting of
interpolations of linearized system dynamics (which are valid
within a subset of the state space or other relevant operating
space). Linear controllers are designed within these regions
and then interpolated with the same interpolation structure of
the system. The class of time-varying systems studied in this
paper is related to the system studied in the parallel distributed
compensation literature. However, instead of interpolating
controllable linear systems (obtained by local linearization
within divided subspaces), in the spirit of [8] and [9] (but not
restricted to the strict feedback form), here, we focus on using
feedback linearizable nonlinear systems as the “pieces” to form
the “global” nonlinear system by interpolation. Note that to
achieve global stability of parallel distributed compensation
approach, a single positive definite matrix that simultaneously
stabilizes all combinations of linear subsystems needs to be
found (which is not trivial), usually, relying on linear matrix
inequalities (LMIs) optimization methods. By interpolating
feedback linearizable nonlinear systems, not only can LMI
optimization be avoided, but also the adaptation mechanism
can be incorporated so as to guarantee asymptotic stability and
deal with model uncertainty. Furthermore, this class of system
is large enough (compared to the nonlinear system in the strict
feedback form as studied in [8] and [9]) so that it may have
more practical applicability. This will be shown via our jet
engine example where a model in the strict feedback form (or
an interpolation of such models) cannot be used to adequately
represent the engine, whereas our feedback linearizable model
can do this quite well.

This paper is organized as follows. The spatially localized
model architecture of radial basis function neural networks
and Takagi–Sugeno fuzzy systems is discussed in Section II,
which serve aslinear in the parameteronline approximators.
In Section III, the details of the problem formulation for a class
of input-output feedback linearizable time-varying nonlinear
systems are given. The adaptive algorithms and system stability
analysis are presented in Sections IV and V for both indirect
and direct schemes. Section VI describes the application to
a jet engine control problem to illustrate the performance of
the proposed adaptive neural/fuzzy control methods.

II. SPATIALLY LOCALIZED MODEL ARCHITECTURE

In neurobiological studies, the concept of localized informa-
tion processing in the form of receptive fields has been known
and demonstrated by experimental evidence (e.g., locally tuned
and overlapping receptive fields have been found in parts of the
cerebral cortex, in the visual cortex and in other parts of the
brain), which suggests that such local learning offers alternative
computational opportunities to learning with “global basis func-
tions,” such as the multilayer perceptron neural network with
sigmoidal activation functions [28]. Inspired by these biological
counterparts, the radial basis function neural network model has
been presented, which can be defined by

(1)

where is the output of the radial basis function network,
holds the inputs and

represent receptive field units. The vector holds the
parameters of the “receptive field units,” which consist of the
“strength” parameters and possibly the parameters of the
“radial basis functions” (a.k.a., radial response functions
or kernel functions, defining the activation extents of the
corresponding receptive fields with the characteristics that their
responses decrease monotonically with distance from a central
point). There are several possible choices for the receptive
field functions . Typically, Gaussian-shaped functions
are used for analytical convenience, that is

(2)

where parameterize the loca-
tions of the receptive fields in the input space and

determine
the shapes (or relative widths) of the receptive fields. Note
that rather than computing the output of the radial basis
function network with the simple sum as in (1), there are also
alternatives, for instance, by computing a weighted average

(3)

Moreover, to improve modeling flexibility of the radial basis
function networks, it is also possible to further define the
strength parameters to be parametric functions

(4)

where , , and are strength
function parameters.

Another type of spatially localized model is the
Takagi–Sugeno fuzzy system. The fuzzy system facili-
tates the emulation of human intelligence by modeling human
cognitive processes in the form of rules and inference mecha-
nisms. Abstracted from the qualitative description of premise
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representation, inference and defuzzification, the mathematical
formula of the Takagi–Sugeno fuzzy system can be defined by

(5)

(6)

(7)

where is the output of the fuzzy system,
holds the inputs, and represent different
rules [29]. The shapes of the membership functions are chosen
to be Gaussian and center-average defuzzification and product
are used for the premise and implication in the structure of the
fuzzy system. The , are called consequent
functions of the fuzzy system, where the are the parameters.
The premise membership functions are assumed to be
well-defined so that for all . The parameters

and are the centers and relative widths of the membership
functions, respectively, for theth inputs and theth rules.

Actually, the radial basis function neural networks previously
described (2), (3), and (4) are functionally equivalent to the
Takagi–Sugeno fuzzy systems defined by (5), (6), and (7). To
see this, suppose that we let the number of receptive field units
equal to the number of rules (i.e., ), let the receptive
field strength functions same as the consequent functions (i.e.,

) and choose the parameters of the radial basis
functions same as those of the premise membership functions
(i.e., ). In this case, the radial basis function net-
work is identical to the Takagi–Sugeno fuzzy system. Note that
the tunable parameter vectorin (3) or (5) can be composed
of both radial basis function (or premise membership function)
parameters and and strength function (or consequent func-
tion) parameters . This is referred to asnonlinear in the pa-
rameterapproximator. Anonlinear in the parameterspatially
localized model can be tuned by a variety of gradient methods
such as the steepest descent method and Levenberg–Marquardt
method. Alternatively, we may decompose the parameter vector
into a linear part consisting of the strength (or consequent)
function parameters and a nonlinear partcomposed of the
radial basis function (or premise membership function) param-
eters. By having the tunable parameter vectorbe composed of

only and specifying the parametersand in advance,
we will have alinear in the parameterradial basis function net-
work (or Takagi–Sugeno fuzzy system)

(8)

Note that thelinear in the parameterradial basis function
networks or Takagi–Sugeno fuzzy systems also have the ca-
pabilities of forming an arbitrarily accurate approximation to
any continuous nonlinear function, so that in the following
adaptive control mechanisms, we will use them as online ap-
proximators to learn the unknown dynamics of the system.

This will facilitate the derivation of adaptive laws and the
analysis of system stability.

III. A C LASS OFNONLINEAR SYSTEMSWITH A TIME-VARYING

STRUCTURE

Consider a class of nonlinear systems consisting of an inter-
polation of nonlinear subsystems

(9)

(10)

where is the (measurable) state vector,
is the (scalar) input, and is the (scalar) output of the system.
The functions , and represent smooth
local nonlinear dynamics. The functions ( ) are
smooth interpolation functions, split the do-
main of into different nonlinear subregions andis a vector
of exogenous scheduling variables which are measurable and
bounded.

Let be the th Lie derivative of with
respect to , that is, for ex-

ample, ,
, and so on. For conve-

nience of derivation, we define to be the
th modified Lie derivative of with respect to

, that is

and, for example, . Next, we give
the definition of the “strong relative degree,” that is, a system is
said to have a strong relative degree( ) if

and for all and . Note that
we use both the standard andmodifiedLie derivatives to provide
a compact representation here.

Under the aforementioned definitions, if the system repre-
sented by (9) and (10) has a strong relative degree, then
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and so on, so that the system dynamics may be written in the
normal form as

...

with , and . Note that the class of
nonlinear systems we consider here is actually a special case of
a general class of nonlinear time-varying systems

(11)

(12)

and there exists certain kind of equivalence between the Lie
derivatives previously defined and the ones for the time-varying
systems [30], [31]. In particular, we have

and

so that the previous normal form can be rewritten as

...

which is the same as the normal form of the time-varying sys-
tems [30], [31]. Therefore, there exists the diffeomorphism so
that the normal form can be obtained from (9) and (10) by a
change of variables.

Although the class of nonlinear systems studied here is a
special case of the general time-varying systems, the advantage
of using this interpolated form is to exploit the internal structure
of the time-varying dynamics so that they can be separated
into known scheduling functions (which could be fast
time-varying) and unknown local nonlinear dynamics consisting
of , , and . By using an interpolated on-
line approximation-based adaptive control strategy, we expect
that the local nonlinear dynamics may be approximated more
accurately by corresponding online local approximators so that
the performance of adaptive control can be improved, of course,
at the cost of the increase of computational complexity. More-
over, by using the scheduling functions to explicitly represent
the known but fast time-varying dynamics as the interpolation
between local subsystems, the interpolated adaptive controller
is expected to handle a class of fast time-varying systems
without assumption on rate of change of system dynamics.

The normal form decomposes the system states into an ex-
ternal part and an internal part . For the external part, if we
let denote the th derivative of , it can be rewritten as

(13)

where and are “known” local dynamics of the
system (which are assumed to be bounded ifis bounded) and
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and represent nonlinear local dynamics of
the plant that are unknown. We assume that for some known

, we have so that it is always
bounded away from zero (for convenience we further assume
that , however, the following analysis
may easily be modified for systems which are defined with

as well). The external part may be
stabilized by the control (which we will show later), while
the internal part is made uncontrollable by the same control.
By having in the inner part, the “zero dynamics” of the
system are given by

(14)

If the plant is of relative degree , then there are no zero dy-
namics (i.e., no internal part). Alternatively, if the relative de-
gree , we assume that the zero dynamics are exponentially
attractive so that if we have some controlto let bounded, this
also ensures boundedness of.

IV. I NDIRECT ADAPTIVE CONTROL

The online learning abilities of fuzzy systems or neural net-
works are considered here to approximate the unknown local
dynamics of the nonlinear system. In particular, thelinear in the
parameterTakagi–Sugeno fuzzy systems (or radial basis func-
tion networks) are taking the form of

(15)

(16)

where the parameter vectors and ,
are assumed to be defined within the compact parameter sets

and , respectively. (Refer to Section II for an explanation
on how neural networks or fuzzy systems can be put into this
form.) In addition, we define the subspace as the space
through which the state trajectory may travel under closed-loop
control (we are making noa priori assumptions here about the
size of ). Note that besides the tunable parameters contained
in the vectors and that are adjusted online by the
update laws, it is also very important to properly specify the
structure parameters such as the centers and shapes of the mem-
bership functions (or receptive fields). Although these structure
parameters are defined in advance and will not affect the sta-
bility of the adaptive controller, the choice of these parameters
should have a reasonable cover (e.g., with uniformly distributed
centers) of the state space so as to accurately approximate
the system dynamics.

We also define the actual system as

(17)

(18)

where

(19)

(20)

are the optimal parameters and and are
approximation errors which arise when and
are represented by finite size approximators (with specific
approximator structures). We assume that

(21)

(22)

where and are known state dependent bounds on
the errors in representing the actual system with approximators.
This assumption is generally hold according to the universal ap-
proximation property of neural networks and fuzzy systems by
properly defining the approximator structures and parameters.
We also define parameter errors to be

(23)

(24)

We want to design a control system which will cause
the output and its derivatives to track
a desired reference trajectory and its derivatives

, respectively, which we assume to be
bounded. The reference trajectory may be defined by a refer-
ence signal whose first derivatives are measurable, or by any
reference input passing through a reference model, with
relative degree equal to or greater than. In particular, a linear
reference model may be

(25)

where is the pole polynomial with stable roots.
The indirect adaptive control law is designed as

(26)

which is comprised of a “certainty equivalence” control term
and a “sliding mode” control term

(27)

(28)

The certainty equivalence term is used to exploit the approx-
imated system dynamics and to construct
the feedback controller. It may also take advantage ofa priori
knowledge of system dynamics and so as to sim-
plify the unknown dynamics and facilitate the online learning
process. Noting the existence of approximation inaccuracy,
the sliding mode control term is introduced to compensate
for approximation errors, improve system robustness and
guarantee system stability.
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Let the tracking error be and a measure
of the tracking error be

, that is, in the frequency domain,
with

whose roots are chosen to be in the (open) left-half plane. Also,
for convenience, we later let . Notice that
our control goal is to drive as and the shape
of the error dynamics is dictated by the choice of the design
parameters in . We define

(29)

with as a design parameter.
Consider the update laws

(30)

(31)

where and are positive definite and diagonal and serve as
adaptation gains for the parameter updates, and represent
the effects of interpolated adaptive laws, that is, the degree of
parameter adaptation of the local approximator is up to the ex-
tent of involvement of that subregion indicated by . Note
that the aforementioned adaptation laws do not guarantee that

and so that we will use a projection method
to ensure this, in particular, to make sure that

.
It is also worthy to mention that although in the proposed

interpolate adaptive controller the number of receptive fields
(or fuzzy rules) is increased as a result of dividing the system
into several local subsystems, it is not the same as having one
pair of global approximator (i.e., and ) with the increased
size of the parameter vectors. This is because for the proposed
interpolated adaptive controller, as the sources of the fast
time-varying dynamics is known and measurable, they are ex-
plicitly expressed as the scheduling variables. Thus, only local
system dynamics need to be approximated (which are usually
unknown but not fast time-varying) and the adaptive controller
is expected to handle the fast time-varying dynamics. However,
for the scheme where only one single pair of approximators is
used, the information on the sources of the fast time-varying
dynamics is not extracted so that the system dynamics appear to
be unknown and fast time-varying in a whole, which increases
the difficulty of online learning and adaptation.

Theorem 1: Consider the nonlinear system (9) and (10) with
strong relative degree. Assume that: 1) and in
(13) are bounded if is bounded, 2)
for some known , 3) and

with known and , 4)

are measurable and bounded,
5) are measurable. and 6)

with the zero dynamics exponentially attractive
or . Under these conditions there exist indirect adaptive
control laws (26), (27), and (28) and update laws (30) and (31)
such that all internal signals are bounded and the tracking error

is asymptotically stable.

Proof: Consider the Lyapunov function candidate

(32)

Using vector derivatives and following [20] and [32], the time
derivative of (32) is

(33)

Note that and the th derivative of the
output error is so that

(34)

and from (13), (26), (29), and (27), the equation shown at the
bottom of the next page holds true. Also, from (15)–(18), (23),
and (24), we have

Substitute the aforementioned equation into (33) and assume
that the ideal parameters are constant (which is achieved by
having and in (17) and (18) represent approx-
imation errors from the time-varying part of system dynamics)
so that and and substitute (30) and (31) into
(33)

Notice that we did not consider a projection modification to the
previous update laws. Clearly, since and ,
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when the projection is in effect it always results in smaller pa-
rameter errors that will decreaseso that

(35)

Note that

and , we have

Also, note that so that

and, considering (28), we have

Thus, by substituting the aforementioned equation into (35) we
have which means is a nonincreasing function
of time, so that the measure of the tracking erroris bounded.
As and is a stable function with the
degree of , we know that the tracking error and its deriva-
tives are bounded. Since the reference trajec-
tory and its derivatives are assumed to be
bounded, the system outputand its derivatives
are bounded. Hence,is bounded and, thus, is bounded. Be-
sides, the fact that is negative semidefinite also implies that
parameter estimations and are bounded. Therefore, the
boundedness of , , and assures that

and and hence are bounded.
To show asymptotic stability of the output, note that

(36)

this establishes that (
) since and are bounded. Since and are

bounded and , by Barbalat’s Lemma, we have asymp-
totic stability of , which implies asymptotic stability of the
tracking error (i.e., ).
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V. DIRECT ADAPTIVE CONTROL

In addition to the assumptions we made in the indirect adap-
tive control case, we require for all
and that there exist positive constantsand such that

for . Also, we assume that
we can specify some function such that

(37)

for all and . We know that there exists some ideal controller

(38)

where is defined the same as that in the indirect adaptive
control case. Let

(39)

where is a known part of the controller (e.g., one that was
designed for the nominal system) and

(40)
so that is the approximation error. We assume that

, where is a known bound on
the error in representing the ideal controller. The approximation
of the ideal controller can be represented by

(41)

where the parameter vector is updated online and the pa-
rameter error is

(42)

Consider the direct adaptive control law

(43)

which is the sum of the approximation to the ideal control law
and a sliding-mode control term

(44)
and we use the update law

(45)

where is positive definite and diagonal and represent
the effects of interpolated adaptive laws. We also use a projec-
tion method to ensure that .

Theorem 2: Consider the nonlinear system (9) and
(10) with strong relative degree . Assume that 1)

for some known positive con-
stants and , 2) (37) holds for some known function

, 3) with known ,
4) are measurable and bounded,
5) are measurable, and 6)

with the zero dynamics exponentially attractive
or . Under these conditions there exist direct adaptive
control laws (43), (41), and (44), and the update law (45) such
that all internal signals are bounded and the tracking erroris
asymptotically stable.

Proof: Analogous to [20], consider the following Lya-
punov function candidate

(46)

Take the time derivative

(47)

Note that and the th derivative of the
output error is so that

and from (13), (29), (43), and (38), and by noting that
, the first equation at the bottom of the next page holds

true. Also, from (41), (39), and (42), we have

Substitute this equation into (47), and substitute (45) into (47)
and note that , then we get the second equation shown
at the bottom of the next page. After we consider the projection
modification to the update law, we have
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Substitute (44) into the previous equation, and note that

since and note that , so that
we have

(48)

Therefore, is a nonincreasing function of time. This gives
the same type of stability result that we obtained in the indirect
case.

Remark: Note that most of the papers [11]–[19] deal with in-
direct adaptive control, whereas very few authors (e.g., [20] and
[21]) face the direct approach, because it is not always clear how
to construct the control law without knowledge of the system dy-
namics. Here, we design the direct adaptive control law based
on the feedback linearizing law [20], and then generalize it to
the interpolated systems. Asymptotic stability of the output has
also been obtained without assumptions on rate of change of
system dynamics. Compared to indirect adaptive control, direct
adaptive control usually shows better transient behavior because
it may learn and adapt faster (probably due to the fact that it has
less parameters to be tuned).

VI. SIMULATION EXAMPLES: JET ENGINE CONTROL

To study the effectiveness of the proposed adaptive control
methods, we apply them to the component level engine cycle
model (CLM) of an aircraft jet engine (General Electric
XTE46), which is a simplified, unclassified version of the
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original “integrated high performance turbine engine tech-
nology” (IHPTET) engine [33]. The CLM of the XTE46 is
a thermodynamic simulation package developed by General
Electric Aircraft Engines (GEAE). This is a sophisticated
highly nonlinear dynamic model where each engine component
is simulated. The reason that GEAE developed such a “paper
engine” was in order to facilitate the design and analysis of
engine control systems before installing them for actual flights.
Thus, the component level model is quite complicated and so
accurate that it can be used as the “truth model” in the control
simulation to represent the real engine.

In order to apply the proposed adaptive control strategy to
the jet engine, we start from developing a “design model.” The
CLM for the XTE46 aircraft engine is a multiple-input–mul-
tiple-output nonlinear system (involving schedules, look-up
tables and partial differential equations). However, GEAE
(the authority on this engine) indicates that the key single-
input–single-output (SISO) loop (i.e., fuel flow to fan speed
loop) is not tightly coupled with other loops. Therefore, to focus
our theoretical studies, we could assume that the fundamental
engine dynamic characteristics of interest are represented by
a SISO, combustor fuel flow to fan rotor speed system (while
the other two input variables, the exhaust nozzle area and the
variable area bypass injector area, could be properly scheduled
as functions of the power level and the inlet temperature). To
develop the design model for the XTE46 engine, we conduct
nonlinear system identification to approximate local engine
dynamics. Based on the transient data generated by the CLM,
a number of local nonlinear models are constructed, each of
which is in the structure of Takagi–Sugeno fuzzy systems
and is corresponding to a specific operating condition and

engine health situation. In order to build a “global” engine
model (actually, it is a “regional” model valid in the “climb”
region), we conduct nonlinear interpolation among a grid of
these local models. The global engine model can be viewed
to have a hierarchical learning structure, where we perform
local learning to approximate the local engine dynamics and
interpolate these local models to generate the global model.
Note that the nonlinearity of the engine is different at dif-
ferent operating conditions and for different engine health
situations. Moreover, the operating condition of the engine
is defined by four variables: the altitude (ALT), the mach
number (XM), the difference of temperature (DTAMB), and
the throttle setting represented by power code (PC). The health
of the engine is described by ten quality parameters including
the flows and efficiencies of the fan (ZSW2 and SEDM2), the
compressor (ZSW7D, SEDM7D, ZSW27, and SEDM27) and
turbines (ZSW41, ZSE41, ZSW49, and ZSE49). Therefore,
although it is theoretical possible to approximate the engine
dynamics by building one fuzzy system, it is not feasible in
practice because of the huge amounts of data. Furthermore,
the advantage of taking this hierarchical model form is that
the engine dynamics can be separated into an unknown but
slowly time-varying part (the local engine dynamics) and a
known but fast time-varying part (the operating condition).
This facilitates the application of the interpolated adaptive
controller to handle the fast time-varying dynamics caused by
the rapid change in the operating conditions.

The general form of the model can be described as shown in
(49)–(54) at the bottom of the page, where WF36 is the
system input (the combustor fuel flow) and
XNL XNH represents the system states (the fan rotor speed

(49)

(50)

and

(51)

(52)

(53)

(54)
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and core rotor speed), which are positive since the speed cannot
be negative and (a valid speed region). The vector

ALT XM DTAMB PC represents the known operating
condition of the engine and

ZSW2 SEDM2 ZSW7D SEDM7D ZSW27

SEDM27 ZSW41 ZSE41 ZSW49 ZSE49

represents the unknown quality parameter vector. The values
of and specify the nodes where we establish the local
models. The functions and are
2 1 function vectors obtained through fuzzy interpolation and

are interpolating membership functions. The functions
and are 2 1 function vectors

obtained through nonlinear system identification and are in the
form of Takagi–Sugeno fuzzy systems, where , ,
and are 2 1 parameter vectors of the (linear) consequent
functions and are membership functions describing local
nonlinearity with respect to . (Refer to [32] and [34] for more
details on how we have developed the nonlinear engine model
using Takagi–Sugeno fuzzy systems).

By inspecting the parameters that result from the identifi-
cation process, we found that
and for any ,

. Basically, these sign conditions explain some
physical dynamics of the engine. In particular, the relationships
among the state variables and the input variable are relevant
for stability analysis of the system. For instance, we have
both and , which indicate
that if the fuel flow is increased, both the fan rotor speed and
the core rotor speed will be increased. These constraints on
the model parameters are important to design and analyze
the stable adaptive control system. For example, by knowing

for any operating conditions and quality
parameters (and and by
the definition of Takagi–Sugeno fuzzy systems), we obtain

and thus for all . This
implies the “relative degree” of the engine is one. In addition,
more details on how to use these relationships to determine
the exponentially attractive zero dynamics of the engine can
be found in the stability analysis part of [32]. Finally, note
that via similar nonlinear identification studies we showed
that an interpolation of strict feedback form models could not
adequately represent the engine dynamics.

We develop an adaptive controller for the engine control
problem using the indirect method. We choose to implement
the indirect controller because we could facilitate the indirect
adaptive controller by using our developed models to represent
nominal system dynamics in different regions. Consider the
engine in the form of

(55)

(56)

where and are measurable according to the prop-
erties of the component level engine model. By studying
dynamics of the developed nonlinear model, we know that

so that we can set . The nonlinear
system dynamics are separated into local regions
according to the operating condition variables which are
measurable. We use our developed engine model to represent
the local nominal model dynamics and
by setting the quality parameters to be the nominal valueand
they are bounded if is bounded since the model is in the form
of a Takagi–Sugeno fuzzy system. The unknown dynamics

and describe the model uncertainties
caused by nominal model inaccuracy and system changes
(time-varying characteristics). They are approximated by 18
radial basis function networks (nine for and nine for ).
Each radial basis network has eleven receptive field units. The
inputs to the neural networks include two state variables and the
parameters are updated online to capture the unknown system
dynamics. Note that the stable adaptive controller will ensure
the stability of and the uniform exponential attractivity of
the engine zero dynamics will ensure the stability of the un-
controllable state . Since the relative degree of the system is
1, the error dynamics are simple ( and ).
The reference trajectory is defined by passing a reference signal
through a linear reference model
so that and are measurable and bounded. Taking
into account the engine dynamics, the model uncertainty is
described by and . Note that we
cannot explicitly know the model uncertainty so that the
parameters and are treated as design parameters and
tuned by trial and error to achieve good control performance. In
addition, the adaptation gains are tuned to be
and and the design parameter .
Generally, we start the tuning process based on the nonlinear
engine model (the design model) that we have developed using
nonlinear system identification techniques. We first remove
the adaptation mechanism (by setting the adaptation gains
to zero) and tune the approximation error bounds and

in order to stabilize the system. At this initial step, the
approximation error bounds are usually large because they
quantifies the unknown system dynamics at this moment. Next,
we increase the adaption gains to add the online learning ability
to the adaptive controller and reduce the approximation error
bounds subsequently. The aforementioned procedure is iterated
until certain good control performance has been achieved and
further increasing the adaptation gains may cause oscillation.
Afterwards, we apply the controller to the component level
model simulation of the XTE46 engine and do some further
tuning. This XTE46 simulator has been developed by GEAE
to be very complicated and accurate so that the simulation
conducted on this simulator is very close to that on the real
engine for actual flights.

To assess the performance of the adaptive controller we let
the component level engine model run at a scenario where the
altitude (ALT) varies from 12 500 to 17 500 (i.e., ALT
for first 2 sec; then the altitude is linearly increased from 12 500
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Fig. 1. Performance of the interpolated adaptive controller.

Fig. 2. Performance of the single adaptive controller.

to 17 500 for 10 sec; after that, the altitude keeps constant at
17 500) and other operating conditions are kept constant, that
is, XM , DTAMB and PC . The engine quality
parameters are also kept constant. (Actually, we first applied the
controller to the design model, but in the interest of brevity, here,
we only show the results on the component level model sim-
ulation, which we treat as the real application on the XTE46
engine.) As shown in Fig. 1, although the altitude changes sig-
nificantly during the time period ( sec.), the perfor-
mance does not deteriorate too much (as indicated by arrows 1,
2, and 3) and improves after the altitude variation (as indicated
by arrow 4) by applying the adaptation scheme to compensate
for model uncertainties. The output of the adaptive controller
also indicates the smooth changes of control laws (as pointed
by arrows 5, 6, 7, and 8).

The effectiveness of the proposed “interpolated” adaptive
controller can be further demonstrated by comparing its per-

formance with that of a “single” adaptive controller (where the
adaptive control law is not in the interpolated form but is driven
by one pair of online approximators, that is in (27) and
(28)) [31]. As shown in Fig. 2, the fast time-varying nature of
altitude change makes it difficult for the online approximators
to adapt fast enough, which results in deteriorated performance
(as indicated by arrows 1, 2, and 3), even though the adaptation
scheme does have apparent effects when system dynamics are
not fast time-varying (as indicated by arrows 4, 5, and 6).

Clearly, the interpolated strategy introduced in this paper
(Fig. 1) performs much better than the single adaptive con-
troller (Fig. 2). Essentially, it provides a method to exploit the
structure inherent in the class of models that we consider in
the paper. Since this class is one that is the product of known
nonlinear identification procedures, the methodology presented
here provides a particularly practical approach to control a
class of nonlinear time-varying systems.

VII. CONCLUSION

In this paper, we have proposed an online approxima-
tion-based adaptive control methodology for a class of
nonlinear systems with a time-varying structure. This class of
systems is composed of interpolations of nonlinear subsys-
tems which are input–output feedback linearizable. Without
assumptions on rate of change of system dynamics, stable
indirect and direct adaptive control methods were presented
with analysis of stability for all signals in the closed-loop as
well as asymptotic tracking. The performance of the adaptive
controller was demonstrated using a jet engine control problem.
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