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Adaptive Control for a Class of Nonlinear Systems
with a Time-Varying Structure

Raúl Ordóñez and Kevin M. Passino

Abstract—In this note, we present a direct adaptive control method for a
class of uncertain nonlinear systems with a time-varying structure. We view
the nonlinear systems as composed of a finite number of “pieces,” which are
interpolated by functions that depend on a possibly exogenous scheduling
variable. We assume that each piece is in strict-feedback form, and show
that the method yields stability of all signals in the closed-loop, as well as
convergence of the state vector to a residual set around the equilibrium,
whose size can be set by the choice of several design parameters. The class
of systems considered here is a generalization of the class of strict-feed-
back systems traditionally considered in the backstepping literature. We
also provide design guidelines based on bounds on the transient.

Index Terms—Backstepping, direct adaptive control, interpolation of
strict feedback systems, nonlinear systems, time-varying structure.

I. INTRODUCTION

The field of nonlinear adaptive control developed rapidly in the last
decade. The work of Polycarpou and Ioannou[1], as well as that of
others gave birth to an important branch of adaptive control theory,
the nonlinear on-line function approximation-based control, which in-
cludes neural (e.g., [2]) and fuzzy (e.g., [3]) approaches (note that there
are several other relevant works on neural and fuzzy control, many of
them cited in the references within the above papers). The neural and
fuzzy approaches are most of the time equivalent, differing between
each other only for the structure of the approximator chosen [4]. Most
of the papers on this subject deal with indirect adaptive control trying
first to identify the dynamics of the systems and eventually generating
a control input according to the certainty equivalence principle (with
some modification to add robustness to the control law), whereas very
few authors (e.g., [4], [5]) use the direct approach, in which the con-
troller directly generates the control input to guarantee stability.

Plants whose dynamics can be expressed in the so called “strict feed-
back form” have been considered, and techniques like backstepping
and adaptive backstepping [6] have emerged for their control. The pa-
pers [2] and [7] present an extension of the tuning functions approach
in which the nonlinearities of the strict-feedback system are not as-
sumed to be parametric uncertainties, but rather completely unknown
nonlinearities to be approximated on-line with nonlinearly parameter-
ized function approximators. Both the adaptive methods in [6], as well
as in [2] and [7], attempt to approximate the dynamics of the plant
on-line, so they may be classified as indirect-adaptive schemes.

In this paper, we have combined an extension of the class of strict-
feedback systems considered in [2] and [7] with the concept of a dy-
namic structure that depends on time, so as to propose a class of non-
linear systems with a time-varying structure, for which we develop a
direct adaptive control approach. This class of systems is a general-
ization of the class of strict-feedback systems traditionally considered
in the literature. Moreover, the direct-adaptive control developed here
is, to our knowledge, the first of its kind in this context, and it presents
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several advantages with respect to indirect-adaptive methods, including
the fact that it needs less plant information to be implemented.

II. DIRECT ADAPTIVE CONTROL

Consider the class of continuous time nonlinear systems given by

_xi =

R

j=1

�j(v) �ji (Xi) +  j
i (Xi)xi+1

_xn =

R

j=1

�j(v) �jn(Xn) +  j
n(Xn)u (1)

wherei = 1; 2; . . . ; n � 1, Xi = [x1; . . . ; xi]
>, andXn 2 Rn is

the state vector, which we assume measurable, andu 2 R is the control
input. The variablev 2 Rq may be an additional input or a possibly
exogenous “scheduling variable.” We assume thatv and its derivatives
up to and including the(n � 1)th one are bounded and available for
measurement, which may imply thatv is given by an external dynam-
ical system. The functions�j , j = 1; . . . ; R may be considered to
be “interpolating functions” that produce the time-varying structural
nature of system (1), since they combineR systems in strict-feed-
back form (given by the�ji and j

i functions,i = 1; . . . ; n, j =
1 . . . ; R) and the combination depends on time through the variablev.
Thereby, the dynamics of the plant may be different at each time point
depending on the scheduling variable. Here, we assume that the func-
tions�j aren times continuously differentiable, and that they satisfy,
for all v 2 Rq, R

j=1
�j(v) < 1 andj@i�j(v)=@vij < 1. Denote

for convenience�ci (Xi; v) = R

j=1
�j(v)�

j
i (Xi) and c

i (Xi; v) =
R

j=1
�j(v) 

j
i (Xi). We will assume that�ci and c

i are sufficiently
smooth in their arguments, and that they satisfy, for allXi 2 Ri and
v 2 Rq, i = 1; . . . ; n, �ci (0; v) = 0 and c

i (Xi; v) 6= 0:
Here, we will developadirect-adaptivecontrolmethod for the classof

systems(1).Weassumethat the interpolationfunctions�j areknown,but
the functions�ji and j

i (which constitute the underlying time-varying
dynamics of the system) are unknown. In an indirect-adaptive method-
ology, one would attempt to identify the unknown functions and then
construct a stabilizing control law based on the approximations to the
plantdynamics.Here,however,wewillpostulatetheexistenceofanideal
control law [basedon theassumption that theplantbelongs to theclassof
systems(1)]whichpossessessomedesiredstabilizingproperties,andwe
then devise adaptation laws that attempt to approximate the ideal control
equation. This approximation will be performed within a compact set
Sx � Rn ofarbitrarysizewhichcontains theorigin. In thismanner, the
resultsobtainedaresemi-global, in thesense that theyarevalid as longas
thestateremainswithinSx ,butthissetcanbemadeaslargeasdesiredby
the designer. In particular, with enough plant information it can be made
large enough that the state never exits it, since, as will be shown, a bound
can be placed on the state transient. Furthermore, as will be indicated
below, thestabilitycanbemadeglobalbyusingboundingcontrol terms.

For each vectorXi we will assume the existence of a compact set
Sx � Ri specified by the designer. We will consider trajectories
within the compact setsSx , i = 1; . . . ; n, where the sets are con-
structed such thatSx � Sx , for i = 1; . . . ; n� 1. We assume the
existence of bounds c

i
, 

c

i 2 R, and c
i 2 R, i = 1; . . . ; n (not nec-

essarily known), such that for allv 2 Rq andXi 2 Sx , i = 1; . . . ; n,

0 < c

i
�  c

i (Xi; v) �  
c

i <1

j _ c
i j =

R

j=1

@�j(v)

@v
_v j

i (Xi) +�j(v)
@ j

i (Xi)

@Xi

_Xi �  c
i :

(2)
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This assumption implies that the affine terms in the plant dynamics
have a bounded gain and a bounded rate of change. Since the functions
 ci are assumed continuous, they are therefore bounded withinSx .
Similarly, note that even though the termj _Xij may not necessarily be
globally bounded, it will have a constant bound withinSx due to the
continuity assumptions we make. Therefore, assumption (2) will al-
ways be satisfied withinSx . Moreover, in the simplest of cases, the
first part of assumption (2) is satisfied globally when the functions ji
are constant or sector-bounded for allXi 2 Ri.

The class of plants (1) is, to our knowledge, the most general class of
systems considered so far within the context of adaptive control based
on backstepping. In particular, in [6], as well as in [2] and [7], which
are indirect adaptive approaches, the input functions ji are assumed
to be constant fori = 1; . . . ; n. This assumption allows the authors
of those works to perform a simpler stability analysis, which becomes
more complex in the general case [8]. Also, the addition of the inter-
polation functions�j , j = 1; . . . ; R, extends the class of strict-feed-
back systems to one including systems with a time-varying structure
[9], as well as systems falling in the domain of gain scheduling (where
the plant dynamics are identified at different operating points and then
interpolated between using a scheduling variable). Note that if we let
R = 1 and�1(v) = 1 for all v, together with ci = 1, i = 1; . . . ; n,
we have the particular case considered in [2] and [7].

The direct approach presented here has several advantages with re-
spect to indirect approaches such as in [2], [6], and [7]. In particular,
bounds on the input functions ji are only assumed to exist, but need
neither to be known nor to be estimated. This is because the ideal law
is formulated so that there is not an explicit need to include informa-
tion about the bounds in the actual control law. Moreover, although
assumption (2) appears to be more restrictive than what is needed in
the indirect adaptive case, it is in fact not so due to the fact that the
stability results are semiglobal [i.e., since we are operating within the
compact setsSx , continuity of the affine terms automatically implies
the satisfaction of the second part of assumption (2)].

A. Direct Adaptive Control Theorem

Next, we state our main result and then show its proof.1 For con-
venience, we use the notation�i = [v; _v; . . . ; v(i�1)] 2 Rq�i, i =
1; . . . ; n.

Theorem 1: Consider system (1) with the state vectorXn measur-
able and the scheduling matrix�n�1 measurable and bounded, together
with the above stated assumptions on�ci ,  

c
i and�j , and (2). Assume

also that�i(0) 2 Sv � Rq�i, Xi(0) 2 Sx � Ri, i = 1; . . . ; n,
whereSv andSx are compact sets specified by the designer, and large
enough that�i andXi do not exit them. Consider the diffeomorphism
z1 = x1, zi = xi � �̂i�1 � �si�1, i = 2; . . . ; n, with �̂i(Xi; �i) =

R

j=1 �j(v)�̂
>

�
�
�
(Xi; �i) and�si (zi; zi�1) = �kizi� zi�1, with

ki > 0 andz0 = 0. Assume the functions�
�
(Xi; �i) to be at least

n�i times continuously differentiable, and to satisfy, fori = 1; . . . ; n,
j = 1; . . . ; R,

@n�i�
�

@[Xi; �i]n�i
<1: (3)

Consider the adaptation laws for the parameter vectors�̂
�
2 R

N

,

N
�
2 N, _̂�

�
= ��j� �

�
zi � �

�
�̂
�

, where
�

> 0, �
�

>

0, i = 1; . . . ; n, j = 1; . . . ; R are design parameters. Then, the

1We will generally omit the arguments of functions for brevity.

control lawu = �̂n + �sn guarantees boundedness of all signals and
convergence of the states to the residual set

Dd = Xn 2 Ren :

n

i=1

z2i �
2 

m
Wd

�d
(4)

where 
m

= min1�i�n  
c

i , �d is a constant, andWd measures ap-
proximation errors and ideal parameter sizes, and its magnitude can be
reduced through the choice of the design constantski, � , and�

�
.

Proof: The proof requiresn steps, and is performed inductively.
First, let z1 = x1, andz2 = x2 � �̂1 � �s1, where�̂1 is the ap-
proximation to an ideal signal��1 (“ideal” in the sense that if we had
�̂1 = ��1 we would have a globally asymptotically stable closed loop
without need for the stabilizing term�s1), and��1 will be given below.
Let c1 > 0 be a constant such thatc1 > ( c1 =2 

c

1
), and��1(x1; v) =

(1= c1)(��
c
1 � c1z1). Since the ideal control��1 is smooth, it may be

approximated with arbitrary accuracy forv andx1 within the compact
setsSv � Rq andSx � R, respectively, as long as the size of the
approximator can be made arbitrarily large.

For approximators of finite size, let
��1(x1; v) = R

j=1 �j(v)�
�

�
�
�
(v; x1) + �� (v; x1), where

the parameter vectors��
�

2 R
N

N
�

2 N are optimum in the

sense that they minimize the representation error�� over the
set Sx � Sv and suitable compact parameter spaces


�
, and

�
�
(x1; v) are defined via the choice of the approximator structure

(see [10] for an example of a choice for�
�

). The parameter sets

�

are simply mathematical artifacts. As a result of the stability proof the
approximator parameters are bounded using the adaptation laws in
Theorem 1, so 


�
does not need to be defined explicitly, and no

parameter projection (or any other “artificial” means of keeping the
parameters bounded) is required. The representation error�� arises
because the sizesN

�
are finite, but it may be made arbitrarily

small within Sx � Sv by increasingN
�

(i.e., we assume the
chosen approximator structures possess the “universal approximation
property”). In this way, there exists a constant boundd� > 0 such
that j�� j � d� < 1. To make the proof logically consistent,
however, we need to assume that some knowledge about this bound
and a bound on��

�
are available (since in this case it becomes

possible to guaranteea priori that Sx � Sv is large enough).
However, in practice some amount of redesign may be required, since
these bounds are typically guessed by the designer.

Let �
�

= �̂
�

� ��
�

denote the parameter error, and

approximate ��1 with �̂1(x1; v; �̂� ; j = 1; . . . ; R) =
R

j=1 �j(v)�̂
>

�
�
�
(x1; v): Hence, we have a linear in the pa-

rameters approximator with parameter vectors�̂
�

. Note that the
structural dependence on time of system (1) is reflected in the
controller, becausê�1 can be viewed as using the functions�j(v) to
interpolate between “local” controllers of the form̂�>

�
�
�
(x1; v),

respectively. Notice that since the functions�j are assumed continuous
andv bounded, the signal̂�1 is well defined for allv 2 Sv .

Consider the dynamics of the transformed state,_z1 = �c1+ 
c
1(z2+

�̂1+�
s
1)+ 

c
1(�

�
1��

�
1) = �c1z1+ 

c
1z2+ 

c
1(�̂1��

�
1)+ 

c
1�

s
1 =

�c1z1 +  c1z2 +  c1(
R

j=1 �j�
>

�
�
�
� �

�
) +  c1�

s
1. Let V1 =

(1=2 c1)z
2
1+(1=2) R

j=1 (�
>

�
�
�
=

�
), and examine its derivative,

_V1 = (2 c1(2z1 _z1)� 2z21 _  c1 ) + R

j=1 (�
>

�
_�
�
=

�
). Using the

expression for_z1, _V1 = �(c1z
2
1= 

c
1)+z1z2+z1

R

j=1 �j�
>

�
�
�
�

z1�� + z1�
s
1 � (1=2)z21( _ 

c
1= 

c
1 ) + R

j=1 (�
>

�
_�
�
=

�
). Choose
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the adaptation law_̂�
�

= _�
�

= ��j� �
�
z1 � �

�
�̂
�

, with
design constants

�
> 0, �

�
> 0, j = 1; . . . ; R (we think of

�
�
�̂
�

as a “leakage term”). Also, note that for any constantk1 > 0,

�z1�� � jz1jd� � k1z
2

1 + (d2� =4k1). We pick�s1 = �k1z1.

Notice also that, completing squares,��>
�
�̂
�

= ��>
�
(�

�
+

��
�
) � �(j�

�
j2=2) + (j��

�
j2=2). Finally, observe that

�(z21= 
c
1)(c1 + ( _ c1=2 

c
1)) � �(z21= 

c
1)(c1 � ( c1 =2 

c

1
)) �

�(c1z
2

1= 
c

1
), with c1 = c1 � ( c1 =2 

c

1
) > 0. Then, we obtain

_V1 � �(c1z
2

1= 
c

1
) � (1=2) R

j=1
�
�
(j�

�
j2=

�
) + z1z2 +

(d2� =4k1) + (1=2) R

j=1
�
�
(��
�
=

�
). This completes the first

step of the proof.
We may continue in this manner up to thenth step,2

where we havezn = xn � �̂n�1 � �sn�1, with �̂n�1 and
�sn�1 defined as in Theorem 1. Consider the ideal signal
��n(Xn; �n) = (1= cn)(�

c
n � cnzn + _̂�n�1 + _�sn�1) with

cn > ( cn =2 c
n
). Notice that, even though the terms_̂�

�
appear

in ��n through the partial derivatives in_̂�n�1, �̂
�

does not

need to be an input to��n, since the resulting product of the partial

derivatives and_̂�
�

can be expressed in terms ofz1; . . . ; zn�1,

v and�
�

�̂n�1. To simplify the notation, however, we will omit

the dependencies on inputs other thanXi and �i, but bearing in
mind that, when implementing this method, more inputs may be
required to satisfy the proof. Also, note that by assumption (3),
j��nj < 1 for bounded arguments. Therefore, we may represent��n
with ��n(Xn; �n) =

R

j=1
�j(v)�

�

�
�
�

(Xn; �n) + �� (Xn; �n)

for Xn 2 Sx � Rn and�n 2 Sv � Rq�n. The parameter vector

��
�

2 R
N

, N
�

2 N is an optimum within a compact parameter
set
� , in a sense similar to��

�
, so that for(Xn; �n) 2 Sx �Sv ,

j�� j � d� <1 for some boundd� > 0. Let�
�

= �̂
�
� ��

�
,

and consider the approximation̂�n as given inTheorem 1. The control
law u = �̂n + �sn yields _zn = �cn +  cn(�̂n + �sn) � _̂�n�1 �
_�sn�1 +  cn(�

�
n � ��n) = �cnzn +  cn(

R

j=1
�j(v)�

>

�
�
�

�

�� ) +  cn�
s
n. Choose the Lyapunov function candidate

V = Vn�1 + (1=2 cn)z
2

n + (1=2) R

j=1
(�>

�
�
�
=

�
)

and examine its derivative,_V = _Vn�1 � (cnz
2

n= 
c
n) +

zn
R

j=1
�j(v)�

>

�
�
�

� zn�� + zn�
s
n � (1=2)z2n( _ 

c
n= 

c
n ) +

R

j=1
(�>

�
_�
�
=

�
). One can show inductively that_Vn�1 �

� n�1
i=1

(ciz
2

i = 
c

i ) � (1=2) n�1
i=1

R

j=1
�
�
(j�

�
j2=

�
) +

zn�1zn+
n�1
i=1

(d2� =4ki) + (1=2) n�1
i=1

R

j=1
�
�
(j��

�
j2=

�
)

with constantsci = ci�( i =2 
c

i
) > 0, i = 1; . . . ; n. The choice of

adaptation laws for�
�

and of�sn in Theorem 1, together with the ob-

servations that�(�
�
=

�
)�>

�
�̂
�

� �(�
�
=

�
)(j�

�
j2=2) +

(�
�
=

�
)(j��

�
j2=2),�zn�� � knz

2

n + (d� =4kn), with kn > 0

and�(z2n= 
c
n)(cn + ( _ cn=2 

c
n)) � �(cnz

2

n= 
c

n) imply

_V � �

n

i=1

ciz
2

i

 
c

i

�
1

2

n

i=1

R

j=1

�
�

j�
�
j2


�

+Wd (5)

where Wd contains the combined effects of representation
errors and ideal parameter sizes, and is given by
Wd = n

i=1
(d2� =4ki) + (1=2) n

i=1

R

j=1
�
�
(j��

�
j2=

�
).

Note that if n

i=1
(ciz

2

i = 
c

i ) � Wd or
(1=2) n

i=1

R

j=1
�
�
(j�

�
j2=

�
) � Wd, then we have_V � 0.

Furthermore, letting 
m
= min1�i�n ( 

c

i
),  m = max1�i�n ( 

c

i ),
and defining c0 = min1�i�n (ci),  m = ( 

m
= m) and

2 We omit intermediate steps for brevity.

�0 = min1�i�n;1�j�R (�
�
) we have� n

i=1
(ciz

2

i = 
c

i ) �

�c0
n

i=1
(z2i = 

c

i ) = �c0
n

i=1
(z2i = 

c
i )( 

c
i = 

c

i )
� �c0

n

i=1
(z2i = 

c
i )( 

c

i
= 

c

i ) � �c0 m
n

i=1
(z2i = 

c
i )

and �(1=2) n

i=1

R

j=1
�
�
(j�

�
j2=

�
) �

�0(1=2)
n

i=1

R

j=1
(j�

�
j2=

�
). Then, letting

�d = min (2c0 m; �0), we have that if

V =
1

2

n

i=1

z2i
 ci

+
1

2

n

i=1

R

j=1

j�
�
j2


�

� V0 (6)

with V0 = (Wd=�d), then _V � 0 and all signals in the closed loop
are bounded. Furthermore, we have_V � ��dV +Wd, which implies
that0 � V (t) � (Wd=�d) + (V (0)� (Wd=�d))e

�� t so that both
the transformed states and the parameter error vectors converge to a
bounded set. Finally, we conclude from the upper bound onV (t) that
the state vectorXn converges to the residual set (4).

Remark 1: The representation error bounds and the size of the ideal
parameter vectors are assumed known, since they affect the size of the
residual set to which the states converge. It is possible to augment the
direct adaptive algorithm with “autotuning” capabilities (similar to [7]),
which would relax the need for these bounds.

Furthermore, note that the stability result ofTheorem 1is semi-
global, in the sense that it is valid within the compact setsSv andSx ,
i = 1; . . . ; n, which can be made arbitrarily large. The stability result
may be made global by adding a high gain-bounding control term to
the control law. Such a term may be particularly useful when, due to a
complete lack ofa priori knowledge, the control designer is unable to
guarantee that the compact setsSx , i = 1; . . . ; n, are large enough
so that the state will not exit them before the controller has time to
bring the state insideDd; moreover, it may also happen that due to a
poor design and poor system knowledge,Dd is not contained inSx .
In this case as well, bounding control terms may be helpful until the
design is refined and improved. However, using bounding control re-
quires explicit knowledge of functional upper bounds ofj ci (v; Xi)j,
as well as of the lower bounds c

i
, i = 1; . . . ; n, whose knowledge

we do not mandate inTheorem 1. Bounding terms may be added to the
diffeomorphism inTheorem 1, but we do not present the analysis since
it is similar to the one we present here and it is algebraically tedious;
we simply note, though, that the bounding terms have to be smooth
(because they need to be differentiable), so they need to be defined in
terms of smooth approximations to the sign, saturation, and absolute
value functions that are typically used in this approach.

Remark 2: If the bounds c
i
,  

c

i and ci are known, it becomes
possible for the designer to directly set the constantsci in the control
law. Notice that with knowledge of these bounds, the term 

m
is also

known, and we can pick constantsci such thatci > ( ci =2 
c

i
). Define

the auxiliary functions�i = cizi. We may explicitly set the constantci
in��i if we let�i be an input to theith approximator structure, i.e., if we
let ��i (Xi; �i; _Xr ; �i) =

R

j=1
�j(v)�

�

�
�
�
(Xi; �i; _Xr ; �i) +

�� . The approximators used in the control procedure are then given
by �̂i(Xi; �i; _Xr ; �i) =

R

j=1
�j(v)�̂

>

�
�
�
(Xi; �i; _Xr ; �i) and

the stability analysis can be carried out as expected.

B. Performance Analysis:L2 Bounds and Transient Design

The stability result ofTheorem 1is useful in that it indicates con-
ditions to obtain a stable closed-loop behavior for a plant belonging
to the class given by (1). However, it is not immediately clear how
to choose the several design constants to improve the control perfor-
mance. Here we concentrate on the tracking problem, and present de-
sign guidelines with respect to anL2 bound on the tracking error. We
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are interested in havingx1 track the reference model statexr of the
reference model_xr = xr ; i = 1; 2; . . . ; n�1, _xr = fr(Xr r),
with bounded reference inputr(t) 2 R. Now, we need to use the diffeo-
morphismz1 = x1�xr , zi = xi� �̂i�1��

s
i�1, i = 2; . . . ; n with

��1(x1; v; _xr ) = (1= c1)(��
c
1�c1z1+xr ) and��i (Xi; �i; _Xr ) =

(1= ci )(��
c
i � cizi+ _̂�i + _�si ) for i = 2; . . . ; n. The stability proof

needs to be modified accordingly, and it can be shown that the tracking
errorjx1 � xr j converges to a neighborhood of size2 

m
Wd=�d.

From the upper bound on V (t), we can write
V (t) � (Wd=�d) + V (0)e�� t. From here,
it follows that (1=2) n

i=1
(z2i (t)= 

c
i (t)) �

(Wd=�d) + ((1=2) n

i=1
(z2i (0)= 

c
i (0)) +

(1=2) n

i=1

R

j=1
(j�

�
(0)j2=

�
)�� t). The terms zi(0)

depend on the design constants in a complex manner. For this
reason, rather than trying to take them into account in the design
procedure, we follow the trajectory initialization approach taken in
[6], which allows the designer to setzi(0) = 0, i = 1; . . . ; n by
an appropriate choice of the reference model’s initial conditions. In
our case, in addition to the assumption that it is possible to set the
initial conditions of the reference model, we will have to assume
certain invertibility conditions on the approximators. In particular,
since z1(0) = x1(0) � xr (0), for z1(0) = 0 we need to set
xr (0) = x1(0).

For theith transformed statezi, i = 2; . . . ; n, zi(0) = xi(0) �
�̂i�1(0)� �si�1(0). Notice that�si�1(0) = �si�1(zi�1(0); zi�2(0)),
so that if zi�1(0) = 0 and zi�2(0) = 0 we have�si�1(0) = 0.
In particular, notice that this holds fori = 2. In this case, to set
z2(0) = 0 we need to havê�1(x1(0); v(0); xr (0)) = x2(0). This
equation can be solved analytically (or numerically) forxr (0) pro-
vided (��̂1=�xr )jt=0 6= 0. This is not an unreasonable condition,
since it depends on the choice of approximator structure the designer
makes. The structure can be chosen so that it satisfies this condition.
Granted this is the case, it clearly holds that�s2(0) = 0, and the same
procedure can be inductively carried out fori = 3; . . . ; n, with the
choices�̂i�1(Xi�1(0); �i�1(0); xr (0)) = xi(0).

This procedure yields the simpler bound n

i=1
z2i (t) �

(2 
m
Wd=�d) +  

m
( n

i=1

R

j=1
(j�

�
(0)j2=

�
))e�� t. We

would like to make this bound small, so that the transient excursion of
the tracking error is small. Notice that we do not have direct control on
the size of�d, since this term depends on the unknown constantsci,
which appear in the ideal signals��i . Even though it is not necessary
to be able to set�d to reduce the size of the bound, it is possible to do
so if the bounds c

i
,  

c

i and ci are known.
At this point, how to choose the constants to achieve a smaller bound

becomes clearer. Recalling the expression ofWd, note that, first, one
may want to have�d > 1, so thatWd is not made larger when divided
by �d, and so that the convergence is faster. This may be achieved by
settingci such that2ci m > 1 (if enough knowledge is available to
do so) and�

�
> 1. However, having large�

�
makesWd larger;

this can be offset, however, by also choosing the ratio�
�
=

�
< 1

or smaller. Finally, it is clear that makingki larger reduces the effects
of the representation errors, and therefore makesWd smaller. Observe
that there is enough design freedom to makeWd small and�d large
independently of each other.

These simple guidelines may become very useful when performing
a real control design. Moreover, notice that the bound onn

i=1
z2i (t)

makes it possible to specify the compact sets of the approximators
so that, even throughout the transient, it can be guaranteed that the
states will remain within the compact sets without the need for a global
bounding control term. This has been a recurring shortcoming of many
on-line function approximation-based methods, and the explicit bound
on the transient makes it possible to overcome it.

III. CONCLUSIONS

In this paper, we have developed a direct-adaptive control method
for a class of uncertain nonlinear systems with a time-varying structure
using a Lyapunov approach to construct the stability proofs. The sys-
tems we consider are composed of a finite number of “pieces,” or dy-
namic subsystems, which are interpolated by functions that depend on
a possibly exogenous scheduling variable. We assume that each piece
is in strict-feedback form, and show that the methods yield stability of
all signals in the closed-loop, as well as convergence of the state vector
to a residual set around the equilibrium, whose size can be set by the
choice of several design parameters.

We argue that the direct-adaptive method presents several advan-
tages over indirect methods in general, including the need for a smaller
amount of information about the plant and a simpler design. Finally,
we provide design guidelines based onL2 bounds on the transient and
argue that this bound makes it possible to precisely determine how large
the compact sets for the function approximators should be so that the
states do not exit them.
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