Chapter 1

COOPERATIVE CONTROL DESIGN FOR
UNINHABITED AIR VEHICLES

Marios Polycarpou', Kevin Passinot, Yanli Yang’ and Yang Liu!

"Dept. of Electrical and Computer Engineering and Computer Sciences
University of Cincinnati, Cincinnati, OH 45221-0030, USA

IDepartment of Electrical Engineering, The Ohio State University
2015 Neil Avenue, Columbus, OH 43210-1272, USA

Abstract

The main objective of this research is to develop and evaluate the per-
formance of strategies for cooperative control of autonomous air ve-
hicles that seek to gather information about a dynamic target environ-
ment, evade threats, and coordinate strikes against targets. The chapter
presents an approach for cooperative search by a team of uninhabited
autonomous air vehicles, which are equipped with sensors to view a
limited region of the environment, and are able to communicate with
one another to enable cooperation. The developed cooperative search
framework is based on two inter-dependent tasks: (i) on-line learning of
the environment and storing of the information in the form of a “search
map”; and (ii) utilization of the search map and other information to
compute on-line a guidance trajectory for the vehicle to follow. We
develop a real-time approach for on-line cooperation between air ve-
hicles, which is based on treating the paths of other vehicles as “soft
obstacles” to be avoided. Based on artificial potential field methods,
we develop the concept of “rivaling force” between vehicles as a way of
enhancing cooperation. We study the stability of vehicular swarms in a
multi-dimensional framework to try to understand what types of com-
munications are needed to achieve cooperative search and engagement,
and characteristics that affect swarm aggregation and disintegration.
Simulation results are presented to illustrated the concepts developed
in the chapter.

2

1. Introduction

This chapter presents an approach for cooperative search among a
team of distributed agents and some stability results for multi-dimensional
swarms. Although the presented framework is quite general, the main
motivation for this work is to develop and evaluate the performance
of strategies for cooperative control of autonomous air vehicles that
seek to gather information about a dynamic target environment, evade
threats, and possibly coordinate strikes against targets. Recent advances
in computing, wireless communications and vehicular technologies are
making it possible to deploy multiple uninhabited air vehicles (UAVs)
that operate in an autonomous manner and cooperate with each other
to achieve a global objective (Gillen and Jacques, 2000; Pachter and
Chandler, 1998; Jacques and Leblanc, 1998; Godbole, 1999; Hristu and
Morgansen, 1999). A large literature of relevant ideas and methods
can also be found in the area of “swarm robotics” (e.g., see Dudek
and et al., 1993; Hackwood and Beni, 1992; Bonabeau et al., 1999)
and, more generally, coordination and control of robotic systems (e.g.,
see Koontz, 1997; Hackwood and Beni, 1992; Mataric, 1992; Arkin,
1998; Brooks, 1986; Jacek, 1999; Brooks, 1999). Related work also in-
cludes the techniques developed using the “social potential field” method
(Reif and Wang, 1999a; Breder, 1954; Miller and Stephen, 1996) and
multi-resolution analysis (Albus and Meystel, 2000).

We consider a team of vehicles moving in an environment of known
dimension, searching for targets of interest. The vehicles are assumed
to be equipped with: 1) target sensing capabilities for obtaining a lim-
ited view of the environment; 2) wireless communication capabilities for
exchanging information and cooperating with one another; and 3) com-
puting capabilities for processing the incoming information and making
on-line guidance decisions. It is also assumed that each vehicle has a tan-
dem of actuation/sensing hardware and an inner-loop control scheme for
path following. We focus solely on the design of the guidance controller
(outer-loop control), and for convenience we largely ignore the vehicle
dynamics.

The vehicles are assumed to have some maneuverability limitations,
which constrain the maximum turning radius of the vehicle. The ma-
neuverability constraint is an issue that is typically not encountered in
some of the literature on “collective robotics,” which describes swarms
of robots moving in a terrain (Drogoul et al., 1998). The developed co-
operative search framework is based on two inter-dependent tasks: (i)
on-line learning of the environment and storing of the information in the
form of a “search map”; and (ii) utilization of the search map and other

Cooperative Control of Air Vehicles 3

information for computing on-line a guidance trajectory for the vehicle.
We develop a real-time approach for on-line cooperation between agents
based on treating the paths of other vehicles as ”soft obstacles” to be
avoided. Using artificial potential field methods we develop the concept
of “rivaling force” between agents as a way of enhancing cooperation.
The distributed learning and planning approach for cooperative search
is illustrated by computer simulations. In the rest of the chapter, we
will be using the general term “agent” to represent a UAV or other type
of appropriate vehicle.

1.1. Related Research Work on Search Methods

Search problems occur in a number of military and civilian appli-
cations, such as search-and-rescue operations in open-sea or sparsely
populated areas, search missions for previously spotted enemy targets,
seek-destroy missions for land mines, and search for mineral deposits.
A number of approaches have been proposed for addressing such search
problems. These include, among other, optimal search theory (Stone,
1975; Koopman, 1980), exhaustive geographic search (Spires and Gold-
smith, 1998), obstacle avoidance (Cameron, 1994; Snorrason and Norris,
1999) and derivative-free optimization methods (Conn et al., 1997).

Search theory deals with the problem of distribution of search effort
in a way that maximizes the probability of finding the object of interest.
Typically, it is assumed that some prior knowledge about the target dis-
tribution is available, as well as the “payoff” function that relates the
time spent searching to the probability of actually finding the target,
given that the target is indeed in a specific cell (Stone, 1975; Koopman,
1980). Search theory was initially developed during World War IT with
the work of Koopmam and his colleagues at the Anti-Submarine War-
fare Operations Research Group (ASWORG). Later on, the principles
of search theory were applied successfully in a number of applications,
including the search for and rescue of a lost party in a mountain or a
missing boat on the ocean, the surveillance of frontiers or territorial seas,
the search for mineral deposits, medical diagnosis, and the search for a
malfunction in an industrial process. Detailed reviews of the current sta-
tus of search theory have been given by Stone, 1983, Richardson, 1987,
and Benkoski et al., 1991.

The optimal search problem can be naturally divided according to
two criteria that depend on the target’s behavior. The first division de-
pends on whether the target is evading or not; that is, whether there is a
two-sided optimization by both the searcher and the target, or whether
the target’s behavior is independent of the searcher’s action. The second

4

division deals with whether the target is stationary or moving. The two
divisions and their combinations form four different categories. A great
deal of progress in solving stationary target problems in the optimal
search framework has been made, and solutions have been derived for
most of the standard cases (Stone, 1975). For the moving target prob-
lem, the emphasis in search theory has shifted from mathematical and
analytical solutions to algorithmic solutions (Benkoski et al., 1991). A
typical type of search problem, called the path constraint search prob-
lem (PCSP), that takes into account the movement of the searcher,
was investigated by several researchers (Eagle and Yee, 1990; Stewart,
1980; Hohzaki and Iida, 1995b; Hohzaki and Iida, 1995a). Because of the
NP-complete nature of this problem, most authors proposed a number
of heuristic approaches that result in “approximately optimal” solutions.
The two-sided search problem can be treated as a game problem for both
the searcher and target strategies. This has been the topic of a number
of research works (Danskin, 1968; Hohzaki and Iida, 2000; Washburn,
1980). So far, search theory has paid little attention to the problem of
having a team of cooperating searchers. A number of heuristic methods
for solving this problem have been proposed by Dell and Eagle, 1996.

The Exhaustive Geographic Search problem deals with developing a
complete map of all phenomena of interest within a defined geographic
area, subject to the usual engineering constraints of efficiency, robustness
and accuracy (Spires and Goldsmith, 1998). This problem received much
attention recently, and algorithms have been developed that are cost-
effective and practical. Application examples of Exhaustive Geographic
Search include mapping mine fields, extraterrestrial and under-sea ex-
ploration, exploring volcanoes, locating chemical and biological weapons
and locating explosive devices (Spires and Goldsmith, 1998; Goldsmith
and Robinett, 1998; Hert et al., 1996; Choset and Pignon, 1997).

The obstacle avoidance literature deals with computing optimal paths
given some kind of obstacle map. The intent is to construct a physically
realizable path that connects the initial point to the destination in a way
that minimizes some energy function while avoiding all the obstacles
along the route (Cameron, 1994; Snorrason and Norris, 1999). Obstacle
avoidance is normally closely geared to the methods used to sense the
obstacles, as time-to-react is of the essence. The efficiency of obstacle
avoidance systems is largely limited by the reliability of the sensors used.
A popular way to solve the obstacle avoidance problem is the potential
field technique (Khatib, 1985). According to the potential field method,
the potential gradient that the robot follows is made up of two compo-
nents: the repulsive effect of the obstacles and the attractive effect of
the goal position. Although it is straightforward to use potential field

Cooperative Control of Air Vehicles)

techniques for obstacle avoidance, there are still several difficulties in
using this method in practical vehicle planning.

Derivative-Free Optimization methods deal with the problem of min-
imizing a nonlinear objective function of several variables when the
derivatives of the objective function are not available (Conn et al., 1997).
The interest and motivation for examining possible algorithmic solutions
to this problem is the high demand from practitioners for such tools. The
derivatives of objective function are usually not available either because
the objective function results from some physical, chemical or economical
measurements, or, more commonly, because it is the result of a possibly
very large and complex computer simulation. The occurrence of prob-
lems of this nature appear to be surprisingly frequent in the industrial
setting. There are several conventional deterministic and stochastic ap-
proaches to perform optimization without the use of analytical gradient
information or measures of the gradient. These include, for example, the
pattern and coordinate search (Torczon, 1997; Lucidi and Sciandrone,
1997), the Nelder and Mead Simplex Method (Nelder and Mead, 1965),
the Parallel Direct Search Algorithm (Dennis and Torczon, 1991), and
the Multi-directional Search Method (Torczon, 1991). In one way or
another, most derivative free optimization methods use measurements
of the cost function and form approximations to the gradient to decide
which direction to move. Passino, 2001 provides some ideas on how to
extend non-gradient methods to team foraging.

2. Cooperative Control Formulation

We consider N agents deployed in some search region X of known
dimension. As each agent moves around in the search region, it obtains
sensory information about the environment, which helps to reduce the
uncertainty about the environment. This sensory information can be in
the form of an image, which can be processed on-line to determine the
presence of a certain entity or target. Alternatively, it can be in the form
of a sensor coupled with automatic target recognition (ATR) software.
In addition to the information received from its own sensors, each agent
also receives information from other agents via a wireless communication
channel. The information received from other agents can be in raw form
or it may be pre-processed, and it may be coming at a different rate
(usually at a slower rate) or with a delay, as compared to the sensor
information received by the agent from its own sensors.

Depending on the specific application, the global objective pursued
by the team of agents may be different. In this chapter, we focus mainly
on the problem of cooperative search, where the team of agents seeks to

6

follow a trajectory that would result in maximum gain in information
about the environment; i.e., the objective is to minimize the uncertainty
about the environment. However, the ideas and approach presented here
can be extended to other missions such as cooperative engagement and
classification, evading threats, etc.

Each agent has two basic control loops that are used in guidance and
control, as shown in Figure 1.1. The “outer-loop” controller for agent
A; utilizes sensor information from A;, as well as sensor information
from A, j # i, to compute on-line a desired trajectory (path) to follow,
which is denoted by P;(k). The sensor information utilized in the feed-
back loop is denoted by v; and may include information from standard
vehicle sensors (e.g. pitch, yaw, etc.) and information from on-board
sensors that has been pre-processed by resident ATR software. The sen-
sor information coming from other agents is represented by the vector
]T

V;Z[Ul,...,vi_l,vi+1,...,UN)

where v; represents the information received from agent A;. Although
in the above formulation it appears that all agents are in range and can
communicate with each other, this is not a required assumption—the
same framework can be used for the case where some of the information
from other agents is missing, or the information from different agents
is received at different sampling rates, or with a communication delay.
The desired trajectory P;(k) is generated as a digitized look-ahead path
of the form

Pi(k) = {pi(k),pi(k +1),...,pi(k +q)},

where p;(k + 7) is the desired location of agent A; at time k + 7, and ¢
is the number of look-ahead steps in the path planning procedure.

Information from SEHSSd
other agents g TS TTT T T T T T T T (e
Trajectory ! Actuator y fori-thagent
Vi X tofollow ! p inputs |
—— | Guidance [Path Following| [
v »| Controller : Controller Aj ! >
i v, 1
1! 1
1 1
1 1

Figure 1.1. Inner- and outer-loop controllers for guidance and control of air vehicles.

The inner-loop controller uses sensed information v; from A; to gen-
erate inputs u; to the actuators of A; so that the agent will track the
desired trajectory P;(k). We largely ignore the agent dynamics, and
hence concentrate on the outer-loop control problem. In this way, our

Cooperative Control of Air Vehicles 7

focus is solidly on the development of the controller for guidance, where
the key is to show how resident information of agent A; can be combined
with information from other agents so that the team of agents can work
together to minimize the uncertainty in the search region X.

The design of the outer-loop control scheme is broken down into two
basic functions, as shown in Figure 1.2. First, it uses the sensor infor-
mation received to update its “search map”, which is a representation
of the environment—this will be referred to as the agent’s learning func-
tion, and for convenience it will be denoted by £;. Based on its search
map, as well as other information (such as its location and direction, the
location and direction of the other agents, remaining fuel, etc.), the sec-
ond function is to compute a desired path for the agent to follow—this is
referred to as the agent’s guidance decision function, and is denoted by
D;. In this setting we assume that the guidance control decisions made
by each agent are autonomous, in the sense that no agent tells another
what to do in a hierarchical type of structure, nor is there any negotia-
tion between agents. Fach agent simply receives information about the
environment from the remaining agents (or a subset of the remaining
agents) and makes its decisions, which are typically based on enhancing
a global goal, not only its own goal. Therefore, the presented framework
can be thought of as a passive cooperation framework, as opposed to
active cooperation where the agents may be actively coordinating their
decisions and actions.

Guidance Controller

1
1
1
1
1
i 1
———— > Learning Decision-making (I
| strategies, storage for where to search, !
v 1 of information about what to engage, !
i ! environment how to evade :
1
1
1
1

Figure 1.2. Learning and decision-making components of the outer-loop controller
for trajectory generation of air vehicles.

2.1. Distributed Learning

Each agent has a three dimensional map, which we will refer to as
“search map,” that serves as the agent’s knowledge base of the environ-
ment. The z and y coordinates of the map specify the location in the

8

target environment (i.e., (z,y) € X'), while the z coordinate specifies the
certainty that the agent “knows” the environment at that point. The
search map will be represented mathematically by an on-line approxi-
mation function as

z=8(z,y;0),

where (z,y) is a point in the search region X, and the output z € [0, 1]
corresponds to the certainty about knowing the environment at the point
(x,y) in the search region. If S(x,y;#) = 0 then the agent knows nothing
(is totally uncertain) about the nature of the environment at (z,y).
On the other hand, if S(z,y;0) = 1 then the agent knows everything
(or equivalently, the agent is totally certain) about the environment at
(z,y). As the agent moves around in the search region it gathers new
information about the environment which is incorporated into its search
map. Also incorporated into its search map is the information received
by communication with other agents. Therefore, the search map of each
agent is continuously evolving as new information about the environment
is collected and processed.

We define S : & x R? — [0, 1] to be an on-line approximator (for
example, a neural network), with a fixed structure whose input/output
response is updated on-line by adapting a set of adjustable parameters,
or weights, denoted by the vector 8 € R?. According to the standard
neural network notation, (z,y) is the input to the network and z is the
output of the network. The weight vector 6(k) is updated based on an
on-line learning scheme, as is common for example in training algorithms
of neural networks.

In general, the search map serves as a storage place of the knowledge
that the agent has about the environment. While it is possible to cre-
ate a simpler memory/storage scheme (without learning) that simply
records the information received from the sensors, a learning scheme has
some key advantages: 1) it allows generalization between points; 2) in-
formation from different types of sensors can be recorded in a common
framework (on the search map) and discarded; 3) it allows greater flex-
ibility in dealing with information received from different angles; 4) in
the case of dynamic environments (for example, targets moving around),
one can conveniently make adjustments to the search map to incorporate
the changing environment (for example, by reducing the output value z
over time using a decay factor).

In this general framework, the tuning of the search map can be viewed
as “learning” the environment. Mathematically, S tries to approximate
an unknown function S*(z,y, k), where for each (z,y), the function S*
characterizes the presence (or not) of a target; the time variation indi-
cated by the time step k is due to (possible) changes in the environment

Cooperative Control of Air Vehicles 9

(such as having moving targets). Hence, the learning problem is defined
as using sensor information from agent 4; and information coming from
other agents A;, 7 # i at each sampled time k, to adjust the weights

0(k) such that

|S@,y:0k)) = 8" (@, k)

(z,y)eX

is minimized.

Due to the nature of the learning problem, it is convenient to use
spatially localized approximation models so that learning in one region
of the search space does not cause any “unlearning” at a different region
(Weaver et al., 1998). The dimension of the input space (z, y) is two, and
therefore there are no problems related to the “curse of dimensionality”
that are usually associated with spatially localized networks. In general,
the learning problem in this application is straightforward, and the use of
simple approximation functions and learning schemes is sufficient; e.g.,
the use of piecewise constant maps or radial basis function networks,
with distributed gradient methods to adjust the parameters, provides
sufficient learning capability. However, complexity issues do arise and
are crucial since the distributed nature of the architecture imposes limits
not only on the amount of memory and computations needed to store
and update the maps but also in the transmission of information from
one agent to another.

At the time of deployment, it is assumed that each agent has a copy
of an initial search map estimate, which reflects the current knowledge
about the environment X. In the special case that no a priori infor-
mation is available, then each point on the search map is initialized as
“completely uncertain.” In general, each agent is initialized with the
same search map. However, in some applications it may be useful to
have agents be “specialized” to search in certain regions, in which case
the search environment for each agent, as well as the initial search map,
may be different.

2.2. Distributed Path Planning

One of the key objectives of each agent is to on-line select a suitable
path in the search environment X. To be consistent with the motion dy-
namics of physical vehicles (and, in particular, air vehicles), it is assumed
that each agent has limited maneuverability, which is represented by a
maximum angle 6, that the agent can turn from its current direction.
For simplicity we assume that all agents move at a constant velocity
(this assumption can be easily relaxed).

10

To describe the movement path of agent A; between samples, we
define the movement sampling time T, as the time interval in the move-
ment of the agent. In this framework, we let p;(k) be the position (in
terms of (z,y) coordinates) of i-th agent at time ¢ = kT,,, with the
agent following a straight line in moving from p;(k) to its new position
pi(k +1). Since the velocity p of the air vehicle is assumed to be con-
stant, the new position p;(k + 1) is at a distance uT,, from p;(k), and
based on the maneuverability constraint, it is within an angle +6,, from
the current direction, as shown in Figure 1.3. To formulate the opti-
mization problem as an integer programming problem, we discretize the
arc of possible positions for p;(k + 1) into m points, denoted by the set

Pilk +1) = {p}(k+1), prk+1), ... p(k+1), ...ﬁgn(kﬂ)}.

Therefore, the next new position for the i-th agent belongs to one of the
elements of the above set; i.e., p;(k+ 1) € P;(k + 1).

.

P
'./1
.
o

Pk, pice)
// »

g

Figure 1.3. Selection of the next point in the path of the vehicle.

The agent selects a path by choosing among a possible set of future
position points. In our formulation we allow for a recursive ¢g-step ahead
planning, which can be described as follows:

m When agent A; is at position p;(k) at time k, it has already decided
the next g positions: p;(k + 1), pi(k +2), ..., pi(k + ¢q).

m While the agent is moving from p;(k) to p;(k + 1) it selects the
position p;(k + g + 1), which it will visit at time t = k 4+ ¢ + 1.

To get the recursion started, the first ¢ positions, p;(1), p;(2), ..., pi(q)
for each agent need to be selected a priori. Clearly, ¢ = 1 corresponds to
the special case of no planning ahead. The main advantage of a planning
ahead algorithm is that it creates a buffer for path planning. From a

Cooperative Control of Air Vehicles 11

practical perspective this can be quite useful if the agent is an air vehicle
that requires (at least) some trajectory planning. Planning ahead is also
useful for cooperation between agents since it may be communicated
to other vehicles as a guide of intended plan selection. This can be
especially important if there are communication delays or gaps, or if
the sampling rate for communication is slow. On the other hand, if the
integer ¢ is too large then, based on the recursive procedure, the position
pi(k) was selected ¢ samples earlier at time k — ¢; hence the decision may
be outdated, in the sense that it may have been an optimal decision at
time k — ¢, but based on the new information received since then, it may
not be the best decision anymore. The recursive g-step ahead planning
procedure is illustrated in Figure 1.4 for the case where g = 6.

plkra) -

Pk
P
Figure 1.4. Illustration of the recursive g-step ahead planning algorithm.

Given the current information available via the search map, and the
location/direction of the team of agents (and possibly other useful infor-
mation, such as fuel remaining, etc.), each agent uses a multi-objective
cost function J to select and update its search path. At decision sam-
pling time T}, the agent evaluates the cost function associated with each
path and selects the optimal path. The decision sampling time T is
typically equal to the movement sampling time 7},,. The approach can
be thought of as an “adaptive model predictive control” approach where
we learn the model that we use to predict ahead in time, and we use
on-line optimization in the formation of that model, and in evaluating
the candidate paths to move the agent along.

A key issue in the performance of the cooperative search approach is
the selection of the multi-objective cost function associated with each
possible path. Our approach is quite flexible in that it allows the char-
acterization of various mission-level objectives, and trade-offs between
these. In general, the cost function comprises of a number of sub-goals,
which are sometimes competing. Therefore the cost criterion J can be

12

written as:
J:w1J1 +w2J2+...+wst

where J; represents the cost criterion associated with the i-th subgoal,
and w; is the corresponding weight. The weights are normalized such
that 0 < w; < 1 and the sum of all the weights is equal to one; i.e.,
iy w; = 1. Priorities to specific sub-goals are achieved by adjusting
the values of weights w; associated with each subgoal.

The following is a list (not exhaustive) of possible sub-goals that a
search agent may include in its cost criterion. Corresponding to each
sub-goal is a cost-criterion component that need to be designed. For a
more clear characterization, these sub-goals are categorized according to
three mission objectives: Search (S), Cooperation (C), and Engagement
(E). In addition to sub-goals that belong purely to one of these classes,
there are some that are a combination of two or more missions. For
example, SE1 (see below) corresponds to a search and engage mission.

S1 Follow the path where there is maximum uncertainty in the search
map. This cost criterion simply considers the uncertainty reduc-
tion associated with the sweep region between the current position
pi(k) and each of the possible candidate positions p!(k + 1) for
the next sampling time (see the rectangular regions between p; (k)
and p! (k4 1) in Figure 1.5). The cost criterion can be derived by
computing a measure of uncertainty (or potential “gain” in knowl-
edge) in the path between p;(k) and each candidate future position

7 (k+1).

S2 Follow the path that leads to the region with the maximum uncer-
tainty (on the average) in the search map. The first cost criterion
pushes the agent towards the path with the maximum uncertainty.
However, this may not be the best path over a longer period of
time if it leads to a region where the average uncertainty is low.
Therefore, it’s important for the search agent to seek not only the
instantaneous minimizing path, but also a path that will cause the
agent to visit (in the future) regions with large uncertainty. The
cost criterion can be derived by computing the average uncertainty
of a triangular type of region associated with the heading direc-
tion of the agent (see the triangular regions ahead of p!(k + 1) in
Figure 1.5).

C1 Follow the path where there is the minimum overlap with other
agents. Since the agents are able to share their new information
about the search region, it is natural that they may select the same
search path as other agents (especially since in general they will be

Cooperative Control of Air Vehicles 13

pi(k)

Figure 1.5. Tllustration of the regions that are used in the cost function for finding
the optimal search path.

SE1l

utilizing the same search algorithm). This will be more pronounced
if two agents happen to be close to each other. However, in order
to minimize the global uncertainty associated with the emergent
knowledge of all agents, it is crucial that there is minimum over-
lap in their search efforts. This can be achieved by including a
cost function component that penalizes agents being close to each
other and heading in the same direction. This component of the
cost function can be derived based on the relative locations and
heading direction (angle) between pairs of agents. This component
of the cost function is investigated more thoroughly in Section 3.

Follow the path that mazimizes coverage of the highest priority tar-
gets. In mission applications where the agents have a target search
map with priorities assigned to detected targets, it is possible to
combine the search of new targets with coverage of discovered tar-
gets by including a cost component that steers the agent towards
covering high priority targets. Therefore, this leads to a coordi-
nated search where both coverage and priorities are objectives.

E1 Follow the path toward highest priority targets with most certainty if

fuel is low. In some applications, the energy of the agent is limited.
In such cases it is important to monitor the remaining fuel and
possibly switch goals if the fuel becomes too low. For example,
in search-and-engage operations, the agent may decide to abort
search objectives and head towards engaging high priority targets
if the remaining fuel is low.

14

EC1 Follow the path toward targets where there will be minimum over-
lap with other agents. Cooperation between agents is a key issue
not only in search patterns but also—and even more so—in en-
gagement patterns. If an agent decides to engage a target, there
needs to be some cooperation such that no other agent tries to go
after the same target; i.e., a coordinated dispersed engagement is
desirable.

The above list of sub-goals and their corresponding cost criteria pro-
vide a flavor of the type of issues associated with the construction of the
overall cost function for a general mission. In addition to incorporat-
ing the desired sub-goals into the cost criterion (i.e., maximize benefit),
it is also possible to include cost components that reduce undesirable
sub-goals (minimize cost). For example, in order to generate a smooth
trajectory for a UAV such that it avoids—as much as possible—the loss
of sensing capabilities during turns, it may be desirable to assign an ex-
tra cost for possible future positions on the periphery (large angles) of
the set P;.

3. On-Line Cooperation by Distributed Agents

The framework developed in this chepter is based on distributed agents
working together to enhance the global performance of a multi-agent
system — in contrast to a framework where distributed agents may be
competing with each other for resources. Therefore, one of the key issues
in cooperative control is the ability of distributed agents to coordinate
their actions and avoid overlap. In a decentralized environment, coop-
eration between agents may not come natural since every agent tries to
optimize its own behavior. In typical complex scenarios it may not be
clear to an individual agent how its own behavior is related to the global
performance of the multi-agent system.

To illustrate this, consider the following “Easter egg hunt” scenario:
each agent is asked to pick up Easter eggs from a field. For simplicity, we
assume that the location of the eggs is known (no search is necessary).
Each agent is initialized at some location in the field and its goal is to
decide which direction to go. The velocity of each agent is fixed and
once an agent is at the location of an egg then that egg is considered
as having been picked. The global performance criterion is for all the
eggs to be pick up in the minimum possible time. This simple scenario
provides a nice framework for illustrating some of the key concepts of
cooperative behavior. For example, an agent A4; may be tempted to head
towards the direction of the closest Easter egg even though this may not
enhance the global performance criterion if another agent A; is closer

Cooperative Control of Air Vehicles 15

to that egg and will get there before agent A;. On the other hand, just
because agent A; is closest to that particular egg it does not necessarily
imply that it will pick it up before agent A; (it may go after some other
eggs). If the Easter egg hunt problem was to be solved in a centralized
framework then it would be rather easier to assign different eggs to
different agents. However, in a distributed decision making setting, each
agent is required to make decisions for enhancing the global performance
criterion without having a clear association between its own action and
the global cost function. In uncertain environments (for example, if the
location of a certain Easter egg is not known unless the agent is within
a certain distance and possibly within a certain heading angle from the
egg) decisions need to be made on-line and therefore the cooperation
issue becomes more challenging.

Cooperation between agents can be considered at different levels. For
example, if each agent can perform several tasks (such as search for
targets, classification, engagement and evaluation of attack) then co-
operation between agents may involve coordinating their behavior while
making decisions on which task to perform at what time. In this chapter,
we are primarily focusing on the cooperative search problem. Therefore,
the global objective of the team of agents is to update the overall search
map (which represents the knowledge of the environment) in the mini-
mum amount of time. To achieve this, each agent has a responsibility
to select its path to benefit the team by selecting a path with mini-
mum overlap with other agents’ paths, as described earlier (sub-goal
C1). Next we develop a real-time approach to realize the cooperative
search activities among a team of distributed agents.

Before going into the details we present the main idea of the coopera-
tive search scheme. Each agent possesses information about past paths
of other agents via inter-agent communication. As discussed before, this
information is used for updating the search map of each agent. There-
fore, an agent is able to avoid going over paths previously searched by
other agents simply by evaluating its search map and following a path
that would result in maximum gain. However, this does not prevent
an agent from following a path that another agent is about to follow,
or has followed since the last communication contact. Therefore, the
main idea of the proposed on-line cooperation scheme is for each agent
to try to avoid selecting a path that may be followed by another agent
in the near future. In this framework, paths of other agents are treated
as “soft obstacles” to be avoided in path selection. However, special
consideration is given to scenarios where path overlap may occur at ap-
proximately right angles, since in this case the overlap time is quite
minimum, thereby not worth causing an interception in an agent’s path

16

planning. In other words, the scenario that should be avoided is two
agents close to each other and heading in approximately the same direc-
tion. By treating paths of other vehicles as “soft obstacles” we employ
a type of artificial potential field method (Khatib, 1985) to derive an
algorithm for generating the “rivaling force” that neighboring agents’
paths may exert on a certain vehicle. The overall rivaling force exerted
on an agent is taken into consideration in deciding which direction the
vehicle will follow. Next we discuss the details of this approach.

3.1. Rivaling Force Between Agents

According to the proposed cooperative search framework, at time k,
agent A; uses the g-step ahead planning to select the position p;(k+ g+
1) € Pi(k+q+1), which it will visit at time ¢ = k+¢+1. By communicat-
ing with other vehicles at time ¢ = k — d (where d is the communication
delay), agent A; knows their ¢-step ahead positions p;(k + ¢ — d) and
heading directions hj(k + ¢ — d) (measured in degrees from a reference
direction). The rivaling force Fj;(k) exerted by agent A; onto agent A;
at time £ is non-zero if both of the following conditions hold:

1 The location p;(k+q—d) of agent A; is within a maximum distance
£ and maximum angle +¢ from the location of agent 4; (see the
shaded region in Figure 1.6).

2 The difference in heading angle x;;(k) between agent A; and agent
A; lies within either [—x, x] or [180° — x, 180° + x], where ¥ is
the maximum allowed difference in heading angle.

Figure 1.6. Illustration of conditions that generate non-zero rivaling forces between
agents.

The first condition imposes a requirement that agent A; needs to be
sufficiently close to agent A; before it exerts any rivaling force on A;. In

Cooperative Control of Air Vehicles 17

addition to the distance, the angle between the two locations needs to be
within £¢. This requirement prevents a vehicle A; which is behind A;
from exerting any rivaling force on A;. In such a situation, there will be
a rivaling force in the opposite direction from A; to A;. In the scenario
shown in Figure 1.6, agents A2 and A3 satisfy Condition 1 with respect
to their position to agent 4;, while agent A4 does not satisfy Condition
1.

The second condition imposes the requirement that in order for agent
A; to exert a rivaling force on agent A; it must either be heading in
approximately the same direction, or be coming from approximately the
opposite direction. This condition prevents the generation of any rival-
ing force if the two vehicles are heading in approximately perpendicular
directions. Due to maneuverability constraints on the vehicles, the pos-
sible overlap in the paths of two agents is significant only if the heading
angles are close to each other. At the same time, it is not desirable to
impede the path of a vehicle if there is another vehicle coming at ap-
proximately right angles. In the scenario shown in Figure 1.6, agents
As and A4 satisfy Condition 2 with respect to their heading direction
in relation to agent A; (because both angles x12, x14 are small), while
agent A3 does not satisfy Condition 2. Therefore, only agent A5 satisfies
both Conditions 1 and 2, and therefore it is the only one that exerts any
rivaling force on agent Aj.

For vehicles satisfying both Conditions 1 and 2, the next step is to
compute the magnitude and direction of the rivaling force exerted on
agent A;. The main objective here is that the magnitude of the rivaling
force Fjj(k) exerted by agent A; onto agent A; at time k should be
“large” if agent A; is close to the path of agent A;, and should get
smaller as agent A; is further away from the path of agent A;. This
approach is similar to artificial potential field methods, which are used
in many applications, including the problem of obstacle avoidance of
robotic systems. In our case, the obstacle to be avoided is actually the
path of another vehicle.

Based on this formulation, we select the rivaling force to be of the
form

oy | ke P g, if Conditions 1 and 2 hold
Fij(k) = { 0 otherwise (1)

where ki, o are positive design constants, p;; is the shortest distance
between agent A; and the path of agent A;, and p;; is a unit vector of
the corresponding normalized partial derivative (see Figure 1.7). Typ-
ically k1 will be a large constant, corresponding to the magnitude of
the rivaling force if the distance p;; is zero. Note that since we treat

18

paths of neighboring agents as “soft obstacles” there is no need to set
the magnitude of the rivaling force to oo as is sometimes done in the
case of obstacle avoidance problems. The design parameter « > 0 corre-
sponds to the rate at which the rivaling force is decreasing as the distance
pij is increasing. The rivaling force is not necessarily symmetric (i.e.,
F;j(k) # Fji(k) since it depends on the relative position and heading
direction of the two agents. In fact, as we saw earlier, it is possible for
F;j(k) to be zero while Fj;(k) is quite large (this would occur if agent
Aj is behind A; and heading in approximately the same direction). Fig-
ure 1.7 illustrates the potential field lines associated with the path of
agent Ao, and the resulting rivaling force exerted by Ay onto Aj.

Figure 1.7. Illustration of the potential field lines associated with the path of agent
As, and the resulting rivaling force exerted by A> onto A;.

As seen from Figure 1.7, the path of A that generates a rivaling force
onto A; includes not only the forward path but also some of the back-
ward (previous) path. The reason for this is that communication delays
may cause 4; to have incomplete (outdated) information about the path
followed by Ay. It is also noted that the actual path of an agent may
not be a straight line as assumed in Figure 1.7. However, due to maneu-
verability constraints, this is a reasonable and simple approximation of
the actual path for cooperation purposes.

The overall rivaling force exerted by the entire team of agents upon
an agent A; at time £ is given by

Fi(k) =Y Fij(k) (2)
j#i

Intuitively, according to the overall rivaling force F;(k) exerted on it,
agent A; is impelled to select a path p;(k + ¢ + 1), among the possible
set of paths P;(k+q+1), that is more in line with avoiding the paths of
other vehicles. Therefore, in addition to the magnitude of the rivaling
force, a key parameter is the angle difference between the direction of the
overall rivaling force Fj(k) and the direction of each possible path from

Cooperative Control of Air Vehicles 19

the set P;(k + ¢ + 1), which we denote by 0;(j, k). From a cooperative
viewpoint, the objective is to select the path with the minimum 6;(7, k)
among j € [1,2,... m].

3.2. Cooperation Cost Function

Using the algorithm described in Section 3.1, each agent can compute
the rivaling force exerted on it by other agents that are located in close
proximity and, based on the overall rivaling force, select an optimal path
that would minimize the overlap with paths of other vehicles. However,
avoidance of path overlap is only one of an agent’s objectives. Indeed,
its main objective is to search for (and possibly engage) targets. There-
fore, the goal of cooperation needs to be quantified as a cost function
component and integrated with the remaining components of the cost
criterion.

To integrate the cooperative sub-goal with other objectives, the coop-
eration cost function is required to generate a performance measure of
cooperation associated with each possible path. After normalization, the
cost function component for cooperation (denoted by J (3, j, k)) should
be a function mapping each possible path j € [1,2,...,m] into an inter-
val [0,1]. According to the formulation considered in this chapter, the
value of the cooperation cost function depends on the magnitude of the
overall rivaling force Fj(k) and the angle difference 60;(j, k) between the
direction of the overall rivaling force and the direction of each possible
path from the set P;(k + ¢ + 1). Figure 1.8 illustrates the case where
there are three possible paths for agent A; to follow. The corresponding
angles 61(1,k), 61(2,k), 61(3,k) are denoted by 6y, 02, O3 respectively
for diagrammatic simplicity. Hence, we consider a general function

Figure 1.8. Tllustration of computing the cooperation cost function.

J(i, 5, k) = f(IFi(K)], 0i(4,k))

where f : Rt x [-m, 7] — [0, 1] is required to have the following
attributes:

20

= As the magnitude of the rivaling force F;(k) becomes larger, the
differences in the normalized cost function values between alter-
native paths should become larger. In other words, if |Fj(k)| is
large then cooperation is a crucial issue and therefore there should
be a significant difference in the cooperation cost function to steer
the agent into selecting the path of maximal cooperation. On the
other hand, if |Fj(k)| is small then cooperation is not a crucial is-
sue, therefore the cooperation cost function component should be
approximately equal for each alternative path plan, thereby allow-
ing the agent to make its path decision based on the cost function
associated with the other sub-goals.

= As the magnitude of the angle difference 0;(j, k) becomes larger,
the differences in the normalized cost function values between al-
ternative paths should become larger. Again, if |6;(j,k))| is small
then cooperation is not a crucial issue, therefore, the cooperation
cost function component is approximately equal for each alterna-
tive path plan. If |6;(j,k))| is large then cooperation is a crucial
issue and therefore there should be a significant difference in the
cooperation cost function to steer the agent into selecting the path
of maximal cooperation.

Deriving an appropriate function f with these attributes is rather straight-
forward. In the simulations presented in the next section, we use the
following cooperative cost function

J(i, . k) = expl Fibleos(%57) (3)

where -y is a positive design constant.

It is important to note that the specific functions selected in Equa-
tion (1) for the rivaling force and in Equation (3) for the cooperative
cost function, are not as important as the attributes of these functions.
Specifically, other functions with the same attributes can be utilized to
obtain similar results.

4. Simulation Results

The approach described in this paper has been implemented and eval-
uated by several simulation studies. A representative sample of these
studies is presented in this section. First, we describe the details of the
cost function criterion and then present two simulations studies. In the
first simulation study, a team of UAVs is searching in a mostly unknown
environment. In the second simulation, we consider a scenario where the
environment consists of three targets whose location belongs to a certain
probability distribution.

Cooperative Control of Air Vehicles 21

4.1. Design of Simulation Experiment

According to the proposed cooperative path planning approach, each
agent uses a multi-objective cost function J to select and update its
search path. This approach is quite flexible in that it allows the char-
acterization of various mission-level objectives and facilitates possible
trade-offs. The simulation examples presented in this section consider
only the first three of the sub-goals (S1, S2, C1) described earlier. These
sub-goals correspond to the main issues associated with the cooperative
search problem.

The cost functions associated with each sub-goal are computed as
follows:

m The first cost function Jg (4,7, k) is the gain of agent A; on sub-
goal S1 if it selects path j € [1,2,...,m] at time k. It is a positive
value denoting the gain on the certainty of the search map by fol-
lowing path j at time k. The following function is used to evaluate
the actual gain obtained by selecting the jth path:

Ts1(i,g k) = Y [S(x,y;0(k)) — S(z,y;0(k —1))] (4)
(zy)ER;

where (z,y) denotes any point in the search area R;; that will
be encountered if agent A; follows path j, and S(z,y;0(k)) is the
certainty value of point (z,y) at time k.

m The second cost function Jso(i, 7, k) is used to evaluate the poten-
tial gain based on the average uncertainty of a triangular region

R; ; associated with the heading direction j. The cost function

Jg’g(i,j, k) is generated by

JSZ(iaja k) = Z (]- —S(ﬂj,y,g(k‘))) (5)
(m,y)GR’i,j

where (z,y) denotes all the points in the region R;’j.

m The third cost-function is used to evaluate the sub-goal C1, which
was formulated as

After normalizing the three cost-functions and selecting appropriate
weight coefficients, the overall multi-objective cost function is described
by

J(iy 4, k) = wy - Ts1(i, 4, k) +wa - Jsa(4, 4, k) + ws - Jo1(4,5,k) (7)

22

where J, for ¢ € {S1,52,C1} denote the normalized cost functions and
w; are the weights, which satisfy w; + wo + w3 = 1. In the simulation
examples different weight values were used to illustrate various aspects
of cooperation. The normalized cost functions J, are computed by

j — Jq(iaja k)
T max;{Jy(i, 5, k)}

Therefore, each cost function J, € [0, 1]. An agent A; selects a path
based on which j € [1,---,m] gives the largest value, as computed by

(7)-
4.2. High Uncertainty Environment

The first simulation study considers a scenario of high uncertainty in
the environment. The search region is a 200 by 200 area. It is assumed
that there is some a-priori information about the search region: the green
(light) polygons indicate complete certainty about the environment (for
example, these can represent regions where it is known for sure—due
to the terrain—that there are no targets); the blue (dark) polygons
represent partial certainty about the environment. The remaining search
region is assumed initially to be completely uncertain. First we consider
the case of two agents, and then we use a team of five agents.

In both simulations we are using the recursive ¢-step ahead planning
algorithm with ¢ = 3. The weights of the cost function are set to:
w; = 0.3125, wy = 0.375, wy = 0.3125, which gives approximately
equal importance to each of the three sub-goals. The parameters of the
potential field function used for sub-goal C1 are set to: k; = 50, @ = 1,
Yo = 1. The results for the case of two agents are shown in Figure 1.9.
The upper-left plot shows a standard search pattern for the first 500 time
samples, while the upper-right plot shows the corresponding result for a
random search, which is subject to the maneuverability constraints. The
standard search pattern utilized here is based on the so-called zamboni
coverage pattern (Ablavsky and Snorrason, 2000). The lower-left plot
shows the result of the cooperative search method based on the recursive
g-step ahead planning algorithm.

The search map used in this simulation study is based on piecewise
constant basis functions, and the learning algorithm is a simple update
algorithm of the form 0(k+1) = 0.560(k)+0.5, where the first encounter of
a search block results in the maximum reduction in uncertainty. Further
encounters result in reduced benefit. For example, if a block on the
search map starts from certainty value of zero (completely uncertain)
then after four visits from (possibly different) agents, the certainty value

Cooperative Control of Air Vehicles 23

Standard Search (500 samples) Random Search(500 samples)
200} 200 =
1501 150 |
>100| >100F
501 50
ot of. L —
0 50 100 150 200
X
Comparison for the three search patterns
100
200} = — - Standard Search
s — Random Search
> 80 - N
= Coopearative Search
150+ 3 <,
£ <
g 60 e
> 100} 2 N
o 40
o
501 ‘g
g 20
[«
0 L
0
0 50 100 150 200 0 500 1000 1500 2000
X Sample (k)

Figure 1.9. Comparison of the cooperative search pattern with a “standard” search
pattern and a random search pattern for the case of two moving agents. The upper-left
plot shows a standard search pattern for the first 500 time samples; the upper-right
plot shows the corresponding search pattern in the case of a random search, subject to
some bounds to restrict the agent from deserting the search region; The lower-left plot
shows the cooperative search pattern based on the recursive g-step ahead planning
algorithm; the lower-right plot shows a comparison of the performance of the three
search patterns in terms of reducing uncertainty in the environment.

changes to 0 — 0.5 — 0.75 — 0.875 — 0.9375. The percentage of
uncertainty is defined as the distance of the certainty value from one.
In the above example, after four encounters the block will have 6.25%
percentage of uncertainty. The cooperative search algorithm has no pre-
set search pattern. As seen from Figure 1.9, each agent adapts its search
path on-line based on current information from its search results, as well
as from search results of the other agents.

To compare the performance of the three search patterns, the lower-
right plot of Figure 1.9 shows the percentage of uncertainty with time
for the standard search pattern, the random search pattern and the co-
operative search pattern described above. The ability of the cooperative
search algorithm to make path planning decisions on-line results in a
faster rate of uncertainty reduction. Specifically, after 2000 time steps

24

the percentage of uncertainty in the environment reduces from approx-
imately 85% initially to 40.4%, 34.4%, 29.2% for the random search,
standard search, and cooperative search, respectively. Therefore, there
is approximately a 15% improvement with the cooperative search over
the standard search. This is mainly due to the presence of some known
regions, which the standard search and random search algorithms are
not trying to avoid.

The corresponding results in the case of five agents moving in the same
environment is shown in Figure 1.10. The results are analogous to the

Standard Search (200 samples) Random Search(200 samples)
200f [200| e
10t [1501 [
> 100 >100f |
sor [50(7.
of MG of -k . ")
0 50 100 150 200 0 50 100 150 200
X X
Comparison for the three search patterns
100
200 = — = Standard Search
s — Random Search
2 80 —— Coopearative Search
150 ‘3 i
£
8 60
=
>100 2
o
o 40
<
50 <
8
5 20
o
0
0
0 50 100 150 200 0 500 1000 1500 2000
X Sample (k)

Figure 1.10. Comparison of the cooperative search pattern with a “standard” search
pattern and a random search pattern for the case of five moving agents. The upper-left
plot shows a standard search pattern for the first 200 time samples; the upper-right
plot shows the corresponding search pattern in the case of a random search, subject to
some bounds to restrict the agent from deserting the search region; The lower-left plot
shows the cooperative search pattern based on the recursive g-step ahead planning
algorithm; the lower-right plot shows a comparison of the performance of the three
search patterns in terms of reducing uncertainty in the environment.

case of two agents. After 2000 time steps the percentage of uncertainty
in the environment reduces to 13.9%, 12.0%, 7.1% for the random search,
standard search, and cooperative search, respectively.

Cooperative Control of Air Vehicles 25

In these simulation studies, we assume that the sampling time 75, = 1
corresponds to the rate at which each agent receives information from its
own sensors, updates its search map and makes path planning decisions.
Information from other agents is received at a slower rate. Specifically,
we assume that the communication sampling time 7, between agents is
five times the movement sampling time; i.e., T, = 57T,,. For fairness
in comparison, it assumed that for the standard and random search
patterns the agents exchange information and update their search maps
in the same way as in the cooperative search pattern, but they do not
use the received information to make on-line decisions on where to go.

It is noted that in these simulations the path planning of the coopera-
tive search algorithm is rather limited since at every sampled time each
agent is allowed to either go straight, left, or right (the search direction
is discretized into only three possible points; i.e., m = 3). The left and
right directions are at angles of —15° and +15° respectively from the
heading direction, which reflects the maneuverability constraints of the
vehicles. As the complexity of the cooperative search algorithm is in-
creased and the design parameters (such as the weights associated with
the multi-objective cost function) are fine-tuned or optimized, it is an-
ticipated that the search performance can be further enhanced.

4.3. Low Uncertainty Environment

In this second simulation study we consider a more structured envi-
ronment, where we assume that according to the a-priori information
there are three targets whose location is uncertain but satisfies a cer-
tain Gaussian distribution. The environment is again a 200 by 200 area
and the assumed center of Gaussian probability distributions of each
target is located at the coordinates (50, 50), (100, 150), (150, 100), as
shown in Figure 1.11. The probability of the target distribution satisfies
a Gaussian distribution of the form

1 x
plz,y) = ez @), 8)

where d.(z,y) is the minimum distance of the point (z,y) from one
of the three target distribution centers, and o is a constant given by
o = 2my/1200. If an agent passes through a point (z,y) that none of
the agents have visited before then the team derives a target search gain
described by the probability distribution p(z,y) given in (8). Once a
point is visited by at least one agent then no further target search gain
is assumed available. This is slightly different from the simulation study
of the high uncertainty environment where the gain was decreased with
every visit to a particular position.

26

In the simulation shown in Figure 1.11 we compare the performance of
three different runs, all based on the search procedure developed in this
paper using the recursive g-step ahead planning algorithm. The team of
agents consists of five vehicles with the same maneuverability constraints
as in the first simulation study. The only difference between the three
runs is the amount of cooperation included, as defined by the third cost
function component Joi. The upper left plot shows the trajectories
of the team of agents using the cooperative search algorithm with the
weights selected as w; = 1/8, we = 2/8, wy = 5/8. In the second
simulation run, shown in the upper right plot, we show the trajectories
selected by the five vehicles for a weakly cooperative system with the
weights selected as wy = 1/4, wy = 2/4, ws = 1/4. Finally, in the third
simulation run there is no cooperation between the five agents, in the
sense that the weights are set to: wy; = 1/3, wy =2/3, wg = 0.

As seen from Figure 1.11, in the case of the cooperative search al-
gorithm (upper left) the five vehicles split up between the two nearest
targets and soon they also cover the distant target. In the case of the
weakly cooperative search algorithm (upper right) the five agents first
go to the nearest target on the lower left, and from there, some agents go
to the other two targets. In the case of non-cooperation (lower left plot)
all five vehicles head for the nearest target on the lower left and spend
considerable time there before they move on to the other targets (in
fact, the simulation shows 200 time steps—as compared to 100 samples
for the other two simulation runs—because during the first 100 steps all
five vehicles remained at the first target). With no cooperation there is
significant overlap of the paths of vehicles.

The performance of the three search patterns for the first 200 time
steps is shown in the lower right plot of Figure 1.11 in terms of the
percentage of target search gain over time. The percentage of target
search gain is computed as the total gain of all five vehicles at time k
divided by the initial total target search gain in the environment. After
200 time steps the target search gain for the cooperative search is 59.3%,
for the weakly cooperative search it is 54.1% and for the non-cooperative
search it is 42.8%. It is noted that in this simulation study we do not
show the performance of a “standard search pattern” and the random
search algorithm because comparably both do not perform well due to
the highly structured environment.

5. Stability Analysis of Swarms

There are many types of swarming behaviors in nature such as in
flocks of birds, herds of wildebeests, groups of ants, and swarms of

Cooperative Control of Air Vehicles

Cooperative Search (100 samples)

27

Weakly Cooperative Search (100 samples)

200 200
150 150+
> 100 >100r
50 501
0 o
0 50 100 150 200 0 50 100 150 200
X X
Non-Cooperative Search (200 samples) Comparison for the three search patterns
100
200 — = Cooperative Search
= gol Weakly Cooperative Search
& — Non-Cooperative Search
150 =
©
© 60 -
-
>100 ; o -
%) g -
Loy N £ 40¢ -,
'} ; @ PR
50 Iy o5) g -
) #°3 o 20f L
. e N -
0
0 50 100 150 200 0 50 100 150 200
X Sample (k)

Figure 1.11. Comparison of the cooperative search pattern with a “weakly cooper-

ative” search pattern and a non-cooperative search pattern for the case of five mov-
ing agents searching for three targets located according to a Gaussian distribution
function around three center points. The upper-left plot shows a cooperative search
pattern for the first 100 time samples; the upper-right plot shows the corresponding
search pattern in the case of a weakly cooperative search algorithm; The lower-left
plot shows the non-cooperative search pattern for the first 200 time samples; the
lower-right plot shows a comparison of the performance of the three search patterns
in terms of the percentage of target search gain over time for each of the three search
patterns.

bees, or colonies of social bacteria (Bonabeau et al., 1999; Passino,
2001; Shaw, 1962). The field of “artificial life” has used computer simu-
lations to study how “social animals” interact, achieve goals, and evolve
(Reynolds, 1987; Millonas, 1994). There is significant interest in swarm-
ing in robotics (Brooks, 1999; Arkin, 1998; Beni and Wang, 1989; Fukuda
et al., 1992; Mataric, 1992; Dudek and et al., 1993; Suzuki and Ya-
mashita, 1997; Reif and Wang, 1999b; Gelenbe et al., 1997), intelligent
transportation systems (Rule, 1974; Fenton and Mayhan, 1991; Swaroop
and Rajagopal, 1999), and military applications (Pachter and Chan-
dler, 1998; Singh et al., 2000; Yan et al., 2000). Stability analysis of
swarms is still an open problem but there have been several areas of

28

relevant progress. In biology, researchers have used “continuum mod-
els” for swarm behavior based on non-local interactions, and have stud-
ied stability properties (Grindrod, 1988; Modilner and Edelstein-Keshet,
1999; Lizana and Padron, 1999; Mogilner and Edelstein-Keshet, 1999).
At the same time, a number of physicists have done important work
on swarming behavior. They usually call swarm members self-driven
or self-propelled particles and analyze either the dynamic model of the
density function or perform simulations based on a model for each in-
dividual particle (Rauch et al., 1995; Toner and Tu, 1995; Toner and
Tu, 1998; Csahok and Vicsek, 1995; Vicsek et al., 1995; Cgzirok et al.,
1996; Czirok and Vicsek, 2000; Mikhailov and Zanette, 1999; Shimoyama
et al., 1996; Levine and Rappel, 2001). In Jin et al., 1994, the authors
studied stability of synchronized distributed control of one-dimensional
and two-dimensional swarm structures (the methods there are related to
load balancing in computer networks (Passino and Burgess, 1998; Bert-
sekas and Tsitsiklis, 1989)). Moreover, swarm “cohesiveness”was char-
acterized as a stability property and a one-dimensional asynchronous
swarm model was constructed by putting many identical single finite-
size vehicular swarm members together, which have proximity sensors
and neighbor position sensors that only provide delayed position infor-
mation in Liu et al., 2001a; Liu et al., 2001b. For this model, Liu
et al., 2001a; Liu et al., 2001b showed that for a one-dimensional sta-
tionary edge-member swarm, total asynchronism leads to asymptotic
collision-free convergence and partial asynchronism leads to finite time
collision-free convergence even with sensing delays. Furthermore, con-
ditions were given in Liu et al., 2001b; Liu et al., 2001c, under which
an asynchronous mobile swarm following (pushed by) an “edge-leader”
can maintain cohesion during movements even in the presence of sens-
ing delays and asynchronism. Also, this work was expanded upon in
Gazi and Passino, 2001, with the study of other local decision-making
mechanisms and by exploiting the analysis approaches from the the-
ory of parallel and distributed computation (Bertsekas and Tsitsiklis,
1989). Stability of inter-vehicle distances in “platoons” and traffic in in-
telligent transportation systems have been studied (Bender and Fenton,
1970; Swaroop, 1995; Fenton, 1979; Hedrick and Swaroop, 1994; Rule,
1974; Swaroop and Rajagopal, 1999) and stable robust formation control
for aircraft and microsatellites is relevant (Singh et al., 2000; Yan et al.,
2000).

Cooperative Control of Air Vehicles 29

5.1. Modeling and Analysis Via Nonlinear
Asynchronous Difference Equations

Swarm stability for the M > 2 dimensional case with a fixed com-
munication topology will be discussed in this section by extending the
results in Liu et al., 2001a; Liu et al., 2001b; Liu et al., 2001c. Our
approach uses a discrete time discrete event dynamical system approach
(Passino and Burgess, 1998), and unlike the studies of platoon stabil-
ity in intelligent transportation systems and flight formation control we
avoid detailed characteristics of low level “inner-loop control” and vehi-
cle dynamics in favor of focusing on high level mechanisms underlying
qualitative swarm behavior when there are imperfect communications.

Single Swarm Member Model. An M-dimensional (M > 2)
swarm is a set of N swarm members that moves in the M-dimensional
space. Assume each swarm member has a finite physical size (radius)
w > 0 and its position is the center of it. It has a “proximity sensor,”
which has a sensing range with a radius € > w around each member.
In the M = 2 case, it is a circular-shaped area with a radius e > w
around each member as shown in Figure 1.12. Once another swarm
member reaches a distance of € from it, the sensor instantaneously indi-
cates the position of the other member. However, if its neighbors are not
in its sensing range, the proximity sensor will return oo (or, practically,
some large number). The proximity sensor is used to help avoid swarm
member collisions and ensures that our framework allows for finite-size
vehicles, not just points. Each swarm member also has a “neighbor po-
sition sensor” which can sense the positions of neighbors around it if
they are present. We assume that there is no restriction on how close
a neighbor must be for the neighbor position sensor to provide a sensed
value of its position. The sensed position information may be subjected
to random delays (i.e., each swarm member’s knowledge about its neigh-
bors’ positions may be outdated). We assume that each swarm member
knows its own position with no delay. Notice that we define the position,
distance and sensor sensing range of the finite-size swarm member with
respect to its center, not its edge.

Swarm members like to be close to each other, but not too close. Sup-
pose d > ¢ is the desired “comfortable distance” between two adjacent
swarm neighbors, which is known by every swarm member. Each swarm
member senses the inter-swarm member distance via both neighbor posi-
tion and proximity sensors and makes decisions for movements via some
position updating algorithms, which is according to the error between
the sensed distance and the comfortable distance d. And then, the deci-

30

sions are inputted to its “driving device,” which provides locomotion for
it. Each swarm member will try to move to maintain a comfortable dis-
tance to its neighbors. This will tend to make the group move together
in a cohesive “swarm.”

M-Dimensional Asynchronous Swarm Model with a Fixed Com-
munication Topology. An M-dimensional swarm is formed by
putting many of the above single swarm members together on the M-
dimensional space. A example of M = 2 dimensional swarm is shown
in Figure 1.12. Let z’(t) denote the position vector of swarm mem-
ber i at time . We have z'(t) = [z}(¢),z5(t),...,2%,(#)]" € RM,
i=1,2,...,N, wherez! (t),m = 1,2,..., M, is the m*" position coordi-
nate of member 7. We assume that there is a set of times 7' = {0, 1,2,...}
at which one or more swarm members update their positions. Let
T' C T,i = 1,2,...,N, be a set of times at which the i*» member’s
position z’(t),t € T, is updated. Notice that the elements of 7% should
be viewed as the indices of the sequence of physical times at which up-
dates take place, not the real times. These time indices are non-negative
integers and can be mapped into physical times. The T%,i =1,2,..., N,
are independent of each other for different ¢. However, they may have
intersections (i.e., it could be that T° NTJ # () for i # j), so two or
more swarm members may move simultaneously. Here, our model as-
sumes that swarm member ¢ senses its neighbor positions and update its
position only at time indices ¢ € T* and at all times ¢ ¢ T?, 2%(t) is left
unchanged. A variable T]Z:(t) € T is used to denote the time index of the
real time where position information about its neighbor j was obtained
by member i at t € T* and it satisfies 0 < T;(t) < tfort € T'. Of course,
while we model the times at which neighbor position information is ob-
tained as being the same times at which one or more swarm members
decide where to move and actually move, it could be that the real time
at which such neighbor position information is obtained is earlier than

the real time where swarm members moved. The difference ¢ — T]Z:(t)

between current time ¢ and the time T;(t) is a form of communication
delay (of course the actual length of the delay depends on what real
times correspond to the indices ¢, T;(t)) Moreover, it is important to
note that we assume that T]Z:(t) > T]Z:(tl) if t > ¢’ for t,t/ € T". This
ensures that member 7 will use the most recently obtained neighbor po-
sition information. Furthermore, we assume swarm member ¢ will use
the real-time neighbor position information x7(¢) provided by its prox-
imity sensors instead of information from its neighbor position sensors
27 (74(t)) if its neighbor 5 is connected to i on its communication topol-

J
ogy. This information will be used for position updating until member

Cooperative Control of Air Vehicles 31

1 gets more recent information, for example, from its neighbor position
sensor. Next, based on Bertsekas and Tsitsiklis, 1989, we specify two
assumptions that we use to characterize asynchronism for swarms.

Assumption 1. (Total Asynchronism): Assume the sets T, i =
1,2,...,N, are infinite, and if for each k, t, € T" and t, — oo as
k — oo, then limy_, T]Z:(tk) =o00,j=1,2,...,N and j #i.

This assumption guarantees that each swarm member moves infinitely
often and the old position information of neighbors of each swarm mem-
ber is eventually purged from it. On the other hand, the delays t—T]Z:(t) in
obtaining position information of neighbors of member 7 can become un-
bounded as ¢ increases. Next, we specify a more restrictive type of asyn-
chronism, but one which can accurately model timing in actual swarms.

Assumption 2. (Partial Asynchronism): There exists a positive
integer B (i.e., B € ZT, where Z+ represents the set of positive integers)
such that: (a) For every i and t > 0, t € T, at least one of the elements
of the set {t,t +1,...,t + B — 1} belongs to T®. (b) There holds t — B <
sz:(t) <t foralij=1,2,...,N and j # i, and all t > 0 belonging to
T
Notice that for the partial asynchronism assumption, each member moves
at least once within B time indices and the delays ¢ — T;(t) in obtaining
position information of neighbors of member i is bounded by B, i.e.,
0<t—7i(t) <B.

Assume that initially a set of N swarm members is randomly dis-
tributed in the M-dimensional space. We assume that |z| = V2 Tz and
|z*(0) — 27(0)| > d, for i,j = 1,2,...,N,i # j initially. We are study-
ing several ways to establish communication topologies, including an
initial distributed construction of the communication topology, and dis-
tributed dynamic reconfiguration of the communication topology (e.g.,
based on locality measures). To keep things simple here suppose that
the communication topology is fixed based on the initial conditions (in
an appropriate way so that evolving dynamics will not result in certain
types of deadlock and collisions). An example of such a communication
topology in the M = 2 case is shown by several dashed lines in Figure
1.12. Assume that the swarm members begin to update its position via
this fixed communication topology at their updating time indices. In
particular, swarm member s+ 1,4 =1,2,..., N — 1, tries to maintain a
comfortable distance d to its neighbor 7 so that it moves only according
to the sensed position of member 3.

Let e!(t) = z'(t) — z*t(t), i = 1,2,...,N — 1, denote the distance
vector between swarm members ¢ + 1 and 7. Assume the direction of
e'(t) is from the position of member i + 1 to the position of member i

32

Figure 1.12. An M-dimensional (M = 2) N-member asynchronous swarm with a
fixed communication topology (dashed line), all members moving to be adjacent to
the stationary member (member 1).

and |e’(t)| = \/(e?(t)) Tei(t), where |€'(t)| denotes its value. In addition,
let the function g(|e’(t)| — d) denote the attractive and repelling rela-
tionship between two swarm neighbors with respect to the error between
le?(t)| and the comfortable distance d. We define two different types of g
functions below, g,(|e’(t)| —d) and g¢(|e*(t)| —d), to denote two different
kinds of attractive and repelling relationships that are used to establish
different swarm convergence properties.
Assume that for a scalar 8 > 1, g4(|e?(t)| — d) is such that

L1 D1 -) < gallef®)] - d) < ()] —), () —d) > 0: (9)

B . .
ga(le' ()] —d) = (le*(¢
(I (®)] — d) < ga(le' (1) — d) <

| —d) =0, if (|e’(t)] —d) =0; (10)
(le ()] = d), if(le’(B)] — d) < 0. (11)

| =&

Equation (9) indicates that if (|e’(t)] — d) > 0, then swarm member
position z't1 is too far away from the position 2’ so there is an attrac-
tive relationship between swarm members ¢ + 1 and ¢. In addition, the
low bound %(|el(t)| —d) for g,(|e*(t)| — d) guarantees that swarm mem-
ber’s moving step cannot be infinitely small during its movements to its
desired position if (|e’(t)| — d) is not infinitely small. The constraint
go(let(t)] — d) < (|é'(t)] — d) ensures that it will not “over-correct”
for the inter-swarm member distance. Equation (10) indicates that if
(le?(t)] — d) = 0, then swarm member position z**! is at a comfortable
distance d from the position z* so there are no attractive or repelling
relationship. Equation (11) indicates that if (|e?(¢)| —d) < 0, then swarm
member position z*t! is too close to the position z*, so member i + 1
tries to move away from member .

Cooperative Control of Air Vehicles 33

Assume that for some scalars £ and 7, such that 8 > 1, and n > 0,
gr(|e’(t)| — d) satisfies

%(Iei(t)l —d) <gr(le(D)] = d) < (le"()] = d), if (| ()| = d) > n; (12)
gr(le'(®)| = d) = (le"(t)| = d), if —n < (Je'(t)| —d) <5 (13)

(le' ()] = d) < gp(le’(t)| —d) < %(Iez(t)l —d), if ([e'(t)| — d) < —n. (14)
These relationships are similar to those for g, except if —n < (|e*(t)| —
d) < 7, the two swarm members can move to be at the comfortable
inter-swarm member distance within one move. It is not difficult to
show that in the above M-dimensional swarm, if swarm members only
update their positions according to either g function, collisions will have
never happen even without proximity sensors (with appropriate initial
conditions for the given topology).

A mathematical model for the above M-dimensional swarm is given
by

st+1) = 2Mt),vte Tt
22 42 2L 208)) — 22(8)] — z (17 (1)) — 2*(t)
(t+1) = 2(t) +g(a (rF(1) —2*(1)] -) [W(ﬁm)) _xQ(m],
Vt e T?
AU D) = 2V 4 gl 2) - V(D] — d)
N2 (N () — 2V (1) .
' _|$N—2(T%_—§(t)) —IN—1<t>|] - wer
Nt +1) = V() + gl N (1) — 2V ()] — d)
[V (N (1) — 2N (2)
GEEw) —xN(t>|] , veer”
g (t+1) = zi(t), Vt¢ T, i=1,2,...,N (15)

Here, each item in brackets is a unit vector which represents the moving
direction of each swarm member, and each g function item in front of
the brackets is a scalar, which is the “step size” of each swarm member.
It is simple to rewrite the “error system” for the study of inter-member
dynamics.

34

Convergence Analysis of M-Dimensional Asynchronous Swarms.
Lemma 1. For an N = 2 totally asynchronous swarm modeled by

ei(t +1) = ei(t) - g(|ei(Tii+1(t))| —d) l%] Vi e T

eEt+1) = €it), Vtg T, (16)

where member i remains stationary, |€'(0)] > d, and g = g,, it is the
case that for any v, 0 < v < |€(0)| — d, there exists a time t' such that
let(t")| € [d,d + 7] and also lim;_,o €' (t)| = d.

Lemma 2. For an N = 2 partially asynchronous swarm modeled
by Equation (16) but with g = g¢, where member i remains stationary,
|e"(0)| > d, the inter-member distance of members i+ 1 and i, |e'(t)| will
converge to d in some finite time, that is bounded by B[%(|ei(0)| —d -
n) + 2].

We can build on the N = 2 case and show that the following results

hold since if we have partial asynchronism and appropriate constraints
on reduction of inter-member distance errors we will get finite-time con-
vergence.
Theorem 1. (Partial Asynchronism, Finite Time Convergence):
For an N-member M-Dimensional swarm with g = gy, N > 2, Assump-
tion 2 (partial asynchronism) holds, and |e*(0)| > d, the swarm members’
inter-neighbor distance |e*(t)|, i = 1,2,...,N — 1, will converge to the
comfortable distance d in some finite time, that is bounded by

B[g(Zuei(on A=) 42, fori=1,2... N—1.

3

where e'(0) is the initial inter-neighbor distance.

The proofs are omitted due to space constraints. However, it is useful
to point out that the proof of Theorem 1 entails more than a straightfor-
ward Lyapunov analysis; due the presence of asynchronism and delays
typical choices for a Lyapunov function are not nonincreasing at each
step (see discussion below and Figure 1.13(b)). It is the case, however,
that at every time instant there exists a future time where a “Lyapunov-
like” function will decrease. Our proof utilizes an induction approach
over the communication topology, and relies on this essential fact. Fi-
nally, notice that for an N-member M-dimensional totally asynchronous
swarm with g = g,, N > 2, if Assumption 1 (total asynchronism) holds,
and |€’(0)| > d, we can use Lemma 1 to prove that the swarm members’
inter-neighbor distance |e¢/(t)|, i = 1,2,...,N — 1, will asymptotically
converge to the comfortable distance d.

Cooperative Control of Air Vehicles 35

Simulation To Illustrate Swarm Dynamics. We will simu-
late the swarm in Figure 1.12 converging to be adjacent to a stationary
member under the assumptions of Theorem 1. In particular, we choose
parameters for the attraction-repulsion function, asynchronous timing
characteristics, and sensing delays for a swarm of 10 members with a
communication topology that is a simple line connecting the 10 mem-
bers (and member 1 is stationary). The results of the simulation are
given via time “snapshots” shown in Figure 1.13(a). Figure 1.13(b)
shows the inter-member distances, and illustrates that due to the delays
and asynchronism they do not decrease at every step (a key feature that
complicates the stability analysis).

t=0sec

60
40 [+]

20 o

80

60
40 o

20

80

60

40

20

0

80

60

40

20

t=0.4 sec

20

40

t=15sec

0004

H,

(@) (Left) Swarm with line-topology converging to

stationary member.

(b) (Above) Inter-member distances (with goal of
converging to inter-member distance of 5).

0 20 40 60 80 0 20 40 60 80

Figure 1.13. M = 2 dimensional asynchronous 10-member swarm converging.

Stable Mobile Swarm Formations. Extending the results of the
above sections to the mobile case (i.e., in transit swarm) where there is
a single leader follows directly from our previous analysis for the one-
dimensional mobile swarm case (Liu et al., 2001b; Liu et al., 2001c). We
are working now to extend the results to: (i) certain distributed dynamic
reconfigurations of the communications topology, (ii) and certain “swarm
formations.” Notice that if we can extend the above results to request
each member to follow the member that it is trying to converge to, not at
an arbitrary following position on a fixed radius of size d, but at a fixed
angle and inter-member distance following position, then we can form a
“line” that sweeps out a pattern, and if we join two such lines we can
get a “V” (according to which certain birds often fly during migration).
Clearly, we can use basic joined line topologies to produce many swarm
formations in the two dimensional case. Moreover, the results are easy
to extend to the M-dimensional case so that for instance we can study
stability of moving “spheres” of agents or other shapes such as those
typically employed by swarming honey bees.

36

6. Concluding Remarks

Advances in distributed computing and wireless communications have
enabled the design of distributed agent systems. One of the key issues
for a successful and wide deployment of such systems is the design of
cooperative decision making and control strategies. Traditionally, feed-
back control methods have focused mostly on the design and analysis of
centralized, inner-loop techniques. Decision and control of distributed
agent systems requires a framework that is based more on cooperation
between agents, and outer-loop schemes. In addition to cooperation, is-
sues such as coordination, communication delays and robustness in the
presence of losing one or more of the agents are crucial. In this chap-
ter, we have presented a framework for cooperative search and derived
stability results for multi-dimensional swarms. The proposed framework
consists of two main components: learning the environment and using
that knowledge to make intelligent high-level decisions on where to go
(path planning) and what do to. We have presented some ideas regard-
ing the design of a cooperative planning algorithm based on a recursive
g-step ahead planning procedure and developed a real-time approach for
on-line cooperation between agents. These ideas were illustrated with
simulation studies by comparing them to a restricted random search, a
standard search pattern, as well as a non-cooperative search algorithm.

References

Ablavsky, V. and Snorrason, M. (2000). Optimal search for a moving
target: a geometric approach. In ATAA Guidance, Navigation, and
Control Conference and Ezhibit, Denver, CO.

Albus, J. and Meystel, A. (2000). Engineering of Mind: An Intelligent
Systems Perspective. John Wiley and Sons, NY.

Arkin, R. (1998). Behavior-Based Robotics. MIT Press, Cambridge, MA.

Bender, J. and Fenton, R. (1970). On the flow capacity of automated
highways. Transport. Sci., 4(1):52—63.

Beni, G. and Wang, J. (1989). Swarm intelligence in cellular robotics
systems. In Proceedings of NATO Advanced Workshop on Robots and
Biological System, pages 703-712.

Benkoski, S., Monticino, M., and Weisinger, J. (1991). A survey of the
search theory literature. Naval Research Logistics, 38:469-494.

Bertsekas, D. and Tsitsiklis, J. (1989). Parallel and Distributed Compu-
tation Numerical Methods. Prentice Hall, NJ.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence:
From Natural to Artificial Systems. Oxford Univ. Press, NY.

REFERENCES 37

Breder, C. (1954). Equations descriptive of fish schools and other animal
aggregations. Ecology, 35:361-370.

Brooks, R. (1986). A robust layered control system for a mobile robot.
IEEE Trans. on Robotics and Automation, 2(1).

Brooks, R., editor (1999). Cambrian Intelligence: The Early History of
the New Al MIT Press, Cambridge, MA.

Cameron, S. (1994). Obstacle avoidance and path planning. Industrial
Robot, 21(5):9-14.

Choset, H. and Pignon, P. (1997). Coverage path planning: the boustro-
phedon cellular decomposition. In International Conference on Field
and Service Robotics, Canberra, Australia.

Conn, A., Scheinberg, K., and Toint, P. (1997). Recent progress in un-
constrained nonlinear optimization without derivatives. Mathematical
Programming, 79:397-414.

Csahok, Z. and Vicsek, T. (1995). Lattice-gas model for collective bilog-
ical motion. Physical Review E, 52(5):5297-5303.

Czirok, A., Ben-Jacob, E., Cohen, I., and Vicsek, T. (1996). Formation of
complex bacterial colonies via self-generated vortices. Physical Review
E, 54(2):1791-1801.

Czirok, A. and Vicsek, T. (2000). Collective behavior of interacting self-
propelled particles. Physica A, 281:17-29.

Danskin, J. (1968). A helicopter versus submarines search game. Oper-
ations Research, 16:509-517.

Dell, R. and Eagle, J. (1996). Using multiple searchers in constrainted-
path moving-targer search problems. Naval Research Logistics, 43:463—
480.

Dennis, J. and Torczon, V. (1991). Direct search methods on parallel
machines. SIAM Journal Optimization, 1(4):448-474.

Drogoul, A., Tambe, M., and Fukuda, T., editors (1998). Collective
Robotics. Springer Verlag, Berlin.

Dudek, G. and et al. (1993). A taxonomy for swarm robots. In IEEE/RS.J
Int. Conf. on Intelligent Robots and Systems, Yokohama, Japan.

Eagle, J. and Yee, J. (1990). An optimal branch-and-bound procedure
for the constrained path moving target search problem. Operations
Research, 38:11-114.

Fenton, R. (1979). A headway safety policy for automated highway op-
eration. IEEE Trans. Veh. Technol., VT-28:22-28.

Fenton, R. and Mayhan, R. (1991). Automated highway studies at the
Ohio State University - an overview. IEEE Trans. on Vehicular Tech-
nology, 40(1):100-113.

Fukuda, T., Ueyama, T., and Sugiura, T. (1992). Self-organization and
swarm intelligence in the society of robot being. In Proceedings of

38

the 2nd International Symposium on Measurement and Control in
Robotics, pages 787-794, Tsukuba Science City, Japan.

Gazi, V. and Passino, K. M. (2001). Stability of a one-dimensional
discrete-time asynchronous swarm. In Proc. of the IEEE Int. Symp.
on Intelligent Control, pages 7-7, Mexico City.

Gelenbe, E., Schmajuk, N., Staddon, J., and Reif, J. (1997). Autonomous
search by robots and animals: A survey. Robotics and Autonomous
Systems, 22:23-34.

Gillen, D. and Jacques, D. (2000). Cooperative behavior schemes for
improving the effectiveness of autonomous wide area search munitions.
In Workshop on Cooperative Control and Optimization, University of
Florida, Gainesville.

Godbole, D. (1999). Control and coordination in uninhabited combat
air vehicles. In Proceedings of the 1999 American Control Conference,
pages 1487-1490.

Goldsmith, S. and Robinett, R. (1998). Collective search by mobile
robots using alpha-beta coordination. In Drogoul, A., Tambe, M.,
and Fukuda, T., editors, Collective Robotics, pages 136—146. Springer
Verlag: Berlin.

Grindrod, P. (1988). Models of individual aggregation or clustering in
single and multi-species communities. Journal of Mathematical Biol-
09y, 26:651-660.

Hackwood, S. and Beni, S. (1992). Self-organization of sensors for swarm
intelligence. In IEEFE Int. Conf. on Robotics and Automation, pages
819-829, Nice, France.

Hedrick, J. and Swaroop, D. (1994). Dynamic coupling in vehicles under
automatic control. Vehicle System Dynamics, 23(SUPPL):209-220.
Hert, S., Tiwari, S., and Lumelsky, V. (1996). A terrain-covering algo-

rithm for an AUV. Autonomous Robots, 3:91-119.

Hohzaki, R. and Tida, K. (1995a). An optimal search plan for a moving
target when a search path is given. Mathematica Japonica, 41:175—
184.

Hohzaki, R. and Iida, K. (1995b). Path constrained search problem with
reward criterion. Journal of the Operations Research Society of Japan,
38:254-264.

Hohzaki, R. and Tida, K. (2000). A search game when a search path is
given. Furopean Journal of Operational Reasearch, 124:114-124.

Hristu, D. and Morgansen, K. (1999). Limited communication control.
Systems € Control Letters, 37(4):193-205.

Jacek, W. (1999). Intelligent Robotic Systems: Design, Planning, and
Control. Klwer Academic / Plenum Pub., NY.

REFERENCES 39

Jacques, D. and Leblanc, R. (1998). Effectiveness analysis for wide area
search munitions. In Proceedings of the AIAA Missile Sciences Con-
ference, Monterey, CA.

Jin, K., Liang, P., and Beni, G. (1994). Stability of synchronized dis-
tributed control of discrete swarm structures. In IEEE International
Conference on Robotics and Automation, pages 1033-1038, San Diego,
California.

Khatib, O. (1985). Real-time obstacle avoidance for manipulators and
mobile robots. In Proceedings of the 1985 IEEE International Confer-
ence on Robotics and Automation, pages 500-505, St. Louis, MO.

Koontz, B. S. (1997). A multiple vehicle mission planner to clear unex-
ploded ordinance from a network of roadways. Master’s thesis, Mas-
sachusetts Inst. of Tech.

Koopman, B. (1980). Search and Screening: General principles with His-
torical Application. Pergarnon, New York.

Levine, H. and Rappel, W.-J. (2001). Self-organization in systems of
self-propelled particles. Physical Review E, 63(1):017101-1-017101-4.

Liu, Y., Passino, K., and Polycarpou, M. (2001c). Stability analysis of
one-dimensional asynchronous mobile swarms. Submitted to the 40th
IEEE Conference on Decision and Control.

Liu, Y., Passino, K., and Polycarpou, M. (2001a). Stability analysis of
one-dimensional asynchronous swarms. To appear in the Proceedings
of the 2001 American Control Conference.

Liu, Y., Passino, K., and Polycarpou, M. (2001b). Stability analysis of
one-dimensional asynchronous swarms. Submitted to IEEE Transac-
tion on Automatic Control.

Lizana, M. and Padron, V. (1999). A specially discrete model for aggre-
gating populations. Journal of Mathematical Biology, 38:79-102.

Lucidi, S. and Sciandrone, M. (1997). On the global convergence of
derivative free methods for unconstrained optimization. Technical Re-
port, Univ. di Roma ”La Sapienza”.

Mataric, M. (1992). Minimizing complexity in controlling a mobile robot
population. In IEEFE Int. Conf. on Robotics and Automation, pages
830-835, Nice, France.

Mikhailov, A. S. and Zanette, D. H. (1999). Noise-induced breakdown of
coherent collective motion in swarms. Physical Review E, 60(4):4571—
4575.

Miller, R. and Stephen, W. (1996). Spatial relationships in flocks of
sandhill cranes (Grus canadensis). Ecology, 47:323-327.

Millonas, M. (1994). Swarms, phase transitions, and collective intelli-
gence. In Artificial Life I, pages 417-445. Addison-Wesley.

40

Modilner, A. and Edelstein-Keshet, L. (1999). A non-local model for a
swarm. Journal of Mathematical Biology, 38:534-570.

Mogilner, A. and Edelstein-Keshet, L. (1999). A non-local model for a
swarm. Journal of Mathematical Biology, 38:534-570.

Nelder, J. and Mead, R. (1965). A simplex method for function mini-
mization. Computer Journal, 7:308-313.

Pachter, M. and Chandler, P. (1998). Challenges of autonomous control.
IEEE Control Systems Magazine, pages 92-97.

Passino, K. (2001). Biomimicry of bacterial foraging for distributed op-
timization and control. To appear, IEEE Control Systems Magazine.

Passino, K. and Burgess, K. (1998). Stability Analysis of Discrete Event
Systems. John Wiley and Sons Pub., New York.

Rauch, E. M., Millonas, M. M., and Chialvo, D. R. (1995). Pattern for-
mation and functionality in swarm models. Physics Letters A, 207:185—
193.

Reif, J. and Wang, H. (1999a). Social potential fields: a distributed be-
havioral control for autonomous robots. Robotics and Autonomous
Systems, 27:171-194.

Reif, J. H. and Wang, H. (1999b). Social potential fields: A distributed
behavioral control for autonomous rebots. Robotics and Autonomous
Systems, 27:171-194.

Reynolds, C. (1987). Flocks, herds, and schools: A distributed behavioral
model. Comp. Graph, 21(4):25-34.

Richardson, H. (1987). Search theory. In Chudnovsky, D. and Chud-
novsky, G., editors, Search Theory: Some Recent Developments, pages
1-12. Marcel Dekker, New York, NY.

Rule, R. (1974). The dynamic scheduling approach to automated vehi-
cle macroscopic control. Technical Report EES-276A-18, Transport.
Contr. Lab., Ohio State Univ., Columbus, OH.

Shaw, E. (1962). The schooling of fishes. Sci. Am., 206:128-138.

Shimoyama, N., Sugawa, K., Mizuguchi, T., Hayakawa, Y., and Sano,
M. (1996). Collective motion in a system of motile elements. Physical
Review Letters, 76(20):3870-3873.

Singh, S., Chandler, P., Schumacher, C., Banda, S., and Pachter, M.
(2000). Adaptive feedback linearizing nonlinear close formation con-
trol of UAVs. In Proceedings of the 2000 American Control Confer-
ence, pages 854-858, Chicago, IL.

Snorrason, M. and Norris, J. (1999). Vision based obstacle detection and
path planetary rovers. In Unmanned Ground Vehicle Technology II,
Orlanso, FL.

Spires, S. and Goldsmith, S. (1998). Exhaustive geographic search with
mobile robots along space-filling curves. In Drogoul, A., Tambe, M.,

REFERENCES 41

and Fukuda, T., editors, Collective Robotics, pages 1-12. Springer Ver-
lag: Berlin.

Stewart, T. (1980). Experience with a branch-and-bound algorithm for
constrained searcher motion. In Haley, K. and Stone, L., editors,
Search Theory and Applications, pages 247-253. Plenum Press, New
York.

Stone, L. (1975). Theory of Optimal Search. Acadamic Press, New York.

Stone, L. (1983). The process of search planning: Current approachs and
the continuing problems. Operational Research, 31:207-233.

Suzuki, I. and Yamashita, M. (1997). Distributed anonymous mobile
robots: formation of geometric patterns. SIAM J. COMPUT., 28(4):1347—
1363.

Swaroop, D. (1995). String Stability of Interconnected Systems: An Ap-
plication to Platooning in Automated Highway Systems. PhD the-
sis, Department of Mechanical Engineering, University of California,
Berkeley.

Swaroop, D. and Rajagopal, K. (1999). Intelligent cruise control systems
and traffic flow stability. Transportation Research Part C: Emerging
Technologies, 7(6):329-352.

Toner, J. and Tu, Y. (1995). Long-range order in a two-dimensional
dynamical zy model: How birds fly together. Physical Review Letters,
75(23):4326-4329.

Toner, J. and Tu, Y. (1998). Flocks, herds, and schools: A quantitative
theory of flocking. Physical Review E, 58(4):4828-4858.

Torczon, V. (1991). On the convergence of the multidirectional search
algorithm. STAM Journal Optimization, 1(1):123-145.

Torczon, V. (1997). On the convergence of pattern search algorithms.
SIAM Journal Optimization, 7(1):1-25.

Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., and Shochet, O. (1995).
Novel type of phase transition in a system of self-propelled particles.
Physical Review Letters, 75(6):1226-1229.

Washburn, A. (1980). Search-evasion game in a fixed region. Operations
Research, 28:1290-1298.

Weaver, S., Baird, L., and Polycarpou, M. (1998). An analytical frame-
work for local feedforward networks. IEEE Transactions on Neural
Networks, 9(3):473-482.

Yan, Q., Yang, G., Kapila, V., and Queiroz, M. (2000). Nonlinear dy-
namics and output feedback control of multiple spacecraft in elliptical
orbits. In Proceedings of the 2000 American Control Conference, pages
839-843, Chicago, IL.

