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Abstract — Searching a spatially extended envi-
ronment using autonomous mobile agents is a prob-
lem that arises in many applications, e.g., search-
and-rescue, search-and-destroy, intelligence gathering,
surveillance, disaster response, exploration, etc. Since
agents such as UAV’s are often energy-limited and op-
erate in a hostile environment, there is a premium on
efficient cooperative search without superfluous com-
munication. In this paper, we consider how a group of
mobile agents, using only limited messages and incom-
plete information, can learn to search an environment
efficiently. In particular, we consider the issue of cen-
tralized vs. decentralized intelligence and the effect of
opportunistic sharing of learned information on search

performance.

I. INTRODUCTION

Algorithms for searching an extended environment have
been studied extensively [6, 5, 1], but recent advances in
autonomous vehicle technology, robotics, wireless commu-
nication and miniaturization have given the problem a new
aspect: Cooperative search by a population of autonomous
agents [3, 2, 4]. Typically, the search involves covering a
region, locating and identifying potential targets or situa-
tions that require a response. This paradigm is applicable
to many types of missions, including search and destroy,
search and rescue, mine-clearing, autonomous munitions
deployment, exploration, prospecting, etc. The basic idea
is for a group of IV agents to explore the environment while
satisfying three requirements:

e Speed: The search should be as fast as possible.
e Coverage: The entire environment must be covered.

e Efficiency: Scarce resources (e.g., energy) must be
conserved.

While agents can certainly search the environment with-
out cooperation, the search can be made much more effi-
cient by using cooperation to minimize duplicated effort.

However, the control algorithms for achieving such coop-
eration can be difficult to design.

The problem of cooperative search is essentially one of
planning efficient search paths — paths that yield a max-
imum of new information. If each agent in the system has
access to the current coverage status of the environment
and the positions and plans of all other agents, it can, in
theory, plan the best path for itself. However, in realis-
tic systems, this ideal condition is violated in two ways.
First, given the extent of the environment and the lim-
ited energy resources of the agents, it is unreasonable to
expect an agent to be aware of all others. Typically, it
would only have knowledge of those in its close proximity.
Second, since all agents make their decisions simultane-
ously, it is logically impossible for each of them to know
the current plans of all others. But the plans still interact.
Thus, each agent must make its plan based on incomplete
and/or outdated information about the plans of others —
a situation sometimes referred to as “bounded rationality”
in economics.

We have previously reported on a recursive approach
to cooperative search using multi-objective cost functions
and g-step path planning [4]. In this paper, we consider
a simple version of the search problem using a discretized
cellular space with agents that move synchronously with
a constant speed. In this framework, agents may repre-
sent unmanned air vehicles (UAV’s) searching a geograph-
ical region for a target. Such UAV’s generally have lim-
ited communication and turning capabilities. In order to
search the environment efficiently, each agent needs to pre-
dict the state of its search neighborhood in the near future.
Agents do this using feed-forward neural networks trained
by a reinforcement learning (RL) algorithm [7]. Such algo-
rithms have been used successfully in robotics and multi-
agent systems [8]. The goal of the research reported here
is to explore two issues:

e Comparing the performance of a centralized learning
(CL) approach, where all agents use the same neu-
ral network for their predictions, and a decentralized
learning (DL) approach, where each agent has its own,
independently trained network.



e Determining whether opportunistic copying of supe-
rior predictors by unsuccessful agents in the DL sce-
nario leads to improvement in performance and speed
of learning.

The rationale behind this study is as follows. One would
expect that, in a homogeneous environment, a centralized
“brain”, being trained with information from all agents,
would be better than several “mini-brains”, each trained
on the limited experience of a single agent. However, the
CL approach has several drawbacks: 1) Since all agents
rely on the same neural network, the time to obtain a
prediction increases with the number of agents; 2) All
agents are forced to follow the same prediction model,
thus precluding the possibility of better models emerging;
3) Constant communication between agents and the cen-
tral network is needed, thus wasting energy; and 4) The
approach is not robust, since error or malfunction in the
central network can disrupt the whole system. Also, the
CL approach breaks down completely in non-homogeneous
environments. The DL approach, on the other hand, im-
plicitly explores the space of possible predictive models as
each agent builds its own network. However, the informa-
tion used in training each agent’s network is necessarily
limited to the agent’s own experience. One possible way
around this is to have agents occasionally compare their
models, and have less successful agents adopt the models
of more successful ones with some copying probability. We
call this the opportunistic cooperative learning (OCL) ap-
proach to prediction because agents use the opportunity
afforded by proximity to improve performance. This es-
sentially sets up a guided random search in model space
— similar to that performed by simulated annealing and
genetic algorithms.

In this paper, we consider how the copying probability
affects the performance of the system relative to the CL
and DL methods. While it is possible to envision several
models for the copying probability, for simplicity we focus
only on the case when it is constant. Results for more
sophisticated models will be reported in the future.

II. PROBLEM DEFINITION

The environment consists of a L, x L, grid with peri-
odic boundary conditions. Each grid position is termed
a cell. Each cell (x,y) has an associated certainty value,
Zz,y € [0,1], representing the degree to which it has been
searched. There may be locations with a pre-specified cer-
tainty of 1, indicating that they are of no interest for the
search. The certainties for all locations in the environ-
ment are recorded on a continuously updated certainty
map, zg,(t), which is observable by all agents. This cen-
tralized map is used only for simplicity, since our goal is to

compare different learning policies. In future papers, we
will consider decentralized methods for the construction
and use of certainty maps.

The certainty for each cell is initialized to a value that
reflects a priori information about that location. A visit
by one agent to cell (z,y) at time ¢ increases certainty as

Zgy(t+1)

2oy (1) + 0.5[1 — 24, (1)]
= 1-05[1—z,(t)]

i.e., the increment in certainty is one half of the remain-
ing uncertainty. If m agents visit the cell at time ¢, the
certainty is updated as

Zoy(t+1) =1—=0.5™[1 = 25 ,(1)]

Thus, the incremental benefit for each agent at (z,y) di-
minishes by a factor of 0.5. The change in certainty is
incorporated into the certainty map immediately.

The reward for entering cell (z,y) at time ¢ + 1 is the
increment in certainty caused by that entry shared equally
by all entering agents. Thus, if m agents enter cell (z,y)
at time ¢ + 1, each agent, i, gets reward

pi(t +1) = T&é@ +1) - Naé@ﬁ\s

A total of N identical agents are involved in a continuous
search of the environment. Their goal is to increase the
total certainty over the environment as rapidly as possible.
To this end, each agent attempts to satisfy two objectives:

e Search Reward Maximization: Obtaining as large
a search as possible (on average).

e Cooperation: Avoiding simultaneous exploration of
the same location by more than one agent.

These objectives guide the agents in planning their paths
through the environment.

Agent Dynamics and Planning:

At time ¢, agent 7 has grid position (z;(t),y;(t)), and can
be in one of eight possible orientations, 0;(t): 0 (north),
1 (northeast), 2 (east), 3 (southeast), 4 (south), 5 (south-
west), 6 (west), and 7 (northwest). Each agent plans its
path ¢ steps ahead of its current location, adding a new
move at each time-step [4]. For this report, we use ¢ = 2.
Thus, at time-step ¢, the agent selects its position for t+ 2,
the position for ¢t + 1 having already been selected at step
t — 1. At time-step t, the agent executes an action com-
prising the following three steps:

1. It chooses a new orientation, o;(t + 2) € {o;(t + 1) —
1,0:(t + 1),0;(t + 1) + 1} mod 8, i.e., the new ori-
entation can change by at most one step. Note that
0;(t + 1) is known from step ¢ — 1.



2. It then designates the neighbor of (z;(t+1),y:(t+1))
facing orientation o;(t + 2) as (z;(t + 2),y;(t + 2)).

3. Finally, it moves to grid location (z;(t + 1), y;(t + 1))
with orientation o;(t + 1).

This essentially means that, at every step, the agent ei-
ther continues to move in the same direction as before or
changes course to left or right by 45°, giving it three possi-
ble choices for step t+2. We designate these by I; = (z,y!)
(left), f; = AHW,SJ (front), and r; = (af,y7) (right). Fig-
ure 1 shows this graphically for various orientations. Note
that I;, f;, and r; depend on time ¢, but we omit this in
the notation for clarity. Limiting the agents’ turning ca-
pability to 45° reflects the limitations often present with
UAV’s.

If agent ¢ can move to a cell in n steps, the cell is said to
be a n-target for i. The set, Cp(x,y,t) of all agents that
have a cell (z,y) as a n-target at time ¢ is said to be that
cell’s n-competitor set.
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Figure 1: Possible move choices for agents in all 8 orientations.
Triangles indicate agents and arrows are the orientations.

III. METHOD

The main task for each agent at time-step t is to choose
one of three moves for ¢ + 2 given the already fixed move
for ¢t + 1. This is done by estimating (predicting) the ex-
pected reward for each 2-step target cell and selecting the
one with the best payoff. We consider two methods for
estimating reward:

Greedy Estimation: In this case, the agent, i, as-
sumes that it will be able to capture the entire reward

available at target location k (k € {l;, fi,r:}), thus esti-
mating
pi(t +2) = 0.5[1 — z(t)]

where z;(t) is the certainty of cell k = (z¥,y¥), k €
{l;, fi,i}. This naive estimate ignores two things. First,
it is possible that other agents may visit k at step ¢ + 1,
thus reducing the reward available to ¢ at ¢ 4+ 2. Second,
other agents may enter k at t+2, thus diluting the reward 4
receives. We use the naive estimate primarily to determine
a reasonable reference baseline for system performance.

Cooperative Estimation: This estimate takes into
account both the factors ignored by the greedy estimate. It
is determined as follows. Suppose v (t + 1) agents occupy
cell k at t + 1 and v (t + 2) (including i) at step ¢t + 2.
Then we get:

2t +1) =1—0.5" T[T — z.()]
and
2t +2) =1 — 057 EFDFeEE21 o ()

The reward obtained by ¢ in this case would be:

b
S@Q + Mv
¢

= af — z(t)]

pi(t +2) [k (t +2) = 21 (¢ + 1)

where
¢ = 0.57 1 — .57 (t42))

Thus, the reward is determined by three factors: 1) Cur-
rent certainty of k, zx(t); 2) Occupancy of k at ¢ + 1,
vp(t + 1); and 3) Occupancy of k at ¢t + 2, v (t + 2). Of
course, zi () is known from the certainty map and vy (¢+2)
cannot possibly be known. For v (t+1), two cases are pos-
sible:

e Case I, Communicative Agents: Since all agents
have already decided their move for step ¢+ 1 at time
t—1, vk (t+1) is, in fact, already determined at step ¢.
If agents in the neighborhood of i communicate their
planned moves to i, it can easily calculate vy (t + 1)
and zg(t 4+ 1) for each of the target cells.

e Case II, Secretive Agents: If agents in ¢’s neigh-
borhood do not communicate their plans to it, ¢ must
estimate vy (¢t + 1) based on current information.

In this paper, we currently only consider the case of
communicative agents. Thus, only v (¢ + 2) needs to be
estimated for k € {l;, fi,r;}. This is done based on six
items of information:



1. Occupancy information:

1), vy, (t +1)].

T\SQ + Cl\b@ +

2. Competition information:
1), ¢, (t + 1)], with

Tr@ + vanbﬁ +

1
Qwﬁwu_u Hv = W_QHAHWVEM@uuu_u Hv_

where |.| denotes cardinality, z¥ and y* are the coor-
dinates of target cell k, and S is a scaling constant
(we use B = 8).

Together, these two sets of values define the state for i,
si(t) = v, (t + Hvutb (t+1),vm(+1),a,+ C“Qb (t+
e, (t + 1)]. Note that all the ¢ and z values for ¢ + 1
are available to ¢ at time ¢ because the agents are com-
municative. We use a neural network consisting of three
independent sub-networks to estimate vy, (t+2), vy, (t+2),
and v, (t+2) using s;(t) as the state input (see Section IV).
It should be noted that the state information available to
each agent is an extremely incomplete view of the system’s
state even in the agent’s neighborhood. More informative
state formulations can be envisioned (e.g., certainty val-
ues for all neighbors of target cells), but this increases the
complexity of the learning problem.

The predicted value of v (¢ +2) is used in Eq. (1) along
with the known values of z(t) and v (¢t + 1) to obtain an
estimate of the 2-step reward, and the agent chooses the
cell that promises the greatest reward. All agents then
update their positions synchronously, and each agent re-
ceives the appropriate reward. Note that the action taken
at step t was chosen at ¢t — 1.

IV. LEARNING ALGORITHM

As described earlier, the agents use tripartite neural net-
works for predicting vy (t + 2), each subnetwork predicting
the 2-step occupancy of one of the target cells. This is
accomplished with a Q-learning procedure [9], using the
true occupancy values, vi(t + 2), which become available
at time t+2. Essentially, the neural networks learn to pro-
duce an increasingly accurate estimate of v (t + 1) given
s;(t). The weights of the neural networks are modified
using the Levenberg-Marquardt procedure.

As described earlier, we consider three situations:

Centralized Learning (CL): In this case, there is only
one tripartite neural network. All agents communicate
their observations, vy (t + 2), to this network, which calcu-
lated the errors for all its corresponding predictions and
uses these for learning.

Decentralized Learning (DL): In this case, each
agent has its own tripartite network, trained using its own

predictions and observations. There is no copying of net-
works among agents.

Opportunistic Cooperative Learning (OCL): In
this case, each agent maintains a running reward average
pi(t+1) = (L —a;)pi(t) + aipi(t +1); 0<a; <1
which shows how well it has done recently. This is used
as a measure of performance for its predictor. When two
agents find themselves in neighboring cells, they compare
their p values and the agent with the lower value copies the
network and the p value of the other agent with probability

7. Note that m = 0 corresponds to the DL case.

V. SIMULATION RESULTS

While, in practice, the agents would learn as they search,
we have used a two-phase approach to evaluate the per-
formance of the various approaches. In the training phase,
the system is trained over 7ig.qin Steps, with the neural
network weights modified at each step. The training is
done using a search in an actual environment, but the
certainty values of visited cells are continually reset to 1
after they are visited few time steps, thus creating greater
opportunity for learning. The training phase is followed
by an evaluation phase, during which the trained agents
search an environment for ne.q steps without any fur-
ther learning. This shows how the uncertainty about the
environment is reduced over time with agents trained by
different algorithm. The results for the greedy algorithm
are also plotted for comparison.
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Figure 2: Search performance for 15 agents. The CL and DL

algorithms use 100 steps of learning.

Figure 2 shows the time-course of uncertainty reduction
when 15 agents trained with various algorithms search a
20x20 environment. Clearly, greedy search performs much



more poorly than the cooperative algorithms. This effect
is likely to increase with the number of agents, since that
also enhances the quality of learning. The figure indi-
cates that both cooperative algorithms perform equally
well. However, this is the result of the long training time
(100 steps).
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Figure 3: Search efficiency: The increments on each bar indicate
the number of search steps needed to reduce uncertainty by 50%,
75%, 90% and 98%, respectively. The system has 15 agents searching
a 20 x 20 environment.
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Figure 4: Number of search steps needed to reach 98% certainty
as a function of training time.

Figure 3 shows how rapidly uncertainty is reduced by
agents trained with different algorithms for 15, 25, 50 and
100 steps. Clearly, the OCL algorithms with 7 > 0 learn
faster than the DL algorithm and almost as fast as the
CL algorithm. This is confimed by Figure 4, which shows
the time needed to reach 98% certainty. However, it is
apparent that OCL needs about 50 steps of learning before

reaching the performance of CL, while DL is consistently

worse than both.
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Figure 5: Search paths for agents in a 5 agent system using greedy
search. Note that many paths overlap, reducing search efficiency.

Cooperative Search (50 sample)
25

Figure 6: Search paths for agents in a 5 agent system using DL
with 7 = 0.5.

Finally, Figures 5 and 6 show the actual search paths
taken by 5 agents searching a 20 x 20 environment. It
is apparent that greedy agents (Figure 5) tend to follow
each other — essentially “picking the crumbs” left by other
agents, while cooperative agents (Figure 6) are able to find
more diverse search paths.

VI. CONCLUSIONS

In this paper, we have compared the performance of
several learning algorithms to train agents conducting co-



operative search in an extended environment. The agents
learn to predict the behavior of other agents in their
neighborhood using neural networks trained via reinforce-
ment learning. We consider the centralized case, where all
agents share a neural network, and the decentralized one,
where each agents carries its own network. The results
indicate that the centralized learning approach — which
is problematic from a scalability and efficiency perspective
— can be replaced by the decentralized approach if poorly
performing agents are allowed to opportunistically acquire
the expertise of better performers.
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