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ABSTRACT

In this thesis, stability of a class of discrete event systems (DES) is studied using

the Lyapunov stability theoretic approach. The DES is modeled by an automata

model with (possibly) an infinite number of states. It is assumed that more than one

event can occur simultaneously. In fact, it is assumed that an enabled uncontrollable

event can occur together with an enabled controllable event. First, stabilizability

of invariant sets is analyzed and sufficient conditions for stabilizability of them are

derived. Next, optimality in control of DES and optimal stabilization of invariant sets

are considered and conditions for optimal stabilizability are presented. After that,

the idea of limited look-ahead policies (LLP) for control of DES is employed and a

result for the special case for the cost function in which disabeling events is free is

presented. The general problem is not analyzed because of the complexity. Finally,

two illustrative examples are presented.
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CHAPTER 1

Introduction

Discrete event systems (DES) are dynamic systems which evolve by occurrence of

events at possible irregular intervals of time. In past two decades such systems have

received a great attention in the control theory literature. This is mainly because

many large scale dynamic systems have discrete event system behavior at least at

some level of description. Examples for such systems are manufacturing systems,

communication networks, and expert systems.

Consider, for example, a machine that operates on some items or parts on a

manufacturing line. Assume that there is an input buffer where parts are stored

before processing by the machine and an output buffer for storing the processed

parts. In this system the possible events are “arrival of a part to be processed by the

machine,” “machine begins operating on a part,” “machine finishes processing a part

and passes it to the output buffer,” “occurring a failure in the machine,” “repairment

of the machine,” etc.

Depending on the events that have occurred, the current state of the machine

could be “idle,” “busy,” “broken,” “in maintenance,” etc. Similarly, one can describe

the state of the buffers with the number of parts stored in them. In general, not all the

events can occur at every state. For instance, the event “machine begins operating
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on a part” is not possible if the input buffer is empty. Similarly, if the current state

of the machine is “idle,” the event “machine finishes processing a part and passes it

to the output buffer” is not possible.

Some of the events can be controllable and some of them uncontrollable. For

example, if the machine is idle and the input buffer is not empty, we can force it to

begin processing a part by an external control and hence this event is controllable.

On the other hand, by no means we can prevent the occurrence of a failure in the

machine which is an example of an uncontrollable event. Note that some of the events

can occur together. For instance, it can happen that both machine begins processing

an item and an item arrives to the input buffer.

The above example is basic example which illustrates how DES operate. Now we

provide a brief overview of the current literature on DES.

1.1 Literature Overview

Early work on the control of discrete event systems is given by Ramadge and

Wonham [8, 9, 10]. In the framework of these researchers, the control of a discrete

event system is achieved by enabling and disabling of certain events. The desired

behavior of the DES is specified as a set of acceptable strings of events (a language).

Therefore, this approach is called linguistic approach since the closed-loop behavior

of the system is specified in terms of a language.

This work gained considerable attention by other researchers who extended it by

applying the concepts of the control theory such as stability and stabilization. Formal

definitions of stability and stabilization, which are close to resilency and error recovery

concepts in computer science, were given by Özveren et al. [4].
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In the Ramadge and Wonham framework the goal is to restrict the system such

that all event strings generated from given initial state are in a given set of “legal”

or accepted strings whereas in the work by Özveren et al. the emphasis was put on

the states. The state-space is divided to a sets of “good” and “bad” states and the

objective is to operate the system within the good states. If the system switches

to bad state due to occurrence of an uncontrollable event then the objective is to

generate a legal behavior which guarantees that the system will return to a normal

operating condition, i.e., to the good states, after execution of a finite number of

events. Therefore, this approach is called a state space approach.

Consider the manufacturing line example described before and recall that it is

always subject to a failure. In the linguistic framework, one includes in the desired

languages the set of event strings with all possible failures and the successful recover-

ies, whereas in the state space framework the state space is divided to sets of failure

(bad) states and normal operation (good) states and a control strategy for transition

from failure to normal states is sought.

The first definition and analysis of stability and stabilization of invariant sets of

DES in the control theoretic framework can be found in [11] where authors analyze

both uncontrolled and controlled DES and also provide polynomial time algorithms

for verifying the types of stability or attraction defined.

The definition of stability of discrete event systems in the sense of lyapunov was

first proposed by Passino et al. [2]. The authors analyze a class of DES in the

Lyapunov framework and provide sufficient conditions for stability of an invariant set

of the system. One can view an invariant set as a set of good states of the DES.
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In their work [7] Cho and Lim combine the stability definitions by Özveren et al.

and Passino et al. by defining stability in the sense lyapunov with resilency. A poten-

tial function, which serves as Lyapunov function, is defined and a potential to every

state in the state space is assigned. They provide algorithms for verifying stability

and obtaining the domain of attraction. Moreover, the issue of robust stability and

stabilizability is addressed and analyzed. For robust stability analysis the plant is as-

sumed unknown but within given set of plants and the stability of common invariant

set is studied.

The notion of robust and adaptive control was studied also by Lin in [13]. In this

paper he studies the stability of a system with model uncertainty. He proposes two

approaches for controlling such a system. First approach is robust control approach, in

which the plant is controlled without resolving uncertainties. That is, the supervisor

is designed so that the closed-loop system will be stable for all possible plants. In

the second approach, the adaptive scheme is considered. As time evolves and as

more information is gathered, some of the plants in the set can be thrown away

and the supervisor can be updated to get better performance. The necessary and

sufficient conditions for existence of a robustly stabilizing supervisor are derived and

the performance of the robust and adaptive supervisor are compared and the adaptive

supervisor is found to be better.

Garg and Kumar analyzed DES’s with infinite states in [14]. For analysis they use

assignment-based programs and predicates for describing the desired behavior of the

plant. First they show that, in general, the problem with infinite states is undecidable

and later they show that if it is possible to describe the DES with assignment-based
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programs then the control problem is decidable and that the problem is reduced to

solving arithmetic equations.

In [3] the authors analyze the problem of optimal control of DES. They specify al-

lowable event trajectories contained within the valid event trajectories and try to find

controller which will lead to optimal allowable event trajectories. Their solution to

this problem is based on a heuristic search to find the optimal controller. They define

a “heuristic function” to focus the search and thus to overcome the computational

complexity.

Other papers which analyze the optimal control and stabilization are [12, 15, 16].

In [12] the authors build on the ideas on their previous paper on stabilization [11]

and find conditions for the existence of controllers leading to optimal attraction in

the sense that the cost of the path is minimized. In [15] the authors solve the prob-

lem of optimal control in the Ramadge and Wonham framework using network flow

techniques. Reference [16] analyzes a similar problem as in [15] but in more general

sense and provides conditions for existence of an optimal supervisor or controller.

Chung and Lafortune first applied the idea of “look-ahead” to DES [5, 6]. In [5]

they study the supervisory control problem in the framework of Ramadge and Won-

ham using limited look-ahead policies. They adapt two attitudes, called optimistic

and conservative for calculating the next control action at each step. They present

some convergence properties of their scheme in terms of the look-ahead window size

N , a closed-form expression for the language generated by the controlled DES and

lower bounds on N which guarantee that the limited look-ahead policy will perform

as well as the controller designed off-line. In [6] they show how the computations
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required by their on-line scheme can be done recursively which considerably reduces

the amount of computation time.

In their paper Keerthi and Gilbert [17] analyze stability of general class of non-

linear time-varying discrete time systems using optimal infinite-horizon and moving-

horizon (limited look-ahead) feedback control laws. They provide constraints on the

system and the cost function which are sufficient for asymptotic stability of the feed-

back system both under optimal infinite-horizon and moving-horizon feedback control

laws. They also show that the moving-horizon feedback law approaches the infinite-

horizon one as the horizon is extended.

1.2 Thesis Outline

In this work we basically follow the approach in [1, 2] for analysis of DES which

is a state space approach in the framework of Lyapunov and is based on a metric

space. We consider (possibly) infinite set of states and a finite number of controllable

and uncontrollable events and try to develop a controller based on limited look-ahead

that will stabilize a desired invariant set of the system. Our limited look-ahead policy

approach to control of DES is different from the approach of Chung and Lafortune

[5, 6] and it is closer to the approach of Keerthi and Gilbert [17] to control general

nonlinear discrete time systems. The basic difference in our model is that we assume

that we have complete control of the controllable events and that if required we can

fire (i.e. force to occur) them whenever they are defined. The event to be fired

is chosen after doing an optimization on the possible paths within the look-ahead

window. For this reason, the paths generated by the controlled DES are in a sense

optimal (or suboptimal). Moreover, we allow occurrence of more than one event
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simultaneously. In fact, we assume that the uncontrollable events can occur together

with the controllable ones whenever they are defined in the current state of the system

and enabled by the disturbance entering the system.

In Chapter 2 we establish a framework for the analysis of DES. First, we present

the model of the system that we use. Next, we provide some mathematical defini-

tions, and stability definitions and theorems. After that, we describe the closed-loop

system and introduce the control problem. Chapter 3 presents stability, stabilizabil-

ity and optimal stabilizability analysis for DES in our framework. Furthermore, the

performance of limited look-ahead policies for our model is investigated. Chapter 4

presents two examples which illustrate the theory developed in Chapter 3 and finally

in Chapter 5 we present our conclusions.
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CHAPTER 2

A Framework for Analysis of DES

2.1 Finite Automata Model for DES

In this work we first consider DES [1] modeled by

G = (X , E , fe, δe, g,Ev) (2.1)

where

• X is the set of plant states and xk ∈ X denotes the state at “logical time”

k ∈ N , where N is the set of natural numbers.

• E = Eu ∪ Ed ∪ Eo is the set of events where

– Eu is the (possibly infinite) set of command input or controllable events

denoted with euk
,

– Ed is the (possibly infinite) set of disturbance input or uncontrollable events

denoted with edk
,

– Eo is the set of output events (these are the events that we can observe).

We assume that the sets Eu and Ed are disjoint, i.e., Eu ∩ Ed = ∅, where ∅ is the
empty set.
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• fe : X × Eu × Ed → X is the state transition function such that

xk+1 = fek
(xk) (2.2)

where occurrence of events ek ∈ Eu × Ed at time k forces the transition of the

system state form xk to xk+1.

• δe : X × Eu × Ed → Eo is the output function such that

yk = δek
(xk) (2.3)

where ek ∈ Eu × Ed and yk ∈ Eo.

• g : X → P (Eu × Ed)− ∅, where P (Eu × Ed) denotes the power set of Eu × Ed, is

the enable function. An event can occur at state x ∈ X only if it is in the set

g(x).

• Ev is the set of all valid (i.e. physically possible) infinite length event trajecto-

ries.

We define a state trajectory as any sequence {xk} ∈ XN (the set of state sequences)

such that xk+1 = fek
(xk) for some ek ∈ g(xk) and for all k ∈ N . An event trajectory

is a sequence {ek} ∈ EN such that there exist a corresponding state trajectory {xk}
where for every k ∈ N , ek ∈ g(xk).

The set of all event trajectories is denoted by E ⊂ EN . As we stated above, we

denote with Ev ⊂ E the set of valid or physically possible event trajectories which are

specified as a part of the modeling process. Ev(x0) is used to denote the set of valid

event trajectories starting from initial state x0 and Ev(Xz) these starting from the

set of states Xz, i.e., Ev(Xz) =
⋃

x∈Xz
Ev(x). The set of allowable event trajectories

are denoted with Ea ⊂ Ev and Ea(x0) is used for denoting those starting at x0.
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Concatenation of two event sequences Ek and E is denoted by EkE ∈ Ev(x0),

where Ek represents the sequence of events e0, e1, e2, ..., ek, which occurred up to and

including time k and E is an event sequence of infinite length.

For a given initial state x0, occurrence of event trajectory Ek such that EkE ∈
Ev(x0) leads the system to a new state xk+1. This is called a motion of the system

and we denote it with fEk
(x0). Here, we extended the state transition function such

that fEk
(x0) = fek

(fEk−1
(x0)) where Ek = Ek−1ek.

We denote the set of all state trajectories or motions of the system with X ⊂ XN .

Moreover, in a way similar to event trajectories Xv ⊂ X denotes the set of valid state

trajectories, Xv(x0) these starting at initial state x0 and Xv(Xz) those starting at a

set Xz.

A state trajectory x0, x1, ..., xk is called a cycle if x0 = xk and there exist no

i, j ∈ 0, ..., k − 1 and i �= j such that xi = xj . In other words, no other state appears

twice within the cycle.

The set of all states reachable from a state x is called reach of x and is denoted

with R(x). That is x̄ ∈ R(x) is equivalent to saying that there exists E ∈ Ev(x) such

that x̄ = fE(x). We denote with Rm(x), m ∈ N the set of states that can be reached

from the state x within m transitions. Therefore, R1(x) denotes all possible fe(x) for

all e ∈ g(x) and R2(x) = R1(x)∪{R1(x̄) for all x̄ ∈ R1(x)}. Note that, R1(x) is a set

of states because in general there are more than one events defined at a given state.

A DES is said to be in a deadlock or blocked if it reaches a state x ∈ X for which

|g(x)| = 0 where | · | gives the cardinality or the number of elements of a set. In other
words, the system is in deadlock if there is no valid transition to any other state. This
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notion can be extended to liveness; a state is called alive if it has defined transitions

to other states and all the states in its reach are alive.

2.2 The Closed-Loop System

In this section we introduce the controller to the system and close the loop. Figure

2.1 shows the closed-loop system with the DES plant G and the controller C. The

output of the controller, denoted with uk ⊂ Eu is a set of command input events that

are enabled by the controller at time k. Therefore, the controllable events which are

not in uk cannot occur. In other words, at time k and state xk a controllable event

euk
can occur if and only if euk

∈ (uk ∩ g(xk)).

Plant
input

Disturbance

ControlReference Controller

k

Output

GC

d

r y

k

kk
u

Figure 2.1: The closed-loop system.

Similarly, we have disturbance input dk ⊂ Ed to the system which denotes the

set of disturbance events that can occur. Therefore, analogously to the control input

case, at time k and state xk an uncontrollable event edk
can occur if and only if

edk
∈ (dk ∩ g(xk)).
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The reference input to the controller is denoted with rk and no assumptions are

made for the type of the input. In other words it can be a set of target states for the

DES G or a particular event pattern or event trajectories (called language by some

researchers) that we want the DES G to generate or follow.

We denote with yk the output of the DES G and assume that it is used by the

controller to generate the next control input uk+1. It can be the case that yk represents

a set of events or perhaps states depending on the system at hand. We will specify

explicitly rk and yk in the subsequent sections.

At any time k and state xk there can be three different types of input events that

can occur in the system. Let euk
∈ (uk ∩ g(xk)) and edk

∈ (dk ∩ g(xk)). Then the

possible types of events are

• e1
k = {euk

, edk
}, i.e., one controllable and one uncontrollable event occur simul-

taneously,

• e2
k = {euk

}, or only the command input event occurred,

• e3
k = {edk

}, or only the disturbance input event occurred.

We assume that no two (or more) command (or disturbance) input events can occur

simultaneously.

Let g(x) = gu(x) ∪ gd(x) where gu(x) ∩ gd(x) = ∅ and gu(x) denotes the set of

command input events and gd(x) denotes the set of disturbance input events that can

occur at state x. Then the control input event euk
can occur if euk

∈ (uk ∩ gu(xk))

and the disturbance input event edk
can occur if edk

∈ (dk ∩ gd(xk)). Note that, by

choosing an appropriate control uk we can vary the set of euk
that can occur from

∅ to gu(xk) but we do not have any control over the set of edk
. In other words, the
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set of possible edk
can vary from ∅ to gd(xk) at each state xk depending on the input

disturbance dk which is not under our control.

Define nu(x) = |gu(x)| and nd(x) = |gd(x)| as the number of the controllable
and uncontrollable events, respectively, in the enable function at state x. Then the

maximum physically possible number of input events that can occur at state x is

nu(x)nd(x)+nu(x)+nd(x) (see the three different types of events defined above). By

choosing an appropriate uk, the maximum number of possible events under control

can be varied between nd(x) and nu(x)nd(x) + nu(x) + nd(x). Note that this is the

maximum number and the actual number varies depending on dk.

Now assume that the controller is a policy π = {u0, u1, ..., uk−1}. Because of

the presence of the controller, the possible event trajectories decrease in number.

We denote with Ev(x0, π) ⊂ Ev(x0) and Xv(x0, π) ⊂ Xv(x0) the sets of valid event

trajectories and state trajectories, respectively, under control policy π starting at

state x0.

Similarly, under the control policy π the reach of each state in the system is in

general narrowed. We denote with R(x0, π) ⊂ R(x0) the reach of state x0 under

control policy π and with RN(x0, π) the set of the states that can be reached in N

steps.

2.3 Mathematical Preliminaries

Definition 1 We say that {X ; ρ} is a metric space if there is a function, called the

metric, defined as

ρ : X ×X → R+, (2.4)

(where R+ denotes nonnegative reals) which satisfies the following conditions
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1. ρ(x, y) = 0 if x = y

2. ρ(x, y) = ρ(y, x) for all x, y ∈ X and

3. ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z ∈ X .

In the light of this definition, we define distance between a point x ∈ X and a set

Xz ⊂ X to be

ρ(x,Xz) = inf{ρ(x, y) : y ∈ Xz} (2.5)

Let B(Xz; r) denote the r-neighborhood (i.e. a ball with radius r) of the set Xz and

be defined as

B(Xz; r) = {x ∈ X : 0 < ρ(x,Xz) < r}. (2.6)

Definition 2 A function

ρ : X ×X → R+, (2.7)

is called a pseudometric if it satisfies only second and third condition in Definition 1

above.

From now on we will denote pseudometrics with ρps(x, y).

Kampke or “class K” functions are very useful in explaining Lyapunov stability

theory. We introduce them next.

Definition 3 A continuous function ψ : [0, r]→ R+ is said to belong to class K (i.e.

ψ ∈ K) if

1. ψ(0) = 0

2. it is strictly increasing on [0, r]
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Moreover, if ψ : R+ → R+ and limr→∞ = ∞ then ψ is said to belong to class K∞

(i.e., ψ ∈ K∞).

In control theory generally the analysis of a system is done with respect to equilib-

ria. The stability of an equilibrium point or more generally an invariant set, is of

paramount importance. The definition of an invariant set is as follows.

Definition 4 A set Xm ⊂ X is called invariant set with respect to G in (2.1) if for

all x0 ∈ Xm, all Ek such that EkE ∈ Ev(x0) and k ≥ 0 we have fEk
(x0) ∈ Xm.

This definition simply says that if a set is invariant then all the motions originating

within it remain in it.

For some systems, such as DES, some sets of states can be made invariant sets

of the system under proper control. We call such states potential invariant sets and

define them as follows.

Definition 5 A set Xm ⊂ X is called a potential invariant set with respect to G in

(2.1) if there exists a control policy π, such that for all x ∈ Xm, all Ek such that

EkE ∈ Ev(x0, π) and k ≥ 0 we have fEk
(x0) ∈ Xm.

Note that for every x ∈ Xm, R(x) ⊂ Xm and this is possible if all the paths within

the set Xm are cycles or there are states which are blocked, i.e. |g(x)| = 0.

2.4 Stability Definitions and Theorems

In this section we present some stability definitions and theorems, most of which

are taken from [1]. First, we define the notion of (asymptotically) stable (potential)

invariant sets.
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Definition 6 A closed (potential) invariant set Xm ⊂ X of G is called stable in the

sense of Lyapunov with respect to the set of event trajectories Ea ⊂ Ev if for any ε > 0

there exists some δ > 0 such that whenever ρ(x0,Xm) < δ, we have ρ(fEk
(x0),Xm) < ε

for all Ek such that EkE ∈ Ea(x0) and k ≥ 0. Moreover, if ρ(fEk
(x0),Xm) → 0 as

k → ∞, then the closed (potential) invariant set Xm of G is called asymptotically

stable with respect to Ea.

In the analyses in this work we will mainly deal with the asymptotically stable

invariant sets. Note that the above definition is a local property, therefore it is

sufficient that the required properties hold in a neighborhood of the invariant set.

For this reason we may have states x ∈ X for which the properties in the definition

does not hold. This leads to the following definition which classifies the set of states

with respect to (w.r.t.) which the invariant set is asymptotically stable. In other

words, all trajectories starting from this set converge to the invariant set.

Definition 7 If the closed (potential) invariant set Xm ⊂ X of G is asymptotically

stable with respect to Ea, then the set Xa ⊂ X having the property that for all x0 ∈ Xa,

ρ(fEk
(x0),Xm)→ 0 for all Ek such that EkE ∈ Ea(x0) as k → ∞ is called the region

of asymptotic stability of Xm with respect to Ea. If Xa = X , then the closed (potential)

invariant set Xm of G is called asymptotically stable in the large w.r.t. Ea or globally

asymptotically stable.

In the following we will sometimes use the term x0-stable for an invariant set Xm

if x0 ∈ Xa holds.
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Now we provide two theorems which give sufficient conditions for stability in the

sense of Lyapunov and asymptotic stability of invariant sets. The proofs are omitted

here, however, since one can find them in [1].

Theorem 1 In order for the (potential) invariant set Xm to be stable in the sense

of Lyapunov with respect to Ea it is sufficient that in a neighborhood B(Xm; r) there

exists a specified functional V and functions ψ1, ψ2 ∈ K such that:

• ψ1(ρ(x,Xm)) ≤ V (x) ≤ ψ2(ρ(x,Xm)), and

• V (fEk
(x0)) is a nonincreasing function for all x0 ∈ B(Xm; r), for all Ek such

that EkE ∈ Ea(x0) and all k ≥ 0.

Theorem 2 In order for the (potential) invariant set Xm to be asymptotically sta-

ble with respect to Ea it is sufficient that in a neighborhood B(Xm; r) there exists a

specified functional V and functions ψ1, ψ2 ∈ K that satisfies the properties of The-

orem 1 and there exists a function ψ3 ∈ K such that V (fEk+1
(x0)) − V (fEk

(x0)) ≤
−ψ3(ρ(fEk

(x0),Xm)) for all x0 ∈ B(Xm; r) and for all Ek such that Ek+1 = Eke

(e ∈ E) and Ek+1E ∈ Ea(x0) and all k ≥ 0.

In this work we are mainly dealing with the control and stabilization of DES.

In other words, we are trying to find a controller which will guarantee the asymp-

totic stability of an (potential) invariant set. For some DES it can be the case that

there does not exists such a controller. For this reason we introduce the notion of

stabilizability and asymptotic stabilizable region of a potential invariant set Xm.

Definition 8 A closed (potential) invariant set Xm ⊂ X of G is called asymptoti-

cally stabilizable in the sense of Lyapunov if there exists a controller such that Xm
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is asymptotically stable with respect to the set of valid event trajectories of the con-

trolled system. Moreover, the set of states Xa/c ⊂ X such that for every x0 ∈ Xa/c

ρ(fEk
(x0),Xm) → 0 under control is called asymptotically stabilizable region of Xm.

If Xa/c = X , then Xm of G is called globally asymptotically stabilizable.

Note that the region of asymptotic stability of a potential invariant set Xm is a

subset of its asymptotically stabilizable region, i.e., Xa ⊂ Xa/c.

Consider a state x0 ∈ Xa/c of Xm. Then there exists a policy π such that Xm

is asymptotically stable w.r.t. Ev(x0, π). In that case, we will say that Xm is x0-

stabilizable. Therefore, Xm is x0-stabilizable for all x0 ∈ Xa/c. Note also that,

R(x0, π) ⊂ Xa/c for any stabilizing π.

In this and preceding sections of this chapter we established the required back-

ground for the analysis of DES. In the subsequent chapter we state the control prob-

lem which is the main motivation for this work and try to solve it using planning

strategies.
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CHAPTER 3

Stabilizability, Optimality and Planning in DES

In the preceding chapter we established some tools and definitions for analysis of

DES. In this chapter we first discuss some stabilizability and optimal stabilizability

of invariant sets in DES. Then we introduce the idea of planning [5, 6] and try to

verify the need for it in DES with large or infinite number of states or in time varying

DES where it is difficult, if not impossible, to design a controller off-line.

3.1 Stabilizability of DES

We have defined an invariant set of a DES as asymptotically stabilizable if there

exists a controller which makes it an asymptotically stable invariant set. In this

section we try to investigate the conditions under which such a controller exists.

Before proceeding, recall that we had three types of events associated with a pair of

command and disturbance input events. In other words, for euk
∈ uk ∩ gu(xk) and

edk
∈ dk ∩ gd(xk) we can have e1

k = {euk
, edk

}, e2
k = {euk

} and e3
k = {edk

}. Now we

provide the following definition which will be useful in the subsequent development.

Definition 9 A subset Er(x0) ⊂ Ev(x0) is called controllable if for all k, Ek, and

xk+1 such that EkE ∈ Er(x0) and xk+1 = fEk
(x0) we have Eke

3
k+1E ∈ Er(x0) for all

19



edk+1
∈ gd(xk+1) and if Eke

2
k+1E ∈ Er(x0) for some euk+1

∈ gu(xk+1) or Eke
1
k+1E ∈

Er(x0) for some euk+1
∈ gu(xk+1) and edk+1

∈ gd(xk+1) then Eke
1
k+1E ∈ Er(x0) for

this euk+1
and all edk+1

∈ gd(xk+1).

This definition simply says that no occurrence of disturbance event alone leads out

of this set of paths and if there is a path continuing with occurrence of a command

input event in the set (which means that the command input event is enabled) then all

the couples of events of this controllable event with the uncontrollable events should

be within the set. (In other words since we cannot disable the disturbance events we

should include them in the set of possible paths.) This notion is very similar to the

notion of controllable language [8, 9, 10], however it is more general because we allow

for simultaneous occurrence of controllable and uncontrollable events. A controllable

language is a special case of our definition when simultaneous occurrence of events

is not allowed, i.e. all events of type e1
k are illegal and therefore excluded from above

definition.

Now we state the following result as a lemma as it follows immediately from the

above definition.

Lemma 1 If Er(x0) ⊂ Ev(x0) is controllable then there exists a control policy π such

that Ev(x0, π) ⊆ Er(x0).

This result is very simple and intuitive. It states that if the controller enables

only command input events which lead to the paths within the required set of paths

then the paths generated by the controlled system will be a subset of the controllable

set of event trajectories. Note also that, the controllability condition ensures that no

uncontrollable event trajectory leading out of the set is left.
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It is worth nothing also that, in Ev(x0, π) ⊆ Er(x0) the equality condition holds

whenever dk = gd(xk) for all xk.

Now we are ready to state the first result on the stabilizability of an invariant set

Xm ⊂ X .

Proposition 1 An invariant set Xm ⊂ X is asymptotically stabilizable in the sense of

Lyapunov w.r.t. Ea if for all x0 in a sufficiently small neighborhood B(Xm; r) we have

a controllable Er(x0) ⊆ Ev(x0) such that Xm is asymptotically stable w.r.t. Er(x0).

Proof: Define Ea =
⋃

x0
Er(x0) for all x0 ∈ B(Xm; r). Individual controllability of

each Er(x0) implies the controllability of their union, i.e., of Ea. Moreover, since Xm

is stable w.r.t. each Er(x0) then it is stable w.r.t. Ea also. By Lemma 1 there exists

a control policy π such that Ev(B(Xm; r), π) ⊆ Ea and this completes the proof.
�

According to this proposition, from every x ∈ B(Xm; r) we should have a control-

lable set of trajectories, all of which lead to the set Xm. Since the system trajectories

can be constrained by an appropriate control to follow the set of controllable trajec-

tories, this is sufficient for stabilizability.

Proposition 1 provides sufficient conditions for stabilizability of an invariant setXm

of G. Therefore, one can try to find a stabilizing controllable set of event trajectories

to verify the stabilizability. However, this may be difficult and time consuming. For

this reason, it would be better to have some necessary conditions which are easier to

check before trying to find stabilizing Er(x0). We provide such conditions in Lemma 2

but before that we define the uncontrollable subsystem of G as

Gd = (X , E , fed, δed, gd,Evd) (3.1)
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which is obtained from G by disabling all controllable events. Note that Evd ⊂ Er

for every controllable Er ⊂ Ev. Let Xvd ⊂ Xv be the set of state paths that can be

generated by Gd. We will call every X ∈ Xvd an uncontrollable path and if this path

is a cycle we will call it an uncontrollable cycle. Now, we state the lemma.

Lemma 2 For an invariant set Xm of G to be asymptotically stabilizable in the sense

of Lyapunov it is necessary that there exists an r-neighborhood B(Xm; r), in which

the uncontrollable subsystem of G, Gd, has no cycles.

Proof: Assume for a sake of contradiction thatGd has cycles in every r-neighborhood

B(Xm; r) and also that Xm ofG is asymptotically stabilizable. LetX = {x0, x1, x2, ..., xl}
be a cycle in Gd such that xl = x0 and El−1E ∈ Evd be the corresponding event tra-

jectory, i.e., xl = fEl−1
(x0). Since all events in this trajectory are uncontrollable

El−1E ∈ Er ⊂ Ev for any controllable Er. Therefore, no control can guarantee

x-stability of Xm for all x ∈ X contradicting the assumption of stabilizability of Xm.
�

This lemma shows that the behavior of the uncontrollable system Gd is important

and one can predict non-stabilizability by looking at its behavior. To check this

condition can be easy or difficult depending on the DES G at hand. However, since

the total number of transitions is less in Gd than in G it is easier to look at the

behavior of uncontrollable system than looking at the behavior of G. Note that

asymptotic stability of Xm of Gd implies asymptotic stabilizability of Xm of G. We

state this as a corollary.

Corollary 1 If a potential invariant set Xm of G is asymptotically stable w.r.t. Evd

then it is asymptotically stabilizable.
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Proof: Choose a control policy π = {uk} such that uk = ∅ for all k.
�

Note that asymptotic stability of Xm w.r.t. Evd is a sufficient condition but not

necessary. This is because there can be states x̄ which are blocked in Gd, i.e., gd(x̄) =

∅, but still Xm be x̄-stabilizable.

It is worthwhile to mention here that not only the states x̄ lying on cycles in Gd

satisfy x̄ �∈ Xa/c of Xm but also these x̄ which lie on paths in Gd leading to cycles.

It is interesting to note here the similarities between Gd and the notion of “zero-

dynamics” in conventional control theory. For output stabilizability, in the conven-

tional feedback linearizing control theory we convert the system to the “normal form.”

For example, the affine system

ẋ = α(x) + β(x)u

in normal form becomes

ẋ1 = f1(x1, x2)
ẋ2 = Ax2 +Bβ−1(x)[u− α(x)]

where A and B are matrices with appropriate dimensions. We need the zero dynamics

of this system, i.e.

ẋ1 = f1(x1, 0),

to be stable in order the system to be output stabilizable. Discussion above shows

that similar results arise here also in the sense that we need disturbance dynamics to

be acyclic and stable as a necessary condition for stabilizability.

3.2 Optimality and Optimal Stabilization of DES

In this section we discuss optimality issues and optimal stabilization in DES. First,

we develop the notion of optimal control of DES.
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3.2.1 Optimality in DES

Optimal control is a well developed field [18, 19, 20]. The main idea is that we

have some performance index or cost function subject to some predefined constraints

which we try to minimize by choosing an appropriate control. The idea in DES is

similar as will be seen below.

To begin with, we assume that disabling any controllable event requires some use

of system resources and therefore has some cost which we will denote with hu(eu).

Similarly, there is a cost associated with being in a given state which we denote with

hx(x).

Mathematically the control and state cost functions are

hu : Eu → R+ (3.2)

and

hx : X → R+ (3.3)

where R+ denotes the nonnegative reals. The state cost function is defined such that

hx(x) =

{
0 if x ∈ Xm

finite if x ∈ Xa/c of Xm
(3.4)

and the control cost function is such that 0 ≤ hu(euk
) < Bu < ∞ for some constant

Bu and for all euk
∈ Eu or disabling any controllable event has a finite cost. This cost

function makes sense since we want to reach the set Xm the cost of whose states is

zero. To prevent instability the policies leading to states lying on cycles or blocked

states are discarded.

Two important questions here are “How to define hx(x)?” and “Is it possible to

define it using an analytic closed-form expression?” We will address those issues in

the subsequent sections.
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Using the above cost functions the cost of using control uk at a state xk is given

by

h(xk, uk) = hx(xk) +
∑

euk
∈(gu(xk)−uk)

hu(euk
) (3.5)

where euk
is a disabled controllable event. This equation states that being at a state

xk costs hx(xk) and disabling a controllable event euk
at that state adds a cost given by

hu(euk
) to the total cost. Note that increasing the number of disabled events increases

the total control cost, however, it generally decreases the number of possible future

states.

Now, consider a control policy π = {u0, u1, ..., uk, ...} and a state trajectory X =

{x0, x1, ..., xk, ...} generated due to π, i.e., X ∈ X(x0, π). The total cost of this state

trajectory is given by

J(X, π) =

∞∑
k=0

h(xk, uk). (3.6)

Then, the cost of the control policy π is defined as the maximum cost among all

possible state trajectories. In other words,

J(π) = max
X∈X(x0,π)

{J(X, π)}. (3.7)

It is clear that different control policies may have different costs. A control policy

with the minimum cost will be called optimal and will be denoted with π∗. In other

words,

J∗ = J(π∗) = min
π

{J(π)}. (3.8)

Note that the optimal control policy may be nonunique because we may have policies

with the same cost.
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This development is very similar to the ideas in classical optimal control theory.

Here, again we have the tradeoff between the cost of control and the cost of state

which brings the need for optimization.

The above problem is called a min-max problem since we first have a maximization

w.r.t. the possible state trajectories and then a minimization w.r.t. the control policies.

Dynamic programming [18, 19] is one of the procedures which can be used to solve

this optimization problem.

Note that when the invariant set Xm is reached, one can set u = gu(x) for all

x ∈ Xm and then the cost is h(x, gu(x)) = 0. This is important observation which

implies that an optimal policy shall eventually drive the system within the invariant

set Xm since otherwise its cost would be infinite and therefore the policy wouldn’t be

optimal.

Note also that, we do not have negative cost. Negative cost can be viewed as some

gain or advantage obtained by occurrence of an event or reaching a particular state.

This is a topic of further research.

3.2.2 Optimal Stabilization

In the previous subsection we established the basic ideas of optimal control of DES.

In this subsection, we first ask the question “Is it possible to stabilize the system and

minimize the cost or performance index simultaneously?” and then try to answer it.

Now, assume that the initial state x0 is known and recall that in order for Xm to

be x0-stabilizable, it is sufficient to have controllable Er(x0) ⊆ Ev(x0) such that Xm

is asymptotically stabilizable w.r.t. Er(x0). Let π be a policy such that Ev(x0, π) ⊆
Er(x0). Then Xm is x-stabilizable for all x ∈ R(x0, π) since otherwise x0 would not
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be asymptotically stabilizable. Recall also that we have infinite cost for the states

which are not in Xa/c of Xm and for a policy π to be optimal we need J(π) < ∞.

This leads to the following lemma.

Lemma 3 The cost of every stabilizing policy π is J(π) < ∞.

Proof: This is proved by a contradiction. Assume that there is a stabilizing control

policy π such that J(π) = ∞. Note from Equation 3.4 that for x ∈ Xm we have

hx(x) = 0 and recall that once Xm is reached one can set the control u = gu(x) so

that h(x, gu(x)) = 0 for all x ∈ Xm. Since the cost is infinite there is an infinite

path X ∈ Xv(x0, π) which does not reach Xm contradicting the assumption that π is

stabilizing.
�

Now we establish the following proposition.

Proposition 2 The potential invariant set Xm is optimally x0-stabilizable iff it is

x0-stabilizable.

Proof: (if) Assume that Xm is x0-stabilizable. Then there exists π such that J(π) <

∞. Let Πs be the set of all stabilizing π, then π∗ = argminπ∈Πs{J(π)} is the optimally
stabilizing policy.

(only if) Assume optimally stabilizable, then it is stabilizable.
�

This proposition is important because it states that it is enough to perform mini-

mization only among the stabilizing control policies. Therefore, the job of finding an

optimal control policy is divided to two parts, i.e., to find all stabilizing policies and

then the policy with the lowest cost among the stabilizing policies.
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These ideas are similar to the ideas of robust and optimal control theory, where

you first find the parameterization of all stabilizing controllers and then the one which

minimizes the system norm.

In this section we investigated the issues of optimality and optimal stabilization in

DES. In the next section the notion of suboptimality and limited look-ahead policies

(LLP) will be discussed.

3.3 Limited Look-ahead Policies for Control of DES

In the preceding sections we investigated stabilization, optimality, and optimal

stabilization of the class of DES defined. In this section we introduce the idea of

planning implemented via limited look-ahead policy for optimal (or suboptimal) sta-

bilization.

As in the previous section, an invariant set Xm of G is to be optimally asymp-

totically stabilized. One possibility is to design the controller off-line, i.e., to find a

closed-form expression for the optimal controller and then apply it. The other possi-

bility is to find the optimal control on-line. The first approach has a drawback such

that for highly nonlinear systems such as DES it can be difficult if not impossible

to find the closed-form expression for the optimal controller. Moreover, if the state

space is infinite then the calculations required may be undesirably long and again it

can be impossible to find the optimal solution. Furthermore, if the system is time

varying or there is an uncertainty in the system model then the policy found may no

longer be optimal or even stabilizing. For these reasons, we use the second approach

with LLP controller for optimal stabilization of the invariant set.
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Figure 3.1: The closed-loop system with LLP.

Figure 3.1 shows the closed-loop system with this type of controller. The input to

the controller is the invariant set which is to be stabilized, i.e., rk = Xm. For now, it

is assumed that the output of the plant is the state of the system, yk = xk, and so full

state feedback is assumed (hence we do not have to concern ourselves with the issue

of observability). Here we assume that the state-space X is a finite dimensional since

otherwise yk = xk would be very restrictive assumption. This, however, does not

contradict the assumption that we can have infinite number of states. The controller

has a model of the DES G (denoted by “Internal Model”) and at each state xk it

generates the possible future states of the system N steps ahead as an N stage “state

tree.” In other words, it generates RN(xk), or the first N steps of all X ∈ Xv(xk) as

shown in Figure 3.2. The box labeled as “Decision” within the controller evaluates the

paths in the tree, finds the controllable subtrees and the corresponding policies, the

optimal policy, and executes the first control action in the optimal policy. After the

occurrence of an event and transition to a new state xk+1 the procedure is repeated.
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Figure 3.2: A state tree.

Depending on the size of the look-ahead, N , the amount of computations will

be tremendously reduced by this algorithm. Moreover, since the control action is

calculated on-line based on the current state of the system this algorithm has the

potential to perform much better in time varying or uncertain systems. However,

since N is finite there may be cases when the control policy generated by the algorithm

is no longer an optimal one or it may even lead to instability of the invariant set.

Therefore, we are looking for a lower bounds on N , say Nl1 and Nl2 , such that for all

N > Nl1 we will guarantee asymptotic stability and for all N > Nl2 we will ensure

that the policy generated by the LLP will be close to the optimal policy π∗. In other

words, the infinite horizon cost of the trajectories generated by the LLP will be equal

or almost equal to the cost of the trajectories due to the optimal policy.
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Now, we mathematically formulate the job of the “Decision” box in the controller.

Let XNX ∈ Xv(xk, πN) be a valid state trajectory due to the control policy πN and

starting at state xk, where XN = xk, xk+1, ..., xk+N represents first N+1 states within

the trajectory including xk. The limited look-ahead cost of this state trajectory is

defined as

JN (XN , πN) =

k+N−1∑
i=k

h(xi, ui) + hx(xk+N) (3.9)

where h(x, u) is the function defined in the previous sections. Analogous to the

previous section, the cost of the policy is then defined as

JN(πN) = max
XN X∈X(xk ,πN )

{JN(XN , πN )}. (3.10)

Once again the objective is to find π∗
N such that

J∗
N = JN(π

∗
N ) = min

πN

{JN(πN )} (3.11)

and to implement the first entry of this policy.

Note here that, since the maximization is performed over a finite horizon, the only

way a policy to have an infinite cost is to lead to a state x̄ �∈ Xa/c. Now the question

is; “How long should the look-ahead window be so that we avoid states x̄ �∈ Xa/c?”

Consider again the uncontrollable subsystem of G, Gd, and the set of valid event

trajectories of it Evd. Let l
d
c denote the length of the maximum uncontrollable event

trajectory E ∈ Evd leading to an uncontrollable cycle. Note that if a transition to

any of the states on such paths occurs then no control can guarantee convergence to

the invariant set Xm. Keeping this observation in mind, note that in G there may

be other cycles which can be broken by an appropriate control. We will call those
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cycles controllable cycles and will denote with luc the length of the one with maximum

length. Let ldb be the length of the maximum uncontrollable event trajectory leading

to a blocked state in G. Consider a state at which there are no disturbance events

defined but all the controllable paths lead to a blocked state, to an uncontrollable

cycle or to an uncontrollable path to an uncontrollable cycle. Then to avoid transition

to one of these all the events should be disabled which on the other hand leads to

blocking. We call such trajectories unavoidable paths and denote with lud the length of

such event trajectory with maximum length. Note that all x̄ lying on such trajectories

satisfy x̄ �∈ Xa/c. We will denote with ldc (x0), l
u
c (x0), l

d
b (x0) and lud(x0) the maximum

length of the above described trajectories in R(x0).

Using the above definitions now we return to our LLP scheme.

Algorithm 1 Let the initial state of the DES G be x0 ∈ Xa/c. Choose

N(x0) ≥ max{ldc (x0) + lud(x0) + 1, l
d
b (x0) + lud (x0) + 1, l

u
c (x0)}. (3.12)

On every iteration of the LLP do

1. Generate the N(xk) level state tree.

2. Discard from consideration the control policies leading to blocked states, states

in cycles and states on uncontrollable or unavoidable paths to cycles or blocked

states. For the rest of the states assign hx(x) = ψ(ρ(x,Xm)) where ψ ∈ K is a

predefined function.

3. Perform the optimization among the policies left and apply the first entry of the

optimal policy.
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One can see immediately that the hx(·) function satisfies its definition on the
previous section. Now, what remains is to show that this algorithm will lead to

convergence to Xm.

Lemma 4 Let the initial state of the DES G be x0 ∈ Xa/c. Under the above proposed

LLP Algorithm the system will never reach a state x̄ such that x̄ �∈ Xa/c. Moreover,

all the controllable cycles will be avoided.

Proof: Obvious since the look-ahead window size N is big enough to detect them

and therefore to avoid them.
�

This lemma states that with the algorithm defined, the system state will never

reach an unstabilizable state, however, still we do not guarantee convergence to the

required invariant set. It can be the case that under this algorithm the state of the

system diverges from Xm following stabilizable states or cycles trough the stabilizable

states.

Unfortunately, providing convergence for the general case is not an easy task.

However, we will prove convergence for a special case where hu(eu) = 0 for all eu ∈ Eu.

Proposition 3 Let the initial state of the DES G be x0 ∈ Xa/c. Assume that hu(eu) =

0 for all eu ∈ Eu. Then there exists ψ ∈ K for the cost function such that the LLP

algorithm described above will guarantee x0-stability of Xm.

Proof: Since x0 ∈ Xa/c there exists a policy π such that Xm is asymptotically

stable w.r.t. Ev(x0, π). This implies that there exist ψ1, ψ2, ψ3 ∈ K and a function

V (x) satisfying conditions of Theorem 1 and Theorem 2. Choose the cost function
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ψ(x) = ψ1(x). Let at each step k, πN be the truncated sub-policy of π. Then the

cost of the trajectory XN ∈ Xv(xk, πN) is JN (XN , πN) =
∑k+N

i=k ψ1(ρ(xi,Xm)). Note

that for all XN ∈ Xv(xk, πN ), ψ(ρ(xi,Xm)) is decreasing because of the conditions

of Theorem 1 and Theorem 2 and the fact that π is stabilizing. In particular, since

V (xk+1)− V (xk+1) ≤ −ψ3(ρ(xk,Xm)) and ψ1(ρ(xk,Xm)) ≤ V (xk+1), the cost of each

succeeding state in the trajectory is less then the cost of the preceding state. For the

non-stabilizing policies, however, the above two conditions do not necessarily hold.

Let Πs be the set of stabilizing policies and Πns be the set of non-stabilizing ones.

Then, we have J(πs
N ) < J(πns

N ) for all π
s
N ∈ Πs and all π

ns
N ∈ Πns. By Lemma 4

all the cycles and unstabilizable states are avoided. Therefore, the policy chosen will

always be the stabilizing policy with the minimum cost and the invariant set will be

asymptotically stable.
�

Note that the fact that the limited look-ahead policy of the above algorithm is

stabilizing does not imply that it is the optimal one since the look-ahead window is

finite. To guarantee optimality we have to impose further constraints on the system

and the cost function and these are topics for further research. Moreover, the proof

for the case with a general cost function is a topic for future work.

In this chapter we presented some stabilizability, optimality and limited look-

ahead policies for stabilization of DES. In the next chapter we will present two illus-

trative examples.
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CHAPTER 4

Examples

In this chapter we present two examples to illustrate the theory developed in the

preceding chapters. Both of the problems are taken from [1], however, here we use an

LLP for solving the control problem. The first example is a level control of a surge

tank in which we have controllable valves that fill the tank and an uncontrollable

empty valve. This example illustrates the importance of look-ahead in systems with

disturbance events. In particular, in this problem a set of states is made an asymptot-

ically stable invariant set despite the disturbance present in the system. The second

example is a load balancing problem in a flexible manufacturing systems (FMS) in

which we have 6 machines which operate on parts and a robot which moves parts

from one machine to other in order to obtain a balanced load. The importance of this

example is that it shows that even in systems which there are no disturbances there

can be cycles outside the invariant set and these cycles can be foreseen by look-ahead

and therefore broken so that stability can be attained.

4.1 LLP for a Surge Tank

Consider the surge tank example in [1]. The surge tank has two fill valves labeled

as “A” and “B” as shown in Figure 4.1. An empty valve labeled “C” is located at
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the bottom of the tank. It is assumed that we have complete control of the opening

of both the valves A and B. The liquid level in the tank is denoted by a nonnegative

integer and when valve A is opened it automatically closes itself after pouring enough

liquid to increase the level in the tank by one unit. Similarly, when opened, valve B

shuts itself down after increasing the level of the liquid by three levels. It is required

that only one fill valve is opened at once due to resource limitations. The opening of

valve C is random and unpredictable; however, it is assumed that for all times there

is another time that valve C will open (i.e., C will be persistently opened). Once

opened, valve C empties enough liquid so that the level in the tank decreases by 2

units (if the level was greater than or equal to 2) or until empty (if the level was

less than 2), and then automatically closes itself. The liquid level is measured by a

sensor in an asynchronous fashion (i.e. not according to a fixed clock) and the data

is provided to the LLP controller. The control objective is to control the level of the

liquid in the tank between 2 (the minimum safety level since we always want some

reserves for the down-stream process) and 5 for any given initial level.

C
1
2

3

h

A B

Figure 4.1: Surge tank.

The plant characteristics can be modeled by Equation 2.1 with
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• The set of plant states given by X = {0, 1, 2, 3, ...}.

• The set of controllable or command input events events is Eu = {ea
u, e

b
u} where

ea
u represents the event that valve A is open and eb

u represents the event that

valve B is open.

• The set of disturbance events is Ec = {ec
d} where ec

d is the event of valve C is

open.

• The set of output events is Eo = X , i.e., we have full state feedback.

• The output function is given by δe(x) = x for any valid input event e.

• The enable functions are defined as gu(x) = {ea
u, e

b
u} and gd(x) = {ec

d} for all
x ∈ X .

Using these one can see that at each time instant k and state xk we can have the

following input events to the the system.

• e11 = {ea
u, e

c
d}, i.e., valve A and C are open simultaneously,

• e12 = {eb
u, e

c
d}, i.e., valve B and C are open simultaneously,

• e21 = {ea
u}, i.e., only valve A is open,

• e22 = {eb
u}, i.e., only valve B is open,

• e31 = {ec
d}, i.e., only valve C is open.

The state transition functions for these events in particular states are given as

• fe11(x) =

{
x− 1 x ≥ 1
0 x < 1
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• fe12(x) = x+ 1

• fe21(x) = x+ 1

• fe22(x) = x+ 3

• fe31(x) =

{
x− 2 x ≥ 2
0 x < 2

We define a metric ρ : X × X → R+ on X as

ρ(x1, x2) =| x1 − x2 | (4.1)

where | · | denotes the absolute value.
Since we want the level of the liquid in the tank to satisfy 2 ≤ x ≤ 5 we choose

Xm = {2, 3, 4, 5}. Note that Xm is not a potential invariant set of the system, because

for some x ∈ Xm occurrence of the disturbance event ec
d will move the state of the

system out of Xm. Moreover, Xm is not asymptotically stabilizable because for some

states x̄ ∈ X it is not possible to find a set of controllable event trajectories Er(x̄) ⊂
Ev(x̄) w.r.t. which Xm is asymptotically stable. Therefore, we assume that when

there is an enabled controllable event at state x̄, the uncontrollable event ec
d cannot

occur alone. In other words, the event e31 can occur at state x̄ if and only if the

control output at that state is an empty set, i.e., u(x̄) = ∅. This assumption fits the
physical dynamics of the system and significantly simplifies the problem. Moreover,

it models so called forced event DES. Under this assumption the set Xm is a potential

invariant set of G since for every x ∈ Xm there exists a eu ∈ gu(x) such that all

corresponding valid transitions fe(x) ∈ Xm. For example, for a state x = 2, enabling

the controllable event eb
u will lead to state x = 3 ∈ Xm if ec

d occurs and to the

state x = 5 ∈ Xm if no disturbance event occurs. One can check similarly for the
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other states in Xm. Furthermore, it is easy to see that under this assumption Xm is

globally asymptotically stabilizable since for every x ∈ X there exists a controllable

Er(x) ⊂ Ev(x) such that Xm is asymptotically stable w.r.t. Er(x). For example, for

x = 6 choose u(6) = ∅ then Er(6) = {ec
dE} where E is an event trajectory of infinite

length. Note that we do not have to wait an infinite amount of time for ec
d to happen

since we assume that it will be persistently opened.

We use a limited look-ahead of 1 step for this example, since it is enough for

stabilization of Xm, and we define the state cost function as hx(x) = αρ(x,Xm) where

α is a constant. The control cost function is defined as hu(e
a
u) = 1 and hu(e

b
u) = 3.

In other words, the cost of being in a particular state is proportional to the distance

of this state form the invariant set Xm, and the cost of disabling a particular event is

equal to the amount of liquid this event pours in the tank.

Choose α = 4 so that the cost being even 1 unit away from the invariant set Xm

is greater then the cost of disabling any controllable event. This choice is reasonable

because the primary aim is stabilization of Xm.

Now, assume that the current state of the system is xk = 0. Possible control

policies are π0 = ∅, π1 = {ea
u}, π2 = {eb

u} and π3 = {ea
u, e

b
u}. The policy π0 leads to

xk+1 = 0, π
1 leads to xk+1 ∈ {0, 1}, π2 ends up in xk+1 ∈ {1, 3} and the next possible

states for π3 are xk+1 ∈ {0, 1, 3}.

70 1 2 3 4 5 6

Figure 4.2: State transition diagram.
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The cost of policy π0 can be calculated as J(π0) = hx(0)+hu(e
a
u)+hu(e

b
u)+hx(0) =

8+1+3+8 = 20. Similarly, one can calculate the cost of π1 as J(π1) = max{hx(0)+

hu(e
b
u) + hx(0), hx(0) + hu(e

b
u) + hx(1)} = 21 and for π2 and π3 as J(π2) = 13 and

J(π3) = 16. The policy π2 has the minimum cost hence it is the optimal policy. For

this reason at state xk = 0 the control input to be applied by the LLP to the DES

G is uk = {eb
u}. By a similar analysis for the other states one can easily obtain the

state transition diagram of the system under LLP as shown in Figure 4.2. Note that

there is no path leading out of Xm and all other paths are towards the invariant set

chosen. This clearly illustrates that the controller performs well and that the system

would be asymptotically stable.

To state it mathematically we can choose Lyapunov function as V (x) = ρ(x,Xm)

which automatically satisfies the conditions of Theorem 1. From Figure 4.2 we can see

that along all possible state trajectories of the system under one step LLP V (xk+1) <

V (xk). These results hold not for only a neighborhood of Xm but for entire X .
Therefore, the invariant set Xm is asymptotically stable in the large.

In the above example we have perfect state information, i.e., our system is com-

pletely observable. Moreover, the model of the system perfectly reflects the system

behavior. Examples where these characteristics do not hold can become much more

challenging.

4.2 LLP for a Flexible Manufacturing System

Consider the FMS given in Figure 4.3. It is composed of 6 machines which are

connected with a robotic transporter. Each machine has a queue for holding the parts

that it will operate on. The job of the robotic transporter is to balance the load of all
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the machines. We assume that it is possible for the robot transporter to move parts

along the arrows shown in Figure 4.3. It is assumed that the robot is able to sense

the levels in all the buffers of all the machines. The objective is to design an LLP for

movement of parts by the robot that will obtain a balanced load.

6

1 2

3 4

5

Figure 4.3: Six machine FMS.

This system can be represented with equation 2.1 where the set of states X = R6

since we have 6 machines. The set of command input events is

Eu = {e12
u , e13

u , e21
u , e34

u , e35
u , e42

u , e43
u , e56

u , e64
u , e65

u }

where the event eij
u represents moving a part from the machine i to the machine j.

For this system we do not have any disturbance events, hence Ed = ∅. Under these
conditions all of the paths of the system are controllable. Moreover, since we do

not have blocked states, any set Xm ⊂ X of the system is globally asymptotically

stabilizable.

Let Xb ⊂ X denotes the set of balanced states for a given initial state. (Note that

Xb depends on the initial state of the system.) From the above discussion it follows

that it is globally asymptotically stabilizable. However, there are also paths which

41



may increase the unbalance in the state of the system, and moreover, some paths

form cycles. For this reason, LLP is very suitable for control of this system since by

looking ahead we can see the paths leading to unbalance or cycles and by choosing

an appropriate control avoid them.

The state of the system at time k is denoted with x(k) and the state of a machine

i at time k is represented with xi(k). Assume that

6∑
i=1

xi(0) = 6Nd +Nr (4.2)

for some Nd, Nr ∈ N such that 0 ≤ Nr ≤ 5. Then the set of balanced states is given

by

Xb = {xi = Nd + 1 for Nr machines and xj = Nd for the rest of the machines}.
(4.3)

Let x∗(k) = max1≤i≤6 xi(k) and x∗(k) = min1≤i≤6 xi(k) denote the maximum and

minimum number of parts among the machines at time k.

We use the metric defined by

ρ(x, y) =
6∑

i=1

|xi − yi| (4.4)

for analysis of this system.

To begin with, first examine the paths in the system. Consider moving a part

from a machine to all the other machines, for example, from machine 1 to all other

machines. By examining Figure 4.3 one can see that to move a part from 1 to 2 or 3

takes one move, to move a part from 1 to 4 or 5 takes 2 moves, and to get a part to

6 from 1 takes 3 moves at minimum. Examining the other paths in the system one

finds that the longest path between two different machines in the system, which does
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not pass trough any machine twice, is 4 movements and it corresponds to moving a

part either from 2 to 6 or from 5 to 1. Therefore, we can move a part from a machine

to any other machine by firing of at most 4 transitions.

This observation is important because it suggests that the look ahead window size

should be N ≥ 4 so that the controller considers all the paths from each machine to

another machine.

Now assume that the state of the system is x(k) and that gu(x(k)) = Eu. Therefore,

we have 10 different paths in the first step and for two steps we have 100 different

paths. More generally, we can have maximum of 10N different paths in N steps

ahead. This shows that for large N the LLP algorithm can be computationally very

complex. However, most of the paths are not stabilizing for Xb and some even diverge

from it. For this reason, we can modify the LLP described before and prevent it from

considering all the paths but only those leading to Xb. This can be done by using the

fact that to obtain a balanced load it is required to move parts from the machines

with excess load to the machines which have parts less than required. For instance, by

moving a part from the machine with the maximum number of parts to the machine

with the minimum number of parts will for sure get the state closer to a balanced

state.

The above discussion leads to the following LLP algorithm which moves a part

from x∗ to x∗ by firing all the events in the path from x∗ to x∗ and guarantees that

after each iteration of the algorithm the state of the system will be closer to the set

of balanced states Xb. Later in this chapter we will show another algorithm which is

similar to this one but executes only one transition after each iteration.

Algorithm 2
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1. Check whether x(k) ∈ Xb or not. If yes stop, otherwise continue.

2. Find machines i and j such that xi(k) = x∗(k) and xj(k) = x∗(k).

3. Find a transition sequence which will move a part from the machine i to the

machine j. In the search for a path visit every machine only once.

4. Execute all the events in that transition sequence.

5. Increment k and go to step 1.

Note that the size of the look-ahead varies and can be either 1,2,3 or 4 depending

on the relative positions of the x∗ and x∗. This is due to the fact that on step 3

the algorithm stops expanding the possible future states as soon as a path, i.e., a

transition sequence, from x∗ to x∗ is found. Moreover, since it visits every machine

at most once it avoids cycles and the path found is the shortest path between the

corresponding machines.

8

1

2 1

3

5

6

4

2

3

8

8

Figure 4.4: Tree generated at state x(k) = [3, 2, 2, 2, 2, 1]T .
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This algorithm fits the framework described in the preceding chapters, however,

it is computationally more efficient. This is because instead of generating all paths in

X4(x(k)), it generates only those which begin with moving a part from xi(k) = x∗(k).

Moreover, if there are transitions to only machines j and l from the machine i, on

the next step it generates possible transitions which begin by moving a part from j

and l to the other machines. If a previously visited machine (or state) is encountered,

which means a cycle is encountered, an infinite cost is assigned to this path and the

continuations of it are not considered any more. When a path to the minimum is

found, a zero cost is assigned to it, tree expansion is stopped and all the events in the

path from the maximum to the minimum are executed. For example, assume that

x(k) = [3, 2, 2, 2, 2, 1]T . then the tree generated is as shown in Figure 4.4. After each

iteration of this algorithm the load is closer to balanced state. We state this more

formally next.

Proposition 4 The balanced set Xb of the FMS shown in Figure 4.3 is asymptotically

stable under the LLP controller of Algorithm 2.

Proof: Assume that at time k, x(k) �∈ Xb. It is clear that either x
∗(k) > max1≤i≤6 yi

for all y ∈ Xb or x∗(k) < min1≤i≤6 yi for all y ∈ Xb, or both hold together. Therefore,

increasing of x∗ or decreasing of x∗ will lead to a decrease in the distance of the given

state, x(k), to the set of balanced states, Xb. To show this assume that at time k,

xi(k) = x∗(k) and xj(k) = x∗(k). After moving a part from xi to xj (no matter in

how many movements is this performed, therefore assume 4 movements since this is

the maximum number of movements possible) we have xi(k + 4) = x∗(k) − 1 and

xj(k + 4) = x∗(k) + 1. It is evident that ρ(x(k),Xb) > ρ(x(k + 4),Xb). Moreover,
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ρ(x(k),Xb) ≥ ρ(x(k + l),Xb), ∀l = 1, 2, 3. Therefore, the metric, or distance, between

current state and the set of balanced states is non-increasing. Furthermore, it is

decreasing at the end of each iteration of the algorithm.

Choose Lyapunov function V (x) = ρ(x,Xb) and let ψ1(x) = ψ2(x) = x. Therefore,

the condition ψ1(ρ(x,Xb)) ≤ V (x) ≤ ψ2(ρ(x,Xb)) is satisfied by definition. Moreover,

ρ(x,Xb) and therefore V (x) is non-increasing function as was shown above. Further-

more, because of the arguments above we have V (x(k+4)) < V (x(k)), ∀k. Therefore,
since V (x) ≥ 0 and strictly decreasing on every 4 steps V (x(k))→ 0 as k → ∞, there-

fore by Theorems 1 and 2 x(k)→ Xb as k → ∞.
�

The crucial idea in the above algorithm is to move a part from the machine with

the maximum number of parts to the machine with the minimum number of parts. It

helps us to design an LLP which is a computationally very simple and it guarantees

a constant decrease in the “distance” to the set of balanced states, Xb. However, it

is different from the LLP described before, since it uses an information about the

system and also executes all the events in the “best” path found. Throughout the

analysis above we saw that moving a part from the x∗ to any other machine ends up

in a nondecreasing distance to Xb. This suggests an algorithm which does not need

to execute all the events in the path from x∗ to x∗ as in the original LLP and still

guarantees convergence to a balanced state.

Algorithm 3 In the Algorithm 2 above change step 4 to: Execute the first event in

the path leading to moving a part from x∗(k) to x∗(k). The other steps in Algorithm

2 remain unchanged.

46



Before proceeding with the analysis of this algorithm we should note that in an

unbalanced state x(k) one of the following holds

1. x∗(k) < Nd

2. Nr = 0 and x∗(k) > Nd

3. Nr �= 0 and x∗(k) > Nd + 1

4. Condition 1 hold together with condition 2 or condition 3.

Now, consider the case when a part is moved from machine the i to the machine

j at time k. Then, in general, one of the following cases holds

1. If xi(k) > Nd and xj(k) > Nd then ρ(x(k + 1),Xb) = ρ(x(k),Xb)

2. If xi(k) > Nd and xj(k) < Nd then ρ(x(k + 1),Xb) < ρ(x(k),Xb)

3. If xi(k) < Nd and xj(k) > Nd then ρ(x(k + 1),Xb) > ρ(x(k),Xb)

4. If xi(k) < Nd and xj(k) < Nd then ρ(x(k + 1),Xb) = ρ(x(k),Xb)

Now we present the following proposition which states that the set of balanced

states Xb will be asymptotically stable under the described algorithm.

Proposition 5 The balanced set Xb of the 6 machine FMS shown in Figure 4.3 is

asymptotically stable under the LLP controller of Algorithm 3.

Proof: For the LLP described in Algorithm 3 the above cases 3 and 4 cannot hold

since the algorithm chooses x∗(k) as the source for the part to be moved and xi(k) <

Nd implies that xi(k) �= x∗(k). For this reason, after each time step ρ(x(k+1),Xb) ≤
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ρ(x(k),Xb) holds. Now we have to show that once in a finite number of iterations

this inequality holds strictly.

Before showing this, it is worthwhile to discuss whether infinite cycles are possible

under the supervision of the algorithm or not. Possible cycles of the uncontrolled

system are passing a part back and forth between machines 1 & 2, 3 & 4, 5 & 6 or

cycles among 1-3-4-2, or 3-5-6-4. However, under the proposed algorithm these cycles

are not possible and we address this next.

Now consider machines 1 and 2. We will show that once a part is passed from 1 to

2 it is not possible to pass it back from 2 to 1 and vice versa. Assume x1(k) = x∗(k).

There are two possibilities for moving a part; either to machine 2 or to machine 3.

Since the path to machine 2 is a dead end, in order for it to lie on the path from

x1(k) = x∗(k) to x∗(k), x2(k) = x∗(k) should hold, otherwise the algorithm will move

a part to machine 3. Therefore, if a part from machine 1 is moved to machine 2,

ρ(x(k + 1),Xb) < ρ(x(k),Xb). Since x2(k + 1) cannot be the maximum on the next

step, it is not possible to pick a part from it for movement. For this reason, when a

part is moved once from 1 to 2 the algorithm does not allow a part to be moved from

2 back to 1.

If x2(k) = x∗(k), then a part from machine 2 is moved to machine 1. In order to

pass this part back to machine 2 on the next step we need x1(k+ 1) = x∗(k+ 1) and

x2(k + 1) = x∗(k + 1) which is not possible. Therefore, under this algorithm once

a part is moved from 2 to 1 it is not possible to pass it back to 2. The analysis for

machines 3 and 4, and 5 and 6 is similar.

Now let us consider the cycle among the machines 1-3-4-2. (The analysis for the

other cycle 3-5-6-4 is similar.) Assume again that machine 1 holds the maximum,
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i.e., x1(k) = x∗(k). In order for the robot to move a part from 1 to 2, x2(k) = x∗(k)

should hold, otherwise it will move the part to 3. After a part is moved to 3, in order

to pick a part from 3 to move to the other machines x3(k+1) = x∗(k+1) is required.

Moreover, to pass this part to 4, either x2(k+1) = x∗(k+1) or x4(k+1) = x∗(k+1)

should hold, because if x5(k + 1) = x∗(k + 1) or x6(k + 1) = x∗(k + 1) then the

part will be passed to 5, not to 4. Since 2 cannot be the minimum, it should be

the case that either 4 is the minimum and the part is passed to it, or 5 or 6 is

the minimum and the part is moved to 5 breaking the loop. Note that by moving

a part we obtain either decrease in the distance to the set of balanced states, i.e.,

ρ(x(k + 1),Xb) < ρ(x(k),Xb), or breaking the cycle. Actually, having a minimum

among the machines of the hypothesized cycle means that this cycle is not possible

because the algorithm never will pick a part from the machine with the minimum to

move it out, which also disallows the cycle. In fact, for the loop 1-3-4-2 to happen,

one of these machines should hold the x∗, moreover all others in the loop should hold

x∗ − 1 so that the x∗ alternates among them. However, this means that either 5 or

6 hold the x∗, which on the other hand will result in breaking the loop at machine 3

by passing a part to machine 5 as was discussed above.

Proceeding with the analysis, we note that if after a transition of a part is moved to

xj(k) = x∗(k) then ρ(x(k+1),Xb) < ρ(x(k),Xb) or otherwise xj(k+1) = x∗(k+1) =

xj(k) = x∗(k), i.e., the same machine still holds the minimum. For this reason, at

time k+1 the algorithm will still seek a path to the machine j, and this will continue

until a part is passed to it. Since we have finite number of machines and parts, and

there are no cycles possible, then after time k there exists finite time step l such that

ρ(x(k + 1),Xb) < ρ(x(k),Xb). Having showed this we can define Lyapunov function
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as V (x) = ρ(x,Xb) and the rest of the proof follows in a similar way as that of

Proposition 4.
�
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Figure 4.5: Plot of ρ(x(k),Xb) for different initial conditions.
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In order to enhance the study of Algorithm 3 above we also performed a simu-

lation analysis of the system. The results are shown in Figure 4.5 where we plotted

ρ(x(k),Xb) for various different initial conditions. One can immediately see that the

simulation results completely support the theoretical results obtained.

Finally, we want to discuss the computational complexity of the algorithm. We

claim that the algorithm is not computationally complex. It expands a state tree

while searching for a path from x∗ to x∗ whose size depends on the dimension of the

state space not on the number of the states. In particular for the example given, in

the worst case it expands a 4 level tree and visits all the machines, i.e., all 6 machines

at most once, which does not require a lot of computational time. If one still needs

to decrease the computational time then it is worthwhile to note that there is only

one path out of some machines (e.g. 2 and 5). Which implies that if one of these

machines holds the maximum there is no choice but to use the only path available.

Therefore, there is no need to look ahead and expand a tree of future states and one

can move a part without it. This can be implemented by a simple if statement which

does not add overhead to the program.
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CHAPTER 5

Conclusions

In this chapter we will summarize the work done in this thesis and also point some

potential future research directions.

5.1 Summary and Contributions

In this work we have analyzed DES in the framework of [1, 2]. In Chapter 2 we

introduced the DES model, provided some mathematical framework, presented the

closed-loop system and introduced the control problem. The main difference between

the model that we use and the models in the literature is that we allow more then

one event to occur together. In our framework a controllable and an uncontrollable

event can occur simultaneously and the control objective is to stabilize the invariant

set despite the uncontrollable events. In Chapter 3 we first analyzed stabilizability

in DES. We defined a notion of controllability which is more general then the ones

existing in the literature [8, 9, 10] and stated it as a sufficient condition for stabi-

lizability. Then, we addressed the optimality and optimal stabilization concepts for

the class of DES we are concerned with. The ideas of optimal control are similar

to these existing in the literature [3, 12, 15], however, the performance index to be

minimized is different since the system itself and the control objectives are different
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in our framework. We showed that the invariant set is optimally stabilizable if and

only if it is stabilizable. After that, we used the idea of using limited look-ahead

policies for the control of DES introduced in [5, 6]. The formulation in our framework

is different since we are mostly concerned with the state of the system whereas in

[5, 6] they are dealing with event sequences or the language generated by the system.

In applying the idea of look-ahead we used also the ideas from optimal stabilization

hence the limited look-ahead controller is not only stabilizing but also optimal (or

suboptimal) in a sense that on every step it chooses the best move as long as the

finite horizon is concerned.

In Chapter 4 we presented two illustrative examples. The first example is a level

control of a surge tank and the second one is a load balancing in a flexible man-

ufacturing system. We showed that under the proposed limited look-ahead policy

scheme the level in the tank will converge and remain within a predefined set of thats

and that the load of the flexible manufacturing system will become balanced after

finite number of transitions. The first example was important because it showed that

an appropriate set of states can be made an invariant set and can be asymptoti-

cally stabilized despite the uncontrollable events and the second example showed the

importance of cycles, and how they can be avoided or broken for stabilization.

5.2 Future Research Directions

There are several possible future directions which can be extensions of this work.

First of all, recall that here we assumed that we know the state of the system perfectly.

More challenging and important work would be to derive stability, stabilizability and

optimality conditions for DES in our framework in which the state is not perfectly
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known. Moreover, deriving necessary and sufficient conditions under which the limited

look-ahead controller will perform as well as in the full state feedback case is an

important future direction.

Other basic assumption this work is based on is that the model of the system

is perfect or it exactly reflects the system behavior. Derivation of conditions under

which the proposed algorithm will still perform well despite model uncertainties is

certainly a challenging research area.

Finally, inspired from the idea of look-ahead one may try to perform a stability

analysis of a general planning system with model uncertainties, and uncontrollable

and unobservable events. Proving stability of such system will for sure be a state of

the art contribution to the theory of intelligent control.
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