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Abstract
The problem being addressed is how to best find and engage an unknown num-

ber of targets in unknown locations (some moving) using multiple autonomous
wide area search munitions. In this research cooperative behavior is being in-
vestigated to improve the overall mission effectiveness. A computer simulation
was used to emulate the behavior of autonomous wide area search munitions and
measure their overall expected performance. This code was modified to incorpo-
rate the capability for cooperative engagement based on a parameterized decision
rule. Using Design of Experiments (DOE) and Response Surface Methodolo-
gies (RSM), the simulation was run to achieve optimal decision rule parameters
for given scenarios and to determine the sensitivities of those parameters to the
precision of the Autonomous Target Recognition (ATR) algorithm, lethality and
guidance precision of the warhead, and the characteristics of the battlefield.
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1. Introduction

1.1. General

The problem being addressed is how to best find and engage an unknown
number of targets in unknown locations (some moving) using multiple cooper-
ating autonomous wide area search munitions. The problem is exacerbated by
the fact that not all target priorities are the same, the munition target discrim-
ination capability is never perfect, and target destruction is never a certainty
even once engaged. Further, factors such as clutter density throughout the bat-
tlefield and ratio of targets to civilian or military non-targets create even more
complications for these smart, yet simple-minded, munitions.

This research does not necessarily provide the precise solution to this rather
complex problem; rather, this research provides a possible methodology for how
to attack this problem using different optimization methodologies and shows
some sample results.

This research was sponsored by the Munitions Directorate of Air Force Re-
search Labs at Eglin Air Force Base (AFB). All research took place at the Air
Force Institute of Technology (AFIT), Wright-Patterson AFB , Ohio.

1.2. Background

The United States Air Force has significantly reduced the size of its military
forces as a response to changing national military objectives and diminishing
budgets. This reality has forced the Air Force to look for more cost effective
ways of achieving its extremely crucial mission. One development has been the
creation of small, lightweight, low-cost, autonomous munitions fully equipped
with INS/GPS navigation and seekers capable of Autonomous Target Recogni-
tion (ATR). The intent in using these autonomous munitions is to employ larger
numbers of cheaper, less sophisticated munitions as opposed to fewer numbers
of expensive, complex munitions. However, in order to realize the full capabil-
ities of a system composed of large numbers of smaller subsystems (or agents),
the individual agents must behave cooperatively. Methods of evaluating mis-
sion effectiveness of these munitions have previously been developed for the
case of non-cooperating munitions [7]. In this research cooperative behavior is
being investigated to improve the overall mission effectiveness.

In a study provided by RAND [6], the rationale was developed for in-
vestigating cooperative behavior between Proliferated Autonomous Weapons
(PRAWNs). They showed by implementing a cooperative weapon behavior
logic into a computer simulation that there was a definite added potential when
cooperation was incorporated into the logic of PRAWNs. This study supported
the hypothesis that while the individual munitions may be less capable than con-
ventional munitions under development today, through communication across
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the swarm of weapons, the group exhibits behaviors and capabilities that can
exceed those of more conventional systems that do not employ communication
between weapons. The potential benefits which come about through shared
knowledge include relaxed sensor performance requirements, robustness to
increases in target location errors, and adaptivity to attrition and poor target
characterization.

In this study, however, a fixed decision rule (called “swarming algorithm”)
was used. This algorithm was based on the foundations of two areas of study:
ethology (the science of animal behavior) and robotics developed in the civil
sector. The collective intelligence that seems to emerge from what are often
large groups of relatively simple agents is what the engineers of the RAND study
tried to capture in their swarming algorithm. While this algorithm worked for
what they were doing, the research did not show how this decision algorithm
compared to other possible decision algorithms. Also, the RAND study concen-
trated on a very specific battlefield layout that was composed of large clusters of
targets and no possibility of encounters with non-targets or clutter. By not tak-
ing into account non-targets or clutter, the munitions had no false target attacks.
According to Jacques [7], methods and models for evaluating the effectiveness
of wide area search munitions must take into account the degradation due to
false target attacks.

Scientists studying animal behavior have identified and analytically mod-
eled many behaviors of natural organisms that have parallels to the tasks that
weapons must achieve in order to search for, acquire, and attack targets. Some
of these studies include Reynolds’ considerations for the formation of flocks,
herds, and schools in simulations in which multiple autonomous agents were
repulsed by one another (and other foreign objects) by inverse square law forces
[12] and Dorigo’s studies of ant colony optimizations [5]. Scientists in the field
of robotics have developed architectures for the controlling of individual robots
or agents, which allow groups of individuals to experience the benefits of group
or swarm behaviors. These include the studies by Arkin, Kube and Zhang,
Asama, and Kwok. Arkin demonstrated an approach to cooperation among
multiple mobile robots without communications [1], and Kube and Zhang also
researched the use of decentralized robots performing various tasks without ex-
plicit communication [8]. Asama sums up the challenge in choosing the right
behaviors for your agents by saying that “an autonomous and decentralized
system has two essentially contradictory characteristics, autonomy and cooper-
ativeness, and the biggest problem in the study of distibuted autonomous robotic
systems is how to reconcile these two features” [2]. Kwok considered the prob-
lem of causing multiple (100’s) of autonomous mobile robots to converge to a
target using an on-board, limited range sensor for sensing the target and a larger
but also limited-range robot-to-robot communication capability [9].
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While much of the research in the field of cooperative control of robotics
has been able to apply some of the basic principals learned from ethology,
the application to cooperative engagement of autonomous weapons is rather
limited. Since each of the munitions has a specific Field of View (FOV) on
the order of a half mile in width, the munitions are normally programmed to
fly a half mile from each other in order to limit the FOV overlap. Scenarios
exist where large FOV overlap is desired in the interest of redundant coverage
and higher probabilities of success, but the study of these scenarios is more
applicable to the cooperative search problem than the cooperative engagement
problem. Therefore, the protection and drag efficiencies gained by flocking,
schooling or herding are not applicable to this study. However, the concept of
ant foraging does have application to the problem at hand. Moreover, what if
the ants had the ability to choose to follow the pheromone deposits to the known
source of food or to choose to seek out a different area for a possible larger,
better, or closer food source? By what criteria could this decision be made? Is
the decision criteria the same for all situations? Taking this analogy one step
further (and maybe a little beyond reality), what happens when an ant falsely
identifies a poisonous food source as a good food source and causes the colony
to subsist off of this unknown danger? These questions have not been answered
in the applied research of robotics but are extremely important questions for the
application of cooperative control of autonomous wide area search munitions.

1.3. Objectives

The primary objective of this study was to investigate the use of cooperative
behavior to improve the overall mission effectiveness of autonomous wide area
search munitions. The specific objectives were to:

1 Establish a methodology for measuring the expected effectiveness of a
cooperative system of wide area search munitions

2 Develop optimal cooperative engagement decision rules for a variety of
realistic scenarios

3 Qualitatively analyze the sensitivities of the decision rule parameters to
the precision of the submunition’s ATR algorithm, the lethality and guid-
ance precision of the warhead, and the characteristics of the battlefield
(clutter density, target layout, etc.)

2. Baseline Computer Simulation

This Monte Carlo based Fortran program was originally developed by Lock-
heed Martin Vought Systems [10] as an effectiveness model for the Low Cost
Autonomous Attack System (LOCAAS). However, it is versatile enough to be
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used for any generic wide area search munition. The simulation makes no at-
tempt to model the aerodynamics, guidance, etc. of the submunitions, however,
it does model multiple submunitions in a coordinated search for multiple tar-
gets. Prior to the modifications made through this research, this program had
the capability to simulate the following events of the submunition “life cycle”:

Round dispense (any number of rounds)

Submunition dispense (any number of submunitions per round)

Submunition flies a user supplied pattern by following predetermined
waypoints and looks for targets on the ground

If a target enters a submunition’s FOV, the submunition may acquire it
based on the probabilities associated with the ATR algorithm

Once acquired, the submunition can select that target to engage

Once engaged, the submunition attempts to hit the target

Once the target is hit, an assessment is made as to whether the target has
been completely destroyed (dead) or is still in working condition (alive)

The simulation allows for any number of targets with varying priority levels,
the addition of non-targets (military or civilian), and a user supplied clutter
density per square kilometer of battlefield. The simulation is extremely flexible
in its capabilities to handle a multitude of input parameters and supplies all sorts
of results as output files at the conclusion of each run.

2.1. Inputs to the Simulation

To run the simulation, two separate input files are required. The first contains
the information concerning the user supplied flight paths for the submunitions
once dispensed from the rounds including waypoints, altitude and velocity, and
the second contains all the parameters characterizing the submunitions and the
parameters required to run the simulation. Table 1.1 shows a summary of some
of the input parameters that must be entered regarding the characteristics of the
submunitions and targets.

Since the munition effectiveness is determined by the outcome of Monte
Carlo runs, the user also has the ability to pick a baseline seed (which is modified
for every repetition in a series) and the number of Monte Carlo trials.

2.2. Outputs of the Simulation

The main output file for the simulation lists all of the input parameters used to
run the simulation for tracking purposes. Then for each Monte Carlo repetition,
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Table 1.1. Input Parameters to Baseline Simulation

Parameter Description

Numbers:
Rounds Total number of rounds dispensed
Submunitions Total number of submunitions (and submunitions per round)
Target Types Priority 1, priority 2, non-targets, etc.
Targets Total number of targets and how many of each type
Discrete:
Random Targets Either targets are placed in specific locations or random within a

specified area � total battlefield area
Blind in Turns Submunition’s target detection is turned off when turning
Reliabilities:
Round Probability that round will not fail
Submunition Probability that submunition will not fail
Probabilities: (Input for each target type)
Acquisition Submunition will acquire the target when it enters its FOV
Hit Submunition will hit the target once its acquired
Kill Submunition will kill the target once its hit
Correct Identification Submunition will identify the target correctly or incorrectly

(incorrect identifications are distributed among all target types as desired)
Seeker Data:
Foot Print Width Width of the FOV on the ground
Beam Width Beam width in degrees used for vertical FOV
Boresight Angle Angle at which the LADAR points down from the horizon
Scan Time Time for the FOV to sweep the entire foot print width
Flyback Time Time for the FOV to return at the completion of each sweep
Submunition Data:
Min Turn Radius Minimum turn radius the submunition can fly
Time of Flight Total Time of flight from submunition dispense time to expiration
Target Data:
Locations Specific locations of all targets if using non-random target layout
Mobility Data If mobile: start time, heading, speed, acceleration time

a brief history of what each submunition did during that repetition is displayed.
Finally, at the end of the main output file, all Monte Carlo repetitions are
summarized showing a breakdown, per target type and per individual target,
of the number of acquisitions, selections, hits, and kills, as well as the total
number of kills and unique kills for that simulation run.

3. Simulation Modifications

The baseline simulation has some capacity for cooperative engagement, but
it was insufficient for purposes of this research. Specifically, cooperative attack
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decisions have to be made immediately upon target declaration, the number
of submunitions to be redirected is set a priori, and there is no provision for
expanded search if the target is not found by the submunition being redirected.
For these reasons, significant modifications were made to the simulation.

3.1. Redirecting Submunitions

The first step in the modification process was to be able to redirect any
number of submunitions at any time toward any found targets. The way this
was accomplished was using a structured array to store all target information
on the targets found. This structured array stored the x, y and z coordinates
of the target (if the target was a moving target, these coordinates would be
those corresponding to the position of the target at the time it was acquired
and selected), and the type of target found. A very important distinction which
needs to be made at this point is that the target type stored is not necessarily
the correct identification of the target found; it is the identification of the target
type determined by the munition that identified that target. Therefore, the type
of target found which is stored in this target array may not be the true type of
target located at the stored coordinates.

Once the target information was stored, a method for distributing that infor-
mation had to be determined. Obviously, since this was just a simulation, it
would be easy to just provide all submunitions access to all entries in the afore-
mentioned structured array. But is this feasible, realistic or even advantageous?
Since this study hoped to gain some insight into the trade-offs between local
and global communication, a mechanism for determining whether a submuni-
tion received the communicated information had to be implemented. First of
all, in this study incomplete communications were not considered, i.e., either
a submunition receives all the information about the target or none. However,
communications reliability based solely on whether or not the submunition was
within a certain maximum communications range didn’t seem too realistic ei-
ther. Therefore, a communications reliability function was developed. In order
to keep it relatively simple, this function was solely based on the probability
of communication failures increasing as maximum communications range was
approached. Maximum communication is not set a priori; rather it is one of the
variables to be determined by the design optimization process. The reliability
function used is shown in equation (1).

Comm Rel =

8>><
>>:

1 if range � max comm range
2 

max comm range�range
max comm range

2

!
0:1

if range >
max comm range

2

(1)
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Figure 1.1 illustrates an example of this communications reliability function
for a maximum communications range of 10,000 meters.
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Figure 1.1. Communications Reliability Function

In order to implement the decision algorithm described in the following
section, the amount of information that had to be shared among the submunitions
had to be determined. For practical implementation concerns, there was a desire
to limit the amount of communication required and to limit all communication
to words or numbers as opposed to images. This low bandwidth communication
seemed most feasible for this application. For this study, the following three
pieces of information were communicated for each target found:

Location of the target

Type of target

Specific target to be engaged

The location of the target was communicated as the precise x and y coordi-
nates of the target. The type of target was communicated as either a high priority
(priority 1) or a low priority (priority 2). The specific target to be engaged is,
in reality, a very difficult piece of information to communicate and keep track
of reliably, especially with non-global and non-perfect communications. How-
ever, in this study, the target registration problem was not considered.

3.2. Decision Algorithm

The purpose of the decision algorithm was to provide a criteria by which
the submunitions could “decide” whether or not to participate in a cooperative
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engagement. In developing the algorithm, the goals were to incorporate all
important factors that should be taken into account for making a cooperative
engagement decision and to keep it simple since the available computing power
aboard these submunitions is minimal. After several iterations, the following
(in no particular order) were determined to be the most important factors that
needed to be included in the decision algorithm:

Fuel remaining

Target priority

Range rate from submunition to target

Range from submunition to target

Number of submunitions that have already engaged a particular target

To keep the decision algorithm simple, the basic first order expression shown
in equation (2) was used.

Threshold = �1 � x1 + �2 � x2 + �3 � x3 � �4 � x4: (2)

where

x1 = Normalized Fuel Remaining

x2 = Normalized Target Priority

x3 = Normalized Range Rate

x4 = Normalized Number of Engaged Submunitions on a particular target

�
i

= Weighting Parameters

Normalizing the fuel remaining in the simulation was easily accomplished
by normalizing time of flight or search time. Since each submunition had a
twenty minute total search time, the normalized time of flight was the current
time divided by 1200 seconds. Target priority was normalized by assigning a
value of one to a priority one target, one-half to a priority 2 target and zero for
anything else.

The purpose of incorporating a range rate parameter in the decision rule
was to apply little influence on the decision (or even discourage a cooperative
engagement) when the range rate was negative (the submunition is moving
towards the target) and to encourage a cooperative engagement when the range
rate is positive (the submunition is moving away from the target). This provided
a means for allowing the submunition to continue its predetermined search
pattern if it was flying in the general direction toward a known target location.



10

The expression used to normalize range rate is shown in equation (3) with _r

defined by a backward difference.

normalized range rate =

���� _r � vel
2 � vel

���� (3)

where

_r =
range

i

� range
i�1

time
i

� time
i�1

Figure 1.2 illustrates the function for normalized range rate shown in equation
(3).
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Figure 1.2. Normalized Range Rate

The actual range from the submunition to a specific target is not explicitly
used in this decision algorithm, however, a range check was added to the simu-
lation to ensure that a submunition is not redirected toward a target that cannot
be reached based on insufficient fuel remaining.

The last parameter in the decision algorithm is the normalized number of
engaged submunitions on a specific target. The purpose of this parameter
is to discourage multiple cooperative engagements on a single target in an
attempt to spread out the total hits and not send all submunitions after the same
target. When a target has been engaged by only a single submunition, then this
parameter should not be discouraging a cooperative engagament on that target.
However, once one submunition has cooperatively engaged a target (resulting
in a total of two munitions attempting to hit that specific target), this parameter
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should be invoked to discourage any additional submunitions from choosing
to cooperatively engage that target. Equation (4) was used to normalize this
parameter.

Normalized Parameter = Number of engaged submunitions � 1 (4)

Note that in equation (2) a “-” sign is implemented in front of this parameter
in order to discourage a cooperative engagement as this parameter increases.
As desired, this parameter equals zero when only one submunition has engaged
a specific target but then increases in value as more submunitions cooperatively
engage that target.

The implementation of the decision rule in equation (2) was rather simple.
Once a target is found, the information about that target is communicated by
the submunition that identified the target. Then at all subsequent time steps,
every submunition that received the communication and is not in an engaged
status will calculate all of the normalized parameters and the decision algorithm,
equation (2). When multiple targets are found and communicated, then at all
subsequent time steps the normalized parameters and the decision algorithm
are calculated by each submunition for each target individually. If the total
for the decision algorithm exceeds the decision threshold, then a cooperative
engagement on that target by that submunition occurs. That submunition then
communicates globally with 100% reliability that it has engaged that specific
target (ignores all target registration issues). Relaxing this assumption would
require revisiting the target registration problem which is beyond the scope of
this study.

3.3. Additional Modifications

In order to best achieve the objectives of this study, a few additional changes
needed to be made to the simulation. The first was a simple modification to the
main output file to include the values of each normalized parameter as well as the
weights on the parameters every time a cooperative engagement was invoked.
This provided a means to track all cooperative engagements, and ensure the
decision algorithm was being implemented properly.

A second change was an attempt to answer the following question: what
should happen to a submunition that is sent off its original search pattern to
cooperatively engage a target that it cannot find? This situation could result from
a failure of the ATR algorithm on either the original munition that identified
the “target”, or the munition searching for the previously found target. In order
to accomodate this, an attempt was made to create a new search pattern for
the redirected submunition that focused on the location of the target that was
cooperatively engaged. The new pattern used was a growing figure-8 centered
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on the communicated target location. This pattern would initially turn the
submunition around after it crossed the expected target location to fly right
back over it as an attempt to acquire and classify the target if it simply “missed”
it the first time. If the target was still not selected on this second pass, then the
submunition would continue flying past the target, but this time farther past the
target, in the opposite direction in which the submunition first approached the
target area. It would then turn around and fly back toward the target until the
submunition engages a target or expires (search time depletes)–the submunition
cannot participate in a second cooperative engagement on a different target.

The behavior chosen to handle this situation is not necessarily that which
would be implemented operationally, nor was any research completed that
showed this behavior would produce optimal results. This situation was deemed
outside the scope of the research and could better be addressed by a study in
cooperative search.

4. Applied Response Surface Methodologies

Response surface methodology is a collection of statistical and mathemat-
ical techniques useful for developing, improving, and optimizing processes.
Most applications include situations where several input variables potentially
influence some performance measure or quality characteristic of the system.
The purpose of RSM is to approximate the measures of performance, referred
to as response functions, in terms of the most critical factors (or independent
variables) that influence those responses. In doing this, a response surface can
then be mapped out showing how variations in the independent variables affect
the responses.

A typical RSM according to Myers and Montgomery [11] is broken into
phases. The first experiment is usually designed to investigate which factors are
most influential to the responses with the intent of eliminating the unimportant
ones. This type of experiment is usually called a screening experiment and
is typically referred to as phase zero of a response surface study. Once the
important independent variables are identified, phase one begins with the intent
of determining if the current levels or settings of the independent variables
result in values of the responses near optimum. If the current settings or levels
of the independent variables are not consistent with optimum performance,
then adjustments to the input variables that will move the responses toward the
optimum must be made. To do this a first order model and the optimization
technique called the method of steepest ascent are employed. Phase two of
the response surface study begins when the process is near the optimum. At
this point models that will accurately approximate the true response functions
are desired. Because the true response surfaces usually exhibits curvature near
the optimum, models of at least second order must be used. Then, finally, the
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models of the various responses must be analyzed to determine the settings for
the independent variables that provide the optimal expected performance over
all responses.

For this study, RSM was used to determine the optimal settings for the �
i

’s in
the cooperative engagement decision algorithm shown in equation (2) as well as
the maximum communications range. The optimal�

i

’s were simply the weights
on the parameters used in the decision rules. A high weight on a parameter
means that that parameter is of high importance in making the decision to
cooperatively engage, whereas a low weight on a parameter can be interpreted
to mean that that parameter is less important (or even insignificant) in making
the decision to cooperatively engage. A low maximum communications range
implies that local communications are employed, whereas a high maximum
communications range implies global communications.

4.1. Independent Variables

Because of the relatively small number of input variables, the phase zero
screening experiments were not necessary for this study. Therefore, the first
step was to choose the ranges of the independent variables to begin the RSM.
A decision threshold for equation (2) was, without loss of generality, chosen
equal to one (the �

i

’s could be scaled to accommodate a non-unity threshold
value). In picking the ranges for the independent variables, careful consider-
ation was made to ensure the RSM studies would be investigating the effects
of different cooperative engagement decision rules. Therefore, the values for
the independent variables when chosen at their extremes had to be able to re-
sult in the possible triggering of the decision algorithm. Since the first three
parameters in the decision rule (as described on page 9) were normalized to
have maximum values of one, the weights on these parameters could not be all
less than one-third or else a cooperative engagament would be impossible. This
would, therefore, result in an RSM study investigating the effects of different
cooperative engagament decision rules and no cooperation at all. Since this was
not the goal, minimum values for the first three parameters had to be chosen
greater than one third. Table 1.2 shows the values used for each independent
variable.

The values chosen in Table 1.2 ensure that even when the independent vari-
ables are chosen at their extremes, cooperative engagements are still possible.
The maximum communications range values were chosen based on a battlefield
that was approximately 300 square kilometers in size.
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Table 1.2. Independent Variable Ranges for RSM

Variable Weight on Minimum Maximum

�1 Time of Flight 0.4 0.8
�2 Target Priority 0.4 0.8
�3 Range Rate 0.4 0.8
�4 Number of Munitions 0.4 0.8

Maximum Communications Range 5 km 15 km

4.2. Responses

The responses had to be chosen to somehow accurately measure the expected
mission effectiveness for wide area search munitions. Four responses were
chosen:

Unique Kills

Total Kills

Total Hits

Target Formula

Unique kills was defined as the expected number of unique, real targets killed
(each target can only be killed once). Total kills was defined as the expected
number of submunitions to put lethal hits on a real target. Total hits was defined
as the expected number of real target hits. Finally, the target formula response
was used as a means of measuring the hits on high priority targets (priority one)
versus hits on low priority targets (priority two) and incorporating a penalty for
any hits on non-targets. This target formula is shown in equation (5) where “#
prior 1 hits” means the number of hits on priority one targets, “# prior 2 hits”
means the number of hits on priority two targets, and “# non-target hits” means
the number of hits on any non-targets.

Tgt Formula = 2 � (# prior 1 hits)+ (# prior 2 hits)� (# non-target hits) (5)

A simple example can be used to distinguish and better understand these
responses. This example has five submunitions, 2 real targets (one high priority
and one low priority) and one non-target. Submunition #1 hits target #1, a high
priority target, but does not kill it. Submunition #2 hits that same target (target
#1) but kills it. Submunition #3 hits and kills target #2, a low priority target.
Then submunition #4 also hits target #2, and this engagement is also deemed
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a kill (even though the target was already dead) . Finally, submunition #5 hits
the non-target. The responses for this example are shown in Table 1.3.

Table 1.3. Responses for Example

Response Explanation Value

Unique Kills targets #1 and #2 2
Total Kills submunitions #2, #3, and #4 3
Total Hits submunitions #1, #2, #3, and #4 4

Target Formula 2 hits on target #1 (high priority target)
2 hits on target #2 (low priority target)
1 hit on a non-target 5

4.3. Phase 1

The purpose of phase one is to determine if the current ranges for the inde-
pendent variables shown in Table 1.2 result in responses that are near optimal.
To accomplish this a 25�1 fractional factorial design was used. This orthogonal
resolution V design required a total of 16 runs to complete. Each design was
augmented with four center runs resulting in a total of 20 runs. For each run
the values for each of the four responses were recorded. Using an analysis of
variance (ANOVA) for each response, an attempt to fit first order models to
each response was made. Whenever a first order model was appropriate, the
method of steepest ascent was used to traverse the response surface to a new
operating region that was closer to the optimal design point. The method of
steepest ascent is summarized by the following few steps.

1 Fit a planar (first-order) model using an orthogonal design

2 Compute a path of steepest ascent where the movement in each design
variable direction is proportional to the magnitude of the regression co-
efficient corresponding to that design variable with the direction taken
being the sign of the coefficient

3 Conduct experimental runs along the path

4 Choose a new design location where an approximation of the maximum
response is located on the path

5 Conduct a second fractional factorial experiment and attempt to fit another
first order model

If a second first order model is accurately fit, then a second path of steepest
ascent can be computed and traversed until a region is reached where a higher-
order model is required to accurately predict system behavior.
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In this study, after the initial fractional factorial design was completed, a first
order model was never adequate. Therefore, the method of steepest ascent was
never required because the starting region of design seemed to always be close
enough to the optimal point over all responses.

4.4. Phase 2

The purpose of this phase is to build second (or higher) order models to accu-
rately predict all responses and choose the settings for the independent variables
that will result in the optimal expected performance over all responses. Since
the resolution V fractional factorial was already completed at the appropriate
design point, the ideal second order design would be able to simply augment
the first design to decrease the total number of runs, thereby saving time and
money. Therefore, the Central Composite Design (CCD) was used. This design
requires three parts:

Two-level factorial design or resolution V fraction

2k axial or star runs (k = # of independent variables)

Center runs

The resolution V fraction contributes to the estimation of the linear terms and
two-factor interactions. It is variance-optimal for these terms. The axial points
contribute to the estimation of the quadratic terms. The center runs provide
an internal estimate of error (pure error) and contribute toward the estimation
of quadratic terms. Since the phase one experiments required the fractional
factorial design and the center runs, to complete the CCD the axial runs were
all that was required.

The areas of flexibility in the use of the CCD resides in the selection of �,
the axial distance, and the number of center runs. According to Myers and
Montgomery [11] and Box and Draper [3], the CCD that is most effective from
a variance point of view is to use � =

p
k and three to five center runs. This

design is not necessarily rotatable but is near-rotatable. Therefore, the four
center runs completed in the initial augmented fractional factorial design were
sufficient for the CCD, and the 10 additional axial runs at � =

p
5 = 2:236

were all that were required to complete the CCD.
Once all runs were complete, a mechanism for choosing the values of the

indendent variables that would result in the most-optimal mission effectiveness
for all responses had to be determined. Because of the complexity and multi-
dimensionality of the response surfaces, a simple overlaying of contour plots to
graphically choose the point which appeared to be optimal over all responses
was not applicable. Therefore, the Derringer and Suich [4] desirability function
for optimizing over multiple responses was employed. This method allows for
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the creation of desirability functions (d1; d2; d3; d4) for each response where
the desirability function can target a specific value, minimize or maximize
a response. Since all the responses in this study were measures of mission
effectiveness, the desirability functions used were all maximizing. Then a
single composite response (D) is developed which is a weighted mean of the
desirabilities of the individual responses. The weights in the composite response
allow more emphasis on specific individual responses when computing the
single composite response. In this study, extra emphasis was placed on two of
the responses: the number of unique kills and the number of hits on priority
one targets (target formula).

In order to find the optimal conditions using this method, each of the in-
dividual desirability functions (d1; d2; d3; d4) and the composite desirability
function (D) must be computed at each design point according to the individual
responses. Then a response surface must be built with the computed response
D, and appropriate methodology must be applied for finding the conditions that
maximize D̂ (the model that provides the expected values of D). Since this
method will result in many possible combinations of independent variables that
will “optimize” the overall mission effectiveness, many of the various combi-
nations must be applied and compared in order to choose the “optimal” settings.

5. Results and Analysis

5.1. Quantitative Results and Analysis

Specific numerical results are shown for four scenarios where a cooperative
engagement decision algorithm employing the optimal settings resulted in over-
all improvement over baseline (non-cooperative) performance. Each scenario
was defined by three general characteristics:

1 Warhead lethality/guidance precision

2 ATR precision

3 Battlefield characteristics

The specific parameters that were varied in the simulation to define the three
general characteristics above were:

1 Probability of Kill (P
k

)

2 False target attack rate (�) and probability of target report (P
TR

)

3 Clutter density (�) and whether the targets were clustered or widely dis-
persed
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The battlefield used for all simulations was approximately 300 square kilo-
meters in size. Two groups of four submunitions each (totaling eight submu-
nitions) where employed in all scenarios. Each of the groups flew a serpentine
pattern that covered the entire battlefield in approximately 20 minutes. Each
scenario had a total of eight real targets (three high priority and five low prior-
ity). Also, two non-targets were employed in the vicinity of the real targets and
a battlefield � of 0.05 per square kilometer were randomly placed throughout
the battlefield in all scenarios.

Table 1.4 shows the parameters defining scenario 1. This submunition has
a relatively non-lethal warhead and is searching for targets clustered in a four
square kilometer region of the battlefield.

Table 1.4. Scenario 1 Defining Parameters

Parameter Value

Pk 0.5
� 0.0053 per square km

PTR 0.95
Target Layout Cluster

The RSM described in section 4 was performed on this scenario to determine
the ideal weighting parameters for the decision rule (equation (2)). When
performing the RSM, each simulation run required was reported as a summary
of 200 Monte Carlo runs. Each repetition was completed using a different
baseline seed for the Monte Carlo simulation. The resulting parameters are
shown in Table 1.5.

Table 1.5. Ideal Parameters for Scenario 1 Decision Algorithm

Variable Weight on Ideal Value

�1 Time of Flight 0.77
�2 Target Priority 0.14
�3 Range Rate 0.35
�4 Number of Munitions 0.0

Maximum Communications Range 9.8 km

The expected performance of the wide area search munitions employing the
decision algorithm with the ideal weighting parameters and ideal maximum
communications range was then compared to their baseline performance (no
cooperation). Table 1.6 shows these results for each of the responses. The
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overall percent improvement is simply an average of the percent improvements
corresponding to each of the four responses.

Table 1.6. Scenario 1 Results

Response No Cooperation Ideal Cooperation Improvement

Unique Kills 2.7 2.81 4.07%
Total Kills 3.06 3.37 10.13%
Total Hits 6.08 6.515 7.15%
Formula 8.04 8.72 8.46%
Overall 7.45%

Table 1.7 shows the parameters defining scenario 2. This submunition has a
lethal warhead and is searching for targets clustered in a four square kilometer
region of the battlefield (same battlefield as scenario 1).

Table 1.7. Scenario 2 Defining Parameters

Parameter Value

Pk 0.8
� 0.0053 per square km

PTR 0.95
Target Layout Cluster

The RSM described in section 4 was performed on this scenario to determine
the ideal weighting parameters for the decision rule (equation 2) in a similar
manner to that for scenario 1. The resulting parameters are shown in Table 1.8.

Table 1.8. Ideal Parameters for Scenario 2 Decision Algorithm

Variable Weight on Ideal Value

�1 Time of Flight 0.30
�2 Target Priority 0.36
�3 Range Rate 0.42
�4 Number of Munitions 0.0

Maximum Communications Range 20.3 km

The same performance measurements as in scenario 1 were analyzed for this
scenario. Table 1.9 shows these results for each of the responses.
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Table 1.9. Scenario 2 Results

Response No Cooperation Ideal Cooperation Improvement

Unique Kills 4.13 4.18 1.21%
Total Kills 4.95 5.25 6.06%
Total Hits 6.145 6.53 6.27%
Formula 8.11 8.77 8.11%
Overall 5.42%

Table 1.10 shows the parameters defining scenario 3. This submunition has
a relatively non-lethal warhead and is searching for targets widely dispersed
throughout the entire battlefield.

Table 1.10. Scenario 3 Defining Parameters

Parameter Value

Pk 0.5
� 0.0053 per square km

PTR 0.95
Target Layout Widely Dispersed

The same RSM as the previous scenarios was performed on this scenario.
The resulting parameters are shown in Table 1.11.

Table 1.11. Ideal Parameters for Scenario 3 Decision Algorithm

Variable Weight on Ideal Value

�1 Time of Flight 0.71
�2 Target Priority 0.48
�3 Range Rate 0.1
�4 Number of Munitions 0.1

Maximum Communications Range 13.3 km

Table 1.12 shows the results for each of the responses.
Table 1.13 shows the parameters defining scenario 4. This submunition has a

lethal warhead and is searching for targets that are widely dispersed throughout
the entire battlefield (same battlefield as scenario 3).

The resulting parameters after completing the RSM are shown in Table 1.14.
Table 1.15 shows the results for each of the responses.
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Table 1.12. Scenario 3 Results

Response No Cooperation Ideal Cooperation Improvement

Unique Kills 2.72 2.70 -0.74%
Total Kills 3.07 3.35 9.12%
Total Hits 6.295 6.52 3.57%
Formula 8.56 9.245 8.00%
Overall 4.99%

Table 1.13. Scenario 4 Defining Parameters

Parameter Value

Pk 0.8
� 0.0053 per square km

PTR 0.95
Target Layout Widely Dispersed

Table 1.14. Ideal Parameters for Scenario 4 Decision Algorithm

Variable Weight on Ideal Value

�1 Time of Flight 0.31
�2 Target Priority 0.35
�3 Range Rate 0.40
�4 Number of Munitions 0.15

Maximum Communications Range 19.7 km

5.2. Qualitative Results and Analysis

As the precision of the ATR is degraded and/or the clutter density increases,
this form of cooperative engagement does not offer any advantages and often
deteriorates the overall performance of the wide area search munitions. This is
because of the hyper-sensitivity to �, the false target attack rate. By degrading
the ATR precision and/or increasing the clutter density, � increases. Therefore,
what often occurs is that a submunition falsely identifies a clutter or non-target
as a real target and then communicates to some of the other munitions the
existence of a real-target that doesn’t actually exist. Then one or more of
the other submunitions will decide to cooperatively engage that false target.
Now the best event that could occur for that redirected submunition is that
it just happens to encounter a real target on its flight path to the false target
(the chances of that event occurring being no better than if the submunition
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Table 1.15. Scenario 4 Results

Response No Cooperation Ideal Cooperation Improvement

Unique Kills 3.93 3.99 1.53%
Total Kills 4.97 5.3 6.64%
Total Hits 6.225 6.555 5.30%
Formula 8.38 9.03 7.76%
Overall 5.31%

would have just stayed on its original search pattern). However, if that does
not happen, the submunition is guaranteed to encounter that false target that it
thinks is a real target. Upon encountering the false target, the submunition may
correctly identify it and not engage it, but as � increases, this is less and less
likely. Therefore, cooperative engagement alone cannot overcome the hyper-
sensitivity in wide area search munition effectiveness to increasing �.

What happens when � remains low, but P
TR

decreases? This means that
given real target encounters, the probability that the ATR is correctly identify-
ing the real targets is decreasing, i.e., there is an increase in submunitions not
engaging real targets because they are falsely identifying them as non-targets.
In this situation, as long as � remains low, cooperation can still improve overall
effectiveness. This is because a submunition may later encounter and correctly
identify (and therefore communicate and engage) a real target that another sub-
munition may have previously incorrectly identified as a false target. Then
through cooperation, the submunition that originally made the incorrect identi-
fication could go back and get a second look at that target and possibly correctly
identify and engage it. A scenario such as this will also benefit from redundant
area coverage with the initial search patterns at the expense of reduced total
area coverage rate.

5.3. Robustness and Sensitivity Analysis

To test the robustness of the optimal decision parameters determined for each
scenario, the optimal decision rule for one scenario was run on a different sce-
nario and then compared to the baseline performance. For example, the optimal
decision parameters for scenario 1 (as defined in Table 1.5) were implemented
in the simulation setup to run scenario 2 (as defined by the parameters listed in
Table 1.7). This was done for all combinations of the four scenarios described
in the quantitative results section (section 5.1). The results proved very little
robustness to the selection of the optimal decision parameters. In most cases,
the performance with the sub-optimal decision parameters resulted in a zero
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to two percent overall improvement over baseline performance, but sometimes
resulted in deteriorated performance when compared to the baseline.

With these results an attempt was then made to correlate the values of the
optimal weighting parameters to the parameters used to define the different
scenarios. However, due to the diversity in the optimal weighting parameters
across all four scenarios, very little correlation was recognized. The only pa-
rameter that displayed some sort of consistency was that associated with the
fuel remaining or time of flight–there appears to be some value in waiting until
the latter part of the search pattern to choose to cooperatively engage a known
target. This, of course, makes sense and allows for the greatest exploration of
the entire battlefield.

6. Conclusions and Recommendations

The methods used in this research are not limited to any particular type of
wide area search munition and were consciously completed using parameters
that describe a very generic wide area search munition. This research, there-
fore, applies to all wide area search munitions and other cooperative vehicles,
and more specific results can be achieved for any specific system by simply
modifying the parameters in the effectiveness simulation. Further, the methods
developed as part of this research have applications in the more general area of
cooperative behavior and control.

The form of cooperative engagement used in this study is most useful in
overcoming the limitations on warhead lethality and, to a lesser degree, P

TR

.
However, cooperative engagement alone is not able to compensate for higher
false target attack rates. Also, the selection of the optimal weights in the decision
algorithm are very sensitive to all battlefield characteristics.

To improve these results, research on cooperative search and cooperative
discrimination must be included with the cooperative engagement algorithm
to better achieve the full synergistic value of cooperative wide area search
munitions.
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