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Abstract—A physically-based preconditioner for iterative
method of moments solutions of quasi-planar penetrable surface
scattering is presented. The required preconditioner inverse
operation is computed in order N log N operations by first
representing the right-hand side vector to be multiplied by the
preconditioner inverse in terms of its plane wave spectrum.
Individual plane wave amplitudes are then combined with appro-
priate Fresnel reflection coefficients to generate the solution for
induced currents, and transformed back to the spatial domain.
The proposed technique is applied in simulations of scattering
from rough surfaces, and the number of iterations required to
obtain a convergent solution is compared to that achieved by
a banded-matrix preconditioning method. The results show that
the physically-based preconditioner produces rapid convergence
for surfaces with moderate heights and slopes.

Index Terms—Numerical methods, rough surface scattering.

I. INTRODUCTION

SCATTERING from quasi-planar surfaces, including rough
surfaces, planar devices, etc., is of interest in many fields

of applied optics and electromagnetics. Numerical methods
have been applied extensively to solve these problems (see for
example [1]-[9]), primarily based on a method of moments
(MOM) formulation. The use of the method of moments
results in a matrix equation which can be solved to obtain
induced currents on the surface. However, direct solution of
this matrix equation by LU decomposition requires an O(N 3)
operation, where N is the number of unknowns, making the
complexity impractical for large-scale problems. As a result,
numerous iterative schemes have been developed and applied
to reduce the complexity to O(N 2), with further reductions
in operation count possible through the incorporation of fast
algorithms for computing the matrix-vector multiply (e.g. [8]).

Even for such fast algorithms, the CPU time needed for
solving a quasi-planar surface scattering problem remains
directly proportional to the number of iterations required by
the iterative solver. A recent work [9] has documented conver-
gence problems for penetrable (i.e. dielectric) surfaces in some
cases, especially those involving weak dielectric contrast,
when using commonly applied iterative algorithms. Iterative
solver convergence can be improved by preconditioning the
system with a matrix that approximates the original MOM
matrix while remaining easily invertible. Improvements in
iterative algorithm convergence can also be achieved in some
situations by varying the choice of integral equations that is
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solved [10]; however even in such cases preconditioners may
remain useful to achieve further reductions in CPU time.

It has been shown previously [4] that iterative methods such
as the forward-backward method (FBM)/method of ordered
multiple interactions (MOMI) [2], [3] are equivalent to the
use of a block Jacobi preconditioner, while the banded matrix
iterative approach (BMIA) [5] is equivalent to banded matrix
preconditioning [6]. The former case in each iteration succes-
sively neglects coupling to a specific observation point on the
surface from points on either the “forward” or “backward”
portions of the surface, while the latter in each iteration
neglects contributions to an observation point from source
points that are outside a specified “strong” distance from
the observation point. Both cases use a preconditioner that
retains some portions of the original MOM matrix while
replacing many of the original MOM matrix elements with
zero (resulting in an upper- or lower- triangular preconditioner
matrix for the FBM/MOMI or in a banded matrix for the
BMIA.) Both are advantageous because the preconditioner
can be inverted easily using backsubstitution. However the
computational costs of the triangular matrix solution remain
O(N2), and the banded matrix may neglect important coupling
among surface points unless the “bandwidth” of the banded
matrix is increased, which increases the cost of the banded
matrix solution. It is also to be expected that the required
bandwidth of a banded matrix solution will increase at least
slowly as the surface length (i.e. N ) is increased, since the
sum of individual small contributions among widely separated
points increases as the number of widely separated points is
increased.

Instead of structurally approximating the original matrix,
this paper presents a physically-based preconditioner through
the use of a quasi-planar assumption. The use of this solution is
motivated by the fact that preconditioner matrix inversion is es-
sentially a mathematical representation of an approximate so-
lution of the electromagnetic scattering problem. The proposed
physically-based preconditioner inverse is implemented on a
vector that represents a modified incident field, and uses a fast
Fourier transform to decompose this vector in terms of a plane
wave spectrum. Individual plane waves are then combined
with appropriate Fresnel reflection coefficients to generate
the corresponding induced currents, with these currents then
transformed back to the spatial domain to produce the result
of the inverse preconditioner multiply operation. The approach
is similar to that used in the Operator Expansion Method
(OEM, [11]) approximate theory of perfectly conducting rough
surface scattering, but generalized for penetrable surfaces.
Although the use of Fresnel reflection coefficients implies that
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the surface is approximated as being flat, results using the
OEM have shown that a small slope, rather than small height,
approximate theory results. This is because the technique is
applied for computing the coupling between pairs of points,
which is well approximated even for large height surfaces of
moderate slope as that of a flat surface for widely separated
pairs of points.

The next section presents a representative integral equa-
tion formulation and the resulting matrix equation, and the
proposed physically-based preconditioner is then discussed in
Section III. In Section IV, the performance of the technique
is presented through comparison with the banded-matrix pre-
conditioning method for randomly rough surfaces with various
heights, slopes, and lengths. While the discussion to follow
focuses on the one dimensional surface case for simplicity
(a two dimensional scattering problem), the method is easily
extended to three dimensional scattering problems and has
already been applied (but not described in detail) in three
dimensional scattering results presented in the literature [12].

II. FORMULATION

Consider a plane wave impinging upon a one-dimensional
penetrable rough surface of length L with surface profile z =
f(x). For incidence in the x − z plane, Maxwell’s equations
decouple into dual equations for TE and TM waves, and a
scalar Kirchhoff diffraction integral in terms of Ey for the
TE case and Hy for the TM case can be applied using the
Hankel function form of the Green’s function. Equations for
a dielectric surface medium are
ψ(r̄)
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where ψ is Ey for the TE case with incident field Ey,inc, and
Hy for the TM case with incident field Hy,inc. The 2-D Green’s
function is given by

gj(r̄, r̄
′) =

i

4
H

(1)
0 (kj |r̄ − r̄′|) (3)

where kj = ω
√
µ0εj is the propagation constant in medium

j. The domain of integration in equations (1) and (2) is
the surface profile S′ and a principal value integration is
implied. Continuity of tangential field components Ey and
Hy is implicit in the above formulations with continuity of
the along profile field component yielding
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for the TE case (nonmagnetic medium) and
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for the TM case. Note that the integral equations (1) and
(2) include incident fields impinging both from above and
below the surface (ψ(1)

inc and ψ
(2)
inc ). In many applications,

the field incident from below the surface is assumed to be
zero. However the inclusion of fields incident from below
the boundary will be important when the preconditioning
algorithm is developed in the next Section.

The above formulation gives two integral equations in two
unknowns (ψ and ∂ψ/∂n) on the surface profile. Applying
a point matching method of moments technique results in a
matrix equation in terms of the unknown pulse-basis function
expansion coefficients of these fields. For the TE case, the
matrix equation can be written as

ZI = V (6)
Here the size of the impedance matrix Z is 2N × 2N , where
N is the number of surface points. The impedance matrix has
the form

Z =

[

Z11 Z12

Z21 Z22

]

(7)

The first N rows (Z11 and Z12) correspond to the integral
equation above the surface (1), while the last N rows (Z21

and Z22) represent the integral equation below the surface (2).
Elements of the impedance matrix are proportional to Hankel
functions of order zero or order one evaluated at arguments
corresponding to distances between individual points on the
surface profile. Appropriate self terms for these integrals
equations are described in the literature [1]-[9]. The vectors I

and V are given by

I =

[

M

J

]

, V =

[

E
(1)
inc

E
(2)
inc

]

(8)

where the vectors M and J contain the expansion coefficients
of the unknown magnetic surface current density (proportional
to ψ in the TE case) and the electric surface current density
(proportional to ∂Ey(r̄′)

∂n
in the TE case) respectively. The right-

hand side vectors, E
(1)
inc and E

(2)
inc , contain the incident electric

fields from above and below the surface evaluated at points on
the surface profile. Note that a matrix equation for TM case
can be obtained similarly with incident magnetic fields on the
right hand side.

Numerous stationary or non-stationary techniques have
been utilized to solve the MOM matrix equation iteratively.
Examples of the non-stationary techniques include quasi-
minimal residual (QMR), bi-conjugate gradient stabilized (Bi-
CGSTAB) [13], and generalized conjugate residual (GCR)
methods [6]. Comparison of iterative solutions of scattering
from rough surfaces have been discussed in [7], [9]. Iterative
methods can be applied to (6) directly or to the preconditioned
system

C
−1

ZI = C
−1

V (9)
where the preconditioning matrix C is chosen to be invertible
easily while approximating the original impedance matrix Z.
As described in [13], solution of equation (9) can be accom-
plished by modifications to the standard iterative algorithm so
that only an additional routine for computing C

−1
Ṽ, where

Ṽ is an arbitrary vector, is required.
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III. PHYSICALLY-BASED PRECONDITIONER

Because the preconditioner is designed to approximate the
original MOM matrix, it is in fact a mathematical repre-
sentation of an approximate solution of the electromagnetic
scattering problem. Therefore any approximate electromag-
netic method can be applied, so long as it can be computed
efficiently. Here a quasi-planar approximation is described for
the TE case; the same procedure is easily modified for the TM
case or three dimensional scattering problems.

During the iterative solution, the algorithm provides an
arbitrary vector Ṽ to be multiplied by the preconditioner
inverse. Even when the original right hand side vector V

contained only fields incident from above the surface profile,
the new “right hand side” vector Ṽ produced by the iterative
algorithm in general will contain electric fields incident both
from above and below the boundary. Separating this vector
into the first N and second N rows yields “modified” incident
fields evaluated at points xn = n∆x on the surface profile:

Ẽ
(1)
inc =

[

Ẽ(1)
n

]

Ẽ
(2)
inc =

[

Ẽ(2)
n

]

(10)

where n = 0, 1, . . . , N−1. These modified incident fields can
be expressed in terms of a spectral representation as

Ẽ
(1)
inc (x) =

∫

∞

−∞

ẽ
(1)
inc (kx) eikxx e−ikzz dkx (11)

Ẽ
(2)
inc (x) =

∫

∞

−∞

ẽ
(2)
inc (kx) eikxx eikzz dkx (12)

The Rayleigh hypothesis is invoked in the above equations
because it is assumed that fields incident from above or below
the surface are composed only of plane waves traveling in the
−z direction or +z directions, respectively.

For a quasi-planar surface, the exponent eikzz is approx-
imately equal to 1, so that equations (11) and (12) can be
approximated as Fourier transform relationships and inverted
as

ẽ
(1,2)
inc (kx) =

1

2π

∫ L

0

Ẽ
(1,2)
inc (x) e−ikxx dx (13)

Given a set of incident plane waves, induced currents can
now be obtained by solving the planar surface reflection
problem for each plane wave. The resulting total y component
of the electric field in the spectral domain is given by

m̃(kx) = (1 + Γ)ẽ
(1)
inc (kx) − (1 − Γ)ẽ

(2)
inc (kx) (14)

while the electric current is given by

j̃(kx) =
k

(1)
z

ωµ0
(1 − Γ) ẽ

(1)
inc (kx) +

k
(2)
z

ωµ0
(1 + Γ) ẽ

(2)
inc (kx) (15)

Here the Fresnel reflection coefficient for the TE case is given
by

Γ =
k

(2)
z − k

(1)
z

k
(2)
z + k

(1)
z

(16)

with
k(1,2)

z =
√

k2
1,2 − k2

x (17)

These currents in the spectral domain can then be transformed
back to yield the solution to the preconditioned system

M̃(x) =

∫

∞

−∞

m̃(kx) eikxx dkx (18)

J̃(x) =

∫

∞

−∞

j̃(kx) eikxx dkx (19)

This physically-based preconditioner can also be expressed
in matrix form. When discretized, the spectral representation
equation becomes a fast Fourier transform of the incident fields
on the surface, and the inverse preconditioner matrix can be
written as

C
−1

=

[

F
−1

0

0 F
−1

]

[

T11 T12

T21 T22

] [

F 0

0 F

]

(20)

where F is the fast Fourier transform matrix and the four
submatrices T are diagonal with elements corresponding to
(14) and (15). As can be seen, this preconditioner is easy
to implement by using an FFT routine and scalar multipli-
cation, and requires an operations count of O(N logN) due
to the FFT algorithm. The preconditioner requires storage
only of an additional array of size N . Because it avoids
structural approximations (i.e. setting matrix elements equal
to zero) the proposed preconditioner attempts to approximate
coupling among all pairs of surface points. However, due to the
Rayleigh hypothesis and quasi-planar assumption, the degree
to which it approximates the original MOM matrix should
degrade as surface heights and slopes are increased.

IV. NUMERICAL RESULTS

The performance of the proposed physically-based precon-
ditioner is presented in this section. Although preconditioners
can be applied to any iterative method, the bi-conjugate
gradient stabilized (Bi-CGSTAB) [7],[9], [13] algorithm is
used in this study. The convergence rate of Bi-CGSTAB
with the physically-based preconditioner is compared to those
achieved by the banded matrix preconditioner and without
preconditioning.

The problem considered involves scattering from dielectric
random rough surfaces described as Gaussian random pro-
cesses and with either a Gaussian correlation function or a
Pierson-Moskowitz (ocean-like) power spectral density. The
upper and lower media have relative permittivities 1 and
εr = 14 + 14i, respectively. The surface is illuminated by
a TE-polarized tapered plane wave with tapering parameter
L/6 [2] impinging at 55◦ from normal incidence. The default
length of the surface is 2000λ (where λ is the electromagnetic
wavelength in free space), and 16384 surface points are used
so that each pulse-basis function has a spatial extent of
0.1222λ. Bandwidths of 32 points and 128 points (i.e. coupling
from points within horizontal distances ±3.9λ and ±15.6λ of
an observation point are included respectively) are used for
the banded matrix preconditioner.

Convergence of the iterative solver for surfaces with various
rms height h and correlation length l parameters is examined
through the normalized residual of the solution:

RN =
‖V − ZI

(j)‖
‖V‖ (21)
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Fig. 1. (a) Surface profile of a Gaussian random surface with rms height
0.77λ and correlation length 5.13λ. (b) Convergence history of the iterative
solver with varying preconditioners

where I
(j) is the solution for induced currents on the jth

iteration of the iterative solver.
Fig. 1 compares the convergence history of the physically-

based preconditioner with those of the banded matrix and
no preconditioner for Gaussian correlated surfaces with rms
height 0.77λ and correlation length 5.13λ (h/l = 0.15). The
surface profile is also shown. As expected for surfaces with
relatively small height, the physically-based preconditioner
converges much faster than the 32 point bandwidth precon-
ditioner, reaching RN = 10−4 in 7 iterations compared to 20
iterations. When the bandwidth is increased to 128 points,
the banded matrix preconditioner includes coupling among
more points on the surface, and therefore converges faster,
reaching the specified residual after 11 iterations. With no
preconditioner, the iterative solver converges very slowly as
discussed previously [9].

Convergence histories for Gaussian correlated surfaces with
an rms height of 5.97λ and correlation length 39.8λ (same
h/l = 0.15) are shown in Fig. 2. Due to the larger surface
height so that the quasi-planar assumption is less valid, the
physically-based preconditioner’s convergence is less rapid
than that of the banded matrix preconditioner. The physically-
based preconditioner needs 19 iterations to reach RN = 10−4,
while the banded matrix preconditioner needs 15 iterations for
the bandwidth of 32 points, and 11 iterations for the bandwidth
of 128 points. Both techniques however provide improvements
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Fig. 2. (a) Surface profile of a Gaussian random surface with rms height
5.97λ and correlation length 39.8λ. (b) Convergence history of the iterative
solver with varying preconditioners

TABLE I
NUMBER OF ITERATIONS AND CPU TIME REQUIRED TO REACH THE

NORMALIZED RESIDUAL OF 10−4 (h/l = 0.15)

h = 0.77λ h = 5.97λ

iterations CPU time iterations CPU time

Physical 7 98 mins 19 256 mins

Banded (32) 20 268 mins 15 203 mins

Banded (128) 11 158 mins 11 158 mins

over the case with no preconditioning, indicating that the phys-
ically based preconditioner remains useful even for surfaces
with large heights.

Table I compares the number of iterations and total CPU
time requirements for each preconditioner applied to the
surfaces shown in Figs. 1 and 2. Codes were run on a
3.0 GHz Pentium 4 processor. Unlike the physically-based
preconditioner, the time for the banded matrix preconditioner
also includes the setup time for LU decomposition of the
banded matrix which scales linearly with the bandwidth;
storage requirements for the banded matrix preconditioner are
on the order of bN where b is the bandwidth used. A larger
bandwidth is needed in order to improve the convergence
which in turn increases the number of operations for both LU
decomposition and the preconditioner inverse multiply. The
CPU time per iteration of the physically-based preconditioner
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Fig. 3. Number of iterations required to reach the normalized residual of
2 × 10−5 for surfaces with rms height to correlation length ratio (h/l) of
0.15

and the banded matrix preconditioner with bandwidth 32
points are comparable, so that the difference in total times
between the two is due to the setup time required for the
banded matrix preconditioner and the number of iterations
needed to reach convergence.

Convergence is next examined for surface profiles as the
rms height is increased for a fixed h/l of 0.15. The number
of iterations required to reach RN = 2 × 10−5 for both
preconditioners is plotted in Fig. 3. For the banded matrix
preconditioner, the bandwidth of 32 points is selected for
comparison. Since the computational time per iteration is
comparable to the physically-based preconditioner, the re-
quired number of iterations will approximately reflect the
total time used by the preconditioners. Results for the no
preconditioner case are not given here due to the very slow
convergence rate observed which made computations of the
necessary results difficult. The physically-based preconditioner
takes advantage of surface properties in the smaller height
cases and therefore converges much faster when the rms height
is small to moderate. The number of iterations for the banded
matrix preconditioner is less affected by the surface profile.
For the parameters chosen here, the physically based approach
loses its advantages over the banded matrix technique at a
surface rms height of around 4 wavelengths.

Fig. 4 plots the number of iterations required to reach
RN = 2 × 10−5 as h/l increases (the correlation length
decreases) at a fixed rms height of 0.35λ . The result shows
that the physically-based preconditioner remains advantageous
compared to the banded matrix method up to h/l values of
0.6 (extremely large slopes) for these parameters. Note that the
small correlation lengths for the larger h/l values in Figure
4 include very fine scale roughness features in the surface
profile. The number of iterations needed by the banded matrix
preconditioner shows only slight increases with h/l.

Fig. 5 examines the number of iterations to reach RN =
2×10−5 as a function of surface length for a fixed rms height
of 0.35λ and a fixed correlation length of 2.33λ (h/l = 0.15).
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Fig. 4. Number of iterations required to reach the normalized residual of
2 × 10−5 for surfaces with rms height of 0.35λ
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Fig. 5. Number of iterations required to reach normalized residual of 2 ×

10−5 as a function of surface length (rms height 0.35λ, correlation length
of 2.33λ)

The discretization 0.122λ is used for all surface lengths so that
changes in length correspond to changes in N . The number
of iterations required by the banded matrix preconditioner
increases with the surface length, due to an increased impor-
tance of “weak” coupling as the surface becomes longer. A
larger bandwidth (and CPU cost) would be needed in order to
improve the convergence for longer surfaces. In contrast, the
convergence of the physically-based preconditioner remains
roughly the same because the approach captures approximate
coupling among all pairs of points on the surface regardless
of surface length.

Finally, as an example of application to multi-scale surfaces,
scattering from ocean-like surfaces generated as realizations of
the Pierson-Moskowitz spectrum [14] at various wind speeds
is considered. A surface size of 2000λ (200 m) at 3 GHz
with 16384 surface points is chosen for this problem. This
surface length can resolve all length scales of the Pierson-
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Fig. 6. Number of iterations required to reach normalized residual of 10−4

for scattering from a realization of the Pierson-Moskowitz spectrum as a
function of wind speed.

Moskowitz spectrum for wind speeds up to approximately 14
m/s. The relative permittivities of the upper and lower media
are 1 and εr = 14 + 14i respectively. Although 14 + 14i
is less than the actual permittivity of sea water at 3 GHz
(60.9+40.1i) [15], the difficulties of computing scattering with
from media with high permittivities (which are best modeled
as impedance surfaces) motivates this choice; this difference
in permittivities is not expected to have a major impact on
the influence of preconditioning algorithms. The number of
iterations required to reach the normalized residual of 10−4 is
plotted in Fig. 6 for both preconditioners. The result shows that
the physically-based preconditioner is advantageous for most
of the wind speeds shown in the figure. The convergence of
the banded matrix preconditioner remains roughly the same for
all wind speeds, and is comparable to that of the physically-
based preconditioner at wind speed of 14 m/s (the rms height is
approximately 10.58λ). These results show that the physically-
based preconditioner remains useful for multi-scale surfaces.

V. CONCLUSION

A physically-based preconditioner for quasi-planar scatter-
ing problems is presented in this paper. Unlike the banded
matrix approach, this preconditioner takes advantage of surface
properties in order to compute approximate coupling among
all pairs of surface points. The numerical results confirm that
the approach works well for surfaces with small to moderate
heights and slopes. The convergence rate also remains roughly
the same as the surface length increases. The idea presented
here can be extended directly to other integral equation for-
mulations, and has already been applied in three dimensional
scattering problems [12].
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