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1. INTRODUCTION
The small-perturbation method1 (SPM) for scattering
from a rough surface involves a perturbation series in
surface height for scattered fields. Explicit expressions
up to second order in surface height were provided in Ref.
1; recently explicit expressions up to third order have also
been presented.2 These explicit expressions are advanta-
geous in that surface and electromagnetic properties are
decoupled into a product of surface spectral components
with electromagnetic ‘‘kernel functions’’ that are indepen-
dent of surface properties. The computation of statistical
averages required for stochastic surfaces is greatly sim-
plified in this case. However, because the explicit expres-
sions for the third-order kernel functions are already
quite complex, the complexity of such expressions for
fourth- and higher-order terms is expected to make them
cumbersome, if not intractable.

Reference 2 also presents a systematic procedure for
determining fourth- and higher-order solutions, but the
simplified results of this procedure were not provided.
Although the systematic procedure described can be ap-
plied in a numerical computation of fourth- and higher-
order SPM fields for a deterministic surface, the results
obtained couple surface and electromagnetic effects, so
that a Monte Carlo procedure is needed to compute sta-
tistical averages for a stochastic surface.

For scattering from a Gaussian random process sur-
face, average incoherent cross sections are composed of
even-order terms in surface height, beginning at second
order. The fourth-order term presented in Ref. 2 re-
quired knowledge of the third-order SPM field solution.
Knowledge of fourth- and higher-order field solutions is
needed to compute the sixth-order correction to incoher-
ent cross sections. Although the utility of this correction
is debatable for computing scattering from a surface with
small to moderate roughness, the kernel functions in-
volved also appear in the small-slope theory of scattering
from a rough surface3 as well as in the small-slope theory
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of emission from a rough surface.4,5 Furthermore, the
second-order contribution to incoherent cross sections
vanishes for cross-polarized backscattering, so that the
sixth-order term provides the first correction to the domi-
nant fourth-order result. Information on this correction
is important for obtaining knowledge of the convergence
of the SPM solution for cross-polarized backscattering.

In this paper the systematic procedure described in
Ref. 2 is applied to construct a complete, recursive, and
arbitrary-order solution for scattered fields in the SPM
method. The forms obtained explicitly separate surface
and electromagnetic properties, and a recursive algorithm
for the SPM kernel functions is provided to simplify com-
putation of higher-order terms. Sample results from the
fourth-order theory are presented in terms of the fourth-
order reflection-coefficient correction and the sixth-order
correction to incoherent scattering cross sections. The
method can be applied in studies of periodic or nonperi-
odic surfaces that are either deterministic or stochastic.

2. FORMULATION
The basic formulation and notation introduced in Ref. 2 is
used below unless otherwise noted. Consider a periodic
rough interface z 5 f(x, y) separating free space from a
dielectric region with relative permittivity e. A plane
wave is incident on this interface from free space; the re-
sulting scattered and transmitted fields can be completely
described in terms of the polarization amplitudes of a set
of Floquet modes. Horizontally and vertically polarized
scattered mode amplitudes are denoted by a n̄8 and b n̄8 ,
respectively, and g n̄8 and d n̄8 refer to transmitted horizon-
tally and vertically polarized amplitudes, respectively.
Here n̄8 5 (n8, m8) denotes the mode index of a particu-
lar Floquet mode, thus describing the direction of propa-
gation of the corresponding scattered or transmitted field.
Note that one can remove the requirement for a periodic
interface after the solution is completed by allowing the
periods to approach infinity, as in Refs. 1 and 2.
2003 Optical Society of America
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Following the process described in Eqs. (83)–(86) in
Ref. 2 but shifting some of the indices appropriately al-
lows the multiple terms in these equations to be com-
bined. Making use of a vector notation, a scattering co-
efficient z̄ 5 @a, b, g, d#T at Nth order (N > 1) can then
be expressed as

z̄ n̄8
~N !

5 (
n̄1

(
n̄2

¯ (
n̄N21

hn̄1
hn̄2

...hn̄N21
hn̄82n̄12...n̄N21

3 ḡ ~N !~ n̄8, n̄1 ,...,n̄N21!, (1)

where hn̄ refers to the Fourier coefficients of the surface;
note that N of these are included so that the overall term
is Nth order in surface height. For N 5 1 the sums van-
ish and only a single Fourier coefficient hn̄8 multiplies
ḡ (1)(n̄8).

The Nth-order SPM kernel is expressed in terms of
lower-order kernels as follows:
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The n% (N2l)(n̄8, n̄, n̄1 ,...,n̄N2l21) quantity above is a four-
by-four tensor with elements n ij at row i and column j,
and the kernel-function vector ḡ (l) for l 5 1 to N is a four-
element column vector defined analogously to z̄. From
Ref. 2, elements of the n% N2l tensor are

where
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n̄9 5 n̄ 1 n̄1 1 n̄2¯ 1 n̄N2l21 , (6)
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The kzn̄ and kz1n̄ terms are the z components of the n̄th
Floquet mode propagation directions above and below the
surface (positive values), respectively, and krn̄ is the cor-
responding transverse component. The cn̄,n̄8 and sn̄,n̄8
terms are the cosine and sine functions, respectively, de-
fined in Ref. 2, and k1 5 Aek0 and k0 5 2p/l is the wave-
number for the incident plane wave of wavelength l.

Derivations up to this point are valid for both horizon-
tal and vertical incident polarizations. However, the
zeroth-order contribution ḡ (N,0)(n̄8, n̄1 ,...,n̄N21) is dis-
tinct for the two polarizations. For horizontal incidence,
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For vertical incidence,
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In the preceding equations, GH and GV are the Fresnel re-
flection coefficients for the incident plane wave, and kzi ,
k1zi , and kri refer to components of the incident plane
wave propagation vectors above and below the interface.

To illustrate the above procedure, consider Eq. (2) for
N 5 1, 2, and 3. For N 5 1, the sum over l vanishes and
the solution is

ḡ ~1 !~ n̄8! 5 ḡ ~1,0!~ n̄8!. (14)

For N 5 2,
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ḡ ~2 !~ n̄8, n̄1! 5 ḡ ~2,0!~ n̄8, n̄1! 1 n% ~1 !~ n̄8, n̄1! • ḡ ~1 !~ n̄1!
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(16)

Note that the second-order kernel is expressed in terms of
ḡ (l,0) functions only in the second equation. For N 5 3,
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• ḡ ~2 !~ n̄1 1 n̄2 , n̄2! 1 n% ~2 !

3 ~ n̄8, n̄1 , n̄2! • ḡ ~1 !~ n̄1!. (17)
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In general, it is possible to express all the higher-order
kernels in terms of the same- and lower-order ḡ (l,0) func-
tions only. The formulation thus provides a recursive,
analytical solution of the SPM equations and is easily pro-
grammed with a simple, recursive algorithm to imple-
ment Eq. (2).

The SPM kernels derived are to be used in evaluating
field amplitudes through Eq. (1). Note however that the
‘‘dummy’’ variables n̄1 through n̄N21 as well as n̄8 2 n̄1
2 ¯ 2 n̄N21 in this sum are interchangeable, owing to
the simple product of surface Fourier coefficients in-
volved. Thus results for field amplitudes are unchanged
if the SPM kernels are symmetrized under an inter-
change of these arguments. This is equivalent to stating
that the SPM kernel function is not unique unless it has
been symmetrized under this interchange. For example,
with N 5 2 Eq. (1) is
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with n̄8 2 n̄1 retains the same form. An appropriate
symmetrized second-order kernel is then
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The symmetrized kernel for N 5 3 is
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Use of symmetrized kernels in computing Eq. (1) is not re-
quired, but comparisons with other SPM formulations
should be made in terms of symmetrized kernels only so
that unique definitions are considered. When the sym-
metrized kernels are being used, the domain of summa-
tion in Eq. (1) can be reduced appropriately to avoid un-
necessary computations.

3. SAMPLE RESULTS
A. Fourth-Order Reflection-Coefficient Correction
For a stochastic rough surface defined to have a zero-
mean value and zero-mean Fourier coefficients, the aver-
age specular reflection coefficient is
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to fourth order, where the ^•& notation indicates an en-
semble average. A similar expression valid to third order
was provided previously in Ref. 2. Note that Ḡ above is a
vector form for the Fresnel reflection and transmission co-
efficients, defined analogously to the SPM kernel func-
tions. For a discrete analog of a Gaussian random pro-
cess, the third-order term (proportional to the surface
bispectrum) vanishes, and the fourth-order Fourier coef-
ficient correlation can be expressed as6
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Making use of this expansion and renaming variables
permits the fourth-order term in Eq. (23) to be rewritten
as
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In the limit that the surface periods approach infinity, as
described in Ref. 2, Eq. (25) becomes
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Fig. 1. Specular reflection coefficient versus incidence angle; s 5 0.05l, e 5 4 1 i. Magnitudes and phases (in radians) are normal-
ized by Fresnel reflection coefficient for horizontal and vertical incidence.

Fig. 2. Brewster angle shift; s 5 0.05l, l 5 0.5l, e 5 2.25.
Figure 1 illustrates the amplitude and phase of both
the second- and the fourth-order average reflection-
coefficient corrections (i.e., N 5 2 and N 5 4) relative to
G (0) versus incidence angle, for both horizontal and verti-
cal incidence. Results are shown for surfaces described
by an isotropic Gaussian spectrum:
W~kr! 5
h2l2

4p
exp@2~krl !2/4#. (27)

Here h refers to the surface rms height, and l is the sur-
face correlation length. A surface rms height of 0.05
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wavelength and correlation lengths of 0.5 and 2 wave-
lengths were used in the computations, along with a sur-
face relative permittivity of e 5 4 1 i. The fourfold in-
tegration of Eq. (26) was evaluated with Gauss–Legendre
quadrature and was found to converge well as the number
of integration points was increased. Second- and fourth-
order terms from a power series expansion of the reflec-
tion coefficient from the physical optics approximation,7

Fig. 3. Second-, fourth-, and sixth-order backscattering cross
sections versus observation angle; s 5 0.05l, l 5 0.5l, e 5 4
1 i for HH, VV, and HV. RCS, radar cross section.
Goptical 5 G~0 ! exp~22k2h2 cos2 u i!

' G~0 !~1 2 2k2h2 cos2 u i 1 2k4h4 cos4 u i 2 ... !,

(28)

are also included for comparison.
Results show a generally decreasing importance of both

second- and fourth-order corrections as the observation
angle is increased, particularly for horizontal polariza-
tion. Good agreement between the optical expansion and
the SPM computations for the longer correlation length is
observed, but significant deviations are found for the
shorter correlation length. This is not surprising given
the large-scale assumption implicit in the optical expan-
sion. A previous study8 of higher-order coherent reflec-
tion of scalar waves from impenetrable rough surfaces
showed similar conclusions with regard to convergence to
the optical limit. Deviations from the optical limit are
largest in the vertical polarization case near the pseudo-
Brewster angle at approximately 63.7 deg, where the
Fresnel reflection coefficient magnitude is approximately
0.05. Here the small corrections are more important ow-
ing to the small zeroth-order term obtained. Results also
show that the fourth-order correction is relatively insig-
nificant for these surface statistics; however the fourth-
order term will scale as h4, compared with h2 for second
order. An increase of the surface rms height to 0.15
wavelength would result in approximately equal ampli-
tudes for the second- and fourth-order corrections, so that
higher-order terms in the expansion would likely be re-
quired for accuracy.

B. Brewster Angle Shift
To further study the influence of higher-order reflection-
coefficient corrections on the Brewster angle effect, we
performed an additional calculation using e 5 2.25. Fig-
ure 2 plots the total reflection coefficient near the flat-
surface Brewster angle of 56.31 deg for a surface with rms
height h 5 0.05l and correlation length l 5 0.5l. Re-
sults show a slight modification of the reflection-
coefficient minimum location, because second- and fourth-
order terms are individually included. For these surface
statistics, the second-order correction shifts the Brewster
angle approximately 20.5 deg, and the fourth-order cor-
rection causes a positive shift of less than 0.1 deg. Re-
sults similar to these with use of the second-order term
only have been studied.9,10 Again the importance of the
fourth-order correction would become more pronounced as
surface heights increased.

C. Incoherent Average Scattering Cross Sections for a
Gaussian Random Process
As discussed in Ref. 2, average incoherent scattering
cross sections are composed of even-order contributions
for Gaussian random-process surfaces, beginning at sec-
ond order. Reference 2 presented the fourth-order correc-
tion based on the third-order field solution; the current
formulation allows computation of the sixth-order correc-
tion through use of the field solution up to fifth order. Al-
though this term is not expected to be an important con-
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tribution for small height surfaces in copolarization, the
fact that the second-order term vanishes for cross-
polarized backscattering increases the importance of the
sixth-order contribution. This sixth-order term is thus
the first correction to the previous fourth-order solution
and therefore provides information on the expected accu-
racy of this solution.

Following Ref. 2, the sixth-order contribution to aver-
age incoherent scattering cross sections for a periodic
Gaussian process surface is

Fig. 4. Terms contributing to the sixth-order backscattering
cross section versus observation angle, s 5 0.05l, l 5 0.5l, e
5 4 1 i for HH, VV, and HV. RCS, radar cross section.
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1 ^h2n̄1
hn̄2

hn̄3
hn̄4

hn̄12n̄8hn̄82n̄22n̄32n̄4
&

3 2g ~2 !* ~ n̄8, n̄1!g ~4 !~ n̄8, n̄2 , n̄3 , n̄4!

1 ^hn̄1
hn̄2

hn̄3
hn̄4

h2n̄8hn̄82n̄12n̄22n̄32n̄4
&

3 2g ~1 !* ~ n̄8!g ~5 !~ n̄8, n̄1 , n̄2 , n̄3 , n̄4!#J .

(29)
The scalar valued SPM kernels above are for a particular
polarization, and n̄8 is chosen to represent a particular bi-
static scattering angle. Three contributions are observed
above: those from the third-order fields squared, a cross
product between second- and fourth-order fields, and a
cross product between first- and fifth-order fields. In the
case of cross-polarized backscattering, the final term van-
ishes so that a fourth-order field solution is sufficient for
computing the sixth-order cross-section correction.

For a periodic Gaussian random process, a correlation
of six Fourier coefficients can be split into a sum of 15
terms involving products of three spectra and four delta
functions. Using a process similar to that used to obtain
Eq. (25) and transforming the result into the continuous
limit allows the sixth-order cross-polarized cross section
to be expressed as a fourfold integration. Figure 3 illus-
trates backscattering results at second, fourth, and sixth
order for a surface with an isotropic Gaussian correlation
function, rms height 0.05l, and correlation length 0.5l.
The dielectric constant of the surface is 4 1 i, and the
three plots correspond to HH, VV, and VH (cross-
polarized) cases, respectively. Results show the fourth-
order co-polarized correction to be appreciable for these
statistics, while the sixth-order term is less important in
copolarization but appreciable in cross polarization. The
‘‘null’’ behavior of the sixth-order cross-polarization cor-
rection observed is due to a sign change: For smaller
angles the sixth-order correction is negative, while for
larger angles it is positive. To enhance the figure’s reso-
lution near the sign change (results computed in a 5-deg
step), a cubic-spline interpolation of the sixth-order term
(in linear units) is also plotted. Although neglect of the
sixth-order correction appears reasonable for these sur-
face statistics at smaller observation angles, this term
will scale as h6 as surface heights increase, while the
second- and fourth-order terms scale only as h2 and h4,
respectively. Figure 4 plots the 3 2 3, 4 2 2, and 5
2 1 contributions to the sixth-order correction in all po-
larizations. In most cases these terms exhibit cancella-
tion effects so that the total sixth-order result plotted is
less than the maximum of the three terms.

4. CONCLUSIONS
A complete, arbitrary-order solution for SPM kernel func-
tions has been presented in this paper. Higher-order ker-
nel functions were expressed in terms of lower-order ker-
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nels in a recursive fashion. Applications of these results
were demonstrated; use of the fourth-order theory in a
fourth-order study of emission from a rough surface will
be reported in the future.
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