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Introduction

This document describes the simulation and FPGA implementation of the IIP Radiometer
Digital IF Section described in [1]. The digital IF processor presented here is a slightly
different to that of [1]. The digital IF processor implemented here is illustrated in Figure 1
where there are four distinct sections; namely demultiplex, FS/4 down conversion, filtering
and FS/4 up conversion.

The structure differs by keeping the FS/4 down conversion and FIR filter coeffi-
cients separate. In the original design the FIR filter coefficients incorporated the ±1
sign changes. Unfortunately the FIR compiler [2] couldn’t synthesize this successfully.
The resulting increase in size due to the separation is very small compared to the overall
size of the design.

This document is broken into four separate sections. The first section illustrates the
results of Matlab simulations of the structure shown in Figure 1. Section 2 deals with an
implementation of the structure in an Altera APEX FPGA. Section 3 presents simulation
results of the FPGA implementation. Finally, Section 4 presents results of a Matlab
simulation using recorded data from an AD9054 evaluation board.
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Figure 1: The digital IF processor architecture implemented in this document. The input
sample rate of x is Fs = 200MHz providing a BW of 100MHz (although only 50MHz
of this is used.) The spectrum is shifted down in frequency by 50MHz (FS/4 down) and
filtered to remove the image component. The spectrum is then shifted up in frequency by
25MHz (FS/4 up.) The output of the digital IF processor is a 100MHz complex output
with 50MHz of BW.
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1 Matlab Simulations of the Digital IF Processor

A Matlab simulation of the structure shown in Figure 1 is relatively straight forward.
The Matlab code for the simulation is listed in Appendix A for completeness. Note
that the filter coefficients of the FIR filters are designed in [1]. Figure 2(a&b) illustrate
how quantization effects the filter responses. It was decided that the 10-bit quantization
produces an optimal filter implementation size when traded off for filter performance. The
filter coefficients implemented are shown in Figure 2(c).
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(a) Real FIR Filter Response
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(b) Imaginary FIR Filter Response
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(c) 10-bit Quantized Filter Coefficients

Figure 2: FIR filter responses for various levels of quantization. 8-bit coefficients result in
a poor response when compared to the responses of 10, 12-bits and no quantization. (c)
The filter coefficients used in the real and imaginary parts of the Fs/4 down conversion.
The real filter contains 32 coefficients, whereas the imaginary filter has only 31 coefficients.
The differing number of coefficients changes the filter symmetry and implementation size.
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The input spectrum to the digital IF processor is shown in Figure 3. This spectrum
is shown for 8-bit input quantization. The output spectrum for various levels of output
quantization are shown in Figure 4. For 8-bit output quantization a 30dB out of band
suppression is achieved. By using additional output bits it is possible to achieve up to
48dB of suppression (also indicated by Figure 2(a)). The curves indicate that there is
little gain for going beyond 12-bit output resolution (46dB suppression.) Note that the
two input tones are now located at 16 and 27MHz with the correct power levels, i.e., the
lower frequency tone has 6dB more gain.
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Figure 3: Input spectrum consists of gaussian noise and two sinusoids of differing ampli-
tude. The first sinusoid at 41MHz is 6dB larger than the second sinusoid at 52MHz. The
spectrum is band limited from 10 to 90MHz.
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Figure 4: The output spectrum of the digital IF processor for varying levels of output
quantization (1000 integrations.) The two tones are shifted to 16 and 27MHz. A greater
number of output bits increases the output resolution and thus the suppression. 8-bit
quantization produces 30dB of out of band suppression, 10-bit is 41dB, 12-bit is 46dB.
With no quantization in the entire system it is possible to achieve 48dB of suppression.
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2 An Altera FPGA Implementation

Implementation of the digital IF processor in an Altera APEX is relatively straight for-
ward. Figure 5 illustrates the first section of processing in the digital IF processor. This
is a screen capture from the Altera FPGA compilation tool called Quartus II. The input
section is targeted for a AD9054 analogue to digital converter [3]. The FS/4 down con-
version is implemented using simple negators and multiplexers. A controller implements
the required synchronization of control bits in the entire processor. The contents of this
controller are listed in Appendix B of this report.

Figure 6 illustrates the implementation of the FIR filters. The Altera FIR compiler
[2] is available for free evaluation (but no FPGA programming files can be created). This
mega core is straight forward to use. The mega core also produces Matlab files which can
be used to simulate the generated filter in Matlab. As state previously the two FIR filters
symmetry changes the implementation size of the filter. When compiled separately the
size of the real and imaginary FIR filters is 1680 and 1171 logic elements, respectively.
The large number of zero coefficients in the imaginary FIR reduces its size significantly.
The FIR compiler is available for $500.

The final stage of the digital IF processor is shown in Figure 7. This section will either
perform FS/4 up or down depending on how the controller is configured. Once again it
is created from multiplexers and negators.

The entire digital IF processor design fits comfortably in a EP20K100ETC144-1X
FPGA (an Altera APEX FPGA.) This FPGA is currently worth $148 from Arrow Elec-
tronics. It uses 2965 logic elements of 4160 logic elements available (71%). According to
simulation results it should be capable of clock speeds up 126MHz.

Figure 5: The first stage of digital processing involves an FS/4 down conversion. This is
implemented using two negators and two multiplexers.
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Figure 6: The filtering stage of the digital IF processor requires two FIR filters. Since
the real filter contains one tap less, an additional register is required on the input to
synchronize the two data streams.

Figure 7: The final stage of the IF processors is an FS/4 up or down conversion depending
on which band is being used.
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3 FPGA Simulation Results

The Quartus simulation tool can be programmed to read input stimulus from a file.
Matlab is used to take the same input stimulus used in previous simulations and create
a file containing the same stimulus. The result of the simulation is shown in Figure 8(a).
It is possible to save this output data into a text file where it can be analyzed in Matlab.
The spectrum of this data is shown in Figure 8(b) for the same stimulus shown previously
in Figure 3. The resulting spectrum is similar to that of Figure 4, except here there is no
integration used since it takes a few minutes for each FPGA simulation data set.

(a) Quartus Simulation Tool Output

−50 0 50
−80

−60

−40

−20

0

Frequency (MHz)

P
ow

er
 (

dB
)

Student Version of MATLAB
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Figure 8: Simulation of the digital IF processor in Quartus. The raw output (a) is timing
diagrams which can be saved and analyzed in Matlab, shown by the spectrum (b).
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4 Real data from an AD9054 Evaluation Board

Since we cannot create FPGA programming files using the FIR mega core, it is not possible
to implement it in any real hardware. However, it is possible to use previously captured
data from an AD9054 evaluation board [4] and run it through the Matlab simulation.
Figure 9(a) illustrates the spectrum of the captured data, with a 50MHz low pass anti-
aliasing filter (instead of the band pass 10-90MHz filter.) A tone is present at 29MHz
which is almost full scale. The output of the Matlab simulation is shown in Figure 9(b).
Since there is little noise present in the input data it is difficult to see the band pass filter
shape. The 29MHz tone is correctly translated to 4MHz. The simulation is conducted with
8, 10 and 12-bit output data paths, each giving varying levels of out of band suppression.
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(a) AD9054 Captured 8-bit Data Spectrum
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(b) Digital IF Processor 8-bit Output Spectrum

−50 0 50
−100

−80

−60

−40

−20

0

Frequency (MHz)

P
ow

er
 (

dB
)

Student Version of MATLAB

(c) Digital IF Processor 10-bit Output Spectrum
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(d) Digital IF Processor 12-bit Output Spec-
trum

Figure 9: Simulation of the digital IF processor in Matlab using previously captured data
from an 8-bit AD9054 evaluation board. The output data path quantization level is 8, 10
and 12-bits.
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5 Summary and Conclusions

This document has shown the simulation of the digital IF processor in Matlab which
has revealed many interesting aspects of the design. The quantization level of the FIR
filter coefficients appears to not as critical as the output quantization level. The filter
coefficients provide acceptable performance at 10-bits.

An implementation of the digital IF processor in an Altera APEX FPGA was also
discussed in detail. The design utilizes a FIR mega core function from Altera which retails
for $500. The complete design fits comfortably in an EP20K100ETC144-1X FPGA, which
costs $148.

Simulation results from the Quartus software were also presented for verification. Ad-
ditionally, real captured data from an AD9054 evaluation board were input into the
Matlab simulation and output spectrums recorded for different quantization levels.

References

[1] S. W. Ellingson, “Design of the IIP Radiometer Digital IF Section,” February 11 2002.
http://esl.eng.ohio-state.edu/rfse/iip/iipdigif.pdf.

[2] FIR Compiler MegaCore Function, Altera Corporation, December 2001.
http://www.altera.com/literature/ug/fircompiler ug.pdf.

[3] 8-bit, 200MSPS A/D Converter, Analog Devices Corporation, July 2001.
http://www.analog.com/productSelection/pdf/AD9054A d.pdf.

[4] G. A. Hampson, “AD9054 Prototype Evaluation,” March 5 2002. http://esl.eng.ohio-
state.edu/rfse/iip/ad9054proto.pdf.

8



Appendix A: Matlab Digital IF Processor Simulation

Code

% Matlab code to test Digital IF Processor

% Grant Hampson, Feb 12, 2002

clear all

load filtcoff.mat % load FIR filter coefficients

N = 1024; % number of time domain samples for filter

tone1 = 1*sin(2*pi*52e6*n/FS); % tones must be between 10-90MHz, fc = 50MHz

tone2 = 2*sin(2*pi*41e6*n/FS);

integ = 1000; % number of integrations

inty = 0; % zero integrator

realinsign = ones(N/2,1); % sign change for demuxed inputs

realinsign(2:2:N/2) = -1;

imaginsign = ones(N/2,1);

imaginsign(1:2:N/2) = -1; % opposite indexes negate

htreal = ht(1:2:63); % real part - even filter indexes, 32 tap filter

htimag = ht(2:2:63); % imaginary part - odd filter indexes, 31 tap filter

maxfiltval = max([max(abs(htreal)) max(abs(htimag))]); % largest filter value

htreal = fix(511*htreal/maxfiltval); % quantise coefficients to 10-bits

htimag = fix(511*htimag/maxfiltval);

figure(1)

plot(1:32,htreal,’b’,1:31,htimag,’r’),grid

xlabel(’Filter coefficient’),ylabel(’10-bit coefficient digital value’)

title(’FIR Filter Coefficients - blue is real, red is imaginary’)

ylim([-512 511])

fidr = fopen(’realfilt.dat’,’w’); % write coefficients to file for FIR compiler

for i = 1:32

if i < 32

fprintf(fidr,’%f\n’,htreal(i));

else

fprintf(fidr,’%f’,htreal(i)); % no carriage return!

end

end

fclose(fidr);

fidi = fopen(’imagfilt.dat’,’w’);

for i = 1:31

if i < 31

fprintf(fidi,’%f\n’,htimag(i));

else

fprintf(fidi,’%f’,htimag(i));

end

end

fclose(fidi);
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multout = zeros((N/2)-1,1); % FS/4 up-conversion exp(+j*pi*k/2)

multout(1:4:(N/2)-1) = 1; % 1

multout(2:4:(N/2)-1) = sqrt(-1); % j

multout(3:4:(N/2)-1) = -1; % -1

multout(4:4:(N/2)-1) = -sqrt(-1); % j

b = fir1(64,[.1 .9]); % 10-90MHz BP filter on input

for i=1:integ

x = randn(N,1) + tone1 + tone2; % new random sequence each integration

x = filter(b,1,x); % 10-90MHz BP filter

x = round(127*x/max(abs(x))); % quantise input to 8-bits

yreal = filter(htreal,1,x(1:2:N).*realinsign); % FS/4 down, FIR filter 32

yimag = filter(htimag,1,x(2:2:N).*imaginsign); % FS/4 down, FIR filter 31

yreal = fix(yreal/2048); % make it a 8-bit output

yimag = fix(yimag/2048);

yreal = yreal(2:(N/2)); % Real filter one tap longer so delay it

yimag = yimag(1:(N/2)-1);

y = yreal+ sqrt(-1)*yimag; % make it a complex number

y = y.*multout; % FS/4 up-conversion (25MHz)

Y = fft(y.*blackman((N/2)-1));

inty = inty + real(Y).^2 + imag(Y).^2;

end

inty = inty/integ; % average integrations

figure(2)

subplot(211),plot(1:N,x),grid

ylim([-128 127])

xlim([1 N])

xlabel(’Sample’),ylabel(’8-bit Digital Value’)

title(’Real Data, FS=200MHz’)

f = [0:N-1]*FS/N;

subplot(212),plot(f/1e6,20*log10(abs(fft(x.*blackman(length(x)))))),grid

xlabel(’Frequency (MHz)’),ylabel(’Power (dB)’)

title(’Real Data Frequency Response, FS=200MHz’)

figure(3)

N = (N/2)-1; % only half the samples at output

FS = FS/2; % output is decimated by 2 also

f = [-N/2+1:N/2]*FS/N; % complex spectrum

subplot(211)

plot(1:N,real(y(1:N)),’b’,1:N,imag(y(1:N)),’r’),grid

xlabel(’Sample’),ylabel(’8-bit Digital Value’)

title(’Converted Output Data, real (b), imag (r)’)

ylim([-128 127])

subplot(212)

plot(f/1e6,20*log10(abs(fftshift(fft(y.*blackman(length(y)))))), ...

f/1e6,10*log10(fftshift(inty)),’r’),grid

xlabel(’Frequency (MHz)’),ylabel(’Power (dB)’)

title(’Converted Data Frequency Response, inst (b), integ (r)’)
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Appendix B: Controller FPGA Code

-- Controller for Digital IF processor

-- Grant Hampson, 13 Feb, 2002

SUBDESIGN controller

(

clka

: INPUT;

neginput,

swap,

negimag,

negreal

: OUTPUT;

)

VARIABLE

dif_sm[1..0] : DFF;

BEGIN

--

-- State Machine for controlling Digital IF

--

-- Current Current Next Next

-- State Inputs State Outputs

TABLE

dif_sm[].q => dif_sm[].d, neginput, swap, negimag, negreal;

B"00" => B"01", B"0", B"1", B"0", B"0";

B"01" => B"10", B"1", B"0", B"0", B"1";

B"10" => B"11", B"0", B"1", B"1", B"1";

B"11" => B"00", B"1", B"0", B"1", B"0";

END TABLE;

dif_sm[].clk = clka;

END;
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