Digital Receiver with Interference Suppression for Microwave Radiometry

NASA Instrument Incubator Program Interim Review

Pls: Joel T. Johnson and Steven W. Ellingson

Department of Electrical Engineering ElectroScience Laboratory The Ohio State University

10th July 2002

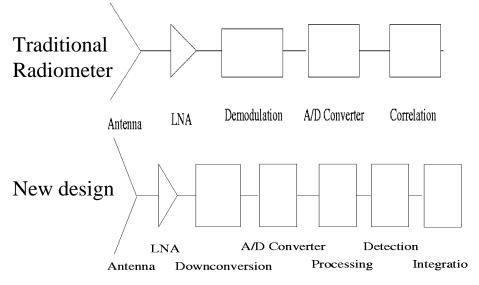
ElectroScience Lab

Instrument Incubator Program

Digital Receiver with Interference Suppression for Microwave Radiometry Earth Science Technology Office

PIs: Joel T. Johnson and Steven W. Ellingson, The Ohio State University

Description and Objectives


Future sea salinity and soil moisture remote sensing missions depend critically on L-Band microwave radiometry. RF interference is a major problem and limits useable bandwidth to 20 MHz. An interference suppressing radiometer could operate with a larger bandwidth to achieve improved sensitivity and more accurate moisture/salinity retrievals.

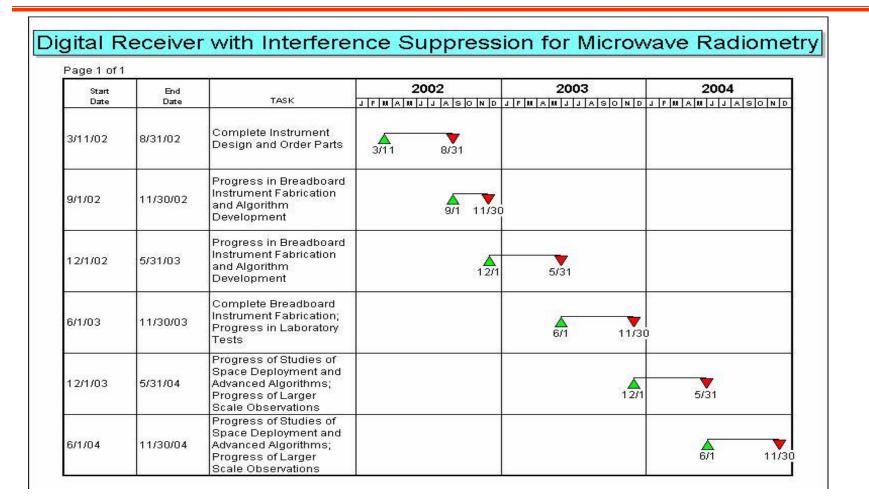
Approach

A prototype radiometer will be designed, built, and used to demonstrate operation in the presence of interference. The design includes a processing component to suppress interference.

Co-I's/Partners

Dr. Grant Hampson, OSU

Schedule and Deliverables


- Year 1: Complete design and begin construction
- Year 2: Finish construction and begin tests

Year 3: Demonstrations and space system design

Application/Mission

Results will apply to all future microwave radiometer missions. Future L-band soil moisture and salinity missions are primary focus.

Project Schedule

Project "year 1" is 9 months, 3/11/02-11/30/02; interim review held at 4.5 months

Current Progress

- Progress toward the first milestone has been excellent since project inception; work has focused on
 - radiometer front end design (antenna to A/D)
 - back end processor design (after A/D)
 - planning for outdoor experiments in year two
 - measurements of local RFI environment
- Evaluation of commercial A/D and FPGA hardware has determined suitable parts for this project
- Major effort on back end processor, including downconversion, "pulse blanker" and "FFT" stages
- RFI tests show a strong 1331 MHz source: ATC radar in London, OH (~45 km away); 1325-1425 MHz proposed for instrument band
- RFI monitor system for NASA P-3 flights in progress

Radiometer Front End

- Front end design is relatively standard super-heterodyne system
- Expected receiver temperature in range 250-350 K
- Single downconversion design with a tunable LO; 1277-1427 MHz tuning range possible
- Proposed 100 MHz bandwidth split into two 50 MHz backend channels due to A/D limitations; parallel hardware in LO/Mixer stages
- Several choices made to improve stability:
 - minimize front end gain (~46 dB) due to high dynamic range A/D
 - ultimate bandwidth set digitally; use low order analog filters
 - noise source and temperature monitored terminator for internal cal
- Plan for thermal control of front end will be developed based on initial tests; may not be required for some experiments
- Analog "blanking" switch included to limit backend signal levels, remove potential IF amp transients
- Basic design complete; majority of parts have arrived

Back End Processor

- A/D survey selects Analog Devices 9410 for A/D (10 bits, 200 MSPS operation, \$200 with evaluation board)
- Sections:
 - digital IF (DIF): Each parallel channel is digitally filtered to bandwidth 50 MHz and frequency shifted so that parallel channels can be recombined into final 100 MHz complex data stream
 - asynchronous pulse blanker (APB): Data stream is compared to an adaptive threshhold to detect presence of "pulsed" signals; data is blanked upon detection
 - FFT excision (FFTE): Data stream is windowed and passed through an 1024 point FFT; individual bin power levels then compared to a threshhold for blanking of narrowband interference
 - Output section: Data is integrated and transferred to an external computer
- Detailed designs of digital IF and APB completed and simulated; FFTE section initial design complete
- System will be implemented in FPGA hardware; suitable parts, design systems, and board suppliers identified; now testing some blocks

ElectroScience Lab

Experiment Planning

- A series of experiments with the prototype will be conducted at ESL in years two and three for verification
- Observations of a large water tank planned; external cal sources are ambient absorbers and a sky reflector
- For operation in far field, spot size on ground proportional to antenna size; choose antenna diameter 1.2 m as a compromise between angular resolution and spot size
- Antenna provides ~15 deg beamwidth; operation from ESL roof yields antenna height ~10 m
- Resulting 3 dB spot size is ~ 6 m x 3 m for 55 deg operation; water tank should be approx. 20' x 10'
- Cal targets will be of identical size to reduce effect of background contributions; time series of observations will be correlated with target temperatures
- Selection of parts (antenna, feed, antenna mount, temperature recording equipment, cal loads) currently in progress

RFI Environment Studies

- Measurements of RFI at multiple locations needed to develop robust interference suppression algorithms
- Spectrum analyzer delivered 5/16/02; local environment tests in progress with low gain antenna on ESL roof
- ATC radar at 1331 MHz will provide an excellent source for testing APB design
- Characterization of weaker interferers in progress; needed for testing FFTE design
- RFI monitor sensor under development for inclusion in NASA P-3 flights; possible dates mid-late August 02
- RFI monitor will include spectrum analyzer for wideband survey, custom narrowband sensor to digitize 1413 MHz region
- Recent visit to Wallops to examine possible antenna mounts; monitor completion should be possible by flight dates
- Data will be useful for IIP project and for NASA personnel (help reduce interference susceptibility of their narrowband radiometers)

Budget Status/Personnel

- Budget for year 1: 239.5K + 21K equipment
- Remaining as of 6/30: ~110K + 0K equipment (22K/month for 5 mo)
- No cost under- or over-runs are expected
- Personnel:
 - J. T. Johnson: co-Pl
 - S. W. Ellingson: co-Pl
 - G. A. Hampson: Research Scientist
 - D. R. Wiggins: Graduate student (graduated June 02)
 - Currently screening graduate student candidates for Oct 02
- Document Server (password protected):

http://esl.eng.ohio-state.edu/~swe/iip/docserv.html

Plans for Remainder of Current Period

- Complete front end and backend processor designs (esp. FFTE block)
- Begin front end and back end processor construction
- Initial tests of front end and backend processor performance
- Continue local RFI survey
- Complete RFI monitor system and include in August P-3 flights
- Continue planning for external experiments; finalize and order necessary parts
- YEAR 2: Complete entire system construction and deploy in external measurements
- YEAR 3: Continue external measurements for conclusive demonstration; studies of deployment in space

