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Abstract
Results from the first three terms of the small-slope approximation (SSA)
for incoherent electromagnetic scattering from a penetrable randomly rough
interface are discussed. Surface roughness is characterized as a Gaussian
random process with an isotropic Gaussian correlation function. Sample
results illustrate parameter spaces for which each correction term is appreciable.
Reduction of the SSA to the physical optics theory is also discussed for both
perfectly conducting and dielectric surfaces.

1. Introduction

Predicting scattering cross sections of randomly rough surfaces is critical for designing terrain
and sea surface remote sensing systems and interpreting the resulting data. The standard
physical optics (PO) and small-perturbation methods (SPM) [1] have been applied extensively,
but are limited in their applicability. Recent decades have seen continued development
of improved theories, including the small-slope approximation (SSA) [2]. The first SSA
incoherent scattering cross section term can be regarded as second order in surface ‘quasi-
slope’ [3], and has a form similar to the PO approximation but multiplied by an alternative
function of the surface permittivity and of the incident and scattering angles. This ‘quasi-slope’
designation highlights the fact that the SSA is considered a slope expansion for large-scale
surface roughness, yet concurrently it reduces to a small height expansion for small-scale
surface roughness. A recent paper [4] investigated the accuracy of the first SSA term through
comparison with numerical simulations and found inaccuracies in the PO limit. However, [2]
demonstrates that the SSA reproduces the PO theory when higher-order SSA corrections (at
third and partial fourth order) are included in the scalar, hard-boundary scattering problem.
The first two terms of the SSA series have also been shown to reduce to the ‘two-scale’ limit
for multi-scale surfaces [5].

The second SSA term (third order) has a more complicated form involving a quadruple
integral for computation of average incoherent cross sections, while the third SSA term (partial
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fourth order) computation involves a sixfold integral. Expressions for the averages of all three
SSA terms in the scalar, hard-boundary problem have been provided in [6] for 2D scattering
problems and in [7] for 3D scattering problems. Averages of all three SSA terms can also
be computed through a Monte Carlo simulation with a deterministic surface algorithm [8, 9].
The complexity of both the analytically averaged and Monte Carlo approaches, however,
has limited the number of studies reported including the second and third SSA terms in the
electromagnetic, penetrable surface problem. Recently, some results from the second and third
SSA terms have been illustrated in [10] and [11], but simplified forms for Gaussian correlation
function surfaces were not described.

In this paper, simplified forms for the first three SSA terms are presented for penetrable
surfaces under the assumption of a Gaussian random process surface with an isotropic Gaussian
correlation function. While these surfaces are admittedly simple compared to many natural
surface structures, the isotropic Gaussian correlation function surface remains a widely used
model in many applications. Surfaces in this case are described simply by the rms height h and
correlation length l parameters, and the surface rms slope is related to the ratio h/ l. Results
for each SSA term are presented as the surface statistics and scattering geometry are varied
to provide some information on the rate of convergence of the SSA series. Reduction of the
three-term SSA series to the PO limit is also considered.

2. General formulation

Consider an incident time-harmonic plane wave with propagation vector ki = x̂kxi + ŷkyi − ẑkzi

impinging upon a rough interface between free space (permittivity ε0 and permeability µ0)
and a dielectric medium (permittivity ε1 = εrε0 and permeability µ0). The rough interface
is defined as z = f (x, y), with the z direction pointing upward into the free space region.
Electromagnetic interactions with the rough surface create scattered fields on both sides of the
interface. Observations made for scattered waves in the free space region with propagation
vectors ks = x̂kxs + ŷkys + ẑkzs are described here. The incident and scattered propagation
vector directional components can be defined in terms of the incident and scattered polar (θi,s)
and azimuthal (φi,s) angles as

kxi = k sin(θi) cos(φi) kxs = k sin(θs) cos(φs) (1)

kyi = k sin(θi) sin(φi) kys = k sin(θs) sin(φs) (2)

kzi = k cos(θi) kzs = k cos(θs) (3)

where k = 2π/λ is the wavenumber of an incident time-harmonic field at wavelength λ.
Following the notation of [7], the incoherent averaged normalized radar cross section for

the dielectric Gaussian random process surface 3D scattering problem is written as a series
of the first three SSA terms σαβ ≈ σ 00

αβ + σ 01
αβ + σ 11

αβ . These three terms result from the first
two terms in the SSA field solution, and are second-, third- and partial fourth-order results in
surface ‘quasi-slope’, as described in [3, 6]. The (αβ) subscripts refer to the polarizations (H
for horizontal or V for vertical) of the scattered and incident fields respectively.

Expressions for these quantities can be derived following [2] and [6, 7] as

σ 00
αβ = k2

zs

πk2
dz

|g(1)
αβ (kxs, kys)|2H{1} (4)

σ 01
αβ = − k2

zs

π |kdz| Re{ig(1)
αβ (kxs, kys)[H{Qαβ(x, y)} + e−k2

dzh2F{Qαβ(x, y)} − Qαβ(0, 0)H{1}]}
(5)
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σ 11
αβ = k2

zs

4πk2
dz

{[H{Vαβ(x, y)} + e−k2
dzh2F{Vαβ(x, y)} + k2

dz|Qαβ(0, 0)|2H{1}]}. (6)

The g(1)
αβ (kxs, kys) terms above are the first-order small-perturbation method (SPM) kernels,

defined in [12] (equations (75), (76) for horizontal incident polarization and equations (79), (80)
for vertical incident polarization). These kernels also depend on the incident wavevector and
εr , although this dependence is not notated in the above equations for simplicity. The operators
F and H above are defined as

F{ f (x, y)} =
∫ ∞

−∞
dx

∫ ∞

−∞
dy eikdx x eikdy y f (x, y) (7)

H{ f (x, y)} =
∫ ∞

−∞
dx

∫ ∞

−∞
dy eikdx x eikdy y D(x, y) f (x, y) (8)

where the kdx, kdy and kdz parameters are defined as the difference between the incident and
scattered wavevector components,

kd = x̂kdx + ŷkdy + ẑkdz = x̂(kxi − kxs) + ŷ(kyi − kys) − ẑ(kzi + kzs). (9)

The term D(x, y) is given by

D(x, y) = e−k2
dzh2(1−C(x,y)) − e−k2

dzh2
(10)

with C(x, y) representing the surface correlation function. The term Vαβ(x, y) is given by

Vαβ(x, y) = Q(1)
αβ (x, y) + k2

dz Qαβ(x, y)Q∗
αβ(−x,−y)

− k2
dz(Qαβ(0, 0)Q∗

αβ (−x,−y) + Q∗
αβ(0, 0)Qαβ(x, y)). (11)

Finally, the Qαβ(x, y) and Q(1)
αβ (x, y) functions above are given by two-dimensional Fourier

transforms of the surface power spectrum,W (kx , ky), and the SSA kernel functions Gαβ(kx, ky)

Qαβ(x, y) =
∫ ∞

−∞
dkx

∫ ∞

−∞
dky eikx x eiky yG∗

αβ(kx, ky)W (kx , ky) (12)

Q(1)
αβ (x, y) =

∫ ∞

−∞
dkx

∫ ∞

−∞
dky eikx xeiky y|Gαβ(kx, ky)|2W (kx , ky) (13)

where ∗ denotes complex conjugation. The SSA kernel is defined by a combination of first- and
second-order SPM kernels [2]

Gαβ(kx, ky) = g(2)
αβ (kxs, kys, kxi + kx, kyi + ky) + i(kzs + kzi)g(1)

αβ (kxs, kys)

+ g(2)
αβ (kxs, kys, kxs − kx, kys − ky) (14)

where the first-order SPM kernels are as explained above and the second-order SPM kernels,
g(2)

αβ (kxs, kys, kxn, kym), are defined in [12] (equations (88) and (89) for horizontal incident
polarization and equations (95) and (96) for vertical incident polarization).

The preceding expressions apply for any Gaussian random process surface, regardless
of its correlation function. The integration in equation (4) above is identical to that in PO
theory, but the functions multiplying the integration are distinct in the SSA and PO cases.
Note that equation (4) involves a double integration, while equations (5) and (6) involve
quadruple and sixfold integrations, respectively, due to the Q functions involved. However,
these computations can be made relatively efficient even for general surfaces if a fast-Fourier-
transform (FFT) operation is used to tabulate the Q and Q(1) functions before proceeding to
the spatial integrations. For specific correlation functions, further analytical forms for these
equations can be derived.
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3. Simplification for isotropic Gaussian correlation function

Consider a surface with an isotropic Gaussian correlation, defined as

C(x, y) = exp

[
− x2 + y2

l2

]
= C(ρ) (15)

where the final equality assumes the use of standard cylindrical coordinates. The corresponding
power spectrum in cylindrical coordinates is

W (kρ) = h2l2

4π
exp

[
− l2k2

ρ

4

]
. (16)

Simplifications for equations (4)–(6) are based on the following steps: the spatial
integration in each equation is first converted to cylindrical coordinates (ρ, φ), and the definition
kdx = kdρ cos(φ′), kdy = kdρ sin(φ′) is made. The term

eikdρρ cos(φ−φ ′) =
∞∑

u=−∞
iu Ju(kdρρ)eiu(φ−φ ′) (17)

then appears in all spatial integrations; the series expansion on the right-hand side above
is from [13], where Ju(kdρρ) is the uth-order Bessel function of the first kind. Applying
this expansion enables the integrations over φ to be expressed in terms of Fourier azimuthal
harmonics. An additional power series expansion

e−k2
dzh2(1−C(ρ)) = e−k2

dzh2
∞∑

n=0

(kdzh)2n

n!
exp

[−nρ2

l2

]
(18)

is also frequently used. Note that the above power series expansion will converge most rapidly
for surfaces with moderate rms heights in terms of the electromagnetic wavelength. For small
slope surfaces with larger heights, the large-scale expansion discussed in section 5 is more
appropriate.

3.1. First SSA term

The above steps combined with the integral identity [13]
∫ ∞

0
dρ ρ J0(kdρρ) exp

[−nρ2

l2

]
= l2

2n
exp

[
−k2

dρl2

4n

]
(19)

are sufficient to reduce equation (4) to

σ 00
αβ = k2

zs

πk2
dz

|g(1)
αβ (kxs, kys)|2

(
πl2e−k2

dzh2
∞∑

n=1

(k2
dzh2)n

n!n
e−k2

dρ l2/(4n)

)

= k2
zs

πk2
dz

|g(1)
αβ (kxs, kys)|2 DI. (20)

The DI term defined above is identical to that from [1] obtained in simplifying PO theory
results, except a term involving the surface area in [1] is not included. Convergence of this
series requires n � (kdzh)2. Note that numerical problems in computing DI single terms for
large n can be reduced by first adding and subtracting the logarithms of factors making up the
term, followed by exponentiation of the result.
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3.2. Second SSA term

Simplifying the second SSA term requires that the Q function first be written as

Qαβ(ρ, φ) =
∞∑

m=−∞
ime−imφ

∫ ∞

0
dkρ kρW (kρ)Jm(kρρ)G̃m,αβ (kρ) (21)

through the use of the steps described above, where

G̃m,αβ (kρ) =
∫ 2π

0
dφ̃ eimφ̃G∗

αβ(kρ cos φ̃, kρ sin φ̃) (22)

are the azimuthal Fourier harmonics of the conjugated SSA kernel. Due to the limited harmonic
structure of G̃αβ , the above series truncated to m = ±8 was found to produce cross sections
accurate to within 0.3 dB for all cases illustrated.

Note that equation (5) is composed of three additive terms that can be simplified separately:

σ 01
αβ = − k2

zs

π |kdz| Re{ig(1)
αβ (kxs, kys)[A01

1 + A01
2 + A01

3 ]}. (23)

Results after simplification are

A01
1 = πl2e−k2

dzh2
∞∑

n=1

(kdzh)2n

n!n

∞∑
m=−∞

(−1)me−imφ ′
B01

n,m (24)

A01
2 = 4π2e−k2

dzh2
G∗

αβ(−kdx,−kdy)W (kdρ) (25)

A01
3 = −Qαβ(0, 0)DI. (26)

Here B01
n,m is defined as

B01
n,m =

∫ ∞

0
dkρkρW (kρ)G̃m,αβ (kρ)Im

[
l2kdρkρ

2n

]
exp

[
− l2(k2

dρ + k2
ρ)

4n

]
(27)

where Im is the mth-order modified Bessel function of the first kind. The integral identity [13]∫ ∞

0
dρ ρ Jm(kdρρ)Jm(kρρ) exp

[−nρ2

l2

]
= l2

2n
Im

[
l2kdρkρ

2n

]
exp

[
− l2(k2

dρ + k2
ρ)

4n

]
(28)

is used in obtaining the final form of A01
1 , while the form for A01

2 results from the fact that
F is a Fourier transform operator. The form for A01

1 has replaced a fourfold integral with a
double sum of a single integral over the SSA kernel azimuthal harmonics. The single integral
involved, however, is relatively well behaved given the net exponentially decaying behaviour
exhibited by the integrand.

3.3. Third SSA term

Similar methods are used to simplify the third SSA term. The result is

σ 11
αβ = k2

zs

4πk2
dz

[A11
1 + A11

2 + A11
3 ] (29)

where

A11
1 =

(
πl2e−k2

dzh2
∞∑

n=1

(kdzh)2n

n!n
Re

{ ∞∑
m=−∞

(−1)me−imφ ′
B11

n,m

})

+ 2πk2
dze−k2

dzh2
∞∑

n=0

∞∑
k=0

∞∑
m=−∞

∞∑
v=−∞

Ek,v E∗
n,−m Dk+n,m,v (30)
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A11
2 = 4π2e−k2

dzh2
W (kdρ)

{|Gαβ(−kdx,−kdy)|2 − 2k2
dzRe{Qαβ(0, 0)Gαβ(−kdx,−kdy)}

}
+ 8π2k2

dze−k2
dzh2

e−k2
dρ l2/8

∫ ∞

0
dkρ kρW 2(kρ)

× Re

{∫ π

0
dφ G∗

αβ

(
−kdx

2
+ kρ cos(φ),−kdy

2
+ kρ sin(φ)

)

× Gαβ

(
−kdx

2
− kρ cos(φ),−kdy

2
− kρ sin(φ)

)}
(31)

A11
3 = k2

dz|Qαβ(0, 0)|2 DI . (32)

In A11
1 , the B11

n,m function is identical to B01
n,m except that

|Gαβ(kx , ky)|2 − 2k2
dz Q∗

αβ(0, 0)G∗
αβ(kx, ky) (33)

is used instead of G∗
αβ(kx, ky) to determine the Fourier series terms G̃m,αβ (kρ). Also, Da,b,c

from the A11
1 component is given as follows:

Da,b,c = (−1)a(sgn(b + c))|b+c|

22a+|b|+|c|

∫ ∞

0
dρ ρ2a+|b|+|c|+1 J|b+c|(kdρρ)[ek2

dzh2C(ρ) − 1] (34)

while Ea,b is given by

Ea,b = (−sgn(b))|b| e−ibφ ′

a!(a + |b|)!
∫ ∞

0
dkρ k2a+|b|+1

ρ W (kρ)G̃b,αβ (kρ). (35)

Here the sgn operator produces the sign (i.e. ±1) of its argument, with argument zero producing
a result of +1. Note that A11

1 above contains terms similar to those in A01
1 , but the additional

fourfold sums result from the Q(x, y)Q∗(−x,−y) contribution in V (x, y). The final form
obtained for this contribution is based on an additional power series expansion of the Bessel
functions in the Q function azimuthal series (equation (21)). The result for A11

2 again follows
from the Fourier transform properties of F : the integral term is the convolution theorem for
the Q(x, y)Q∗(−x,−y) contribution.

In the above equations, the most expensive computation involves the fourfold sum of the
E and D function integrals. However, again the simplification has produced relatively well
behaved E integrals because of the power spectrum exponential dependence. The E functions
can also be tabulated before proceeding to the fourfold sum to improve efficiency; limiting
the m and v sums to ±8 again was found to produce cross sections accurate to within 0.3 dB
for all cases illustrated. For the n and k summations (from the series representation of the
Bessel functions), the number of terms included is increased until convergence to within 0.1%
is observed. Typically these series converge in fewer than 40 terms for the cases illustrated.
Note that the m summation for B11

n,m requires twice as many terms as the m and v summations
in the fourfold sum due to the squared SSA kernel involved. The above equations were
implemented, and results were tested for consistency through comparison with results from a
Monte Carlo simulation of the SSA as described in [9]. Calculation of equations (23)–(35)
at each angle executed in approximately 4 min on an 800 MHz Pentium processor (of which
99.9% was spent on the third SSA term).

4. Results

Figures 1 and 2 illustrate backscattered σ 00, σ 01 and σ 11 from equations (20)–(35) in the
kh = 0.5, kl = 3 and kh = 1, kl = 6 cases, respectively. These surfaces have identical slopes,
and rms heights that exceed the limitations of standard perturbation theory; the former case



Study of the higher-order SSA 143

Figure 1. Backscattering: σ 00, σ 01 and σ 11; kh = 0.5, kl = 3, εr = 4 + i; (a) H H ; (b) H V/V H ;
(c) V V .

Figure 2. Backscattering: σ 00, σ 01 and σ 11; kh = 1, kl = 6, εr = 4 + i; (a) H H ; (b) H V/V H ;
(c) V V .

is a smaller-height example, while the latter case has a height standard deviation approaching
one wavelength. The three plots (a)–(c) in each figure are for H H , H V/V H and V V returns,
respectively, for surfaces with relative permittivity 4 + i . The second and third SSA terms
are observed to be more important in H H returns, becoming significant for incidence angles
larger than approximately 30◦. A sign-change in the second V V SSA term produces the
oscillatory behaviours observed, and an increased importance of the third SSA term is also
present in the smaller-height case. Cross polarized predictions are obtained only from the
third SSA term, because the first-order SPM kernel vanishes for backscattered cross-pol SSA
fields at first-order. The computation of the third SSA term for backscattered cross-pol results
is somewhat simplified because both Gαβ(−kdx,−kdy) and Qαβ(0, 0) vanish in this case.
Also, for backscattered cross-pol results it can be shown that G̃m,αβ = −G̃−m,αβ in the E
integrations, and that B11

n,m = B11∗
n,−m . Comparisons of all these results with first-order SPM

predictions show poor agreement in general; the PO theory provides reasonable accuracy in
the kh = 1, kl = 6 co-pol case but poor agreement (particularly for H H polarization) in the
smaller scale roughness case.

To study convergence of the SS A series, the following quantities are defined:

σ
(2)
αβ = σ 00

αβ (36)

σ
(3)
αβ = σ 00

αβ + σ 01
αβ (37)

σ
(4)
αβ = σ 00

αβ + σ 01
αβ + σ 11

αβ . (38)

Note that σ 01
αβ can be either positive or negative, so that cross sections can decrease in some

cases as this term is added.
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Figure 3. Backscattering: σ (2), σ (3) and σ (4); kh = 0.5, kl = 3, εr = 4+ i; (a) H H ; (b) H V/V H ;
(c) V V .

Figure 4. Backscattering: σ (2), σ (3) and σ (4); kh = 1, kl = 6, εr = 4 + i; (a) H H ; (b) H V/V H ;
(c) V V .

Figures 3 and 4 plot backscattered H H , H V/V H and V V polarized σ
(2)
αβ , σ

(3)
αβ and σ

(4)
αβ

results for the kh = 0.5, kl = 3 and kh = 1, kl = 6 cases, respectively, at multiple incidence
angles. Again the second and third SSA terms are seen to be more important at larger incidence
angles, where an appreciable change in total cross sections is produced. The effect is largest in
H H polarization in the larger-surface-height case. Figure 5 illustrates in-plane bistatic H H ,
H V , V H and V V polarized results for the kh = 1, kl = 6 case at 30◦ incidence angle. As can
be seen, at angles farther from specular (scattering angle equal to 30◦ is the specular direction),
the higher-order terms become more appreciable.

To study further the importance of the second and third SSA series terms, calculations
using equations (20)–(35) were performed for kh values of 0.1, 0.2, . . . , 1.5 and kl values
of 1, 2, . . . , 10. Computations were performed for this grid so long as the h/ l values were
strictly less than 0.3. In this study, the surface dielectric constant was fixed at εr = 4 + i
and backscattering at incidence angles of 30◦ and 70◦ was considered. The results of
figures 3 and 4 suggest defining third- and fourth-order ‘improvements’ as |σ (3)

αβ,dB − σ
(2)

αβ,dB |
and |σ (4)

αβ,dB − σ
(3)

αβ,dB |, respectively, where the dB subscript indicates quantities in decibels.
Figures 6–9 illustrate third- (plot(a)) and fourth-order (plot (b)) improvements for H H and V V
polarizations at incidence angles of 30◦ and 70◦. Results for 30◦ incidence (figures 6 and 7)
show relatively minor contributions (less than 2 dB everywhere) for the second and third SSA
terms, although the corrections are more important in H H polarization than V V . Corrections
are much more important in the 70◦ incidence case (figures 8 and 9), with values up to 20 dB
observed. Note in all these figures that the corrections show a complex dependence in kh, kl
space that is not a function only of h/ l. This is due to the ‘quasi-slope’ nature of the SSA
series [3], primarily due to the fact that the single-term SSA solution for dielectric surfaces
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Figure 5. Bistatic scattering: 30◦ incidence, σ (2), σ (3) and σ (4); kh = 1, kl = 6, εr = 4 + i;
(a) H H , (b) H V , (c) V V and (d) V H .

Figure 6. Backscattering improvements, H H polarization, εr = 4 + i , θi = 30◦ , (a) third order
and (b) fourth order.

reduces exactly to the first-order SPM solution in the small-height limit, but only approaches
PO in the large-height limit as more terms are included. The next section discusses this point
further.
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Figure 7. Backscattering improvements, V V polarization, εr = 4 + i , θi = 30◦ , (a) third order,
(b) fourth order.

Figure 8. Backscattering improvements, H H polarization, εr = 4 + i , θi = 70◦ , (a) third order,
(b) fourth order.

5. Large-scale roughness

A ‘large-scale’ surface approximation for the second and third SSA terms can be derived by
expanding the SSA kernel in a Taylor series about the origin

Gαβ(kx, ky) ≈ kx Gkx + kyGky (39)

where Gkx = ∂Gαβ(kx ,ky )

∂kx
is the partial of the general SSA kernel (14) with respect to kx , and

Gky = ∂Gαβ(kx ,ky )

∂ky
is the partial with respect to ky, both evaluated at the origin. Utilizing

this reduction and steps similar to those described previously, equations (23) and (29) can be
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Figure 9. Backscattering improvements, V V polarization, εr = 4 + i , θi = 70◦ , (a) third order,
(b) fourth order.

simplified to

σ 01
αβ ≈ − k2

zs DI

π |kdz| Re

{
ig(1)

αβ (kxs, kys)
kdρ

|kdz|2 [G∗
kx

cos(φ′) + G∗
ky

sin(φ′)]
}

(40)

σ 11
αβ ≈ k2

zs DI

4πk2
dz

{
k2

dρ

2k2
dz

[|Gkx |2(1 + cos(2φ′)) + |Gky |2(1 − cos(2φ′)) + 2 Re{Gkx G∗
ky

} sin(2φ′)]
}

(41)

where the DI term is as defined previously. Note that in this limit, all three SSA series terms
are expressed as DI times a function of angle; all surface parameter dependences are inside the
DI sum. Because PO theory results have a similar form [1], the sum of the three SSA terms
can be compared to PO predictions for all surface statistics simply by comparing the angular
functions multiplying DI. Writing

σ
(2)
αβ = F (2)(kxi, kyi, kxs, kys)k

2 DI (42)

σ
(3)
αβ = F (3)(kxi, kyi, kxs, kys)k

2 DI (43)

σ
(4)
αβ = F (4)(kxi, kyi, kxs, kys)k

2 DI (44)

σ P O
αβ = F P O(kxi, kyi, kxs, kys)k

2 DI (45)

defines the angular F functions to be compared; the k2 term extracted removes any explicit
frequency dependence as well.

Figure 10 illustrates a comparison of these angular functions for backscattering from
perfectly conducting surfaces, and demonstrates that F (4) becomes identical to F P O to within
the accuracy of the numerics. This reduction to PO results for the scalar, hard-boundary
problem has previously been described in [2, 3]. F (2) and F (3) also match F P O for small
incidence angles, but can show large differences at larger observation angles. These results
again show that matching the PO theory in the large-scale, perfectly-conducting-surface limit
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Figure 10. Comparison of SSA and PO angular functions: perfectly conducting surface, (a) H H ,
(b) V V .
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Figure 11. Comparison of SSA and PO angular functions: εr = 4 + i , (a) H H , (b) V V .

requires inclusion of both the second and third SSA terms. The large ‘improvement’ factors
found for larger surface heights in the previous section are produced by the large differences
between the F (2)–F (4) angular functions at larger observation angles.

Figure 11 illustrates the same comparison for surfaces with dielectric constant εr = 4 + i .
Again for small observation angles, all functions match, but large differences are observed
at larger angles. In this case, F (4) and F (P O) remain distinct at larger angles, with F (4)

typically exceeding F (P O). Note that evaluation of F (P O) for dielectric surfaces requires
an approximation of the reflection coefficients involved: in the results presented, reflection
coefficients were evaluated at the stationary phase point (i.e. zero degrees incidence for



Study of the higher-order SSA 149

backscattering). At present, it is unclear whether the large-scale approximated SSA or the
stationary phase point PO theory is more appropriate for large-scale dielectric surfaces: further
studies with more exact methods are required to address this issue.

6. Summary

In this paper, simplified forms for the first three terms in the SSA series for incoherent scattering
from a Gaussian correlation function surface were presented. The resulting forms remained
computationally complex, but simplified the forms of the integrations involved. Results
showed the second and third terms to make important contributions, particularly at larger
observation angles and for larger-height surfaces. An approximation to all three SSA terms
in the ‘large-scale’ surface limit confirmed that the sum of the first three SSA terms becomes
identical to the PO prediction for perfectly conducting surfaces. Results with dielectric surfaces
however showed PO (using stationary phase point reflection coefficients) and the large-scale
approximated SSA to produce significantly differing predictions at larger observation angles.
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