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Present Day 

CMOS Challenges







Moore’s law



Motivation: Extending CMOS?
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No Known Solutions

NOEL

 CMOS cannot be scaled indefinitely.

 Solutions: either replace or augment scaled CMOS

 Tunnel diodes married with CMOS offer enhancements
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Intel’s Core i7

6T SRAM cache memory dominates footprint 

and power consumption, operates about 1 volt 

(→ 8T SRAM)

Power consumption related to voltage squared 

(~1 volt state-of-the-art)
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Let’s Enter the 

Quantum World
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“N-shaped” 

negative differential

resistance (NDR)

• How to characterize tunnel diode?

– Peak-to-valley current ratio

PVCR = Ip / Iv

– Peak current density

Jp = Ip / Area

– Speed index

s = Jp / Cj

• Why use TD with transistors?

– Increases circuit speed

– Reduces circuit complexity

– Lowers circuit power

– Simple integration with transistor

Introduction to Advantages of  

Tunnel Diodes

NOEL

Ip

Iv
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Three Interband TD Current Components

From Sze, Physics of Semiconductor Devices, pg. 517 (1981).

Desired: optimize 

structure for efficient 

quantum mechanical 

tunneling

Undesired: excess 

current comprised 

partially of defect related 

tunneling

Thermal diffusion 

current eventually takes 

over at higher biasesBasic TD Figure-of-Merit

• Peak-to-valley current ratio (PVCR) = Ip/Iv

• Peak current density (PCD or Jp )=  Ip/A, where A is the diode area
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• Band-to-band tunneling current

– PVCR, PCD, and speed

• Excess tunneling current

– PVCR and Standby power dissipation

• Thermal diffusion current
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Goal: Increase band-to-band current and minimize excess current.

Physics Based Model for RITDs
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 Band-to-band tunneling current

 Excess current
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Excess Current of an Esaki Diode
Figure adapted from Sze, Physics of Semiconductor Devices, pg. 528 (1981).

•Excess current limits PVCR. 

•Excess current is a 

tunneling phenomena via 

defect or midgap states

For more info see Chynoweth et al.,

Phys. Rev., vol. 121, p. 684, (1961).
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The Opportunity



Opportunity: Tunnel Diode Memory

• One Transistor 2-Tunnel Diode SRAM (1T TSRAM)

• Robust operation at low voltages

• Refresh-free – Low active and standby power Consumption

• J. P. A. van der Wagt, A. C. Seabaugh, and E. A. Beam, III, “RTD/HFET low standby power SRAM

gain cell,” IEEE Electron Dev. Lett. 19, pp. 7-9 (1998).

• J. P. A. van der Wagt, “Tunneling-Based SRAM,” Proc. of IEEE, 87, pp. 571-595 (1999).
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NOEL

2005 ITRS – Emerging Research Devices 

• Monolithic Integration of Si-based tunnel 

diodes with Si-based transistors
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NOEL 2005 ITRS – Emerging Research Devices 



NOEL

More computational power per unit area

 Fewer devices required

 Faster circuits and systems

 Reduced power consumption

The Payoff: TDs Integrated with Transistors

Result: Extension of CMOS if a 

Si-Based TD is available that is 

compatible with CMOS!
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Now Let’s Apply Quantum 

Mechanics



Solid State Electronic Devices, Seventh Edition
Ben G. Streetman | Sanjay Kumar Banerjee

Copyright ©2015, 2006 by Pearson Education, Inc.
All rights reserved.

Figure 3–13 Energy band discontinuities for a thin layer of GaAs sandwiched between layers of wider band gap 
AIGaAs. In this case, the GaAs region is so thin that quantum states are formed in the valence and conduction 
bands. Electrons in the GaAs conduction band reside on “particle in a potential well” states such as E1 shown 
here, rather than in the usual conduction band states. Holes in the quantum well occupy similar discrete states, 
such as Eh.

Quantum well



Solid State Electronic Devices, Seventh Edition
Ben G. Streetman | Sanjay Kumar Banerjee

Copyright ©2015, 2006 by Pearson Education, Inc.
All rights reserved.

Figure 2–6 Quantum mechanical tunneling: (a) potential barrier of height V0 and thickness W; (b) probability 
density for an electron with energy E < V0, indicating a nonzero value of the wavefunction beyond the barrier.

Tennis Ball 

“tunnels” through 

barrier



Basic Physics: Esaki Tunnel Diode 

(Interband)

Degenerate Doping Required – Difficult with conventional epitaxy

For more info see L. Esaki, “New phenomenon in narrow Germanium p-n junctions,” Phys. Rev., vol. 109, p. 603, 1958. 
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Prior Art: Lack of Si-Based TDs that can be Monolithically 

Integrated with Si transistors

Ge Esaki Diode Si Esaki Diode

• Vintage 1960’s alloy technology prevents large-scale batch processing

• Discrete Esaki diodes are ideal for niche applications.

• However the alloy process does not lend itself to an integrated circuit.



Basic Physics: Resonant 

Tunneling Diode (Intraband)

Large Band Offset Required

Si/SiGe heterojunction has limited band offset 

without a thick relaxed buffer

Alternative barriers (i.e. SiO2) present difficult 

heteroepitaxy of single crystal Si quantum well 

atop amorphous barrier

For more info see L. L. Chang, L. Esaki

and R. Tsu, “Resonant tunneling in

semiconductor double barriers,” Appl.

Phys. Lett., vol. 24, pp. 593-595, 1974.
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Basic Physics: Resonant Interband

Tunneling Diode 

δ-doping to form quantum wells; 

eliminates need for degenerately 

doped junctions

For more info see M. Sweeny and J. Xu,

“Resonant interband tunnel diodes,” Appl. Phys.

Lett., vol. 54, pp. 546-548, 1989.



100 nm n+ Si

Sb-delta doping plane

1 nm undoped Si 

4 nm undoped Si0.5Ge0.5

1 nm undoped Si

B-delta doping plane

100 nm p+Si

p+ Si substrate

MBE Heterostructure

• Low growth temperature (320 oC)

• CMOS process compatibility

World’s First Si-Based Resonant Interband 

Tunnel Diode (1998)

“Room Temperature Operation of Epitaxially Grown

Si/Si0.5Ge0.5/Si Resonant Interband Tunneling Diodes,"

Sean L. Rommel, Thomas E. Dillon, M. W. Dashiell, H.

Feng, J. Kolodzey, Paul R. Berger, Phillip E.

Thompson, Karl D. Hobart, Roger Lake, Alan C.

Seabaugh, Gerhard Klimeck, and Daniel K. Blanks,

Appl. Phys. Lett., 73, pp. 2191-2193 (1998).
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Si/Si0.6Ge0.4/Si  RITDs 

Grown at 320 oC

High Peak-to-Valley Current Ratios

100 nm n+ Si

P -doping plane

4 nm undoped Si 

4 nm undoped Si0.6Ge0.4

B -doping plane

1 nm p+ Si0.6Ge0.4

100 nm p+ Si

p+ Si substrate

MBE Heterostructure
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Greater defect annihilation leads to less excess 

current in valley region and therefore higher PVCRs
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NOEL

First Si-Based Resonant Interband Tunnel Diodes

Front page of the Wall 

Street Journal 

(October 1, 1998).

Approach

EC

(eV)

Upper

Barrier

Crystalline

Quantum

Well

Crystalline

Lower

Barrier

Crystalline

Production

Potential
Status

SiO2/a-Si/SiO2 3.2 No No No High Abandoned - High scattering in quantum,

no room temperature PVR

CaF2/Si/CaF2 2 Yes Yes Yes Low Abandoned - Tendency for island growth,

defect-assisted transport below 10 nm

ZnS/Si/ZnS 1 Yes Yes Yes Med. ZnS on Si growth established, Si quantum well

growth under study

SiO2/Si/SiO2

Lateral overgrowth

3.2 No Yes No Med. Process for forming oxide islands established,

overgrowth process under development

ZnS/Si/ZnS

Lateral overgrowth

1 Yes Yes Yes Med. ZnS islands have been prepared for first

overgrowth experiments

SiO2/SiGe(C)/SiO2

Lateral overgrowth

3.2 No Yes No Med. Oxide islands have been prepared for first

overgrowth experiments

SSii//SSiiGGee

rreessoonnaanntt  iinntteerrbbaanndd
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rroooomm  tteemmppeerraattuurree  ppeeaakk--ttoo--vvaalllleeyy

ccuurrrreenntt  rraattiioo  ooff  11..66

980505

A paradigm shift from other approaches was spearheaded

by a team of researchers lead by Berger (then at the

University of Delaware), Naval Research Laboratory and

Raytheon Systems.

• DARPA Award of Excellence (1998)

• Late News at International Electron Devices Meeting 

(1998)

• Best Science/Engineering Dissertation (2000)

• Special Invitation to 2003 ITRS Meeting

• IEEE Fellow (2011)
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5 Key Features of the Original RITD Design

 A pair of δ-doping planes of B and P (or Sb) provide highly degenerate
doping levels which can confine quantum states in potential energy wells.
The gap between δ-doping planes is assumed the tunneling distance.

 An intrinsic layer is used as the central tunneling spacer, which reduces
carrier scattering. Both Si and Si/Si1-xGex composite spacers have been
explored. The addition of Ge provides greater momentum mixing and
therefore higher current densities.

 Fixed offsets between the δ-doping planes and the tunneling spacer
were introduced in some SiGe designs to minimize the outdiffusion of
dopants and impurity accumulation into the central tunneling spacer.

 Samples were epitaxially grown by low-temperature molecular beam
epitaxy (LT-MBE) to allow for greater dopant incorporation and abrupt
interfaces minimizing segregation and diffusion.

 Short post growth rapid thermal annealing (RTA) heat treatments were
introduced to reduce the point defect density associated with low
temperature growth. Diffusion during annealing may decrease the spacer
thickness and reduce as-grown δ-doping levels.

● “Si-Based Resonant Interband Tunneling Diodes,” Paul R. Berger, Sean L. Rommel, Phillip E.

Thompson, Karl D. Hobart, and Roger Lake, [Issued on October 12, 2004, U. S. Patent #6,803,598].

● “Method of Making Interband Tunneling Diodes,” Paul R. Berger, Sean L. Rommel, Phillip E.

Thompson, Karl D. Hobart, and Roger Lake, (U. S. Patent #7,303,969).
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Isothermal Annealing Effects with Cladding
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“Diffusion Barrier Cladding in Si/SiGe Resonant

Interband Tunneling Diodes And Their Patterned

Growth on PMOS Source/Drain Regions,” Niu Jin,

Sung-Yong Chung, Anthony T. Rice, Paul R.

Berger, Phillip E. Thompson, Cristian Rivas,

Roger Lake, Stephen Sudirgo, Jeremy J.

Kempisty, Branislav Curanovic, Sean L. Rommel,

Karl D. Hirschman, Santosh K. Kurinec, Peter H.

Chi and David S. Simons, Special Issue on

“Nanoelectronics” in IEEE Trans. Elect. Dev., vol.

50, pp. 1876-1884 (September 2003).

Diffusion barrier cladding 

surrounding the δ-doping 

spike raises the process 

thermal budget and allows for 

greater defect annihilation 

before interdiffusion becomes 

serious

Annealed 825 oC for 1 minute
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Very High Peak Current Densities

100 nm n+ Si

P -doping plane

1 nm undoped Si 

2 nm undoped Si0.6Ge0.4

B -doping plane

1 nm undoped Si0.6Ge0.4

100 nm p+ Si

p+ Si substrate
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Si/Si0.6Ge0.4/Si  RITDs 

Grown at 320 oC

By reducing tunnel barrier, over 150 kA/cm2 current density!

High current densities valuable for fast switching and RF Mixed Signals

“151 kA/cm2 Peak Current Densities in Si/SiGe

Resonant Interband Tunneling Diodes for High-

Power Mixed-Signal Applications,” Niu Jin, Sung-

Yong Chung, Anthony T. Rice, Paul R. Berger,

Ronghua Yu, Phillip E. Thompson, and Roger

Lake., Appl. Phys. Lett., 83, 3308 (2003).
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Tailorable Peak Current Densities

Current densities can be 

engineered over ~8 orders of 

magnitude by controlling RITD 

spacer thickness between the δ-

doping pair from 1 nm up to 16 nm.

By widening spacer, below 20 mA/cm2 current density!

Low current densities valuable for memory and low power consumption
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Results highlighted here demonstrate the highest reported peak current density

for Si-based interband tunnel diodes that is 3 times larger than the previous world

record. A high current density is needed to generate large amounts of microwave

power output for radio transmission in small distributed sensor networks
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Requirement for Memory or Logic Function ( PVCR ≥ 2 )
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Solid circles (●) indicate prior work by Berger group, 

open squares (□) indicate prior work by other groups, 

and stars (*) indicate recent work by Berger group.

RF Mixed Signal Applications Enabled

“151 kA/cm2 Peak Current Densities in

Si/SiGe Resonant Interband Tunneling

Diodes for High-Power Mixed-Signal

Applications,” Niu Jin, Sung-Yong Chung,

Anthony T. Rice, Paul R. Berger, Ronghua

Yu, Phillip E. Thompson, and Roger

Lake., Appl. Phys. Lett., 83, 3308 (2003).
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Microwave Performance of RITDs 

STRUCTURE Uniqueness

• Additional P -doped layer was
inserted for better ohmic contact.

• Ni silicide was formed.

• Minimum space thickness (2.5 nm)
with the highest Ge fraction (55 %)
was tried.

• 218 kA/cm2 peak current density.

• 20.2 GHz cutoff frequency.

• 35.9 mV/ps of speed index.

P -doping plane

B -doping plane

P -doping plane

1 nm undoped Si

1 nm p+ Si0.45Ge0.55

p Si Substrate (3000-8500 ·cm)

1.5 nm undoped Si0.45Ge0.55

104 nm n+ Si

5 nm n+ Si

264 nm p+ Si
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Ground

Signal

Ground

Air bridge

DUT

Device Fabrication

For RF measurement

• 1 metal & 2 etching processes have
been developed, resulting in 0.34
m2 sized RITDs.

• Air-bridge is formed to isolate a
active device from huge pad.

• Ni silicidation through P -doped
quantum well by rapid thermal
sintering at 430 oC for 30 seconds,
resulting in a specific contact
resistivity of 5.3×10-7 -cm2, which
is extracted from RF measurement.

Metal (Signal)Metal (Ground)

Forward biased RITD under test

p- Si substrate (3000~8000 Ω-cm)

p++

n++n++

p++

Reverse biased parasitic RITD
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Si-based Interband Tunnel Diode 

Technology  (PCD & PVCR)

Technology Availability

PVCR up to 4

PCD: 20 mA/cm2 to 218 kA/cm2

“Si/SiGe Resonant Interband Tunnel

Diode with fr0 20.2 GHz and Peak Current

Density 218 kA/cm2 for K-band Mixed-

Signal Applications,” Sung-Yong Chung,

Ronghua Yu, Niu Jin, Si-Young Park,

Paul R. Berger, and Phillip E. Thompson,

IEEE Electron Device Letters 27, pp. 364-

367 (May 2006).
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Si-based Interband Tunnel 

Diode Technology (Speed)
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Technology Availability

fT: up to 20.2 GHz

Switching Speed: ~ 36 mV/ps

“Si/SiGe Resonant Interband Tunnel

Diode with fr0 20.2 GHz and Peak Current

Density 218 kA/cm2 for K-band Mixed-

Signal Applications,” Sung-Yong Chung,

Ronghua Yu, Niu Jin, Si-Young Park,

Paul R. Berger, and Phillip E. Thompson,

IEEE Electron Device Letters 27, pp. 364-

367 (May 2006).
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260 nm p+ Si0.8Ge0.2 

4 nm i Si0.4Ge0.6 spacer

Si0.8Ge0.2 substrate

1 nm p+ Si0.4Ge0.6

2 nm i Si spacer

100 nm n+ Si0.8Ge0.2

B δ-doping layer

P δ-doping layer

2 nm n+ Si

17.5 nm Cap Si

260 nm p+ Si0.8Ge0.2 

4 nm i Si0.4Ge0.6 spacer

1 nm p+ Si0.4Ge0.6

100 nm n+ Si0.8Ge0.2

B δ-doping layer

P δ-doping layer

2 nm i Si0.8Ge0.2 spacer

Si0.8Ge0.2 substrate

17.5 nm Cap Si

Tensile Strain on Virtual SiGe

• SiGe virtual substrates utilized for higher Ge content in the spacer to
increase tunneling probability

• Thin tensilely strained Si layer cladding around P δ-doping spike acting as
a P diffusion inhibitor

Structure ‘A’ Structure ‘B’
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Tensile Strain on Virtual SiGe

Structure ‘B’Structure ‘A’

“Strain Engineered Si/SiGe Resonant Interband Tunneling Diodes Grown on Si0.8Ge0.2 Virtual Substrates,”

N. Jin et.al., IEEE EDL, 29, 599 (2008)
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Structure A, 

800 
o
C annealed

Structure B, 

835 
o
C annealed

• Increase in optimal annealing temperature due to reduced P diffusion
• 1.8x increase in PVCR

Tensile Strain on Virtual SiGe

“Strain Engineered Si/SiGe Resonant Interband Tunneling Diodes Grown on Si0.8Ge0.2 Virtual Substrates,” N. Jin et.al.,

IEEE EDL, 29, 599 (2008)
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Outside Barriers

• Tensilely strained p-type and compressively strained Si0.5Ge0.5 n-type added. 

NOEL Berger (Si-Based RITDs) September 20, 2017

“Strain Engineered

Si/SiGe Resonant

Interband Tunneling

Diodes with Outside

Barriers Grown on

Si0.8Ge0.2 Virtual

Substrates,” A. Ramesh

et.al., APL, 93, 102113

(2008).
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• Electron and hole quantum well deepened.

“Strain Engineered Si/SiGe Resonant Interband Tunneling Diodes with Outside Barriers Grown on Si0.8Ge0.2 Virtual

Substrates,” A. Ramesh et.al., APL, 93, 102113 (2008).
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 It is shown that outside barriers can enhance the Jp while reduce the Jv. 

 The QW is deepened due to the accumulation of bandgap offset (Enhance Jp)

 The barrier can block the non-resonant tunneling current (Reduce Jv)

Device Results
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Technology Transfer: RITD
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* Grown on a standard ASM reactor (200 mm) at IMEC
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“High 5.2 Peak-to-Valley Current Ratio in Si/SiGe Resonant Interband Tunnel Diodes Grown by Chemical Vapor

Deposition,” A. Ramesh et.al., APL, 100, 092104 (2012).



Fabrication Technology Developed

100 nm p+ Si

100 nm n+ Si
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Si/SiGe RITD
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~

• Over 80 major steps

• LOCOS isolation

• Double well technology

• n+ polysilicon gate

• Self-aligned S/D

• Low Temperature Molecular 

Beam Epitaxy (NRL)

• Post Growth Rapid Thermal 

Anneal (OSU)

• Al(1%Si) Metalization

"NMOS/SiGe Resonant Interband Tunneling Diode Static Random Access Memory," S. Sudirgo, 

et al., Proceedings of the Device Research Conference (State College, PA, USA, 2006), p. 265.. 



SEM Micrograph Gallery
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"NMOS/SiGe Resonant Interband Tunneling Diode Static Random Access Memory," S. Sudirgo, 

et al., Proceedings of the Device Research Conference (State College, PA, USA, 2006), p. 265.. 



Integrated CMOS and Si/SiGe RITD
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• Integrated NMOS exhibits a typical VT around 3.0 V.

• Integrated PMOS has VT around -2.65 V.

• Si/SiGe RITDs with various i-layer thicknesses: 6, 8, 10, and 12 nm.

• JP ranges from 10-100 A/cm2, and PVCR up to 2.3.

"NMOS/SiGe Resonant Interband Tunneling Diode Static Random Access Memory," S. Sudirgo, 

et al., Proceedings of the Device Research Conference (State College, PA, USA, 2006), p. 265.. 



The First Integrated Si/SiGe TSRAM
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• Low voltage operation down to 0.37 V

and %VSWING up to 53.5%.

"NMOS/SiGe Resonant Interband Tunneling Diode Static Random Access Memory," S. Sudirgo, 

et al., Proceedings of the Device Research Conference (State College, PA, USA, 2006), p. 265.. 



Si-Based RITD Results Summary

•High PVCR (5.2)

•High PCD (≥ 218 kA/cm2)

•Low PCD (≤ 20 mA/cm2)

• Vertically stacked back-to-back RITDs for 

symmetric NDR

• Tri-state logic with vertically stacked RITDs

• Low voltage MOBILE latches (CMOS-RITD)

NOEL

Device Optimization Hybrid Circuit Prototyping

Device Integration Monolithic Circuits

•Monolithic integration with CMOS

•Monolithic Integration with SiGe HBTs

•CVD Integration

•Low power/low voltage TSRAM

•Low power/low voltage MOBILE

•Adjustable PVCR (HBT-RITD)

Berger (Si-Based RITDs) September 20, 2017
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