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Abstract— Metal-semiconductor-metal (MSM) photodiodes
with an In 0:53Ga0:47As active region were investigated using a
transparent cadmium tin oxide (CTO) layer for the interdigitated
electrodes to improve the low responsivity of conventional MSM
photodiodes with opaque electrodes. CTO is suitable as a
Schottky contact, an optical window and an anti-reflection (AR)
coating. The transparent contact prevents shadowing of the
active layer by the top electrode, thus allowing greater collection
of incident light. Responsivity of CTO-based MSM photodiodes
with 1-�m finger widths and 2-�m finger spacings and without
an AR coating between the electrodes was twice (0.62 A/W)
that of a similar MSM photodiodes with Ti/Au electrodes (0.30
A/W). A thin 800 Å In 0:52Al0:48As layer was inserted below the
electrodes to elevate the electrode Schottky barrier height. A
digitally graded superlattice region (660 Å) was also employed
to reduce carrier trapping at the In 0:53Ga0:47As/In0:52Al0:48As
heterointerface which acts to degrade photodiode bandwidth.
Bandwidth of opaque electrode MSM’s was elevated nearly an
order of magnitude over a previous MSM photodiode design
with an abrupt heterointerface, whereas the bandwidth of
transparent electrode MSM’s only improved about five times,
indicating resistive effects may be intervening.

I. INTRODUCTION

M ETAL-SEMICONDUCTOR-METAL (MSM) photodi-
odes have attracted much attention recently due to

their high-speed performance [1] and ease of integration [2].
MSM photodiodes have a much lower capacitance per unit
area than p-i-n photodiodes, and thus are often transit time
limited [3]. MSM photodiodes are comprised of back-to-
back Schottky diodes by using an interdigitated electrode
configuration on top of an active light collection region.
The transit time is related to the spacing between these
interdigitated electrodes. MSM photodiodes are more easily
integrated with pre-amplifier circuitry than p-i-n photodiodes.
One reason is that MSM photodiodes do not require doping
which eliminates any parasitic capacitive coupling between the
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photodiode and doped regions within the active transistors.
Another reason is that the Schottky electrodes of the MSM
photodiodes are essentially identical to the gate metallization
of field effect transistors (FET).

But, MSM photodiodes suffer from very low external quan-
tum efficiency (EQE). MSM photodiodes exhibit low EQE
mainly because the metallization for the electrodes shadows
the active light collecting region. Shadowing can limit the
incident light from reaching the active region of the MSM
detector and prevent an ideal MSM from achieving EQE
greater than 50%, for equal electrode width and spacings.
Some previous investigations have explored MSM photodi-
odes with transparent conductors [5]–[7] but have suffered
from high series resistance and/or optical absorption. Our
previous studies have investigated cadmium tin oxide (CTO)
which has a low resistivity and high transparency at long
wavelengths as a transparent contact for InGa As p-i-
n photodiodes [8] and In Ga As MSM photodiodes [9],
[10].

An earlier CTO MSM photodiode [9] exhibited higher
leakage currents and depressed bandwidths [10]. The ele-
vated leakage currents were attributed to sputtering damage
to the thin Schottky barrier enhancement layer. The reduced
bandwidth was caused by carrier pile-up at the abrupt het-
erointerface between the active InGaAs layer and the Schottky
barrier enhancement InAlAs cap layer [11], [12]. These draw-
backs were reduced significantly by increasing the overlayer
thickness and employing a digitally graded superlattice region
presented in this work. The overall goal of raising the MSM
responsivity by eliminating shadowing of the active region
was demonstrated, and digital superlattice (SL) grading was
applied to an MSM photodiode with transparent electrodes for
the first time. The responsivity was doubled compared to its
opaque electrode counterpart.

II. EXPERIMENTAL

The MSM photodiode structure is grown by molecular
beam epitaxy (MBE). The device consists of a 20-period
InGaAs/InAlAs (40 Å/40 Å) superlattice (SL) buffer on a
semi-insulating InP substrate, a 1.0m -In Ga As active
region ( cm ), and a 660Å digitally graded SL
region. The graded SL consists of 11 periods of InGa As
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Fig. 1. A digital SL graded barrier enhancement structure is used for this study. The graded superlattice on top of the In0:53Ga0:47As active layer consists
of alternate ultra-thin multilayers of undoped In0:53Ga0:47As and In0:52Al0:48As. As the thickness ratio varies, the effective bandgap is graded linearly
in depth as shown by the dotted line in the band diagram of the unbiased MSM photodiode above.

Fig. 2. A scanning electron microsope (SEM) photomicrograph of a fabricated MSM photodiode. The active area is75 � 75 �m2 with 1.0-�m wide
electrodes and 1.0-�m gap spacings.

and In Al As, whereby the first period is composed of 55
Å of In Ga As and 5Å of In Al As, and the last
period is reversed with 5̊A of In Ga As and 55Å of
In Al As. The intermediary layers vary linearly between
these two endpoints. The graded SL is then capped with an ad-
ditional 800Å -In Al As Schottky barrier enhancement
layer. Grading by digital superlattices effectively results in a

compositionally graded bandgap, and is more readily achieved
using solid source MBE. Fig. 1 shows the band diagram of the
unbiased MSM photodiode structure. The grown photodiode
structure was characterized by photoluminescence (PL). The
low-temperature (5.5 K) PL showed a dominant excitonic peak
at 0.795 eV (15 597Å) with a full width at half maximum
(FWHM) of 7.1 meV.
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Both sets of MSM photodiode electrodes were defined by
conventional liftoff photolithography. The deposition of the
optically transparent CTO layer (2000̊A) was conducted using
RF magnetron sputtering. Details of the sputtering process
are reported elsewhere [9], [13]. The Ti/Au electrodes (200
Å/1500 Å) were evaporated in an e-beam evaporator. After
liftoff of the MSM electrodes, thick Ti/Au pads for probing
were also patterned for liftoff and deposited. The MSM
photodiodes are completely planar. An MSM photodiode used
in this study is shown in Fig. 2.

III. RESULTS

The dark current for the Ti/Au and CTO MSM photodiodes
was measured and is shown in Fig. 3(a) and (b), respec-
tively. The breakdown voltages for the CTO and Ti/Au MSM
photodiodes were greater than 10 V. At the chosen biasing
point of 10 V, the dark currents for the CTO and Ti/Au
MSM photodiodes were 775 and 16 nA, respectively, which
corresponds to a current density of A/cm and

A/cm , respectively. Since the bonding pads were not
isolated from the device structure by a mesa etch or dielectric
layer, a sizable parallel conduction path, which bypasses the
active region, is possible. However, it is clear that the CTO
photodiode shows a larger leakage current which increases
with increasing bias. This larger leakage current and softer
breakdown characteristics arises from defect-related tunneling.
Some tunneling through the thin In Al As seems likely,
especially since the surface is expected to have a large density
of defect and trap levels caused by the sputtering process
through which trap-assisted tunneling could occur. However,
as a result of the thicker Schottky barrier enhancement layer
(800 and 660Å SL), the dark current and breakdown voltage
were greatly improved in these devices over previous MSM
photodiodes with a thinner Schottky barrier enhancement layer
(200 Å) [9].

Extraction of the electron and hole Schottky barrier heights
( , ) from an MSM photodiode is complicated by the
serially connected back-to-back Schottky diodes. An analytical
treatment of the current transport in MSM structures was
developed by Szeet al. [14], and takes into account electron
transport over and hole transport over when one
junction is reverse-biased and the other is forward-biased.
From their analysis, it is clear that if is much greater than

, or vice versa, than one carrier transport will dominate.
However, an approximation to the barrier heights within the
MSM photodiode, resulting in an upper limit, can be obtained
more simply from analysis of single Schottky diodes. From
our previous studies of the Schottky barrier height on bulk
n In Al As, was measured to be 0.634 eV for
CTO and 0.636 eV for Ti [13], [15]. These measured values
indicate the Schottky barrier is pinned near mid-bandgap
for In Al As. Thus, according to Szeet al., carrier
transport will be bipolar and require a more rigorous solution.
The effective barrier height within the MSM photodiodes is
expected to be reduced below these measured bulk values since
the surface of the MSM structure is actually a composite of

(a)

(b)

Fig. 3. I–V characteristics under dark and several levels of incident laser
illumination (� = 1:3 �m) for 50 � 50 �m2 InGaAs MSM photodiodes
with 1-�m electrode widths and 2-�m spacing and (a) Ti/Au and (b) CTO
electrodes.

thin In Al As and underlying In Ga As which has
a significantly lower bandgap.

Photocurrent generated under three illuminations (
m from a laser diode) is also shown in Fig. 3(a) and (b)

for digital SL graded barrier enhancement InGaAs MSM
photodiodes using Ti/Au and CTO electrodes. After the flat
band voltage ( 1–2 V), which fully depletes the active region,
a fairly flat photoresponse was achieved, rising gently as the
bias voltage increases. This gradual rise is due to the slight
increase in the depletion region volume (laterally) leading to a
larger generation current and greater detection volume. Mesa
isolation of the photodiodes may avoid this effect. There is
a slight saturation in EQE as the optical power is raised.
An elevated EQE is observed for CTO MSM photodiodes
compared with the Ti/Au MSM photodiodes.

The spectral dependence of the responsivity was analyzed
using an Oriel 1000 W quartz tungtsten halogen (QTH)
lamp source and a monochrometer. The system response
which includes the spectral dependence of the QTH lamp and
all the optical components was tested using a Newport Ge
photodiode. The spectral responsivity curves were calibrated
by inserting an InGaAsP diode laser in place of the QTH
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Fig. 4. Responsivity of two MSM photodiodes comparing transparent con-
ductor (CTO) and opaque metal (Ti/Au) electrodes.

lamp. A small laser spot is easily obtained which is smaller
than the MSM active area. Subsequent measurements of the
MSM photodiode and calibrated Newport Ge photodiode yield
an absolute responsivity at the laser wavelength (

m). The final spectral dependent responsivity curves for the
CTO and Ti/Au MSM photodiodes are then obtained using
these calibration points to adjust the curves. The results are
shown in Fig. 4. Responsivity using 1.3-m incident laser
light was 0.62 and 0.30 A/W, respectively, for the CTO and
Ti/Au MSM photodiodes. The CTO MSM photodiode shows
a factor of two improvement in responsivity over the Ti/Au
MSM photodiodes. The different spectral dependence of the
Ti/Au and CTO MSM photodiodes in the middle regions is
due to the change in transmission properties of the CTO over
the wavelengths scanned.

To qualify these response results, no anti-reflection (AR)
coating was employed for the spacings between the MSM
electrodes resulting in 28% of 1.3 m light reflected from the
bare In Al As surface. Since the aspect ratio of electrode
width to spacing is , then 19% of the light is lost
due to reflections between the electrodes. For a 1-m thick
active layer, EQE is limited to 51 and 34% for the CTO
and Ti/Au MSM photodiodes, respectively. This compares
favorably with the measured EQE of 59 and 29% for the CTO
and Ti/Au MSM photodiodes, respectively. However, the CTO
photodiodes appear to exhibit a slight photoconductive gain.

The bandwidth of the MSM photodiodes was measured
using a Cascade probe station with coplanar probes and
an HP 8703 Lightwave Analyzer with a 1.3-m externally
modulated laser diode which was butt coupled to the detectors
via a single-mode optical fiber. Directly measured bandwidths
using small signal modulation, unlike deconvolved impulse
measurements which assume a Gaussian pulse, account for
asymmetries in the pulse waveform due to a fast turn-on (elec-
tron component) and a slow turn-off tail (hole component). Our
method leads to less impressive, but more accurate, reported
bandwidths. Previous CTO and Ti/Au MSM photodiodes us-
ing abrupt barrier enhancement structures demonstrated 3-dB
bandwidths of 0.3 and 0.8 GHz, respectively [10]. However,
digital grading of the transition facilitated better carrier extrac-

tion resulting in increased bandwidths. The highest measured
bandwidths were 1.3 and 7.1 GHz, respectively, for CTO and
Ti/Au MSM photodiodes. A large difference in the imput
impedance of Ti/Au and CTO MSM photodiodes affected the
microwave calibration, and lead to some uncertainties. Thus,
the measured bandwidth of the CTO MSM photodiodes should
be taken as a lower limit.

The Ti/Au MSM photodiodes showed a marked improve-
ment in bandwidth with SL grading probably because they
are transit time limited, whereas limited improvement occurs
with CTO electrodes indicating other effects play a significant
role. The slower response of the MSM photodiode with CTO
electrodes is most likely caused by: 1) the longer distance that
carriers must travel for electron-hole pairs generated below the
transparent electrodes, and 2) the significant series resistance
of the CTO electrodes leading to RC time constant effects.

Subsequent -parameter measurements of these MSM
diodes was performed with a 10 V bias and no illumination
via an HP8510 network analyzer [16]. The-parameter data
was then modeled using the HPEESOF package LIBRA. A
model was proposed which treated each contact as a Schottky
diode, one reverse biased and the other forward biased, and
with a resistive capacitive network inserted between the two
Schottky contacts. From the lumped element models extracted,
a large series resistance for the CTO MSM photodiodes was
found which may lead these devices to be RC time constant
limited, not transit time limited. This may account for the
limited bandwidth enhancement of CTO MSM photodiodes
using SL grading at the heterointerface.

IV. CONCLUSION

In summary, we have designed, fabricated, and tested
In Ga As MSM photodiodes which use CTO as the
electrode fingers. The CTO acts as a transparent conductor
preventing shadowing of the active area. There is a marked
improvement in responsivity (100%) over conventional opaque
metal Schottky electrodes. Two InAlAs barrier enhancement
layer versions were used. A higher bandwidth was observed
for the digitally graded SL barrier enhancement MSM
photodiodes.
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