
MATLAB by Example

G. Chand (revised by Tim Love)

July 24, 2006

1 Introduction

This document1 is aimed primarily for postgraduates and project students
who are interested in using MATLAB in the course of their work. Previous
experience with MATLAB is not assumed. The emphasis is on “learning by
doing” - try the examples out as you go along and read the explanations after.
If you read the online version2 you can paste the scripts into your editor and
save a lot of time.

2 Getting started

On the teaching system you can type matlab at a Terminal window, or look
in the Programs/ Matlab submenu of the Start menu at the bottom-left of
the screen. Depending on the set-up, you might start with several windows
(showing documentation, etc) or just a command line. This document will
focus on command line operations. In the examples below, >> represents mat-
lab’s command-line prompt.

3 The MATLAB Language

The MATLAB interface is a command line interface rather like most BASIC
environments. However MATLAB works almost exclusively with matrices :
scalars simply being 1-by-1 matrices. At the most elementary level, MATLAB
can be a glorified calculator:

1Copyright c©1996 by G. Chand, Cambridge University Engineering Department, Cam-
bridge CB2 1PZ, UK. e-mail: tpl@eng.cam.ac.uk. This document may be copied freely for the
purposes of education and non-commercial research.

2http://www-h.eng.cam.ac.uk/help/tpl/programs/matlab by example/matlab by example.html

1



>> fred=6*7

>> FRED=fred*j;

>> exp(pi*FRED/42)

>> whos

MATLAB is case sensitive so that the two variables fred and FRED are dif-
ferent. The result of an expression is printed out unless you terminate the
statement by a ‘ ;’. j (and i) represent the square root of -1 unless you define
them otherwise. who lists the current environment variable names and whos

provides details such as size, total number of elements and type. Note that the
variable ans is set if you type a statement without an ‘ =’ sign.

4 Matrices

So far you have operated on scalars. MATLAB provides comprehensive ma-
trix operations. Type the following in and look at the results:

>> a=[3 2 -1

0 3 2

1 -3 4]

>> b=[2,-2,3 ; 1,1,0 ; 3,2,1]

>> b(1,2)

>> a*b

>> det(a)

>> inv(b)

>> (a*b)’-b’*a’

>> sin(b)

The above shows two ways of specifying a matrix. The commas in the
specification of b can be replaced with spaces. Square brackets refer to vectors
and round brackets are used to refer to elements within a matrix so that b(x,y)
will return the value of the element at row x and column y. Matrix indices
must be greater than or equal to 1. det and inv return the determinant and
inverse of a matrix respectively. The ’ performs the transpose of a matrix. It
also complex conjugates the elements. Use .’ if you only want to transpose a
complex matrix.

The * operation is interpreted as a matrix multiply. This can be overridden
by using .* which operates on corresponding entries. Try these :

2



>> c=a.*b

>> d=a./b

>> e=a.^b

For example c(1,1) is a(1,1)*b(1,1). The Inf entry in d is a result of
dividing 2 by 0. The elements in e are the results of raising the elements in a

to the power of the elements in b. Matrices can be built up from other matrices:

>> big=[ones(3), zeros(3); a , eye(3)]

big is a 6-by-6 matrix consisting of a 3-by-3 matrix of 1’s, a 3-by-3 matrix of
0’s, matrix a and the 3-by-3 identity matrix.

It is possible to extract parts of a matrix by use of the colon:

>> big(4:6,1:3)

This returns rows 4 to 6 and columns 1 to 3 of matrix big. This should result
in matrix a. A colon on its own specifies all rows or columns:

>> big(4,:)

>> big(:,:)

>> big(:,[1,6])

>> big(3:5,[1,4:6])

The last two examples show how vectors can be used to specify which non-
contiguous rows and columns to use. For example the last example should
return columns 1, 4, 5 and 6 of rows 3, 4 and 5.

5 Constructs

MATLAB provides the for, while and if constructs. MATLAB will wait for
you to type the end statement before it executes the construct.

>> y=[];

>> for x=0.5:0.5:5

y=[y,2*x];

end

3



>> y

>> n=3;

>> while(n ~= 0)

n=n-1

end

>> if(n < 0)

-n

elseif (n == 0)

n=365

else

n

end

The three numbers in the for statement specify start, step and end values for
the loop. Note that you can print a variable’s value out by mentioning it’s
name alone on the line. ~= means ‘not equal to’ and == means ‘equivalent to’.

6 Help

The help command returns information on MATLAB features:

>> help sin

>> help colon

>> help if

help without any arguments returns a list of MATLAB topics. You can also
search for functions which are likely to perform a particular task by using
lookfor:

>> lookfor gradient

The MATLAB hypertext reference documentation can be accessed by typ-
ing doc.

7 Programs

Rather than entering text at the prompt, MATLAB can get its commands from
a .m file. If you type edit prog1, Matlab will start an editor for you. Type in
the following and save it.

4



for x=1:10
y(x)=x^2+x;

end
y

The step term in the for statement defaults to 1 when omitted. Back inside
MATLAB run the script by typing:

>> prog1

which should result in vector y being displayed numerically. Typing

>> plot(y)

>> grid

should bring up a figure displaying y(x) against x on a grid. Like many mat-
lab routines plot can take a variable number of arguments. With just one
argument (as here) the argument is taken as a vector of y values, the x values
defaulting to 1,2,..., Note the effect of resizing the figure window.

The Teaching System is set up so that if you have a directory called matlab

in your home directory, then .m scripts there will be run irrespective of which
directory you were in when you started matlab.

8 Applications

8.1 Graphical solutions

MATLAB can be used to plot 1-d functions. Consider the following problem:

Find to 3 d.p. the root nearest 7.0 of the equation 4x3
+ 2x2 − 200x − 50 = 0

MATLAB can be used to do this by creating file eqn.m in your matlab directory:

function [y] = eqn(x)
% User defined polynomial function
[rows,cols] = size(x);
for index=1:cols

5



y(index) = 4*x(index)^3+2*x(index)^2-200*x(index)-50;
end

The first line defines ‘eqn’ as a function – a script that can take arguments.
The square brackets enclose the comma separated output variable(s) and the
round brackets enclose the comma separated input variable(s) - so in this case
there’s one input and one output. The % in the second line means that the rest
of the line is a comment. However, as the comment comes immediately after
the function definition, it is displayed if you type :

>> help eqn

The function anticipates x being a row vector so that size(x) is used to find
out how many rows and columns there are in x. You can check that the root is
close to 7.0 by typing:

>> eqn([6.0:0.5:8.0])

Note that eqn requires an argument to run which is the vector [6.0 6.5 7.0 7.5
8.0].

The for loop in MATLAB should be avoided if possible as it has a large
overhead. eqn.m can be made more compact using the . notation. Delete the
lines in eqn.m and replace them with:

function [y] = eqn(x)
% COMPACT user defined polynomial function
y=4*x.^3+2*x.^2-200*x-50;

Now if you type ‘ eqn([6.0:0.5:8.0])’ it should execute your compact eqn.m
file.
Now edit and save ploteqn.m in your matlab directory:

x est = 7.0;
delta = 0.1;
while(delta > 1.0e-4)

x=x est-delta:delta/10:x est+delta;
fplot(’eqn’,[min(x) max(x)]);
grid;

6



disp(’mark position of root with mouse button’)
[x est,y est] = ginput(1)
delta = delta/10;

end

This uses the function fplot to plot the equation specified by function eqn.m

between the limits specified. ginput with an argument of 1 returns the x- and
y-coordinates of the point you have clicked on. The routine should zoom into
the root with your help. To find the actual root try matlab’s solve routine:

>> poly = [4 2 -200 -50];

>> format long

>> roots(poly)

>> format

which will print all the roots of the polynomial : 4x3
+ 2x2 − 200x − 50 = 0 in

a 15 digit format. format on its own returns to the 5 digit default format.

8.2 Plotting in 2D

MATLAB can be used to plot 2-d functions e.g. 5x2
+ 3y2 :

>> [x,y]=meshgrid(-1:0.1:1,-1:0.1:1);

>> z=5*x.^2+3*y.^2;

>> contour(x,y,z);

>> prism;

>> mesh(x,y,z)

>> surf(x,y,z)

>> view([10 30])

>> view([0 90])

The meshgrid function creates a ‘mesh grid’ of x and y values ranging from -1
to 1 in steps of 0.1. If you look at x and y you might get a better idea of how z

(a 2D array) is created. The mesh function displays z as a wire mesh and surf

displays it as a facetted surface. prism simply changes the set of colours in the
contour plot. view changes the horizontal rotation and vertical elevation of the
3D plot. The z values can be processed and redisplayed

>> mnz=min(min(z));

>> mxz=max(max(z));

7



>> z=255*(z-mnz)/(mxz-mnz);

>> image(z);

>> colormap(gray);

image takes interprets a matrix as a byte image. For other colormaps try help

color.

9 Advanced plotting

Consider the following problem:

Display the 2D Fourier transform intensity of a square slit.

(The 2D Fourier transform intensity is the diffraction pattern). Enter the fol-
lowing into square_fft.m :

echo on
colormap(hsv);
x=zeros(32);
x(13:20,13:20)=ones(8);
mesh(x)
pause % strike a key
y=fft2(x);
z=real(sqrt(y.^2));
mesh(z)
pause
w=fftshift(z);
surf(w)
pause
contour(log(w+1))
prism
pause
plot(w(1:32,14:16))
title(’fft’)
xlabel(’frequency’)
ylabel(’modulus’)
grid
echo off

8



The echo function displays the operation being currently executed. The pro-
gram creates a 8-by-8 square on a 32x32 background and performs a 2D FFT
on it. The intensity of the FFT (the real part of y) is stored in z and the D.C.
term is moved to the centre in w. Note that the plot command when given a 3
by 32 array displays 3 curves of 32 points each.

10 Input and output

Data can be be transferred to and from MATLAB in four ways:

1. Into MATLAB by running a .m file

2. Loading and saving .mat files

3. Loading and saving data files

4. Using specialised file I/O commands in MATLAB

The first of this involves creating a .m file which contains matrix specifications
e.g. if mydata.m contains:

data = [1 1;2 4;3 9;4 16;5 25;6 36];

Then typing:

>> mydata

will enter the matrix data into MATLAB. Plot the results (using the cursor con-
trols, it is possible to edit previous lines):

>> handout length = data(:,1);

>> boredom = data(:,2);

>> plot(handout length,boredom);

>> plot(handout length,boredom,’*’);

>> plot(handout length,boredom,’g.’,handout length,boredom,’ro’);

A .mat file can be created by a save command in a MATLAB session (see be-
low).

Data can be output into ASCII (human readable) or non-ASCII form:

9



>> save results.dat handout length boredom -ascii

>> save banana.peel handout length boredom

The first of these saves the named matrices in file results.dat (in your cur-
rent directory) in ASCII form one after another. The second saves the matrices
in file banana.peel in non-ASCII form with additional information such as the
name of the matrices saved. Both these files can be loaded into MATLAB using
load :

>> clear

>> load banana.peel -mat

>> whos

>> clear

>> load results.dat

>> results

>> apple=reshape(results,6,2)

The clear command clears all variables in MATLAB. The mat option in load

interprets the file as a non-ASCII file. reshape allows you to change the shape
of a matrix. Using save on its own saves the current workspace in matlab.mat

and load on its own can retrieve it.

MATLAB has file I/O commands (much like those of C) which allow you
to read many data file formats into it. Create file alpha.dat with ABCD as its
only contents. Then:

>> fid=fopen(’alpha.dat’,’r’);

>> a=fread(fid,’uchar’,0)+4;

>> fclose(fid);

>> fid=fopen(’beta.dat’,’w’);

>> fwrite(fid,a,’uchar’);

>> fclose(fid);

>> !cat beta.dat

Here, alpha.dat is opened for reading and a is filled with unsigned character
versions of the data in the file with 4 added on to their value. beta.dat is then
opened for writing and the contents of a are written as unsigned characters to
it. Finally the contents of this file are displayed by calling the Unix command
cat (the ’!’ command escapes from matlab into unix).

10



>> help fopen

>> help fread

will provide more information on this MATLAB facility.

11 Common problems

If you need save data in files data1.mat data2.mat etc. use eval in a .m file e.g.

for x=1:5
results=x;
operation=[’save ’,’data’,num2str(x),’ results’]
eval(operation)
end

The first time this loop is run, ’save data1 results’ is written into the operation
string. Then the eval command executes the string. This will save 1 in data1.mat.
Next time round the loop 2 is saved in data2.mat etc.

num2str is useful in other contexts too. Labelling a curve on a graph can be
done by:

>> gamma = 90.210;

>> labelstring = [’gamma = ’,num2str(gamma)];

>> gtext(labelstring)

num2str converts a number into a string and gtext allows you to place the la-
bel where you like in the graphics window.

Saving a figure in postscript format can be done using print -deps pic.ps.
Entering print on its own will print the current figure to the default printer.

12 More information

The Help System’s MATLAB page3 is a useful starting point for MATLAB in-
formation with links to various introductions and to short guides on curve-

3http://www-h.eng.cam.ac.uk/help/tpl/programs/matlab.html

11



fitting4, symbolic maths5, etc, as well as contact information if you need help.
The handout on Using Matlab6 contains information on the local installation of
MATLAB.

4http://www-h.eng.cam.ac.uk/help/tpl/programs/Matlab/curve fitting.html
5http://www-h.eng.cam.ac.uk/help/tpl/programs/Matlab/symbolic.html
6http://www-h.eng.cam.ac.uk/help/tpl/programs/matlab5/matlab5.html

12


