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Abstract

Frequently expert systems are being developed to operate in dynamic environments where they must reason about
time-varying information and generate hypotheses, conclusions, and process inputs that can drastically influence the
environment within which they operate. For instance, expert systems used for fault diagnosis and fault accomodation
in nuclear power plants reason over sensor data and operator inputs, form fault hypotheses, make recommendations
pertaining to safe process operation, and in crisis situations could generate command inputs to the process to help
maintain safe operation. Clearly, there is a pressing need to verify and certify that such expert systems are dependable
in their operation and can reliably maintain adequate performance levels. In this paper we develop a mathematical
approach to verifying qualitative properties of rule-based expert systems that operate in dynamic and uncertain
environments. First, we provide mathematical models for the expert system (including the knowledge-base and
inference engine) and for the mechanism for interfacing to the user inputs and the dynamic process. Next, using
these mathematical models we show that while the structure and interconnection of information in the knowledge-
base influence the expert system’s ability to react appropriately in a dynamic environment, the qualitative properties
of the full knowledge-base/inference engine loop must be considered to fully characterize an expert system’s dynamic
behavior. To illustrate the verification approach we show how to model and analyze the qualitative properties of
rule-based expert systems that solve a water-jug filling problem and a simple process control problem. Finally, in our
concluding remarks we highlight some limitations of our approach and provide some future directions for research.

Index Terms: Expert Systems, Knowledge-Based Systems, Knowledge-Base Verification, Dependability, Reliability

1 Introduction

Enhanced computing technology and the growing popularity of applied artificial intelligence (AI) have resulted in the

construction and implementation of extremely complex “rule-based” expert systems [1, 2, 3, 4]. Often such expert

systems are being utilized in critical environments where hazards can occur, safety of humans is an issue, and hard

real-time constraints must be met. For instance, some expert systems for aircraft applications are used for mission

planning, others have been used for closed-loop control of dynamical systems, while in industrial processes they can

be used for diagnosing failures [5]. Most often such expert systems are constructed and implemented without any

formal analysis of the dynamics of how they interface to their environment (e.g., to users and process data) and how

the inference mechanism dynamically reasons over the information in the knowledge-base. Currently many expert

systems are evaluated either (i) in an empirical manner by comparing the expert system against human experts, (ii)

by studying reliability and user friendliness, (iii) by examining the results of extensive simulations, and/or (iv) by

using software engineering approaches [6, 1, 3, 4, 7, 8, 9, 10, 11, 12]. While it is recognized that these approaches play

an important role in expert system verification, it is also important to recognize the importance of investigating the

possibility of mathematically verifying the qualitative properties of general rule-based expert systems that interface

to a user and a dynamical process that behaves in an unpredictable manner. The focus of this paper is to conduct
1This work was supported in part by National Science Foundation Grant IRI-9210332. Please address all correspondence to Kevin

Passino ((614) 292-5716; email: passino@ee.eng.ohio-state.edu). Bibliographic information for this paper: Lunardhi A.D.,
Passino K.M., “Verification of Qualitative Properties of Rule-Based Expert Systems”, Int. Journal of Applied Artificial
Intelligence, Vol. 9, No. 6, pp. 587–621, Nov./Dec. 1995.
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such a mathematical investigation. Our approach to mathematical analysis does not obviate the need for the past

approaches to expert system verification; generally speaking it augments their abilities (i) by considering expert

systems that operate in dynamic and uncertain environments, (ii) by characterizing and analyzing more general

properties of expert systems, and (iii) by showing how techniques from nonlinear analysis of dynamical systems

can be applied to the study of properties of dynamical expert systems. As with the past techniques, our goal is to

enhance our confidence that such expert systems will behave properly upon implementation.

The expert system, which consists of the inference engine and knowledge-base, is shown in Figure 1. The inputs

to the expert system come from the user (typically a human) and from data or information generated by the dynamic

process that the expert system is connected to. The outputs of the expert system represent hypotheses, conclusions,

or command inputs to change some process variable (i.e., “process command inputs”)2. In this paper we focus on

the class of expert systems that has a knowledge-base which consists of rules that characterize strategies on how to

perform the task at hand. The inference engine is designed to emulate a human expert’s decision-making process in

collecting user inputs and process outputs and in reasoning about what process input to generate. In this paper we

focus on the use of relatively standard conflict resolution strategies in our inference engine such as those used in [2].
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Figure 1: Expert System

The verification of the dynamic properties of of certain very general AI reasoning systems is beyond the scope of

this work. For example, while the expert system we consider can be designed to exhibit some learning capabilities

since it has variables in its working memory, because the number of rules is fixed, certain types of automatic rule

synthesis are not possible (e.g., it can learn to pick between what rule is most appropriate to fire, but it cannot

synthesize an indeterminant number of completely new rules). Our expert system can synthesize a finite number

of rules that seek to enhance its performance based on its past experience and it can adapt its working memory

and inference mechanism. It is also important to note that the expert system considered here cannot plan ahead an

indeterminant number of steps into the future, taking into account what might happen as the result of its actions.

Our expert system can, however, plan ahead a finite number of steps into the future to ensure that it takes the

proper action. Finally, we note that while we use the AI terminology for expert systems, we question the validity of

the standard AI models in representing the actual human cognitive structure and processes. Regardless, the focus
2While it is clear that the expert system can generate process inputs, hypotheses, conclusions, or recommendations we will, for

convenience, in the remainder of this paper refer to all such quantities as expert system outputs or process inputs. In this sense we

consider the human user that interfaces to the expert system and a dynamical system (such as an industrial process), to both be a part

of the “environment” of the expert system.
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here is not on whether we have a good model of the human expert (as it is in, e.g., [12]), but rather on whether the

expert system performs adequately and dependably. The first step in formally verifying the qualitative properties of

the expert system is to develop appropriate mathematical models.

Section 2 shows how a mathematical model can be utilized to represent the inference engine and knowledge-base

shown in Figure 1. Our approach to modeling the rule-base is related to the work in [13] where the authors show

how to model rule-based AI systems with a high-level Petri net [14]. The approach in this paper is similar to the

one advocated in [15] where we utilize separate models for the inference engine and knowledge-base and view their

interconnection (i.e., the inference loop) as a special type of closed-loop control system. In Section 2 we introduce a

single model that can represent both the inference engine and the knowledge-base, and an interface to user inputs

and the dynamic process (something that was not considered in [15]).

In Section 3 we show that while the structure and interconnection of information in the knowledge-base influence

its completeness and consistency properties [16, 17, 18, 19, 20] and the expert system’s ability to react appropriately

within its environment, certain “qualitative properties” of the full knowledge-base/inference engine loop (along with

the interface to the user inputs and dynamic process) must be considered to fully characterize an expert system’s

behavior. In addition, in Section 3 we show how to characterize and analyze the following qualitative properties of

rule-based expert systems that interface to users and a dynamic process: (i) reachability, (ii) cyclic behavior, and

(iii) stability. Verification of certain reachability properties can ensure that the expert system will be able to infer

appropriate conclusions from certain information in its knowledge-base and process outputs and user inputs. Testing

for cyclic behavior checks that the expert system will not get stuck in an inappropriate infinite loop (e.g., exhibit

circular reasoning before it reaches its goal). Verification of certain stability properties can ensure that the expert

system can stay focused on the task at hand and not exhibit certain types of detrimental cyclic behavior. The authors

emphsize that while (i) certain stability properties must be satisfied for all expert systems to ensure their proper

behavior upon implementation (e.g., to ensure that variables in working memory will not become unbounded), and

(ii) the nonlinear dynamical systems analysis community has performed extensive stability analysis for the verification

and certification of real-world systems, this seems to be the first work that focuses on stability analysis of expert

systems (which are in fact nonlinear systems). Finally, we note that the work in this paper and the work in [15] is

related to the work presented in [21, 22] on a system-theoretic characterization and analysis of qualitative properties

of AI planning systems (the work in [21] was developed for use in modeling and analysis of qualitative properties of

AI subsystems in advanced aircraft).

To illustrate the application of the results, in Sections 4 and 5 we perform modeling and reachability and stability

analysis of an expert system that solves a water-jug filling problem (where there is no interface to user inputs or

a dynamic process) and a simple process control problem where user inputs and dynamic process information are

used in the expert system’s reasoning process. In Section 6 we overview some problems that can be encountered

in conducting a formal mathematical verification of qualitative properties of expert systems and we highlight some

research directions that will seek to address some of the deficiencies with the approach reported in this paper.

2 The Expert System

We begin by specifying the dynamical system that will interface to the expert system. The dynamic process has

a set of inputs eu ∈ Eu that can be manipulated by the expert system (call these “command input events” where

we use “u” as a subscript since in the study of nonlinear systems “u” is standard notation for this input), a set of
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disturbances ed ∈ Ed that occur randomly and unpredictably (call these “disturbance input events”), and a set of

process outputs eo ∈ Eo that can be observed by an expert system (call these “output events”). We will use euk , edk ,

and eok to denote such input and output events at time k. Let

E = Eu ∪ Ed ∪ Eo (1)

and let ek ∈ P(E)−{∅} denote an event at time k (where P(E) denotes the power set of E). The dynamical behavior

of the process evolves by the occurrence of events ek over time. For convenience, we assume that there is always an

output event in ek and at most one command input event and disturbance input event in ek for all k ≥ 0. Define E

to be the set of all infinite and finite length event trajectories (sequences of events) that can be formed from events

ek ∈ P(Eu ∪ Ed ∪ Eo) − {∅}. The set Ev ⊂ E is the set of all physically possible event trajectories for the dynamical

process that the expert system is connected to (i.e., “valid trajectories”). Note that: (i) the disturbance input events

characterize random and unpredictable behavior in the process, and (ii) typically, certain sequences of command

inputs and disturbance inputs will generate certain sequences of output events. We must emphasize that this is a

unique and very general way to specify the dynamical system that interfaces to the expert system. It actually allows

us to represent any dynamical system that can be represented with Petri nets, automata, and general nonlinear

difference equations. Note that the above model for the dynamical system is quite appropriate since it provides a

general input-output model and it is only via these inputs and outputs that the expert system interfaces to it. It is

for this reason that from here till the end of the paper, to discuss the effects of the dynamical system on the expert

system we only need to use the dynamical system’s input and output events. In Section 5 we provide an example

to illustrate the use of our formalization for representing the dynamic process that an expert system is connected to

(for this example we use an automata-like description of the dynamical process that interfaces to the expert system

to generate the event trajectories that the expert system observes). Next, we will specify a mathematical model for

the expert system.

The expert system, which is denoted by “C”, shown in Figure 1 has two inputs; the user input events ecd ∈ Ec
d

(where we use the superscript “c” to indicate that it is an input associated with the expert system C and the subscript

“d” is used to indicate that the user input is a “disturbance” in the sense that the expert system does not know what

the user will request next) and the output events of the process eo ∈ Eo. Based on its state (to be defined below)

and these inputs, the expert system generates command input events to the process eco ∈ Ec
o (and/or hypotheses

and recommendations). We will often speak of the interactions between the inference engine and knowledge-base

shown in the expert system in Figure 1 as forming an “inference loop”. This inference loop constitutes the core of

the expert system where information in the knowledge-base is interpreted by the inference engine, actions are taken,

the knowledge-base is updated, and the process repeats (i.e., “loops”). The full expert system shown in Figure 1 is

modeled by C where

C = (X c, Ec, fc
e , δ

c, gc,Ec
v) (2)

where

X c = X b ×X i is a set of expert system states xc, where X b is the set of

knowledge-base states xb and X i is the set of inference engine states xi to be defined below,

Ec = E

u ∪R∪ Ec

o is the set of events of the expert system C where

E

u ⊂ P(Eo ∪ Ec

d) − {∅} is the set of sets of user input (Ec
d) and process output events (Eo)

that can occur for which the expert system will have to know how to respond to

(the superscript “�” is used to indicate that E

u is the list
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of all input events, i.e., both process input and user input events)

R is the set of rules in the knowledge-base of the expert system,

Ec
o ⊂ P(Eu) − {∅} is a set of output events of the expert system

gc : X b × X i → P(E

u ∪R) − {∅} is the enable function for C,

fc
e : X b ×X i → X b × X i for e ∈ P(E


u ∪R) − {∅} are the state transition maps for C,

δce : X b × X i → Ec
o for e ∈ P(E


u ∪R) − {∅} are the output maps

which specify the outputs of the expert system C,

Ec
v ⊂ Ec is the set of valid inference loop (expert system) trajectories

(expert system event trajectories that are physically possible,

i.e., valid trajectories for the expert system)

Note that we use “c” to denote that each of the above elements of the tuple in (2) are associated with the expert

system C

In this framework, it is assumed that an occurrence of an input event to the expert system e
u ∈ E

u is always

accompanied by a firing of an enabled rule r ∈ R, so that the inference loop can be updated accordingly3. Similarly,

a rule r ∈ R cannot fire alone, since the inference loop is updated only if there is a change in the process reflected via

its output or a change in the user input event (this does not mean that the expert system cannot reason in between

updates to the inference loop). Hence, each e
u has at most one process output event eo ∈ Eo and user input event

ecd ∈ Ec
d contained in it. Events ek ⊂ g(xc

k) are said to be enabled. If ek ⊂ g(xc
k) and ek occurs, then the next state

xc
k+1 = fc

ek
(xc

k); hence, the dynamical behavior of the expert system evolves by the occurrence of sequences of events

(i.e., event trajectories corresponding to the firing of rules) which result in the generation of state trajectories (i.e.,

state sequences). Let Ec denote the set of event sequences that can occur based on the definition of fc
e and gc for

the expert system C and let Ec
v ⊂ Ec denote the set of event trajectories that are physically possible (i.e., valid)

for the expert system C. The expert system can control the generation of command input events for the process;

however, it does not have any capabilities to control the process disturbance input events. The full specification of

C is achieved by defining the rule-base and inference engine for the expert system, i.e., by defining the components

of the inference loop.

2.1 Modeling a Rule-Base

It is important to note that although the focus in this paper is on rule-based systems, we are not restricted to

modeling only rule-based systems; other AI knowledge representation formalisms can also easily be represented. To

see this first note that any system that can be represented with the General, Extended, or High-Level Petri Net [14]

can be represented with C. Then the Petri Net can be used to represent, for instance, semantic nets, frames, or

scripts. Alternatively, one could directly model such knowledge representation schemes with C. Also note that in

[23] the authors show that the rule-base and fuzzy inference mechanism of a general multiple-input multiple-output

fuzzy system [24] can be represented with the model C. Next, we model the rule-base.

Let A = {a1, a2, ..., an} be a set of facts that can be true or false (and their truth values can change over time).
3Note that without loss of generality in our framework only one rule fires at each time instant. If one wants to fire more than one rule

at a time, one can define another rule that represents the combined effects of any number of rules. Alternatively, one can simply redefine

our model so that it can represent the firing of many rules at each time step (by redefining f so that it maps sets of fired rules and the

current state to the next state)
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Let

T : A→ {0, 1} (3)

where T (ai) = 1(= 0) indicates that ai is true (false). Let � denote the real numbers, V ⊂ �m, and v ∈ V denote

an m-dimensional column vector of variables. We are thinking here of facts and variables in “working memory” [2].

Let X b = �m+n where xb ∈ X b,xb = [vt T (a1) T (a2) ... T (an)]t = [xb
1 x

b
2 ... x

b
m+n]t (t denotes transpose) and let xb

ik

denote the ith component of xb at time k and Tk(ai) denote the truth value of ai at time k. Let Pi, i = 1, 2, ..., p

denote a set of p premise functions, i.e.,

Pi : X b × E

u → {0, 1} (4)

and Pi(xb
k, e



uk

) = 1(= 0) indicates that Pi(xb
k, e



uk

) is true (false) at time k. The Pi will be used in the premises of

the rules to state the conditions under which a rule is enabled (i.e., they model the left-hand sides of rules). Let the

antecedent formulas, denoted by Φ, be defined in the following recursive manner:

1. T (a) for all a ∈ A, and Pi, i = 1, 2, . . . , p are antecedent formulas.

2. If Φ and Φ′ are antecedent formulas then so are ¬Φ,Φ ∧ Φ′,Φ ∨ Φ′, and Φ ⇒ Φ′, (where ¬ (not), ∧ (and), ∨
(or), ⇒ (implies) are the standard Boolean connectives).

3. Nothing else is an antecedent formula unless it is obtained via finitely many applications of 1-2 above.

For example, if m = 3, n = 2, A = {a1, a2}, V ⊂ �3, and P1 tests “xb
2k
< 5.23”, P2 tests “xb

3k
= 1.89”, ecdk

and

eok are real numbers, and P3 tests “(ecdk
< 5) ∨ (eok ≥ 2)”, then Φ′ = P1 ∧ P2 ∧ P3 ∧ (T (a1) ∨ ¬T (a2)) is a valid

antecedent formula (where <,≥ and = take on their standard meaning). Let Ci, i = 1, 2, ..., q denote the set of q

consequent functions, where

Ci : X b × E

u → X b × Ec

o (5)

will be used in the representation of the consequents of the rules (the right-hand sides of the rules), i.e., to represent

what actions are taken to the knowledge-base when a rule is fired. Let the consequent formulas, denoted with Ψ, be

defined in the following recursive manner:

1. For any Ci, i = 1, 2, . . . , q, Ci is a consequent formula.

2. For any Ci, Cj, Ci ∧ Cj is a consequent formula.

3. Nothing else is a consequent formula unless it is obtained via finitely many applications of 1-2 above.

Following the above example for the premise formula, C1 may be xb
4k+1

= T (a1) := 1 (make a1 true), C2 may

mean let xb
2k+1

:= xb
2k

+ 2.9, C3 may mean let xb
3k+1

:= ecdk
/2, and Ψ′ = C1 ∧ C2 ∧ C3 makes a1 true (xb

4k+1
:= 1),

increments xb
2 (variable v2) and assigns ecdk

/2 to xb
3k+1

. Notice that we could also define the Ci such that Ci :

X b × X i × E

u → X b × X i × Ec

o so that the rules could characterize changes made to the inference strategy based

on the state of the knowledge-base and/or the user input (i.e., the inference strategy could be changed based on the

current objectives stated in the user input). Similar, more general definitions could be made for the Pi above (for

example, X i could be used in the domain of the Pi). In this paper we will not consider such possibilities and hence

we will focus solely on the use of the Pi and Ci defined in Equations (4) and (5) above.

The rules in the knowledge-base r ∈ R are given in the form of

r = IF Φ THEN Ψ (6)
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where the action Ψ can be taken only if Φ evaluates to true. Formally for (6), ek = {r, e
uk
} ⊂ gc(xc

k) can possibly

occur (the inference engine may not let it occur) only if Φ evaluates to true at time k for the given state xb
k and the

command input event e
uk
. Note that many rules can be enabled at each time step and some rules can have their

premises satisfied in possibly an infinite number of ways; hence for a given xc
k, the size of gc(xc

k) can be infinite even

though there are only a finite number of rules (e.g., if Φ = x > 2.2 there are an infinite number of values of x that

will make Φ true and therefore make rule r enabled). If ek ⊂ gc(xc
k) occurs, then the next state xc

k+1 = fc
ek

(xc
k)

is given by: (i) the application of Ψ to the state xb
k ∈ X b to produce xb

k+1, and (ii) updating the inference engine

state xi ∈ X i which will be discussed in Section 2.2. Also, in this case the output of the expert system (input to

the dynamic process) is δcek
(xc

k) ∈ Ec
o . The inclusion of input events E


u in the rule-base allows the expert system

designer to incorporate the process output information and the user input variables directly as parts of the rules.

This is analogous to the use of variables in conventional rule-based expert systems (e.g., see the description of the

OPS5 rule grammar in [2]).

2.2 Modeling the Inference Engine

To model the inference engine one must be able to represent its three general functional components [2]:

1. Match Phase: The premises of the rules are matched to the current facts and data stored in the knowledge-

base and to the user input and process output.

2. Select Phase: One rule is selected to be fired, and

3. Act Phase: The actions indicated in the consequents of the fired rule are taken on the knowledge-base, the

inference engine state is updated, and the input to the process is generated.

Here, the characteristics of the “match phase” of the inference mechanism are inherently represented in the

knowledge-base. In AI terminology

Γk = {r : {r, e
uk
} ⊂ gc(xc

k) so that the Φ of rule r ∈ R evaluates to true for e
uk
} (7)

is actually the knowledge-base “conflict set” at time k (the set of enabled rules in terms of the knowledge-base only).

The select phase (which picks one rule from Γk to fire) is composed of “conflict resolution strategies” (heuristic

inference strategies [2, 25, 26]) of which a few representative ones are listed below:

1. Refraction: All rules in the conflict set that were fired in the past are removed from the conflict set. However, if

firing a rule affects the matching data of the other rules’ antecedents, those rules are allowed to be considered

in the conflict resolution.

2. Recency: Use an assignment of priority to fire rules based on the “age” of the information in the knowledge-base

that matches the premise of each rule. The “age” of the data that matches the premise of a rule is defined as

the number of rule firings since the last firing of the rule which allows it to be considered in the conflict set.

3. Distinctiveness: Fire the rule that matches the most (or most important) data in the rule-base (many different

types of distinctiveness measures are used in expert systems). Here, we will count the number of different terms

used in the antecedent of a rule and use this as a measure of its distinctiveness.
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4. Priority Schemes: Assign a priority ranking of the rules then choose from the conflict set the highest priority

rule to fire.

5. Arbitrary: Pick a rule from the conflict set to fire at random.

It is understood that the distinctiveness conflict resolution strategy is actually a special case of a priority scheme

but we include both since distinctiveness has, in the past, been found to be useful in the development of expert

systems. Note that in a particular expert system any number of the above conflict resolution strategies (in any fixed,

or perhaps variable order) may be used to determine which rule from the conflict set is to be fired. Normally, these

conflict resolution strategies are used to “prune” the size of the knowledge-base conflict set Γk until a smaller set of

enabled rules is obtained. These rules are the “enabled rules” in the model C of the combined knowledge-base and

inference engine after the conflict resolution pruning. If all the conflict resolution strategies are applied and more

than one rule remains, then (5) above (“Arbitrary”) is applied to randomly fire (not according to any particular

statistics) one of the remaining rules. The act phase will be modeled by the operators fc
e which represent the actions

taken on the knowledge-base and inference engine if a rule with the corresponding input event to the inference loop

occurs.

The priority and distinctiveness of a rule in the knowledge-base are fixed for all time, but the refraction and

recency vary with time. Thus, the inference engine state xi has to carry the information regarding both refraction

and recency. Assume that the knowledge-base has nr rules and the rules are numbered from 1 to nr. Define a function

Π(i) to be 1 if the rule i is deleted from the conflict set, and 0 if rule i is allowed to be considered in conflict resolution.

This function is used for representing the refraction component of the select phase. Let p = [Π(1)Π(2)Π(3) . . .Π(nr)]t

be an nr-vector whose components represent whether a rule can be included in the conflict set when it is enabled in

state xb. Let the nr-vector s = [s1 s2 s3 . . . snr ]t where si is an integer representing the age of information in the

knowledge-base which matches the premise of rule i (to be fully defined below). We will use s to help represent the

recency conflict resolution strategy. The inference engine state is defined as xi = [pt st]t ∈ X i.

To complete the model of the expert system we need to fully define gc and fc
e . The state transitions that occur

to update p and s are based on the refraction and recency of the information represented by the components of xi.

A matrix A is used to specify how to update p and s and is defined to have a dimension of nr × nr and its ijth

component, aij = 1(0) if firing rule i (does not) affects the matching data of rule j. Essentially, A contains static

information about the interconnecting structure of the rule-base which is automatically specified once the rules are

loaded into the knowledge-base and before the dynamic inference process is started. It provides a convenient way to

model the recency and refraction schemes.

We use variables ẽi, di, and pi, for i, 1 ≤ i ≤ nr to define the update process for xb,p, and s where ẽi = 1(0)

indicates that rule i is enabled (disabled), di holds the distinctiveness level of rule i (the higher the value is, the more

distinctive the rule is), and pi holds the priority level of rule i (the priority is proportional to the pi value). The di

and pi components are specified when the knowledge-base is defined and they remain fixed. The values of si, ẽi, and

Π(i) change with time k, so we use ski , ẽki , and Πk(i) respectively to denote their values at time k.

The inference loop in the expert system can be executed in the following manner: First, through “knowledge

acquisition” the knowledge-base is defined; then p, s, and ẽi, 1 ≤ i ≤ nr are initialized to 0. The inference step from

k to k+ 1 is obtained by executing the three following steps (we list this in a “psuedocode” form to help clarify how

we have done our analysis for our applications in Sections 4 and 5):

1. Match Phase
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FOR rule r = 1 TO rule r = nr DO:

IF r ∈ Γk THEN ẽk
r := 1 { Finds the enabled rules }

IF there is just one r′ such that ẽk
r′ = 1 THEN GOTO the Act Phase

IF there are no r′ such that ẽk
r′ = 1 THEN STOP { expert system not

properly defined, i.e., it cannot properly react to all possible process output/user input conditions. }
2. Select Phase

FOR rule r = 1 TO rule r = nr DO: { Pruning based on refraction }
IF ẽk

r = 1 THEN

IF Πk(r) = 1 THEN ẽk
r := 0

IF there is just one r′ such that ẽk
r′ = 1 THEN GOTO the Act Phase

IF there are no r′ such that ẽk
r′ := 1 THEN STOP { Expert system not properly defined }

LET s = −∞ {Pruning based on recency }
FOR j = 1 TO 2 DO: { Search for rule(s) with the lowest age value(s) }

FOR rule r = 1 TO rule r = nr DO:

IF ẽk
r = 1 THEN

IF −sk
r < s THEN ẽk

r := 0

ELSE s:=−sk
r

IF there is just one r′ such that ek
r′ = 1 THEN GOTO the Act Phase

LET d = 0 {Pruning based on distinctiveness }
FOR j = 1 TO 2 DO: { Search for rule(s) with the highest distinctiveness value(s) }

FOR rule r = 1 TO rule r = nr DO:

IF ẽk
r = 1 THEN

IF dr < d THEN ẽk
r := 0

ELSE d:=dr

IF there is just one r′ such that ẽk
r′ = 1 THEN GOTO the Act Phase

LET p = 0 {Pruning based on priority }
FOR j = 1 TO 2 DO: { Search for rule(s) with the highest priority }

FOR rule r = 1 TO rule r = nr DO:

IF ẽk
r = 1 THEN

IF pk
r < p THEN ẽk

r := 0
ELSE p:=pr

LET r′ be any r such that ẽk
r′ = 1 {Pruning based on “arbitrary” }

3. Act Phase

Let e′ = {r′, e�
uk

}
Let (xb

k+1,x
i
k+1) = f c

e′(x
c
k) {Update the knowledge-base state; the state xi

k+1 is defined below}
Πk+1(r

′) := 1 {Remove rule r′ from the conflict set based on refraction}
FOR rule r = 1 to rule r = nr DO

IF r ∈ Γk THEN sk+1
r := sk

r + 1 {Increment the match-
ing age for all rules that were in the conflict set (for recency)}

FOR r=1 TO r=nr DO
IF ar′r = 1 THEN Πk+1(r) := 0 and sk+1

r := 0 {Allow the rules affected
by the firing of rule r′ to be considered in the conflict set and reset ages of these rules to 0}

In the step “pruning based on refraction” where it says “STOP” (i) the condition can be true since even though

the rules are enabled, refraction pruning could reduce the size of the set of enabled rules to zero, and (ii) one could

change this to “Reset the ẽkr values to the values they had before entering pruning based on refraction and continue”

so that the expert system uses the refraction conflict resolution strategy only if it reduces the size of the conflict set.

Note that in the act phase fc
e′(xc

k), where e′ = {r′, e
uk
}, is the action defined by the consequent formula of rule r′

taken on the current knowledge-base state xb
k and the action defined for updating the inference engine state xi

k. In

the steps discussed above, the conflict resolution is done based on refraction, recency, and distinctiveness followed

by priority (with “arbitrary” making any final decisions if there is more than one rule). In other cases, the conflict

resolution strategies may have a different order (the choice of the order being dictated by the application at hand).

To summarize, the operation of the expert system proceeds by:
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1. Acquisition of e
uk
, the process output eok and user input events ecdk

at time k,

2. Forming the conflict set Γk in the match phase from the set of rules in the knowledge-base and based on e
uk
,

the current status of the truth of various facts, and the current values of variables in the knowledge-base (i.e.,

xb
k),

3. The use of conflict resolution strategies (refraction, recency, distinctiveness, priority, and arbitrary) in the select

phase to find one rule r′ ∈ Γk to fire (this defines e′k = {r′, e
uk
}), and

4. Executing the actions characterized by the consequent of rule r′ in the act phase. This involves updating

the knowledge-base and inference engine state (i.e., finding xc
k+1) and generating the process input and/or

conclusions (characterized by δce′
k
(xc

k)).

The timing of the event occurrences in the expert system is such that the expert system is synchronous with

the process (i.e., if a disturbance or command input event occurs in the process it causes a process output event to

occur which will cause a rule to fire) and with the user input (i.e., if a user input event occurs, the expert system

will immediately react to it also). Hence, in repsonse to process output and user input events, the expert system

fires rules to generate process inputs (sets of enabled command input events). It is important to note that such

synchronization is often used in systems and control applications. To maintain such synchronization one senses not

only the event values but also the time at which they change. For some processes the switching times of the events

are automatically sensed by measuring the event values. For others, special threshold detection and logic circuitry

must be employed to obtain the switching times.

2.3 The Reasoning Capabilities of the Expert System

In this Section we will further clarify what class of expert systems we are considering by explaining what types of

reasoning they can achieve. The expert system C can learn since it can evaluate its own performance (e.g., in terms

of what resources it is utilizing), can remember what it has done in the past (in its state), and can modify it future

decisions to ensure that it will enhance its future performance. The type of learning possible is, however, not the

most general possible since under the current formulation we cannot automatically synthesize an arbitrary number

of completely new rules r ∈ R. This is not a significant limitation on the learning capabilities of the expert system

C since:

1. The rule-base R of C can be partitioned into a finite set of “standard rules” Rs as they are defined above

and a finite set of rules Rt that act as “templates”4. The expert system can use rules r ∈ Rs to evaluate its

performance and take actions to fill in the meaning of the rule templates r′ ∈ Rt by changing their premises

and consequents. In this way the expert system can, in a structured way, synthesize a finite number of new

rules to improve the performance of the system (and this is in fact the way that most current expert learning

systems operate).

2. The expert system can use the elements in working memory as parameters in a learning algorithm to adapt,

for example, the applicability of subsets of rules, or with simple changes to the inference mechanism, to adapt

the priorities and distinctiveness of the rules.
4The only reason for requiring that the number of rules in the expert system is finite is to ensure that the process of making an

inference step is computable.
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We see that the expert system has very general capabilities to learn since it can adapt its rule-base, working memory,

and inference mechanism.

Next, note that the expert system C can plan since it can predict a finite number of steps into the future what

will happen as the result of its actions and it can reformulate what plan should be taken by monitoring the progress

of the execution of the current plan. This type of planning is, however, not the most general possible since under the

current formulation we cannot plan into the future an arbitrary number of steps. This is not a significant limitation

on our expert system C since practical considerations dictate that most often one should only plan ahead a relatively

small number of steps (especially for very uncertain environments). Note that to plan into the future we define the

knowledge base state xb = [xb′ xbp]t where xb′ is the standard knowledge-base state defined above and xbp is a vector

of state trajectories that are generated by simulating plans under consideration into the future from time k to time

k +N (where N is the maximum number of steps we can simulate into the future)5 . To keep the dimensions of xb

finite one must require that the expert system only conducts a finite number of simulations into the future; however,

all practical planning applications will dictate that only a finite amount of time is used in plan generation so that

only a finite number of simulations can be conducted. We see that in addition to general learning capabilities, the

expert system C has very general planning capabilities.

3 Properties of Expert Systems

There are extensive studies addressing the analysis of consistency and completeness properties of knowledge-bases

(i.e., the static properties - the structure and interconnection of the information in the knowledge-base). In particular,

in [16, 17, 18, 19, 20] the authors develop algorithms to check that the knowledge engineering process used to produce

the knowledge-base has not produced conflicting rules, redundant rules, circular rules, subsumed rules, etc.; hence,

these methods are sometimes referred to as “knowledge-base debugging tools” or methods for “static analysis”. Such

consistency and completeness characteristics of a knowledge-base will affect the overall behavior of the expert system

and in fact the studies in [16, 17, 18, 19, 20] provide the first step towards performing a verification of the qualitative

properties of the expert system. In this Section we will show that if one were to only analyze the static properties of

the knowledge-base, one would not be performing a complete analysis of the dynamics of the full rule-based expert

system. In addition, we will explain the importance of reachability, cyclic behavior, and stability properties and

show how to characterize and analyze such properties in the mathematical framework of Section 2.

3.1 Static Properties of Knowledge-Bases

In this Subsection we discuss the verification of properties of an isolated rule-based expert system. Hence, we assume

that there are no user input events and process output events that influence the inference loop (E

u = ∅). We discuss

how static properties influence the dynamics of the inference process to illustrate how the analysis approach in

[16, 17, 18, 19, 20] ignores several important properties of dynamical rule-based expert system operation. Essentially

this requires relating properties of the interconnection of the syntax of the rules to the state trajectories (sequences

of states resulting from the firing of rules) representing knowledge and information flow in the rule-base and inference

engine.
5Note that with these planning capabilities our expert system can in fact perform a significant amount of reasoning at each time step

k before it takes actions and the next time step is taken. This can be done by simulating into the future, making an assessment of the

best actions to take (rules to fire), setting a flag, and using this flag to enable the best rules to fire at time k

11



In order to study the effects of static properties of rule-bases on the dynamics of the inference process it is helpful

to introduce the notion of Consequent-Antecedent Compatibility. A consequent formula is said to be “consequent-

antecedent-compatible (CAC) with an antecedent formula at time k” if the actions taken by the consequent formula

at time k will result in the antecedent formula being true at time k + 1 (note that we are using the convention that

a rule fires at time k). For example, if C1 makes a1 true, i.e., Tk+1(a1) := 1, C2 is defined as x4k+1 := x4k + 5 where

x4k = 2, P1 tests x4 < 10, the consequent formula Ψ = C1 ∧ C2, and the antecedent formula is Φ = T (a1) ∧ P1,

then Ψ is CAC to Φ at time k. Notice, however, that due to the dynamic behavior of the expert system, Ψ is not

necessarily CAC to Φ for all k. Logical truth in the study of the dynamic inference process depends on the state of

the expert system. In the above example, if x4k′ = 6 at time k′ �= k, Ψ is not CAC to Φ at time k′.

Next, we will clarify the relationships between several consistency and completeness properties of rule-bases and

the dynamics of the inference process in expert systems.

3.1.1 Logical Consistency Issues in Rule-Bases

In [16, 17, 18, 19, 20] the authors investigate “Redundant Rules”, “Redundant Rule Chains”, “Conflicting Rules”,

“Conflicting Rule Chains”, “Subsumed Rules”, “Unnecessary IF Conditions”, and “Circular Rules” all with the

intent of checking whether the knowledge in the rule-base is inconsistent. Their analysis provides for “warnings”

about possible inconsistencies but does not take into consideration the effects of the inference engine. Moreover, as

we will show next, such static analysis of the syntax of the rules can ignore the underlying qualitative properties of

the dynamical inference process (especially if user inputs and process outputs are considered).

Redundant Rules and Redundant Rule Chains

Two or more rules which have logically equivalent antecedents at a specific time (the antecedents have the same

conditions whose order is not important) and equivalent consequent formulas (same actions taken when the rules fire)

are called “redundant rules”. A “rule chain” is a sequence of rules which produces a state trajectory. Two or more

rule chains which have equivalent antecedents and consequent formulas for each rule are called redundant rule chains.

For example, let Φ1 = T (a1)∧P1∧P2,Φ2 = P1∧T (a1)∧P2,Φ3 = P1∧P2∧T (a1),Ψ1 = [T (a2) := 1]∧ [x5 := x5 +2],

and Ψ2 = [x5 := x5 +2]∧ [T (a2) := 1]. Then IF Φ1 THEN Ψ1, IF Φ2 THEN Ψ2 and IF Φ3 THEN Ψ1 are redundant

rules. The rule chains IF Φ4 THEN Ψ4, IF Φ5 THEN Ψ5 and IF Φ6 THEN Ψ6, IF Φ7 THEN Ψ7 are redundant rule

chains if Φ4 and Φ6, Φ5 and Φ7, Ψ4 and Ψ6, Ψ5 and Ψ7 are equivalent, and Ψ4 is CAC to Φ5 and Ψ6 is CAC to Φ7.

Redundant rules affect the dynamical behavior of the expert system. Once one of the redundant rules fires, it

may be removed from the conflict resolution by refraction. However, the other redundant rule can still be considered

in the conflict resolution. The static analysis as in [16, 17, 18, 19, 20] can be used to detect, then remove such rules

if needed.

Conflicting Rules

Two or more rules which have logically equivalent antecedents at a specific time but their consequent formulas

have at least one component that results in contradictory logical value or inconsistent actions upon a variable when

the rules fire are called “conflicting rules”. “Conflicting rule chains” occur when two or more rule chains have logically

equivalent antecedents for each rule but the firing actions of the chains cause at least one inconsistency in at least one

variable in the state sequence. For example, let Φ1 = T (a1)∧P1,Φ2 = P1 ∧ T (a1),Ψ1 = [T (a2) := 1]∧ [x2 := x1 +1],

and Ψ2 = [T (a2) := 0] ∧ [x2 := x1 + 1]; then IF Φ1 THEN Ψ1, and IF Φ2 THEN Ψ2 are conflicting rules. The rule
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chains IF Φ4 THEN Ψ4, IF Φ1 THEN Ψ1 and IF Φ4 THEN Ψ5, IF Φ2 THEN Ψ2 are conflicting rule chains if Ψ4 is

equivalent to Ψ5, Ψ4 is CAC to Φ1, and Ψ5 is CAC to Φ2.

For the model C, conflicting rules are allowed as they simply characterize the possibility of a diversity of reasoning

approaches. If one is concerned about the presence of conflicting rules/conflicting rule chains, the static analysis in

[16, 17, 18, 19, 20] can be used to detect their presence; however, this type of analysis can flag some rule chains as

“conflicting” where they really merely represent the different possible ways of reasoning about the same problem.

Subsumed Rules

Two or more rules which have equivalent consequent formulas but with one which has more restricted antecedent

conditions than the others are called “subsumed rules”. In other words, the truth value of a rule’s antecedent at

a specific time implies the truth of the ones of the other rules. For example, let Φ1 = T (a1) ∧ P1 ∧ T (a2),Φ2 =

T (a1) ∧ P1,Φ3 = T (a1) ∧ T (a2), IF Φ1 THEN Ψ1 (rule 1), IF Φ2 THEN Ψ1 (rule 2), and IF Φ3 THEN Ψ1 (rule 3).

Hence rule 1 has more restricted antecedent conditions than rules 2 and 3; hence, rule 1 is logically subsumed by

rule 2 and 3.

Subsumed rules affect the dynamic behavior of the system since the firing of a rule depends on distinctiveness of

the antecedent. In terms of the model C, erasing the more restricted rules from the knowledge-base will affect the

selection of which rule to fire. For example, if there is another rule (rule 4) which has three conditions in the example

above, the inference mechanism will select rule 1 and 4 after pruning the enabled rules using distinctiveness strategy.

Then it will use the next conflict resolution strategy to select which rule to fire. However, if rule 1 is erased, the

inference mechanism will only have rule 4 to fire after the distinctiveness pruning, so erasing the more restrictive rule

changes the conflict resolution pruning of certain enabled rules which will produce different results. Hence, static

analysis may recommend removing a rule but for the study of the dynamics of the inference process such rules may

be needed for inference control.

Unnecessary IF Conditions

Two or more rules with the same consequent formulas but with at least one condition of their antecedents in

complement with one of the other rule’s are called “unnecessary IF conditions”. For example, if

• Rule 1 : IF T (a1) ∧ T (a2) THEN Ψ1

• Rule 2 : IF T (a1) ∧ ¬T (a2) THEN Ψ1

• Rule 3 : IF T (a1) ∧ [x4 ≤ 4] THEN Ψ2

• Rule 4 : IF T (a1) ∧ [x4 > 4] THEN Ψ2

then Rules 1 and 2 have unnecessary IF conditions as do Rules 3 and 4.

Unnecessary IF conditions may affect the dynamic behavior of the system in terms of selecting which rule to fire.

Eliminating the unnecessary conditions of the rules changes their distinctiveness; hence, such modifications must

be done in such a way so that conflict resolution in the inference engine leads to a desirable dynamic behavior (in

certain cases, the unnecessary IF conditions can be kept if they are important to achieve proper inference).

Circular Rules

“Circular rules” can occur if there is a set of rules which has CAC properties. Such a circular chain of rules

creates circular chain of states in terms of model C. For example, IF Φ1 THEN Ψ1, IF Φ2 THEN Ψ2 and IF Φ3
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THEN Ψ3 are circular rules if Ψ1 is CAC to Φ2, Ψ2 is CAC to Φ3 and Ψ3 is CAC to Φ1. Circular rules affect the

dynamic behavior of the system and may lead to a circular reasoning (but not necessarily so, since the inference

mechanism may be able to reason around it) which is not desirable in most cases. Circular rules create state cycles,

but the existence of state cycles does not always imply that all rules forming state cycles are circular rule chains as

defined in [20]. Here is an example to illustrates that behavior:

• Rule 1 : IF T (a1) THEN T (a3) := 1

• Rule 2 : IF T (a3) THEN T (a4) := 1

• Rule 3 : IF T (a4) ∧ ¬T (a2) THEN [T (a3) := 0] ∧ [T (a4) := 0]

Notice that those rules are not necessarily all CAC so that they do not form a circular rule chain as defined in

[16, 17, 18, 19, 20], yet they form a circular sequence of states. Let the state xb = [T (a1) T (a2) T (a3) T (a4)]t, then

we get the following sequence of states:



1

0

0

0




Rule1−→




1

0

1

0




Rule2−→




1

0

1

1




Rule3−→




1

0

0

0


 .

This shows that static analysis as in [16, 17, 18, 19, 20] will not always detect circular reasoning; this motivates

the importance of performing analysis of the dynamic behavior of the full expert system.

3.1.2 Logical Completeness Issues in Rule-Bases

In [16, 17, 18, 19, 20] the authors investigate “Unreferenced Antecedent Conditions”, “Illegal Antecedent Conditions”,

“Unreachable Conclusions”, and “Deadend Goal and Deadend State” all with the intent of checking whether or not

there is enough information in the knowledge-base connected in the proper fashion to ensure that from the initial

knowledge, a goal state can always be reached. Their work provides for warnings that the goal states may not be

reachable but does not provide for a complete analysis of the reachability of the goal states when the inference engine

is added (i.e., their analysis is only on the knowledge-base and not on the complete inference loop which includes the

inference mechanism).

Unreferenced Antecedent Conditions

A state where there is no enabled rule is referred to as an “Unreferenced Antecedent Condition” state. This is

similar to the notion of “Unreferenced Attribute Values” in [16, 17, 18, 19, 20]. In static properties, this implies some

values in the set of possible values of an object’s attribute are not covered by any rule’s IF conditions [20]. In terms

of the model C, this situation may lead to a state/states where there is no rule whose antecedent conditions match

the information in that/those state(s). This affects the dynamic behavior represented by the model C, since there

will be no rule to fire which leads to another state. In computer science this state is often called a dead-lock state;

essentially we would say that the expert system is not properly defined so that it can react to all possible situations.

A dead-lock state is undesirable in most cases, since it may affect the reachability of a certain set of goal states.

However, dead-lock states may not cause problems if they are goal states.
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Illegal Antecedent Conditions

An illegal antecedent condition occurs when a rule is never enabled in any state, because its antecedent conditions

are never all true. This type of rule merely wastes memory in the knowledge-base so one may want to use static

analysis to detect and remove such rules. From a dynamical systems perspective it may be hard to verify that a rule

will never be enabled since in this case one must also consider the unpredictable behavior of the user and dynamic

process and all possible states that the expert system can enter.

Unreachable Conclusion

In static analysis, a conclusion of a rule should either match a goal or match an IF condition of another rule in

order to guarantee the goal is reachable [20]. In terms of model C, firing a rule must lead to a state where there must

be at least one enabled rule; otherwise, the last rule fired causes dead-lock. Note, however, that two consecutive

rules do not have to be CAC. For example, if we only have two rules:

• Rule 1 : IF T (a1) THEN T (a2) := 1

• Rule 2 : IF T (a2) ∧ ¬T (a3) THEN [T (a2) := 0] ∧ [T (a3) := 1]

then the state sequence may be of the form:



1

0

0


 Rule1−→




1

1

0


 Rule2−→




1

0

1




Note that the conclusion of the second rule is reachable from [1 0 0]t even though the consequent formula of rule

1 is not necessarily CAC to the antecedent of the second rule. If static analysis says that the consequent of rule 1

is CAC with rule 2 then [1 0 1]t would appear to be reachable; however, if initially we start at [1 1 1]t, the state

[1 0 1]t is not reachable. If static analysis says that the consequent of rule 1 is not CAC with the antecendent of

rule 2 then if we start at [1 0 0]t it will also appear that [1 0 1]t is not reachable. This shows that static analysis as

in [16, 17, 18, 19, 20] is insufficient for analyzing reachability of conclusions (especially when one also considers the

dynamics of the inference mechanism, the user inputs, and the inputs from a dynamic process).

Dead-end Goal and Dead-end State

Syntactically, to achieve a goal, it is required that the goal is matched by a conclusion of at least one of the rules;

otherwise, the goal cannot be achieved and is referred to as “dead-end goal”. Similarly, the IF conditions of a rule

must meet this requirement; otherwise, it is a “dead-end IF” condition [20]. Notice that this is only an ad-hoc test

to determine if a goal state is reachable from the initial state.

In terms of the model C, reachability of a state is determined by the presence of an inference path corresponding

to a sequence of states from the initial state to the goal state. If not all the inference trajectories originating from

the initial state end up in the set of goal states, then it is possible that the expert system may succeed, but not

guaranteed. For analysis of qualitative properties we need to show that all paths from the initial state reach a goal

state and thereby perform a complete reachability analysis to verify whether the goals can be obtained.

To summarize, in developing a rule-base expert system it is important to study the static structure of the rules

and their interconnections. Debugging Programs can help in structuring and eliminating some unnecessary rules and
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in detecting certain consistency and completeness problems with the knowledge-base. However, the analysis of the

dynamics of the inference process still needs to be performed since the static analysis cannot detect/predict some of

the properties of the dynamical expert system. The key properties/issues that are ignored or treated inadequately

by the analysis of knowledge-bases in [16, 17, 18, 19, 20] are:

• the presence of the inference engine,

• user inputs and information inputs from a dynamical process,

• circular reasoning (a logical inconsistency),

• reachability (logical completeness property), and hence

• stability (to be defined in the next Section).

In the next Section we show how to characterize and analyze qualitative properties (i.e., what some people would

call “dynamic properties”) of the full expert system that interfaces to a user and a dynamic process.

3.2 Characterization and Analysis of Qualitative Properties of Expert Systems

In this Section we characterize, and introduce methods to analyze, three different types of behavior that expert

systems are often designed to achieve.

3.2.1 Reachability Properties

The results in [13] showed the relationship between performing chains of inference and reachability. In particular,

the authors define reachability in the context of inference processes as the ability to fire a sequence of rules to derive

a specific conclusion from some specific initial knowledge. In system-theoretic terms this is a standard definition for

reachability that one might call a “state-to-state” property. Here we consider a slightly more general reachability

property for studying inference processes in expert systems. For Xm ⊂ X c, let X (C, xc
0,Xm) denote the set of all

finite length state trajectories of C that begin at xc
0 and end in Xm.

Definition 3.1 A system C is said to be “(xc
0,Xm) − reachable” if there exists a sequence of events to occur that

produces a state trajectory s ∈ X (C, xc
0,Xm).

Note that Xm can represent the desired operating conditions (goals) of the expert system with xc
0 as its initial

state. Hence, we will consider what could be called a “point-to-set” reachability problem for expert systems. This

general type of reachability is needed when it is possible that there are several valid states that can be reached from

one initial state (or in the situation where it is known that at least one state in a set of states Xm is reachable).

To automate testing of the property in Definition 3.1 we use a shortest path algorithm to find the state trajectory

s ∈ X (C, xc
0,Xm) when it exists (we will assign a cost of one to firing a rule, i.e., the occurrence of an event). Note

that while the use of the shortest path algorithm on a metric space (to be defined below) offers several advantages

with regard to computational complexity so that exhaustive search is not necessary [27], unless the state-space is

finite we will not be able to conclude anything about unreachability (i.e., we cannot easily determine that the system

does not possess a specified reachability property unless the state-space is finite). Moreover, we note that if the

state-space is finite the complexity of testing the reachability property is O(n2), i.e., polynomial.
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3.2.2 Cyclic Properties

In the verification of the qualitative properties of the expert system, the study of cyclic behavior is of paramount

importance. This is due to the fact that if cycles exist, the expert system could get “trapped” in a circular argument

so that there is no way it can achieve its ultimate task. This cyclic characteristic will be particularly problematic for

expert systems that operate in time-critical environments (e.g., in a failure diagnosis problem). Let Xy ⊂ X c denote

a subset of the states such that each xy ∈ Xy lies on a cycle of states that is in Xy.

Definition 3.2 A system C is said to be “(xc
0,Xy)−cyclic” if there exists a sequence of events to occur that produces

a state trajectory s ∈ X (C, xc
0,Xy).

It is a hard problem to detect the presence of cyclic behavior, since one may not be able to find Xy without

studying all system trajectories. To help automate the testing of the property in Definition 3.2 we can use a two step

approach. First we specify a set Xy (which can be found with a search algorithm described in [28] if the state-space

is finite), then we use a search algorithm to find the inference path that starts at xc
0 and ends in Xy (if one exists)

[28]. Note that if Xy is the null set then we have determined that the system has no cycles while if Xy is not the null

set then we know it has cycles; hence for some classes of systems we can explicitly test if they are cyclic or not. Note

that the complexity of finding Xy is polynomial if the state-space is finite so that the overall complexity of testing for

cyclic properties is polynomial in terms of the size of the state-space. In our applications in Sections 4 and 5 we will

actually verify that the expert system does not contain undesirable cycles by verifying certain stability properties to

be defined next (and thereby avoid problems with computational complexity).

3.2.3 Stability Properties

In terms of characterizing human cognitive functions, Lyapunov stability [29, 30, 23, 31] for the expert system can be

viewed as a mathematical characterization of an expert system’s ability to concentrate (i.e., to focus, to pay attention)

on the task at hand. Clearly then verification of stability is critical since without stability the expert system can, for

example, wander aimlessly not achieving the goals that it is supposed to achieve. From an engineering or scientific

standpoint, rather than pyschological standpoint, stability of an expert system is of fundamental importance due to

the fact that guarantees of stability often ensure that the system variables will stay in safe operating regions (e.g.,

variables in working memory stay bounded) and that other performance objectives (e.g., reachability or optimal use

of resources) can be met. Below, we briefly overview some recent results in Lyapunov stability analysis [29, 30] that

apply to the model used here for the expert system.

Let ρ : X c × X c → � denote a metric on X c, and {X c; ρ} a metric space. Denote the distance from point x to

the set Xz by ρ(x,Xz) = inf{ρ(x, x′) : x′ ∈ Xz} where Xz ⊂ X c. The “r-neighborhood” of an arbitrary set Xz ⊂ X c

is denoted by the set S(Xz ; r) = {x ∈ X c : 0 < ρ(x,Xz) < r} where r > 0. Define Ec
v(xc

0) to be the finite and infinite

length physically possible event trajectories of C which start at xc
0 and let X(xc

0, Ek, k) be the state of C reached

from xc
0 after the occurrence of event sequence Ek = e0e1 ... ek−1. The set Xm ⊂ X c is called “invariant with respect

to (w.r.t.) C” if from xc
0 ∈ Xm it follows that X(xc

0, Ek, k) ∈ Xm for all Ek such that EkE ∈ Ec
v(xc

0) and k ≥ 0.

Definition 3.3 An invariant set Xm ⊂ X c of C is called “stable in the sense of Lyapunov w.r.t. Ec
v” if for any

ε > 0 it is possible to find a quantity δ > 0 such that when ρ(xc
0,Xm) < δ we have ρ(X(xc

0 , Ek, k),Xm) < ε for all Ek

such that EkE ∈ Ec
v(xc

0) and k ≥ 0. If furthermore, ρ(X(xc
0 , Ek, k),Xm) → 0 for all Ek such that EkE ∈ Ec

v(xc
0) as

k→ ∞, then the invariant set Xm of C is called “asymptotically stable w.r.t. Ec
v”.
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Definition 3.4 If the invariant set Xm ⊂ X c of C is asymptotically stable in the sense of Lyapunov w.r.t. Ec
v, then

the set Xv of all states xc
0 ∈ X c having the property ρ(X(xc

0 , Ek, k),Xm) → 0 for all Ek such that EkE ∈ Ec
v(xc

0) as

k→ ∞ is called the “region of asymptotic stability of Xm w.r.t. Ev”.

Definition 3.5 The invariant set Xm ⊂ X c of C with region of asymptotic stability Xv w.r.t. Ec
v is called “asymp-

totically stable in the large w.r.t. Ec
v” if Xv = X c.

Definition 3.6 The motions X(xc
0, Ek, k) of C which begin at xc

0 ∈ X c are bounded w.r.t Ec
v and the bounded set

Xb ⊂ X c if there exists a β > 0 such that ρ(X(xc
0 , Ek, k),Xb) < β for all Ek such that EkE ∈ Ec

v(xc
0) and for all

k ≥ 0. C is said to possess Lagrange Stability w.r.t. Ec
v and the bounded set Xb ⊂ X c if for each xc

0 ∈ X c the motions

X(xc
0, Ek, k) for all Ek such that EkE ∈ Ec

v(xc
0) and all k ≥ 0 are bounded w.r.t. Ec

v and Xb.

The following Theorems provide the necessary and sufficient conditions for the analysis of any system represented

via C (the proofs are contained in [29, 30]).

Theorem 3.1 In order for an invariant set Xm ⊂ X c of C to be stable in the sense of Lyapunov w.r.t. Ec
v it

is necessary and sufficient that in a sufficiently small neighborhood S(Xm; r) of the set Xm there exists a specified

functional V with the following properties: (1) For all sufficiently small c1 > 0, it is possible to find a c2 > 0 such

that V (x) > c2 for x ∈ S(Xm; r) and ρ(x,Xm) > c1, (2) For all c4 > 0 as small as desired, it is possible to find

a c3 > 0 so small that when ρ(x,Xm) < c3 for x ∈ S(Xm; r) we have V (x) ≤ c4, and (3) V (X(xc
0 , Ek, k)) is a

non-increasing function for k ≥ 0, for xc
0 ∈ S(Xm; r), for all k ≥ 0, as long as X(xc

0, Ek, k) ∈ S(Xm; r) for all Ek

such that EkE ∈ Ec
v(xc

0).

Theorem 3.2 In order for an invariant set Xm ⊂ X c of C to be asymptotically stable in the sense of Lyapunov

w.r.t. Ev it is necessary and sufficient that in a sufficiently small neighborhood S(Xm ; r) of the set Xm there exists a

specified functional V having properties 1, 2 and 3 of Theorem 3.1 and furthermore V (X(xc
0 , Ek, k)) → 0 as k→ ∞

for all Ek such that EkE ∈ Ec
v(xc

0) for all k ≥ 0 as long as X(xc
0, Ek, k) ∈ S(Xm; r).

An important advantage of the Lyapunov approach in the study of stability properties is that it is often possible

to intuitively define an appropriate Lyapunov function V (years of use have shown this - see the extensive literature

in the area of nonlinear analysis) and we will illustrate how this is done in the examples. However, specifying the

Lyapunov function is sometimes problematic for certain applications. Motivated by the difficulties in specifying a

Lyapunov function, we next discuss how one can sometimes use search algorithms to study stability properties. The

study of asymptotic stability in the large or of regions of asymptotic stability Xv using search methods involves finding

the invariant set Xm and showing that all paths which originate from any state in Xv will end up in Xm (one must

be careful with the imposition of the constraints specified by Ec
v when using a search algorithm). The complexity of

showing that a particular system is asymptotically stable in the large for a finite state-space is polynomial in terms of

the size of the state-space; however, for real-world problems using the algorithmic approach can be computationally

prohibitive. It is for this reason that we will rely on (i) the choice of an appropriate Lyapunov function and an

analytical proof when such a function is easy to define, and (ii) the use of an algorithmic approach when the

definition of the Lyapunov function is not evident. In fact, in Section 4 we will use the search algorithm approach

to stability analysis, while in Section 5 we will choose an appropriate Lyapunov function and prove that an expert

system possesses certain stability properties.
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Finally, it is important to note that while we are able to characterize and analyze more general properties than

the static properties examined in the past (see Section 3.1), if we use an algorithmic approach to the verification of

the properties, the complexity of verification of the qualitative properties discussed above is generally higher than

that of the static properties. For instance, the complexity of studying most static properties is bounded by the

number of rules where the complexity of testing each of the qualitative properties (reachability, cyclic behavior,

and stability) is bounded in terms of the size of the state-space. Since it is often the case that there will be

significantly more states than rules verification of our qualitative properties will generally be more complex than

that of the static properties. It is for this reason that the Lyapunov approach to verification of stability properties

is so important. The problem of computational complexity can be completely avoided if one can find an appropriate

Lyapunov function and show that it satisfies certain properties listed above. We see that as with the nonlinear

analysis of more conventional dynamical systems one of the primary advantages of the Lyapunov approach lies in the

lack of dependence on explicitly enumerating all possible system trajectories in the study of stability properties (i.e.,

the Lyapunov approach allows us to prove stability properties without running the rule-based system for all possible

scenarios - which can be particularly problematic for expert systems that interface to a dynamic and uncertain

environment).

4 Water-Jug Example

In this Section we study reachability and stability properties of a rule-based expert system that solves a water-jug

filling problem. It is given that there is a 4-gallon jug and a 3-gallon jug named “jug1” and “jug2”, respectively.

Neither has any measuring markers on it. There is a pump that can be used to fill the jugs with water. The goal is

to get exactly 2 gallons of water into the 4-gallon jug and 3 gallons into the 3-gallon jug. In some situations we can

dump the water out of the jugs. Let jug1 and jug2 denote the number of gallons of water in the jugs. The operations

that can be performed are constrained as follows:

1. Fill the 4-gallon jug. After this operation, jug1=4 and jug2 remains the same. This operation is not

applicable if the 4-gallon jug is already full.

2. Fill the 3-gallon jug. After this operation, jug2=3 and jug1 remains the same. This operation is not

applicable if the 3-gallon jug is already full.

3. Dump all the water out of the 4-gallon jug. After this operation, jug1=0 and jug2 remains the same.

This operation is not applicable if jug1 is already empty.

4. Dump all the water out of the 3-gallon jug. After this operation, jug2=0 and jug1 remains the same.

This operation is not applicable if jug2 is already empty.

5. Move water from the 4-gallon jug to the 3-gallon jug until either the 4-gallon jug is empty or

the 3-gallon jug is full. This operation is not applicable if jug1 is empty or jug2 is full.

6. Move water from the 3-gallon jug to the 4-gallon jug until either the 3-gallon jug is empty or

the 4-gallon jug is full. This operation is not applicable if jug2 is empty or jug1 is full.

Next, we specify the model C for an expert system that solves this problem. As there are no inputs or outputs

for the expert system we have Ec = ∅. The knowledge-base has xb = [x1 x2 x3 ... x42]t (with m = 42, n = 0) where
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x1 and x2 represent the contents of jug1 and jug2, respectively, and x3 through x42 represent the states x1 and x2

(liquid levels of jug1 and jug2) that have already been visited. The components x3 and x4 hold the initial conditions

of x1 and x2, respectively, the components x5 and x6 hold the next x1 and x2 which have been visited and so on.

At most 20 states will be visited before the goal is reached for any path from the initial to the goal state. This

corresponds to all combinations of x1 and x2 where x1 can take a value among 0, 1, 2, 3, 4 and x2 among 0, 1, 2,

3. Initially, x5 through x42 are initialized to 10 (a value which never be reached) and x3 = x1, x4 = x2. The history

of state components x1 and x2 which have already been visited is included in the knowledge-base state xb to avoid

circular reasoning. Hence, there is an inherent mechanism imbedded in the knowledge-base for avoiding circular

reasoning.

The premise functions are defined as:

P1 tests “0 ≤ x1 < 4”,

P2 tests “0 ≤ x2 < 3”,

P3 tests “x1 > 0”,

P4 tests “x2 > 0”,

P5 tests “x1 > 3 − x2”,

P6 tests “x1 ≤ 3 − x2”,

P7 tests “x2 > 4 − x1”,

P8 tests “x2 ≤ 4 − x1”,

P9 tests “x1 < 4”,

P10 tests “x2 < 3”,

P11 tests “[(x3 = 4) ∧ (x4 = x2)] ∨ [(x5 = 4) ∧ (x6 = x2)] ∨ ... ∨ [(x41 = 4) ∧ (x42 = x2)]”,

P12 tests “[(x3 = x1) ∧ (x4 = 3)] ∨ [(x5 = x1) ∧ (x6 = 3)] ∨ ... ∨ [(x41 = x1) ∧ (x42 = 3)]”,

P13 tests “[(x3 = 0) ∧ (x4 = x2)] ∨ [(x5 = 0) ∧ (x6 = x2)] ∨ ... ∨ [(x41 = 0) ∧ (x42 = x2)]”,

P14 tests “[(x3 = x1) ∧ (x4 = 0)] ∨ [(x5 = x1) ∧ (x6 = 0)] ∨ ... ∨ [(x41 = x1) ∧ (x42 = 0)]”,

P15 tests “[(x3 = (x1 − (3 − x2))) ∧ (x4 = 3)] ∨ [(x5 = (x1 − (3 − x2))) ∧ (x6 = 3)]

∨ ... ∨ [(x41 = (x1 − (3 − x2))) ∧ (x42 = 3)]”,

P16 tests “[(x3 = 0) ∧ (x4 = (x1 + x2))] ∨ [(x5 = 0) ∧ (x6 = (x1 + x2))] ∨ ... ∨
[(x41 = 0) ∧ (x42 = (x1 + x2))]”,

P17 tests “[(x3 = 4) ∧ (x4 = (x2 − (4 − x1)))] ∨ [(x5 = 4) ∧ (x6 = (x2 − (4 − x1)))]

∨ ... ∨ [(x41 = 4) ∧ (x42 = (x2 − (4 − x1)))]”,

P18 tests “[(x3 = (x1 + x2)) ∧ (x4 = 0)] ∨ [(x5 = (x1 + x2)) ∧ (x6 = 0)] ∨ ... ∨
[(x41 = (x1 + x2)) ∧ (x42 = 0)]”,

P19 tests “x1 = 3”,

P20 tests “x2 = 3”,

P21 tests “x3 = 3”,

P22 tests “x4 = 3”, and

P23 tests “x1 = 2”.

Note that P11 through P18 check if the next state components of x1 and x2 have been visited. The consequent

formula C1 is defined to insert the current x1 and x2 to the proper spots in x5 through x42.

The rules r ∈ R are:
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Rule 1: IF P1 ∧ ¬P11 THEN (x1 := 4) ∧ C1

Rule 2: IF P2 ∧ ¬P12 THEN (x2 := 3) ∧ C1

Rule 3: IF P3 ∧ ¬P13 THEN (x1 := 0) ∧ C1

Rule 4: IF P4 ∧ ¬P14 THEN (x2 := 0) ∧ C1

Rule 5: IF P5 ∧ P3 ∧ P10 ∧ ¬P15 THEN (x1 := x1 − (3 − x2)) ∧ (x2 := 3) ∧ C1

Rule 6: IF P6 ∧ P3 ∧ P10 ∧ ¬P16 THEN (x2 := x1 + x2) ∧ (x1 := 0) ∧ C1

Rule 7: IF P7 ∧ P4 ∧ P9 ∧ ¬P17 THEN (x2 := x2 − (4 − x1)) ∧ (x1 := 4) ∧ C1

Rule 8: IF P8 ∧ P4 ∧ P9 ∧ ¬P18 THEN (x1 := x1 + x2) ∧ (x2 := 0) ∧ C1

Rule 9: IF P19 ∧ P20 ∧ P21 ∧ P22 THEN (x2 := 0) ∧ C1

Rule 10: IF P23 ∧ P20 ∧ P1 ∧ P3 ∧ P4 THEN (x1 := x1) ∧ (x2 := x2) ∧ C1

The valid inference trajectories Ec
v consist of all possible trajectories which can be produced by rule-base and the

conflict resolution strategy.

We use all the conflict resolution strategies introduced in Section 3. Therefore, the expert system state xc =

(xb, [pt st]t) where p and s are 10× 1 vectors. Since every time a rule fires the state changes and all the antecedents

check all components of the state the matrix A is 110×10 where 110×10 is a 10-by-10 matrix of ones for this problem.

This means that the refraction and the recency do not prune rules from the conflict set so that the expert system

for this problem can be reduced such that there is no state associated with the inference engine. However, for

completeness of the design illustration, p and s are included as the state of the inference engine. The distinctiveness

level of each rule is dependent upon the conditions of its antecedent. The assigned priority to the rules is: p1 =

2, p2 = 1, p3 = 3, p4 = 4, p5 = 5, p6 = 5, p7 = 1, p8 = 1, p9 = 6 and p10 = 6. A shortest path algorithm with the cost

of firing a rule set to be 1 is used to find all possible paths from any initial state.

From the system definition, the initial knowledge-base states are xb
0 ∈ {xb ∈ X b : x3 = x1, x4 = x2, xi = 10 for 5 ≤

i ≤ 42, x1 ∈ {0, 1, 2, 3, 4}, x2 ∈ {0, 1, 2, 3}}. Furthermore, the initial state of the inference engine must be such that

the vectors p = s = 0. Thus, the initial expert system states xc
0 ∈ X c

0 where

X c
0 = {xc ∈ X c : x3 = x1, x4 = x2, xi = 10 for 5 ≤ i ≤ 42, x1 ∈ {0, 1, 2, 3, 4}, x2 ∈ {0, 1, 2, 3},p= s = 0}. (8)

The invariant set (set of goal states) for the water jug is defined to be

Xm = {xc ∈ X c, x1 = 2, x3 = 3}. (9)

The results of using our search algorithm show that for any given initial water level in jug1 and jug2, the goal (jug1

and jug2 contain 2 and 3 gallons of water, respectively) can be achieved. Once jug1 and jug2 have 2 and 3 gallons

of water, respectively, the levels are maintained by firing rule 10. The results of our analysis can be stated formally

in the following Theorem.

Theorem 4.1 The above water jug problem is (xc
0,Xm) - reachable for all xc

0 ∈ X c
0 since there exists a sequence of

events to occur that produces a state trajectory s ∈ X (C, xc
0,Xm) for any xc

0 ∈ X c
0 .

We have, however, not shown that the expert system will actually achieve the goal. We have just shown that

there exist inference sequences that the expert system will follow that will succeed. Up till now our analysis does not

guarantee that the expert system will definitely succeed (i.e., it may follow an improper inference sequence). Next,

we show that it will always succeed by verifying certain stability properties. For the water jug problem, the distance
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between a point xc ∈ X c to another point xc′ ∈ X c is defined to be

ρ(xc, xc′) = max
{

max
i=1,2,...,42

{|xb
i − xb′

i |}, max
j=1,2,...,20

{|xi
j − xi′

j |}
}
. (10)

Using a search algorithm we have verified the following result:

Theorem 4.2 For the above water jug problem, the region of asymptotic stability of Xm w.r.t. Ec
v is Xv = X c

0 .

Theorem 4.2 shows that no matter what the initial liquid levels are in the jugs, our expert system can reason

appropriately so that it can succeed in achieving the goal. Notice that this stability result inherently depends on

the reachability result in Theorem 4.1, and that the validity of Theorem 4.2 guarantees that the expert system will

exhibit no circular reasoning outside the invariant set (i.e., outside the goal set).

5 Process Control Example

An expert system that is used to perform control activities is called an “expert controller” and the system that results

from connecting an expert controller to a dynamical process is called an “expert control system” (ECS) [32, 33].

Application of the mathematical framework in this paper to the verification of the qualitative properties of ECS can

be found in [23, 31]. In this Section we study the expert control of a simple dynamic process called a “surge tank”;

however, unlike the work in [23, 31] we focus here on the verification of the qualitative properties of an isolated expert

controller that interfaces to both user inputs and the outputs of the dynamical process.

The surge tank, which is shown in Figure 2, holds liquid and has a sensor which provides a measurement h(k) of

the amount of liquid in the tank at uniformly spaced discrete times. The resolution of the sensor is such that it can

distinguish between seven different liquid levels, i.e., h(k) ∈ {1, 2, 3, 4, 5, 6, 7}. Valve A is used for filling the tank,

while Valve B is used for emptying the tank. It is known that if Valves A and B are turned on (off) at time k, they

stay on (off) till time k + 1 (where their status may change again). Valve B is controlled by customers that siphon

off various amounts of liquid in an unpredictable fashion. It is known, however, that our customers will persistently

open the empty valve (i.e., there exists a finite amount of time between the times that the empty valve is opened).

Valve A has a greater flow capacity than Valve B so that even if a customer turns on Valve B for all time, if Valve

A is on the liquid level in the tank will rise. The expert system will use the measurement h(k) of the liquid level in

the tank, together with the user input, to decide whether to open or close Valve A to regulate the liquid level in the

tank about some desired values (specified in the user input) so that the tank always has some liquid in it (so that

customers are always supplied) and so that the tank never overfills (an unsafe situation).
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Figure 2: Surge Tank
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We begin by specifying the dynamics of the surge tank process using Ev as it is explained at the beginning

of Section 2. We have Eu = {eAon, eAoff}, where euk = eAon (eAoff ) means “open (close) Valve A at time k”;

Ed = {eBon , eBoff}, where edk = eBon (eBoff ) means “a customer turns on (off) Valve B at time k”; and Eo =

{1, 2, 3, 4, 5, 6, 7}, the measured liquid level in the tank at time k is eok = h(k). Next, we define how the liquid level

in the tank will react to valves being turned on and off. Recall that we denote a process event by ek = {euk , edk , eok}
where for us eok = h(k), the height of the liquid level in the tank when the event occurs (the updated liquid level

will appear in the next event that occurs). For the liquid levels h(k) ∈ {2, 3, 4, 5}:

• If ek = {eAoff , eBoff , h(k)} occurs at time k, h(k + 1) = h(k),

• If ek = {eAoff , eBon, h(k)} occurs at time k, h(k + 1) = h(k) − 1,

• If ek = {eAon, eBoff , h(k)} occurs at time k, h(k + 1) = h(k) + 2, and

• If ek = {eAon, eBon , h(k)} occurs at time k, h(k + 1) = h(k) + 1.

For h(k) = 1 (i.e., the tank is empty):

• If ek = {eAoff , eBoff , h(k)} occurs at time k, h(k + 1) = 1,

• If ek = {eAoff , eBon, h(k)} occurs at time k, h(k + 1) = 1,

• If ek = {eAon, eBoff , h(k)} occurs at time k, h(k + 1) = 3, and

• If ek = {eAon, eBon , h(k)} occurs at time k, h(k + 1) = 2.

For h(k) = 6 (i.e., the tank is almost full):

• If ek = {eAoff , eBoff , h(k)} occurs at time k, h(k + 1) = 6,

• If ek = {eAoff , eBon, h(k)} occurs at time k, h(k + 1) = 5,

• If ek = {eAon, eBoff , h(k)} occurs at time k, h(k + 1) = 7, and

• If ek = {eAon, eBon , h(k)} occurs at time k, h(k + 1) = 7.

For h(k) = 7 (i.e., the tank is full):

• If ek = {eAoff , eBoff , h(k)} occurs at time k, h(k + 1) = 7,

• If ek = {eAoff , eBon, h(k)} occurs at time k, h(k + 1) = 6,

• If ek = {eAon, eBoff , h(k)} occurs at time k, h(k + 1) = 7, and

• If ek = {eAon, eBon , h(k)} occurs at time k, h(k + 1) = 7.

Hence, for the surge tank the following event trajectories (all infinite length event sequences) are in E:

1. {eAoff , eBoff , 3},{eAoff , eBoff , 3}, {eAon, eBon, 3},{eAoff , eBoff , 4}, ...

2. {eAon, eBoff , 3},{eAon, eBon, 5}, {eAon, eBoff , 6},{eAon, eBoff , 7}, ...

3. {eAoff , eBoff , 3}, {eAoff , eBoff , 4}, {eAoff , eBoff , 5}, ...
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However, only event trajectories that are physically possible are in Ev ⊂ E. For example, in sequence (3) above the

event trajectory is not physically possible since if both fill valves are off, it is not possible that the liquid level rises.

Sequence (2) above is a possible sequence for the dynamical process, but the expert system that is used for liquid

level regulation below will not allow this sequence of events since it does not represent good regulation properties.

The set Ev contains all physically possible infinite length event trajectories that can be generated by the dynamical

process as it is defined above. This completes the definition of the dynamical process; next we define the expert

controller.

The model C for the expert controller for the surge tank has:

• m = 2, n = 0, X i = ∅, and xb = [xb
1], where xb

1 ∈ {1, 2, 3, 4, 5, 6, 7} represents the most recently measured

liquid level in the tank (where we assume that initially the expert controller knows the tank liquid level),

• Ec
d = {3, 5} where ecdk

= 3 indicates that the user would like the liquid level regulated around level 3 (allowing

deviations only to levels 2 and 4) and ecdk
= 5 indicates that the user would like the liquid level regulated

around level 5 (allowing deviations only to levels 4 and 6),

• E

u = {{3, 1}, {3, 2}, . . . , {3, 7}, {5, 1}, {5, 2}, . . . , {5, 7}} represents the set of sets of input events to the expert

controller that can occur (e.g., the occurrence of {5, 2} happens when the liquid level is 2 and the user would

like to regulate the liquid level around level 5),

• gc, fc
e , and δce are defined by the rules r ∈ R in the rule-base of the expert controller:

– Rule 1: IF eok = 1 THEN ecok
:= {eAon} ∧ xb

1 := 1

– Rule 2: IF eok = 2 THEN ecok
:= {eAon} ∧ xb

1 := 2

– Rule 3: IF eok = 3 ∧ ecdk
= 3 THEN ecok

:= {eAoff } ∧ xb
1 := 3

– Rule 4: IF eok = 4 ∧ ecdk
= 3 THEN ecok

:= {eAoff } ∧ xb
1 := 4

– Rule 5: IF eok = 3 ∧ ecdk
= 5 THEN ecok

:= {eAon} ∧ xb
1 := 3

– Rule 6: IF eok = 4 ∧ ecdk
= 5 THEN ecok

:= {eAon} ∧ xb
1 := 4

– Rule 7: IF eok = 5 THEN ecok
:= {eAoff } ∧ xb

1 := 5

– Rule 8: IF eok = 6 THEN ecok
:= {eAoff } ∧ xb

1 := 6

– Rule 9: IF eok = 7 THEN ecok
:= {eAoff } ∧ xb

1 := 7

There are no particular restrictions placed on Ec
v. This completes the definition of the expert controller.

Notice that the inference engine is particularly simple for the expert controller. There is no need for the complex

conflict resolution strategies such as refraction and recency presented in Section 2. The expert controller simply fires

one of its nine rules in response to the fourteen different possible combinations of user inputs and process outputs.

Notice that one could easily improperly define the expert controller so that it will fail to achieve its task. For instance,

it is easy to define the expert controller so that circular reasoning could occur and the goals of regulation specified by

the user input would not be achieved. Next, we perform reachability and stability analysis of the expert controller

specified above to verify that it behaves correctly.

For reachability analysis let Xm ⊂ X c, and

Xm = {xb
1 : xb

1 ∈ {2, 3, 4, 5, 6}} (11)
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be the set of goal states that represent our desire to regulate the liquid level between 2 and 6 no matter what the

user inputs are. We will also have occasion to use the sets Xm3,Xm5 ⊂ Xm where

Xm3 = {xb
1 : xb

1 ∈ {2, 3, 4}} (12)

and

Xm5 = {xb
1 : xb

1 ∈ {4, 5, 6}}. (13)

A search algorithm can be used to show the following result:

Theorem 5.1 The expert controller C is (xc
0,Xm)-reachable, (xc

0,Xm3)-reachable, and (xc
0,Xm5)-reachable for all

xc
0 ∈ Xm

For stability analysis let the distance between two states of the expert controller be

ρ(xb
1, x

b′
1 ) = |xb

1 − xb′
1 |. (14)

Notice that the set Xm is an invariant set for the expert controller since if the state of the expert controller starts in

Xm it will stay in Xm for all time.

Theorem 5.2 The invariant set Xm for the expert controller C is asymptotically stable in the large w.r.t. Ec
v.

Proof: Let xb
1 = xc. From Equation (14) we have

ρ(xc,Xm) =min{|xc − x′| : x′ ∈ Xm}. (15)

Define the Lyapunov function V (xc) = ρ(xc,Xm) so that choosing c1 = c2 = 1 we get satisfaction of conditions (1)

and (2) of Theorem 3.1. We want to show that for all initial states, V (xc) is a nonincreasing function of k and that

V (xc
k) → 0 as k → ∞ for the rules that the expert system will fire. Notice that if xc

k = 7 (full), V (xc
k) = 1, the fill

valve is off (by rule 9), and since we know that eBon will occur in a finite amount of time eventually xc
k′ = 6 for some

k′ > k so that V (xc
k′) = 0. If xc

k = 1 (empty), V (xc
k) = 1, and the fill valve is on (by rule 1) so we know that no

matter whether Valve B is opened or closed, the liquid level will rise so that for some k′ > k, V (xc
k′) = 0.

Theorem 5.3 If the user input sequence ecdk
= 3 (5) for all k ≥ 0 then Xm3 (Xm5) is asymptotically stable in the

large w.r.t. Ec
v.

The proof of Theorem 5.3 is similar to that of Theorem 5.2 except that additional dynamics of the surge tank

process must be considered in showing that V (xc
k) → 0 as k → ∞. Theorem 5.2 shows that the expert system will

achieve its regulation task. Moreover, it shows that the expert system will not exhibit cyclic behavior outside the

invariant set (goal set) Xm. Theorem 5.3 shows that the expert system will appropriately respond to user inputs

that specify the level around which the user would like the tank liquid level regulated. In other words, it verifies that

the user-specified goals will be achieved.
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6 Concluding Remarks

We have shown that conventional knowledge-base debugging tools can ignore important dynamic behavior that can

result from connecting the full expert system (i.e., with an inference engine) to user inputs and a dynamic process.

We have introduced the idea of characterizing and analyzing reachability, cyclic behavior, and stability of expert

systems. Moreover, we have illustrated the results by modeling and analyzing expert systems that solve a water-jug

filling problem and a simple process control problem.

Below we summarize some of the difficulties in performing a formal verification of the dynamical operation of

rule-based expert systems that this investigation has uncovered:

1. The rule-base can represent complex situations that were encountered in the distant past (e.g., sometimes the

premises of rules depend on past components of the state vector for backtracking and cycle avoidance as in the

example in Section 4) and can represent complex predictions of what can happen in the future as the result of

its actions.

2. The inference engine utilizes strategies that depend on the path of inferences that were executed up to the

current state (e.g., for recency and refraction and other more complex inference strategies).

3. The recency strategy in the inference mechanism can result in some of the components of the state vector to

become unbounded as k→ ∞ (the “ages”, si) [23].

4. Notice that 1 and 2 make the analysis of the qualitative properties of rule-based expert systems relatively

complex (this is not surprising since the dynamics of these systems, even for simple examples like the ones

studied in Sections 4 and 5, are relatively complex).

5. Also, 1 and 2 typically cause any graph algorithm used for the analysis of qualitative properties of rule-based

expert systems to be computationally prohibitive for complex realistic applications.

6. Notice that 1-3 cause significant problems if one is interested in implementing rule-based expert systems for

real-time applications.

In light of such problems with performing verification of expert system dynamics, it is clear that several of the more

empirical/simulation-based expert system verification approaches outlined in the Introduction must play a significant

role in the verification of more complex rule-based expert systems. However, as with the engineering/scientific analysis

of any complex dynamical system, there is clearly a role for empirical/simulation-based investigations and formal

mathematical approaches. The mathematical approaches are certainly in their infancy. As we indicate next, a

significant amount of work needs to be performed to enhance our understanding of mathematical analysis of the

dynamics of AI systems.

There are many important future directions for this work including: (i) characterizing and analyzing additional

properties of expert systems (e.g., to show that a given system is unstable or to illustrate the ability of an expert

system to meet hard real-time constraints), (ii) investigating the dynamics of AI reasoning systems that utilize

learning and planning in various complex applications, (iii) studying computational complexity issues relative to

conflict resolution strategies and knowledge representation, and (iv) modeling and analyzing realistic industrial

applications that involve expert systems (unlike the academic examples considered in this paper). We emphasize
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that these research directions help to point out the deficiencies with the approach to expert system verification

reported on in this paper.

Finally, we note that overall, it is hoped that this work takes steps towards establishing a foundation for the

mathematical verification and certification of the dynamics of rule-based expert systems that operate in critical en-

vironments.

Acknowledgement: The authors would like to thank the reviewers for their helpful comments.
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