
420 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 3, MARCH 1997

Stable Scheduling Policies for Flexible
Manufacturing Systems

Kevin Burgess and Kevin M. Passino

Abstract—In this brief note we provide a new analysis of the transient
behavior of the clear-a-fraction policy of Perkins and Kumar. In addition,
we show that a new “clear-average-oldest-buffer” policy and a “random
part selection” policy (of which “first-come-first-served” is a special case)
are stable. Finally, we introduce a stable and efficient “stream modifier”
that can be used to obtain network level stability results.

Index Terms—Discrete-event systems, manufacturing systems, schedul-
ing, stability.

I. INTRODUCTION

The flexible manufacturing systems (FMS’s) considered here are
of the type described in [1] where there are networks of machines,
each of which has the capability to processN different part types
i 2 P , whereP = f1; 2; � � � ; Ng. Parts which arrive at a machine
and are awaiting servicing are held in buffers, and the buffer levels
are denoted byxi(k); i 2 P . Each machine can only process at
some bounded rate one type of part at a time, and, in general, a
machine incurs a “setup time”si (a bounded delay) when changing
over to produce a new part typei 2 P . The time during which
a single part is being produced is called a “production run.” We
require the part flow to be composed of discrete parts because this
is the case in most practical FMS’s. In approaching the analysis
and design of FMS’s, the critical elements are the part production
schedules, orscheduling policies, for the component machines. In [1],
the authors study machines both in isolation and when interconnected
in a nonacyclic fashion (i.e., when parts can revisit the same machine
for processing) and analyze the stability of various scheduling policies
(i.e., whether policies can keep the number of parts in the buffers
bounded), including the clear-a-fraction (CAF) policy (which picks a
buffer to process that has more than a fraction of the average number
of parts in all the buffers). Related work is in [2].

In this paper we focus on isolated machines and specific network
elements, not a network of machines (although our results can be
useful for network level scheduling). In particular, in Section II, we
present a stability analysis of the CAF policy of [1], which offers
new insights into the transient behavior of the policy. In addition, we
introduce the “time-based” clear-the-average-oldest-buffer (CAOB)
policy and the random part selection (RPS) policy (of which the
well known first-come first-serve (FCFS) policy is a special case)
and perform stability analysis for these. The results for the FCFS,
while conservative, do provide stability conditions for networks of
FCFS machines (with setup times) when used with the regulator in
[3] (certain FCFS networks have been shown to be unstable in [4]). In
Section III, we introduce our stream modifier that is a generalization
of the (�; �) regulator of [5], which has been exploited in [3] and [6]

Manuscript received April 26, 1995; revised February 13, 1996 and
May 13, 1996. This work was supported in part by the National Science
Foundation under Grant IRI-9210332.

The authors are with the Department of Electrical Engineering,
The Ohio State University, Columbus, OH 43210-1272 USA (e-mail:
passino@ee.eng.ohio-state.edu).

Publisher Item Identifier S 0018-9286(97)00499-6.

to yield network level stability results. Our treatment of the stream
modifier is important because we specify a realizable policy for the
stream modifier which results in efficient stream modifier behavior
(i.e., the policy maintains the smallest stream modifier buffer for all
time).

II. M ACHINE MODEL AND STREAM CONSTRAINTS

Let W = f0; 1; 2; � � �g, and let tk; k 2 W be the real time
corresponding to discrete-timek. We will call the fixed length of
real time between discrete-timesk andk + 1 one period. As is the
case with any discrete-time model, the choice of period is important
here. The single condition on the length of the period is that when in
the midst of a production run, the machine must produce at least one
part per period. Because such a period can be chosen for any realistic
machine (by choosing the period sufficiently large), the condition
is not restrictive. While this assumption simplifies the notational
logistics of the entire analysis, only in the case of the RPS policy
does the analysis rely on this assumption in a substantial manner. If
parts arrive at the machine at real times other than thetk; k 2 W ,
then our analysis is valid at the real time pointstk; k 2 W , if we
consider all parts which arrive at or depart from the machine in any
real time interval[tk; tk+1); k 2W , to have done so at real timetk.
Let xk = [x1(k); x2(k); � � � ; xN (k)]t (“t” denotes transpose), where
k 2W . Let Z be any set of times such thatZ � W and for allk1;
k2 2 Z, if k1 � k0

� k2, thenk0
2 Z, and there is somei 2 P

such thatxi(k0
) > 0. For all of the analysis that follows, choose any

suchZ, and without loss of generality, assume thatminZ = 0. Let
Ai(k) be the (integer) number of parts of typei 2 P to arrive at
the machine at timek 2 Z, and letDi(k) be the (integer) number
of parts of typei 2 P to depart from the machine at timek 2 Z.
At time k 2 Z, the number of parts in bufferi 2 P is xi(k), and
xi(k+1) = xi(k)+Ai(k)�Di(k). A part is considered to remain
in its buffer until it exits the machine.

We define a function “ceil” such that ceil(y): <+ ! W and
ceil(y) = minfk 2 W : k � yg, for all y 2 <

+. We define a
function “floor” such that floor: <+ !W and floor(y) = maxfk 2

W : k � yg, for all y 2 <+. Let F (k0
) be the number of production

runs that have ended on or before timek0.
We will call any flow of parts into a machine aninput stream

and any flow of parts from a machine anoutput stream. We require
that the input and output streams of the machine obey the following
constraints.

1) For all k1; k2 2 Z; k1 � k2; i 2 P

0 �

k

k=k

Ai(k) � ceil ain
i (k2 � k1 + 1) + b

in
i (1)

(i.e.,ain
i is the maximum allowed rate, andbini is the maximum

allowed burstiness).
2) For all k1; k2 2 Z such thatk1 and k2 lie in the same

production run

floor(�j(k2 � k1 + 1))

�

k

k=k

Dj(k) � ceil(dj(k2 � k1 + 1)) (2)

where1 � �j � dj and j is the part type being produced.
The floor and ceil functions in constraints 1) and 2) above are
necessary becauseain

i ; �i, anddi for i 2 P may be noninteger

0018–9286/97$10.00 1997 IEEE

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 3, MARCH 1997 421

(e.g., if ain
1 = 1:5, we would like for three parts to be able to

arrive at buffer 1 every two periods; however, if we remove
the ceil function from constraint 1), only one part can arrive
at buffer 1 each period).

Let wi =
ain
�

andw =
i2P

wi, wherewi is the ratio of maximum
input rate and minimum output rate of bufferi 2 P . It is intuitive
that to have any chance of maintaining bounded buffer levels, we
must havew < 1 (this is often referred to as thecapacity condition).

In addition, for convenience letui =
bin
�

andu =
i2P

ui.

III. STABILITY ANALYSIS OF THE CAF POLICY

The CAF policy requires that once a production run is begun, it will
be continued until the buffer being processed is empty, then it chooses
part typej 2 fi 2 P : xi(k) � �

N

m=1
xm(k)g, where� 2 (0; 1

N
]

to process. For notational simplicity let� := minif�ig and �� :=

maxif�ig for any variable�i which is defined for alli 2 P .
Theorem 1: When the CAF part servicing policy is used to control

the above machine (withw < 1), it has buffer levels that are bounded
for all k 2 W by

i2P

xi(k) � ��
i2P

xi(0)

�i
�

�

1�

F (k)

+
�

1�

+ �sw + u+

N

�
(3)

where

 = max
i

1�
��

�i

1� w

1� wi

(0 <
 < 1) (4)

� = max
i

(ui + si + 1)
w � wi

1� wi

+(u� ui) +
j2P;j 6=i

1

�j
: (5)

Proof: ChooseV (xk) =
i2P

x (k)

�
. Because the following

analysis is valid for anyZ, the bounds obtained are valid for all
k 2 W (the only k which are in the setW but not in any setZ
are such thatxi(k) = 0 for all i 2 P). We define the set of times
R = fk0; k1; k2; � � �g � Z; kp < kq if p < q, to include every time
k0 such thatk0 is the greatest time no longer than timek00 which
immediately follows the end of any production run for somek00 2 Z.
Notice thatk0 = 0. Let j�(kp) 2 P; kp 2 R denote the part type that
is being setup for and processed by the machine between timeskp
andkp+1. We definekp+1�kp �p. In order to bound�p, we use
an approach similar to that in [1] and after some manipulations obtain

�p �

x (k)

�
+

bin +1

�
+ sj (k) + 1

1� wj (k)

: (6)

We now bound V (xk) in terms of V (xk). Notice that

xj (k)(kp+1) = 0 and xi(kp+1) � xi(kp) � ceil(ain
i �p +

bini) for all i 2 P; i 6= j�(kp). From this it follows that

i2P

xi(kp+1)

�i
�

i2P

xi(kp)

�i
�
xj (k)(kp)

�j (k)

+

i2P;i6=j (k)

ain
i �p + bini + 1

�i
: (7)

After some manipulations, we see that

V (xk) � V (xk)�
xj (k)(kp)

�j (k)

1� w

1� wj (k)

+ uj (k) + sj (k) + 1 �
w � wj (k)

1� wj (k)

+ u� uj (k) +

i2P;i6=j (k)

1

�i
: (8)

From the definition of the CAF policy, we see thatxj (k)(kp) �

��V (xk). Up to this point, this proof is similar to the CAF stability
proof in [1], except that in this proof, bounded input stream rate
and burstiness constraints are allowed. If we define
 and � as in
the statement of the theorem, we see from (8) thatV (xk) �

V (xk) + � for all kp 2 R (notice that by definition,0 < ��

�
< 1

for all i 2 P and0 <
 < 1). This is simply a difference inequality
which when solved yields

V (xk) � V (x0)�
�

1�

p
+

�

1�

G(x0; p): (9)

Thus, we have boundedV (xk) for all k 2 R. Consider now the set of
timesSp such that ifk 2 Z andk 2 (kp; kp+1), thenk 2 Sp. In (9),
we have found a boundG(x0; p) for V (xk), for k = kp, andkp+1.
We now wish to boundV (xk) for all k 2 Sp [fkp; kp+1g. Clearly,
the maximum ofV overSp [fkp; kp+1g must occur at one of the
following times:kp; kp+1, or at beginning of the production run that
began beforekp+1 which we denote byb(kp+1). We can bound the
increase inV that occurs between timeskp andb(kp+1) as

V xb(k) � V (xk) �
i2P

ain
i si + bini + 1

�i

� �sw + u+
N

�
: (10)

Hence, for allk 2 Sp [fkp; kp+1g; V (xk) � G(x0; p) + �sw+

u + N

�
, and so for anyk 2 Z

V (xk) � G(x0; F (k)) + �sw + u+
N

�

= V (x0)�
�

1�

F (k)

+
�

1�

+ �sw + u+

N

�
:

(11)

Therefore, a bound on the buffer levels for allk 2 Z, and, hence,
for all k 2 W , is

1
��
i2P

xi(k) �
i2P

xi(k)

�i
�

i2P

xi(0)

�i
�

�

1�

F (k)

+
�

1�

+ �sw + u+

N

�

which completes the proof.
Notice that from (3), a useful property of the machine buffer

dynamics is apparent. If
i2P

x (0)

�
> �

1�

, then the right side

of (3) must asymptoticallydecreaseto ��(�

1�

+ �sw+ u) ask !1

so that the sum of the buffer levels will get no larger than the bound
at timek = 0. If

i2P

x (0)

�
< �

1�

, then the right side of (3) must

asymptoticallyincreaseto ��(�

1�

+ �sw + u) ask !1. Hence, (3)

helps to characterize both the transient and steady-state behavior of
the machine. Notice that our proof is for a more general class of
stream constraints for the parts arriving at and departing from the
machine than in [1] and (3) provides a more detailed characterization
of the transient behavior of the machine. It is also possible to define
a generalized CAF (GCAF) in which only a fixed fraction of the

422 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 3, MARCH 1997

parts in a buffer at the beginning of a production run are cleared
during that production run. Similar results hold for the GCAF policy.
Finally, recall that the buffer bound established above is only valid at
real timestk. However, if the “inter-sample” input and output stream
functions are known or can be bounded, then the above bound can
be modified so that it is valid for allt 2 <+. If we know nothing
of the “inter-sample” input and output stream functions, we can add
di for all i 2 P to the buffer bounds so that the bounds are valid
for all t 2 <

+.

IV. STABILITY ANALYSIS OF THE CAOB POLICY

We now introduce what we call the “clear-the-average-oldest
buffer” (CAOB) policy. For all i 2 P and for all k 2 W ,
let Ti(k) be the maximum number of periods that any part in
buffer i has been waiting for service at timek and let T (k) =

[T1(k); T2(k); � � � ; TN (k)]
t. Let the CAOB policy choose at timek

a part j 2 fi 2 P : Ti(k) � �
N

m=1
Tm(k)g to process where

� 2 (0; 1

N
].

Theorem 2: If the CAOB part servicing policy is used to control
the above machine and ifwi <

1

N
for all i 2 P , then it has buffer

levels that are bounded for allk 2 W by

i2P

xi(k) � �a
in

1�

F (k�1)+1 �

1�

+ ��

+
i2P

xi(0) + b
in
i + 1 (12)

where

 = max
i

1� � 1�
(N � 1)ain

i

�i(1� wi)
(0 <
 < 1) (13)

� = max
i

N � 1

1� wi

2bini + 1

�i
+ si + 1 (14)

�i = max k 2W : ceil ain
i (k + 1) + b

in
i

� floor(�i(k + 1� si)) > 0 : (15)

Proof: ChooseV (T (k)) =
i2P

Ti(k). Beginning in a similar
way to the proof of Theorem 1 we know that (6) holds for CAOB. No-
tice thatTj (k)(kp+1) = 0; Ti(kp+1)� Ti(kp) � �p for all i 2

P; i 6= j�(kp), andxi(k) � ain
i (Ti(k))+ bini +1 for all i 2 P; k 2

Z. From this and from the definition of the CAOB policy, we see that

i2P
Ti(kp+1) � i2P

Ti(kp)�Tj (k)(kp)+(N�1)�p. Hence

V (T (kp+1))

� V (T (kp))� �V (T (kp)) 1�
(N � 1)ain

j (k)

�j (k)(1� wj (k))

+
N � 1

1� wj (k)

2binj (k)
+ 1

�j (k)

+ sj (k) + 1

= V (T (kp)) 1� � 1�
(N � 1)ain

j (k)

�j (k)(1� wj (k))

+
N � 1

1� wj (k)

2binj (k)
+ 1

�j (k)

+ sj (k) + 1 : (16)

If we define
 and� as in the statement of Theorem 2 we see from
(16) thatV (T (kp+1)) �
V (T (kp)) + �, for all kp 2 R. Notice

that by assumption,0 <
 < 1. Hence, we haveV (T (kp)) �

(1 �
p) �

1�

G(p) (note thatV (T (k0)) = 0) and so we have

boundedV (T (k)) for all k 2 R.
Consider now the set of timesSp such that if k 2 Z and

k 2 (kp; kp+1), then k 2 Sp. We have found a boundG(p) for
V (T (k)), for k = kp, andkp+1. We now wish to boundV (T (k))

for all k 2 Sp [fkp; kp+1g. To do this, we first must bound
Tj (k)(k

0) � Tj (k)(kp) for all k0 2 Sp. Consider the following
expression:

k �T (k)+k

k=k �T (k)

Aj (k)(k)�Dj (k) k + Tj (k)(kp) (17)

for all kp + k0 2 Sp. Expression (17) is the sum of all parts which
arrived at bufferj�(kp) at any timek 2W; kp�Tj (k)(kp) � k �

kp� Tj (k)(kp)+ k0 minus the sum of all parts which leave buffer
j�(kp) at any timek 2 Sp; kp � k � kp + k0. If expression (17) is
positive for a givenk0 2W , then more parts arrived at bufferj�(kp)
in thek0+1 periods beginning at timekp�Tj (k)(kp) than have left
buffer j�(kp) in thek0+1 periods beginning at timekp. Hence, there
is at least one part which arrived at bufferj�(kp) on or before time
kp�Tj (k)(kp)+k0 which remains in the buffer at timekp+k0+1

so thatTj (k)(kp + k0) > Tj (k)(kp). By the same reasoning, if
(17) is not positive, thenTj (k)(kp + k0) � Tj (k)(kp). It is clear
thatTj (k)(kp+ k0)� Tj (k)(kp) � k0. We can bound expression
(17) by specifying that parts in bufferj�(kp) be serviced as slowly
as possible so that

k �T (k)+k

k=k �T (k)

Aj (k)(k)�Dj (k) k + Tj (k)(kp) (18)

� ceil ain
j (k)(k

0
+ 1) + b

in
j (k)

� floor �j (k) k
0
+ 1� sj (k) (19)

for all kp + k0 2 Sp. For all i 2 P , let �i be defined as given
in the statement of Theorem 2. Notice that becauseain

i �
�

N
for

all i 2 P and because we are inherently assuming thatbini < 1

for all i 2 P; �i < 1 for all i 2 P . Then, for allkp + k0 2 Sp;

Tj (k)(kp+k
0)�Tj (k)(kp) � �j (k). Hence, for allkp+k0 2 Sp,

V (T (kp+k0)) � G(p+1)+�j (k). Notice in the above bound that
G(p+1) appears rather thanG(p). This is due to the fact that for all
i 2 P; i 6= j�(kp); Ti(kp+1) > Ti(kp + k0); for all kp + k0 2 Sp.
Hence

V (T (k)) � 1�

F (k�1)+1 �

1�

+ �� (20)

for all k 2 Z; k > 0, and, hence, for allk 2 W; k > 0. Because
xi(k) � xi(0) + ain

i Ti(k) + bini for all k 2W and for alli 2 P , it
is clear that

i2P
xi(k) � i2P

(xi(0) + ain
i Ti(k) + bini + 1) �

�ainV (T (k)) +
i2P

(xi(0) + bini + 1) which with (20) gives the
final result for allk 2W; k > 0.

Notice that in boundingV (T (k)) in (20), that the bound increases
from �� to �

1�

+ �� as k ! 1 so that we also characterize the

transient properties of CAOB. A clear-the-oldest buffer (COB) policy
is a special case of the CAOB policy; hence, the bounds above hold
for this policy also. The COB policy is sometimes called the “first-
come first-clear” (FCFC) policy since it will service the buffer which
contains the part that arrived before all other parts in any of the other
buffers. If parts tend to arrive at the machine such that a group of
parts arriving at one buffer is followed by a group of parts arriving

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 3, MARCH 1997 423

at another buffer and so on (at a low enough frequency), then the
CAOB policy will tend to behave like an FCFS policy.

V. STABILITY ANALYSIS OF THE RPS POLICY

We now introduce what we call the RPS policy. Under this policy,
the machine is free to choose any nonempty buffer to service at any
time just so long as it never sits idle (i.e., it is either setting up for
or processing a part at every instant).

Theorem 3: If ain
i �

1

N(�s+1)
for all i 2 P , and the RPS

part servicing policy is used to control the above machine, then
N

i=1
xi(k) � b + N + 1 +

N

i=1
xi(0), for all k 2 W , where

b =
N

i=1
bini .

Proof: Let A(k) be defined so thatA(k) =
N

i=1
Ai(k), for

all k 2 W . In the worst case in which the machine produces only a
single part from any buffer before switching production to a different
buffer, it is clear that it can take no longer than�s + 1 periods to
produce one part. If we letD(k) = maxfDi(k) : i 2 Pg, we see
that k

k=k
D(k) � floor(k �k +1

�s+1
), for all k1; k2 2 Z; k1 � k2.

From this, the definition ofA(k), and the assumption onain
i ; i 2 P ,

in the statement of the theorem, it is apparent that

k

k=0

[A(k)�D(k)]

�

N

i=1

k0 + 1

N(�s+ 1)
+ b

in
i + 1 � floor

k0 + 1

�s+ 1
(21)

=
k0 + 1

�s+ 1
+ b+N � floor

k0 + 1

�s+ 1
(22)

� b+N + 1 (23)

and that k

k=0
[A(k)�D(k)] =

N

i=1
xi(k

0
+1)�

N

i=1
xi(0), for

all k0; k0 + 1 2 Z. Clearly, then, N

i=1
xi(k

0
+ 1) � b + N + 1 +

N

i=1
xi(0), for all k0; k0 + 1 2W .

Notice that unlike the conditions on stability of the CAF policy,
the condition for stability of the RPS policy does not depend on
the processing speed of the machine (of course, we have required
previously that the period length be chosen so that1 � �i � di for
all i 2 P). Rather, the condition simply limits the rates of the input
streams of the machine. Intuitively, the RPS policy is stable because
it is persistentin that if there are parts in any machine buffer, it
will always be either processing parts or setting up to process parts.
Under the conditions of Theorem 2, several commonly used policies
are special cases of the RPS policy and hence are stable because
they are persistent: 1) the first-come first-serve (FCFS) policy; (b)
the priority policy (buffers are serviced in a fixed order, but empty
buffers are skipped as in [7]), and fixed time policy (nonempty buffers
are serviced for a fixed amount of time). Moreover, policies studied
in [8], such as the “earliest due date” policy, are special cases of
RPS. It is interesting to note that in [4] the author was able to show
that FCFS is unstable for certain FMS topologies where there are no
setup times. The key to obtaining stability here is that unlike in [4]
we constrain the rates at which parts may be input to machines (so
that if applied to a network of machines our results would require a
stream modifier like in the next section to achieve stable operation).

The stability conditions for the RPS policy in Theorem 3 are
somewhat dissatisfying because we cannot affect the input stream
rate constraints by speeding up the machine, and this is contrary to
our intuition. In light of this, we now reformulate the problem by
altering the way that we look at part arrivals and departures. First of
all, it is necessary to redefine the period for this analysis. We choose

the new period and constantsain
i

0
so that for everyi 2 P there are

at leastain
i

0
periods for each part that arrives at bufferi that is not

attributable to the input stream burstiness. Similarly, choose�0i so
that when the machine is producing parts of typei it outputs parts no
slower than one part every�0i periods. As before, letsi be the number
of periods needed to set up for production on bufferi 2 P . Assume

that for all i 2 P; ain
i

0
and �0i are integers (this assumption is not

limiting since we can choose the period to be as small as desired).
Theorem 4: If the RPS part servicing policy is used to control the

above machine, and

max
i

f�
0
i + sig

i2P

1

ain
i

0 � 1

then N

i=1
xi(k) � b+N + 1+

N

i=1
xi(0), for all k 2W , where

b =
N

i=1
bini .

Proof: Let A(k) =
i2P Ai(k) andD(k) =

i2P Di(k) for
all k 2 W so that

k

k=k

Ai(k) � floor
k2 � k1 + 1

ain
i

+ 1 + b
in
i

�
k2 � k1 + 1

ain
i

+ 1 + b
in
i (24)

k

k=k

A(k) � (k2 � k1 + 1)

i2P

1

ain
i

+N +

i2P

b
in
i (25)

and k

k=k
D(k) � floor k �k +1

max f� +s g
�

k �k +1

max f� +s g
� 1, for all

k1; k2 2 W; k1 � k2. Notice that as in the previous analysis of the
RPS policy, we have identified the maximum number of periods per
part serviced (i.e., as long as there are parts in any machine buffer, the
machine must output at least one part everymaxif�

0
i+ sig periods).

Clearly, k

k=0
[A(k)�D(k)] =

i2P (xi(k
0
+1)�xi(0)) � (k0+

1)
i2P

1

ain
�

1

max f� +s g
+N+b+1, for all k0 2W . Now, by

the assumption in the theorem we see that
i2P (xi(k+1)�xi(0))�

N+b+1 or, equivalently
i2P xi(k+1) � b+N+1+

i2P xi(0),
for all k 2W .

Notice that while the RPS stability condition in Theorem 4 is more
flexible than the condition in Theorem 3 (in terms of our ability to
design a machine that can achieve stability by speeding it up), the
input stream rate constraints are still limited by the maximum machine
setup time, regardless of how fast the machine is. This appears to be
a fundamental property of RPS policies. Notice also that ifain

i and
�0i are considered to be inverse rate constraints, the stability condition
of Theorem 4 can be thought of as reducing to the capacity condition
as si ! 0 for all i 2 P .

VI. STREAM MODIFIER

The “stream modifier” is a network element which consists of a
buffer and a part flow policy which selectively queues incoming parts
in the buffer or passes them directly through to the output stream
(we use the term “stream modifier” rather than “regulator” simply to
emphasize that the two are different). In addition, the policy must
decide when to release queued parts into the output stream. The
purpose of the stream modifier is to alter the maximum rate and
maximum burstiness of its input stream. Note that the stream modifier
is an important element for FMS’s since it can be used to modify
the streams of parts between machines so that anentire FMS can be
made stable [3].

At time k 2 W , let the number of parts in the stream modifier
buffer bex(k), the number of parts arriving at the stream modifier

424 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 3, MARCH 1997

be A(k), and the number of parts leaving the stream modifier be
D(k). In addition, letain, bin; aout; and bout be real, nonnegative
constants which are used to describe the input and output streams of
the stream modifier. In order to clarify the following analysis, assume
that ain andaout are integers. We specify the behavior of the input
and output streams of the stream modifier with respect to constants
ain; bin; aout; and bout as follows.

1) For all k1; k2 2 W; k1 � k2;
k

k=k
A(k) � ceil(ain(k2 �

k1+1)+bin); k

k=k
D(k) � ceil(aout(k2�k1+1)+bout).

2) For all k0 2 W;
k

k=0
[A(k) � D(k)] � maxf(ain �

aout)(k0 + 1) + bin � bout+ 1; �x(0)g.

Item 1) simply specifies the input stream constraint for the stream
modifier and how we would like the output stream of the stream
modifier to behave. Item 2) is included as a constraint on stream
modifier behavior to ensure that its buffer is bounded. In fact, because
x(k+1) = x(k)+A(k)�D(k) and because k

k=0
[A(k)�D(k)] =

x(k0 + 1) � x(0), for all k0 2 W , we see from item 2) that
x(k0+1) � maxf(x(0)+(ain�aout)(k0+1)+bin�bout+1); 0g,
for all k0 2 W . If we chooseaout = ain, then for all k 2 W;

x(k) � x(0) + bin � bout + 1, and the stream modifier buffer is
bounded. Notice also that ifaout = ain, then we can choosebout = 0

so that the burstiness is completely removed from the output stream.
In this case, if the input stream operates at its maximum rate, then the
output stream can operate at its maximum rate and the extra bursts
of parts on the input stream, that by definition will never total more
than bin, will be stored in the stream modifier buffer. Notice that if
aout < ain, then eitherbout is infinite or we cannot boundx(k) for
all k 2 W . It is also clear that ifain or bin is infinite andaout and
bout are finite, no bound exists forx(k) for all k 2 W .

We now specify a practical policy for the stream modifier which
we will show satisfies items 1) and 2) by releasing the maximum
number of parts allowable without violating the second inequality
at every timek in item 2). For every timek 2 W , let Ek =

fE0
k; E

1
k; � � � ; E

k
kg, whereEk

k is the maximum allowable value of
D(k) such that

k

l=k

D(l) = ceil(aout
(k � k

0

+ 1) + b
out

): (26)

Because the stream modifier cannot violate (26) for anyk0; k0 � k;

let its policy choose

D(k) = min (Ek [fA(k) + x(k)g) (27)

(this policy is not implementable because ask ! 1 jEkj ! 1;
below we will show how to modify it so that it is an implementable
policy). We now must ask whether our policy will satisfy items 1)
and 2). Because our policy in (27) guarantees that (26) will not
be violated for anyk0; k 2 W; k0 � k, it is clear that it satisfies
the second inequality in item 1) because (26) is more strict than
the second inequality in item 1). Next consider item 2). Choose
any time k0 2 W . If D(k0) = minfEk [fA(k0) + x(k0)gg =

A(k0) + x(k0), then becausex(k0 + 1) = 0 (the stream modifier
buffer is cleared by the policy’s choice ofD(k0)), it is clearly the
case that k

k=0
(A(k)�D(k)) = �x(0) so that item 2) holds. If, on

the other hand,D(k0) = minfEk [fA(k
0)+x(k0)gg = min(Ek),

then from the definitions ofE0

k in (26) and the stream modifier policy
in (27), there is somek1 2 W; k1 � k0, such that k

k=k
D(k) =

ceil(aout(k0�k1+1)+bout). Below we define a recursive procedure

TABLE I
Ek

TABLE II
Ek+1

whose goal is to define a timek
�
2 W which we use later in the

analysis. Upon initially entering the procedure, leti = 0.

1) If i = 0, let ni = k0; otherwise, letni = mi�1 � 1.
2) If D(ni) = min(En), then find the smallestq 2W such that

n

k=q

D(k) = ceil(aout
(ni � q + 1) + b

out
) (28)

and letmi = q.
3) If mi = 0, then letk

�
= 0 and stop.

4) If D(mi� 1) < min(Em �1), then letk
�
= mi� 1 and stop;

otherwise, leti = i + 1 and return to step 1.

Notice that the above procedure will always terminate. Ifk
�
=

0, then the entire range of times[0; k0] is composed of adjacent
subranges of times[mi; ni]; i = 0; 1; 2; � � � ; Q, wheren0 = k0;

mQ = 0; ni = mi�1 � 1 for all i = 1; 2; � � � ; Q, and

n

k=m

D(k) = ceil(aout
(ni �mi + 1) + b

out
) (29)

for all i = 0; 1; 2; � � � ; Q. Hence, we see that k

k=0
D(k) =

Q

i=0
ceil(aout(ni�mi+1)+bout) and (because ceil(a)+ceil(b) �

ceil(a + b)) that k

k=0
D(k) � ceil(aout(k0 + 1) + (Q+ 1)bout).

Because we have established that our policy obeys item 1), we
see that eitherQ or bout must equal zero so that k

k=0
D(k) =

ceil(aout(k0 + 1) + bout). Therefore, k

k=0
(A(k) � D(k)) �

ceil(ain(k0+1)+bin)�ceil(aout(k0+1)+bout) � (ain�aout)(k0+
1) + bin � bout + 1, so that forD(k0) = min(Ek) and k

�
= 0,

our policy satisfies item 2).
If k

�
> 0, then the entire range of times[k

�
+ 1; k0] is composed

of adjoining subranges of times[mi; ni]; i = 0; 1; 2; � � � ; Q, where
n0 = k0; mQ = k

�
+ 1; ni = mi�1 � 1 for all i = 1; 2; � � � ; Q,

and (29) holds for alli = 0; 1; 2; � � � ; Q. Similar to before, it
follows that k

k=k +1
D(k) = ceil(aout(k0 � k

�
) + bout). Because

k

k=0
(A(k) � D(k)) � 0, we see that

k

k=0

(A(k)�D(k)) =

k

k=0

(A(k)�D(k))

+

k

k=k +1

(A(k)�D(k)) (30)

�

k

k=k +1

(A(k)�D(k)) (31)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 3, MARCH 1997 425

� ceil(ain
(k

0

� k
�
) + b

in
)

� ceil(aout
(k

0

� k
�
) + b

out
) (32)

� (a
in
� a

out
)(k

0

� k
�
) + b

in
� b

out
+ 1

(33)

� (a
in
� a

out
)(k

0

+ 1) + b
in
� b

out
+ 1 (34)

so that forD(k0) = min(Ek) andk
�
> 0, our policy satisfies item

2). Hence, items 1) and 2) are satisfied by our policy.
We now show how to recursively calculateEk for all k 2W . From

(26), we can form Tables I and II. From the form of the expressions
in Tables I and II, notice thatEk

k+1 = Ek

k +aout�D(k) for all k0;
k0 � k, so thatmin(Ek+1 � fEk+1

k+1
g) = min(Ek) + aout�D(k).

It is clear, then, that if we define the set

�Ek = fmin(�Ek�1) + a
out

�D(k� 1)g

[fceil(aout
+ b

out
)g (35)

for all k 2 W; k 6= 0 and if we let �E0 = fceil(aout + bout)g,
thenmin(Ek) = min(�Ek). Hence, we can define our policy for all
k 2 W asD(k) = minf �Ek [fA(k) + x(k)gg.

VII. CONCLUDING REMARKS

We have presented a new stability analysis of the CAF policy
focusing on its transient behavior, shown that the CAOB and RPS
policies are stable, and provided a stable implementation for a stream
modifier. We have considered only the deterministic case throughout
the paper. It would be interesting to study a stochastic version of the
problem, for example for the case of failure-prone machines. Also, it
is an important open question whether the policies proposed in this
paper (and others) can help improve the performance of an FMS.

REFERENCES

[1] J. R. Perkins and P. Kumar, “Stable, distributed, real-time scheduling
of flexible manufacturing/assembly/disassembly systems,”IEEE Trans.
Automat. Contr., vol. 34, pp. 139–148, Feb. 1989.

[2] S. Lou, S. Sethi, and G. Sorger, “Analysis of a class of real-time
multiproduct lot scheduling policies,”IEEE Trans. Automat. Contr., vol.
36, pp. 243–248, Feb. 1991.

[3] C. Humes, Jr., “A regulator stabilization technique: Kumar–Seidman
revisited,”IEEE Trans. Automat. Contr., vol. 39, pp. 191–196, Jan. 1994.

[4] T. I. Seidman, “ ‘First Come, First Served’ Can Be Unstable!”IEEE
Trans. Automat. Contr., pp. 2166–2177, Oct. 1994.

[5] R. L. Cruz, “A calculus for network delay—Part I: Network elements in
isolation,” IEEE Trans. Inform. Theory, vol. 37, pp. 114–131, Jan. 1991.

[6] J. R. Perkins, C. J. Humes, Jr., and P. Kumar, “Distributed scheduling
of flexible manufacturing systems: Stability and performance,”IEEE
Trans. Robotics Automation, vol. 10, pp. 133–141, Apr. 1994.

[7] K. M. Passino, K. Burgess, and A. N. Michel, “Lagrange stability and
boundedness of discrete event systems,”J. Discrete Event Dynamic
Syst.: Theory Appl., vol. 5, pp. 383–403, 1995.

[8] S. H. Lu and P. Kumar, “Distributed scheduling based on due dates and
buffer priorities,” IEEE Trans. Automat. Contr., vol. 36, pp. 1406–1416,
Dec. 1991.

Comments on “A New Controller Design
for a Flexible One Link Manipulator”

Susy Thomas and B. Bandyopadhyay

Abstract—In the above-mentioned paper1 a variable structure sliding
mode controller (VSSMC) design for the tip position control of a flexible
one-link manipulator has been presented, where a switching line con-
structed from the tip position and its derivative was employed for the
design. The claim was that if the slope of this line is chosen positive and
the system variables are made to stay on this line, they will converge to
zero exponentially, thus yielding a stable system in sliding mode (SM). The
purpose of this comment is to show that the choice of a positive constant
as the slope for this switching line will not guarantee the stability of the
system in SM because, in view of the functional relationship of the tip
position with the generalized coordinates of the system through the mode
shape functions, what is presented as a switching line is in fact a switching
hypersurface. Hence, the stability of the system in SM is guaranteed only
if the motion on this hypersurface is asymptotically stable. A positive
value for the slope of the switching line employed by Qian and Ma will
not guarantee this stability because variations in the mode shape functions
due to varying payload conditions or other disturbances at the tip will
lead to a varying switching surface. These variations can be such that the
resulting sliding motion becomes unstable. Also, the varying switching
surface implies that the controller will fail to maintain sliding mode
motion.

Index Terms—Flexible manipulator, sliding mode, variable structure
control.

I. INTRODUCTION

From (12) of the above-mentioned paper,1 the functional rela-
tionship between the tip position and the generalized coordinates
considering only the first two vibratory modes is

yTP = Lq0 + �1(L)q1 + �2(L)q2 (1)

where qi denotes the generalized coordinates and�i(L) the mode
shape functions of the flexible arm.

In the paper,1 Qian and Ma define the tip position errorx1 as
the difference between the current tip positionyTP and the set point
xST . Without loss of generality it was assumed that

xST = 0: (2)

Hence

x1 = yTP (3)

and x2 was defined as

x2 = _x1 = _yTP : (4)

The switching line was constructed as

S = x2(t) + Cx1(t) = 0: (5)

Manuscript received April 4, 1995; revised November 15, 1995.
S. Thomas is with the Department of Electrical Engineering, IIT Bombay,

Bombay 400076 India. She is on deputation from Calicut Regional Engineer-
ing College, Calicut, Kerala 673601, India.

B. Bandyopadhyay is with the Lehrstuhl für Elektrische Steuerung und
Regelung, Ruhr-Universit¨at Bochum, Bochum 44780 Germany.

Publisher Item Identifier S 0018-9286(97)01331-7.
1W. T. Qian and C. C. H. Ma,IEEE Trans. Automat. Contr.,vol. 37, pp.

132–137, 1992.

0018–9286/97$10.00 1997 IEEE

