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Stable Scheduling Policies for Flexible to yield network level stability results. Our treatment of the stream
Manufacturing Systems modifier is important because we specify a realizable policy for the
stream modifier which results in efficient stream modifier behavior
Kevin Burgess and Kevin M. Passino (i.e., the policy maintains the smallest stream modifier buffer for all
time).
Abstract—in this brief note we provide a new analysis of the transient [l. MACHINE MODEL AND STREAM CONSTRAINTS
behavior of the clear-a-fraction policy of Perkins and Kumar. In addition, Let W = {0,1,2,---}, and let#z, k € W be thereal time

we show that a new “clear-average-oldest-buffer” policy and a “random . . . . "
part selection” policy (of which “first-come-first-served” is a special case) corresponding to discrete-time. We will call the fixed length of

are stable. Finally, we introduce a stable and efficient “stream modifier” eal time between discrete-timésand % + 1 oneperiod As is the

that can be used to obtain network level stability results. case with any discrete-time model, the choice of period is important
Index Terms—biscrete-event systems, manufacturing systems, schedul-here‘ The single cond!tlon on the Iength_ of the period is that when in

ing, stability. the midst of a production run, the machine must produce at least one

part per period. Because such a period can be chosen for any realistic

machine (by choosing the period sufficiently large), the condition

is not restrictive. While this assumption simplifies the notational

) . , . logistics of the entire analysis, only in the case of the RPS policy
The flexible manufacturing systems (FMS'’s) considered here gj§eq the analysis rely on this assumption in a substantial manner. If

of the type described in [1] where there are networks of machinggy s arrive at the machine at real times other thantthé: € W,
each of which has the capability to proce¥sdifferent part types inan our analysis is valid at the real time points k € W, if we

7 = 2 ... A i i i . . . . .

¢ € P, whereP’ = {1,2,---, N}. Parts which arrive at a machine ., ngjger all parts which arrive at or depart from the machine in any
and are awaiting servicing are held in buf_‘fers, and the buffer levels,| time intervalfy. f141), k € W, to have done so at real tintg.

are denoted by:;(k), i € P. Each machlne_can only process af ot y, — [21(k), 22 (k). -+, en(k)]' (4" denotes transpose), where
some bounded rate one type of part at a time, and, in general,, & 1. Let Z be any set of times such that C W and for all k.,
machine incurs a “setup times; (a bounded delay) when changing;. 7 it 1. < 1’ < k,, thenk’ € Z, and there is somé € P

over to produce a new part type€ P. The time during which g,ch that; (&) > 0. For all of the analysis that follows, choose any

a single part is being produced is called a “production run.” Wg, ., 7 “and without loss of generality, assume that Z = 0. Let

require the part flow to be composed of discrete parts because thﬁ}) be the (integer) number of parts of typec P to arrive at

is the case in most practical FMS's. In approaching the analy$is, machine at timé € Z, and letD; (k) be the (integer) number
and design of FMS's, the critical elements are the part productigp parts of typei € P to depart from the machine at tinie€ Z.
schedules, oscheduling policiesfor the component machines. In [1], ot time % ¢ Z, the number of parts in buffer € P is x;(k), and
the authors study machines both in isolation and when interconnec&g@k +1) = 2;(k) + A; (k) — D; (k). A part is considered to remain
in a nonacyclic fashion (i.e., when parts can revisit the same machjféis puffer until it exits the machine.
for processing) and analyze the stability of various scheduling policies\ys gefine a function “ceil” such that céil): Rt — W and
(i.e., whether policies can keep the number of parts in the buffe‘gé”(y) = min{k € W: k >y}, for all y € R*. We define a
bounded), including the clear-a-fraction (CAF) policy (which picks &, tion “floor” such that floarR+ — W and flooty) = max{k €
buffer to process that has more than a fraction of the average numper ;. y}, forally € R*. Let F(k') be the number of production
of parts in all the buffers). Related work is in [2]. runs tﬁét have enbled on or before tirkle

In this paper we focus on isolated machines and specific networkyye will call any flow of parts into a machine anput stream
elements, not a network of machines (although our results can any flow of parts from a machine antput streamWe require

useful for network level scheduling). In particular, in Section II, Wehat the input and output streams of the machine obey the following
present a stability analysis of the CAF policy of [1], which Oﬁer%onstraints.

new insights into the transient behavior of the policy. In addition, we
introduce the “time-based” clear-the-average-oldest-buffer (CAOB)

I. INTRODUCTION

1) For a”kl,kz € Z, ks <ks,i€P

policy and the random part selection (RPS) policy (of which the k2 in in
well known first-come first-serve (FCFS) policy is a special case) 0< > Ai(k) <ceil(a) (ke — ki + D+ ) (D)
and perform stability analysis for these. The results for the FCFS, k=k1

while conservative, do provide stability conditions for networks of
FCFS machines (with setup times) when used with the regulator in
[3] (certain FCFS networks have been shown to be unstable in [4]). In
Section Ill, we introduce our stream modifier that is a generalization
of the (o, p) regulator of [5], which has been exploited in [3] and [6]

(i.e.,a!" is the maximum allowed rate, anlf! is the maximum
allowed burstiness).

2) For all ki, k2 € Z such thatk, and k» lie in the same
production run

floor(6; (ke — k1 + 1))

ko
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(e.g., ifa! = 1.5, we would like for three parts to be able toAfter some manipulations, we see that
arrive at buffer 1 every two periods; however, if we remove _ 2

! : ) ) ) » T (k) (Kp) 1—w
the ceil function from constraint 1), only one part can arrive V (X/cp+1) < Vixk,) —

at buffer 1 each period). Sythp) N\ =Wy
in w — wj*(kp)
Letw; = “— andw = 3, , w;, wherew; is the ratio of maximum + (4 () 8500 +1) - <m)
input rate and minimum output rate of bufferc P. It is intuitive 1
that to have any chance of maintaining bounded buffer levels, we + ('u - 'uj*(kp)) + Z 5 (8)
must havew < 1 (this is often referred to as theapacity conditioh i€ P i " (kp)
In addition, for convenience let; = l’;—n andu = Zief, u;. From the definition of the CAF policy, we see tha,t*(kp)(k,]) >

edV(xx,). Up to this point, this proof is similar to the CAF stability
proof in [1], except that in this proof, bounded input stream rate
and burstiness constraints are allowed. If we definand ¢ as in

The CAF policy requires that once a production run is begun, it Wilhe statement of the theorem, we see from (8) fhiak, <

pi1) <
be continued until the buffer being processed is empty, then it choo s “for all k, € R (notice that by definition0 < E <1
part typej € {i € P : z;i(k) > eZﬁ;:l xm(k)}, wheree € (0, %] i (i) + € ! ( ¢ V<5

) € Zn ) ) foralli € P and0 < v < 1). This is simply a difference inequality
to process. For notational simplicity lgt := min;{x;} andy := which when solved yields
max;{y;} for any variabley; which is defined for ali € P.
Theorem 1: When the CAF part servicing policy is used to control Vixe,) < <V(x0) _ < )ﬁ/,,p + C 2 G(x0.p).  (9)
the above machine (witlv < 1), it has buffer levels that are bounded = 1—x 11—~ '
for all k € W by

IIl. STABILITY ANALYSIS OF THE CAF PoLicy

Thus, we have bounddd(x,,) for all £ € R. Consider now the set of
) timesS, such that ift € Z andk € (kp, kp+1), thenk € S,. In (9),
A7 (kR)

we have found a boun@'(xo, p) for V(xs), for k = k,, andk,..

2;(0) ¢
(Z T

iE€P ieP We now wish to bound”(x;) for all & € S, U {kp, kpt1}. Clearly,
¢ N the maximum ofV” over S, U {k,, ky+1} must occur at one of the
+ﬁ + 5w 4w+ 5 (3) following times:k,, k,+1, or at beginning of the production run that
' - began beforé:, 1 which we denote by(k,+1). We can bound the
where increase inV that occurs between timds, andb(k,+1) as
in in
S(1—w , ; ai si+b +1
~v=max<41— < @ (0<vy<1) 4 V (Xb(kp+1)) - V(xk,,) < Z 5
i 6 \ 1 —w; ier i
. _ N
¢ = max {('Ui +si+1) <“/ ul) S swtut b (10)
7 1 — W; =
1 Hence, for allk € S, U {kp, kpy1}, Vi(xe) < G(x0,p) + 5w+
Hu—u)+ Y F}. (5) w+ %, and so for anyk € Z
JEP i .
- V(xi) < G(xo, F(k)) + 5w+ u 4+ —
Proof: ChooseV (xi) = 3, “*). Because the following 8
is is vali 7 i i . . N
analysis is valid for ar_uZ, the_ bounds o?talned are valid for all _ <V (x0) — ¢ ),YF(A,) n ¢ Tswdut
k € W (the only & which are in the sei’” but not in any set” 11—~ 11—~ [
are such that;; (k) = 0 for all i € P). We define the set of times (11)

R = {ko, ki, ko,---} C Z, kp < kq if p < q, to include every time

k' such thatk’ is the greatest time no longer than timé which Therefore, a bound on the buffer levels for alle Z, and, hence,
immediately follows the end of any production run for solfiec z. for all k € W, is

Notice thatko = 0. Letj*(k,) € P, k, € R denote the part type that 1 ; i (k) 2:(0) ¢ ,

is being setup for and processed by the machine between fipes 3 in(k) < Z 5 < Z % T 1-%~ ’y’“k)

andk, 1. We definek, 1 —k, £ A,. In order to bound\,, we use er er ier )
an approach similar to that in [1] and after some manipulations obtain + < +Fw4u4 N
L=~ l
o (kp) bi.n +1 H
*J;(k’p) v Jé’“(kp> + 50k F 1 which completes the proof. O
A, < — ) 7" (kp) ? . (6) Notice that from (3), a useful property of the machine buffer
L= wjn(ky) dynamics is apparent. 15, 2% > < then the right side
We now bound V(xy,,,) in terms of V(xs,). Notice that of (3) must asymptoticallylecreasdo 6(1%7 + 5w +u) ask — oo

so that the sum of the buffer Ievgls will get no larger than the bound
attimek = 0. If 3, “i{” < < then the right side of (3) must

ey (kpr1) = 0 and zi(kpi1) — wi(ky) < ceillalA, + =
asymptoticallyincreaseto &( ’

oM for all i € P,i # j*(k,). From this it follows that

= + 5w + u) ask — oo. Hence, (3)

helps to characterize both the transient and steady-state behavior of

wi (ke (K Xy (K . . ;
Z z (;)H) < Z & ;]) - Jﬁ(vlzp)( 2 the machine. Notice that our proof is for a more general class of
iep wer CnGee) stream constraints for the parts arriving at and departing from the
alnAp +oM 41 machine than in [1] and (3) provides a more detailed characterization
+ - s (7)  of the transient behavior of the machine. It is also possible to define

iEPZs" (kp) a generalized CAF (GCAF) in which only a fixed fraction of the
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parts in a buffer at the beginning of a production run are clearddat by assumptiono < v < 1. Hence, we havd/(T(k,)) <
during that production run. Similar results hold for the GCAF policy(1 — ~*) 1 = = £ G(p) (note thatV (T(ko)) = 0) and so we have
Finally, recall that the buffer bound established above is only valid BbundedV” (T(k)) for all k € R.

real timest,.. However, if the “inter-sample” input and output stream Consider now the set of time§, such that ifk € Z and
functions are known or can be bounded, then the above bound éa& (k,,k,+:), thenk € S,. We have found a bound:(p) for
be modified so that it is valid for al € R*. If we know nothing V (T'(k)), for k = k,, and kp11. We now wish to bound” (T(k))
of the “inter-sample” input and output stream functions, we can ador all ¥ € S, U {kp.k,+1}. To do this, we first must bound
d; for all i € P to the buffer bounds so that the bounds are vali@l}-(x,) (k') — T;«x,)(k,) for all ¥ € S,. Consider the following
for all + € RT. expression:

kp =T (1) (bp) 7

We now introduce what we call the “clear-the-average-oldestk_k TZ X [Asethp) (B) = Dy iy (k4 T ry (Rp)] (A7)
buffer’ (CAOB) policy. For alli € P and for all k € W, =k gy (kp)
let T;(k) be the maximum number of periods that any part in
buffer ¢ has been waiting for service at time and letT(k) = for all &, + %' € S,. Expression (17) is the sum of all parts which
[Ty (k), To(k), -, Tn(k)]'. Let the CAOB policy choose at time  arrived at buffer;™( 7) atany timek € W, Tjohey) (kp) < F <
a partj € {L €D Ti(k) > e°N_ T..(k)} to process where Fp = T+ (k) (kp) + k' minus the sum of aII parts which leave buffer
e € (0.L]. = j*(ky) at any timek € S,, k, < k < k, + k. If expression (17) is
Theorem 2: If the CAOB part servicing policy is used to controlpos't"’e for a giverk’ € W', then more parts arrived at buffgt (k)

the above machine and if; < % for all i € P, then it has buffer the' +1 periods begrnnrng attime, — T}, (ky) than have left
levels that are bounded for ali € W by buffer j*(k,) in thek’ +1 periods beglnnlng at timk,. Hence, there
is at least one part which arrived at buffgr(%,) on or before time

IV. STABILITY ANALYSIS OF THE CAOB PoLicy

in Foenais € kp =T () (kp) + k" which remains in the buffer at timig, + &' + 1
Z;m(lf) <a {(1 -y (k=1)+ )1 — + 77} so thatT}« ) (kp + £ > Tj+(x,)(kp). By the same reasoning, if
er ) 7 (17) is not positive, thefl (i) (ky + k') < Tju(r,) (k). Itis clear
+ Z (2:(0) + L 1) (12) thatTje(x,)(ky + k') = Tje(x,(ky) < k'. We can bound expression
ier (17) by specifying that parts in buffgr (k,) be serviced as slowly
as possible so that
where
i kp=T 4 (xp) (kp)+k'
vy=max¢l—€|1l-— W= Ya;_ (0<vy<1 (13) Z [AJ'*(kp)(k) = Djky) (k + TJ'*(kp)(kl)))] (18)
' i 8 (1 — w;) / k=hp=Tj (1) (Fp)
, in
C:max{i'\_—yl<2b§+1+5i+1>} (14) <Ce||(a-¢(A )(k +l)+bl (e ))
i w i - floor( j*(kp)(k +1- '51'*(kp))) (19)

7; = max {k cWw: Ceil(a,in(k +1)+ bin)

—flo0r(8:(k + 1 — ) > 0}, (15) for all k, + ' € S,. For alli € P, let n; be defined as given

in the statement of Theorem 2. Notice that becam!ébg S for

Proof: ChooseV’(T(k)) = 3., 7:(h). Beginning in a similar all i € P and because we are inherently assuming bl’rat< 00
way to the proof of Theorem 1 we know that (6) holds for CAOB. Nofor @ll ¢ € P n; < oo for all < € P. Then, for allk, + k' € Sp,
tice thatT}- (i, ,,)(kp1) = 0, Ti(kpir) — Tilky) < A, foralli e Lo z(f'sz(kpzjrk Lg <kp>1(kp7 < e ) tHe”."ethfor%W‘PJrg € gt’h .
Pi # 5" (ky), andas(k) < a™(Ti(k) 450 +1 foralli e Prke Vo (ot k) S G+ 1)+, Notice inthe above bound tha

G(p+1) appears rather thaB(p). This is due to the fact that for all
Z. From this and from the defrnrtron of the CAOB policy, we see thatE P i # " (ky), Ti(kpsr) > Ti(ky + ), for all ky + &' € S,.

Siep Tilkpin) < Ticp Tiky) =Ty () (N = 1) Ay Hence e

V(T(kps1)) | V() < (1 -7 ) Sty (20)
(ZV — 1)aljr](kp) '

<V(T(kp)) —eV(T(k 1-—
S V(T (k) = V(T (k) 1= o gttel s

forall k € Z, k > 0, and, hence, for alk € W, k£ > 0. Because
2:(k) < 2:(0) + a3 (k) + !N for all k € W and for alli € P, it

N-1 zr;.a(,t y+1 is clear thaty, . xi(k) < 3, p(2i(0) + a"TL (k) + N 1) <
e Wi,y | 05 (hy) ey a"V (T(k)) + S iep(2:(0) + 5" 4+ 1) which with (20) gives the
_ final result forallk € W, k > 0. O
(N — 1)a'].r)_(k ) Notice that in bounding’ (T'(%)) in (20), that the bound increases
- ‘P

=V(T(ky)) |1 =€ 1-

from 7 to ﬁ + 7 ask — o so that we also characterize the
transient properties of CAOB. A clear-the-oldest buffer (COB) policy
N1 2bi-rl 41 is a special case of the CAOB policy; hence, the bounds above hold
+ i7(kp) + 80k T 1] (16) for this policy also. The COB policy is sometimes called the “first-
L= wjeqey) | 057 kp) come first-clear” (FCFC) policy since it will service the buffer which
contains the part that arrived before all other parts in any of the other
If we definey and( as in the statement of Theorem 2 we see frorhuffers. If parts tend to arrive at the machine such that a group of

(16) thatV (T(kp41)) < AV (T(k,)) + ¢, for all &, € R. Notice parts arriving at one buffer is followed by a group of parts arriving

85 (k) (1 = W k)
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in’
at another buffer and so on (at a low enough frequency), then theleasts!" periods for each part that arrives at buffethat is not

CAOB policy will tend to behave like an FCFS policy. attributable to the input stream burstiness. Similarly, chotjsso
that when the machine is producing parts of typeoutputs parts no
V. STABILITY ANALYSIS OF THE RPS RLICY slower than one part evety periods. As before, let; be the number

We now introduce what we call the RPS policy. Under this pO|IC)Pf periods needed to set uplfor production on buffer P. Assume
the machine is free to choose any nonempty buffer to service at 4Agt for alli € P, ol and &} are integers (this assumption is not
time just so long as it never sits idle (i.e., it is either setting up fdimiting since we can choose the period to be as small as desired).

Theorem 3:If oM < for aII i € P, and the RPS above machine, and

’\(’+1
part servicing policy is used to control the above machine, then
ZZ Lcai(k) < b+ N+1+ Zl L x:(0), for all k& € W, where max{6; + s;
b = ZN b'n ‘ it alh

Proof: Let A(k) be defined so thati(k) = S0\, Ai(k), for )
all - € W. In the worst case in which the machine produces onlytgenzl 2i(k) <+ N+1+ 38, 2i(0), for all k € W, where
single part from any buffer before switching production to a differert = ZL 1 b'n

buffer, it is clear that it can take no longer than+ 1 periods to Proof: Let A(k) =3, p Ai(k) andD(k) = 3. p Di(k) for
produce one part. If we leD(k) = max{D;(k) : i € P}, we see all k € W so that
that 382, D(k) > ﬂoor(’”;#), for all ki, ke € Z, ki < ka. .
H 2
From thls, the definition ofi(%), an_d the assumption o", i € P, Z Ai(k) < floor<l‘° - ]11 + 1) +14+ bln
in the statement of the theorem, it is apparent that Pl s
K’ S %4_1_1_{)”1 (24)
> [A(k) = D(k)] atli
k=0 1 in
. Ak) < (ks — k1 +1 — 4+ N+ D> b 25
i k, Frl b'vn + 1) — floor M1 (21) kzkl 1 )zGZP alfh; zGZP )
- NG+ 5+1
ko—ki+1 ko—ki+1
L +1 ~toor( ¥ 1 22) andyy2, D(k) > floor(22 AEE }) > ity — L foral
541 541 ki, ke € W, ki < ko. Notlce that as in the preV|ous analysis of the
<b+N+1 (23) RPS policy, we have identified the maximum number of periods per

part serviced (i.e., as long as there are parts in any machine buffer, the

and thatzf’:o[ft(k) D)=V ek +1) =, 2:(0), for machine ITIICL,JSI output at least one part e\ﬂiﬁl’%z{ﬁi +s:} periotis).
all K.k’ 11 € Z. Clearly, then 3", ai(k + 1) < b+ N+ 1+ Cleamy 3, [A(k) = D(k)] = 3icp (iK' +1) —2i(0)) < (K +
lel +:(0), forall K, k' + 1€ W. 0O D[Yep |n —W] +N+b+1, forall &' € W. Now, by

Notice that unlike the conditions on stability of the CAF policythe assumptlon in the theorem we see that . (= (k+1)—2;(0)) <
the condition for stability of the RPS policy does not depend o +b+1 or, equivalentlyy,_ , @i(k+1) < b+N+1+43 ., 2:(0),
the processing speed of the machine (of course, we have requifedall ¥ € W. (I
previously that the period length be chosen so that 6, < d; for Notice that while the RPS stability condition in Theorem 4 is more
all i € P). Rather, the condition simply limits the rates of the inpuflexible than the condition in Theorem 3 (in terms of our ability to
streams of the machine. Intuitively, the RPS policy is stable becausssign a machine that can achieve stability by speeding it up), the
it is persistentin that if there are parts in any machine buffer, iinput stream rate constraints are still limited by the maximum machine
will always be either processing parts or setting up to process passtup time, regardless of how fast the machine is. This appears to be
Under the conditions of Theorem 2, several commonly used policigSundamental property of RPS policies. Notice also tha{r]f and
are special cases of the RPS policy and hence are stable becalgge considered to be inverse rate constraints, the stability condition

they are persistent: 1) the first-come first-serve (FCFS) policy; (B} Theorem 4 can be thought of as reducing to the capacity condition
the priority policy (buffers are serviced in a fixed order, but empty§s s, — 0 for all i € P.

buffers are skipped as in [7]), and fixed time policy (nonempty buffers
are serviced for a fixed amount of time). Moreover, policies studied
in [8], such as the “earliest due date” policy, are special cases of VI. STREAM MODIFIER

RPS. ltis interesting to note that in [4] the author was able to ShOWThe “stream modifier” is a network element which consists of a
that FCFS iS Unstable f0r Cel’tain FMS tOpO|OgieS Where there are Wer and a part flow pohcy which Se|ective|y queues incoming parts
setup times. The key to obtaining stability here is that unlike in [4h the buffer or passes them directly through to the output stream
we constrain the rates at which parts may be input to machines (@ use the term “stream modifier” rather than “regulator” simply to
that if applied to a network of machines our results would requiregiphasize that the two are different). In addition, the policy must
stream modifier like in the next section to achieve stable Operatioﬂbcide when to release queued parts into the Output stream. The
The stability conditions for the RPS policy in Theorem 3 ar@urpose of the stream modifier is to alter the maximum rate and
somewhat dissatisfying because we cannot affect the input stregiiximum burstiness of its input stream. Note that the stream modifier
rate constraints by speeding up the machine, and this is contraryidan important element for FMS'’s since it can be used to modify
our intuition. In light of this, we now reformulate the problem bythe streams of parts between machines so thardine FMS can be
altering the way that we look at part arrivals and departures. First gfade stable [3].
all, it is necessary to redefine the period for this analysis. We choosent time k € W, let the number of parts in the stream modifier
the new period and constantg' so that for everyi € P there are buffer bex(k), the number of parts arriving at the stream modifier
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TABLE |
Ey,

oul + pout

be A(k), and the number of parts leaving the stream modifier be
D(k). In addition, leta™, 5", ¢®Ut and»°Ut be real, nonnegative
constants which are used to describe the input and output streams of
the stream modifier. In order to clarify the following analysis, assume :
thata™ and " are integers. We specify the behavior of the input | B = il (Tt + 1)+ 5°%) — b Dl |
and output streams of the stream modifier with respect to constants

a™, 5", OUt and pOUt as follows.

Ef = ceil {a
EEU = ceil (2290 4+ 000) — (k- 1) \

. TABLE 1
1) Forallki ks € W, ki < ko, Y32, A(k) < ceil(a (ks — Bt
ki +1)+b"), 582, D(k) < ceil( @k, — ki +1)+0°U1). i :(ceﬂ (a““ﬂ")’“‘)
= ; EF,, = ceil {26°% 4599 - D(k)
2) For all k' € W, ZI,::O[A(k) — D(k)] < max{(a" - VEET = coil (3% 5 6°0) — D= 1)~ D(R)

a®UY (1 4 1) 4+ 6" — pOULL 1 0 (0)}.
Item 1) simply specifies the input stream constraint for the stream
modifier and how we would like the output stream of the stream
mod?ﬁer to behave. Item 2) is .included asa constraint on stregii ose goal is to define a time. € W which we use later in the
modifier behavior to ensure that its buffer is ligunded. In fact, becaLg‘r‘?alysis. Upon initially entering the procedure, det 0.
2(k+1) = 2(k)+A(k)— D(k) and becaus® ), _,[A(k)—D(k)] = ) , )
z(k' + 1) — 2(0), for all ¥ € W, we see from item 2) that 1) Ifi=0,let i = K otherW|.se, letr; = mi_y — 1
2(k +1) < max{(x(())-{—(a'n —aOUI)(k/+1)+bln —bOUt+ 101, 2) If D(n;) = min(E,,), then find the smallest € W such that
for all &' € W. If we choosea®Ut = 4", then for allk € W,
e(k) < 2(0) + 5" = U4 1, and the stream modifier buffer is 3" D(k) = ceilla®(n; — ¢ + 1) + 54 (28)
bounded. Notice also thatdUt = ¢'" then we can choog@Ut = ¢ k=g
so that the burstiness is completely removed from the output stream.
In this case, if the input stream operates at its maximum rate, then the and letm; = g.
output stream can operate at its maximum rate and the extra bursté) If mi = 0, then l?tk* = 0 and stop.
of parts on the input stream, that by definition will never total more 4) !f D(mi —1) < min(Ep,; 1), then letk.. = m; —1 and stop;

thanb'™, will be stored in the stream modifier buffer. Notice that if 9therW|se, let =i+ 1 and retum to step 1 .
U < 4" then eithen®Ulis infinite or we cannot bound (%) for Notice that the above procedure will always terminatek.Jf=

pin out jng 0 then the entire range of timd$, ¥'] is composed of adjacent
subranges of timegm;, n;], i = 0,1,2,---,Q, whereny = k',
fro =0 ni=mi—1 forall:=1,2,---,Q, and

Egyy = ceil (@t +2) +800) — E; D(n)

J

all k € W. It is also clear that i."" or 5" is infinite anda

OUt are finite, no bound exists far(k) for all k € W.
We now specify a practical policy for the stream modifier whic

we will show satisfies items 1) and 2) by releasing the maximum .

number of parts allowable without violating the second inequality Z D(k) = Ceil(aOUt(ni —mi+ 1)+ bOUt) (29)

at every timek in item 2). For every timek € W, let B, =

, k=m;
{E),E},---,EF}, where Ef is the maximum allowable value of
D(k) such that for all i = 0,1,2,---,Q. Hence, we see thap *_ D(k) =
. 52 ceil(@®n; —m, +1)+5°UY and (because céil)+ceil(b) >
O ceil( @Yk — &' + 1) + »OUL. 26) ceil(a + b)) that 5 D(k) > ceil(a®k + 1) + (Q + 1)p°UY),
i—r Because we have established that our policy obeys item 1), we

see that eithe) or 5°U! must equal zero so thafr_, D(k)
Because the stream modifier cannot violate (26) for &y’ < k. ceil(a®UY(%' + 1) + vOUY. Therefore, S5 (A(k) — D(k)) <

let its policy choose ceil(a'n(k’+1)+b'n)—ceil(aOUt(k’+1)+bOUt) < (a'n—aOUt)(k’+
1) 4+ 6" — 50Uty 1 5o that forD(k') = min(E,/) and k. = 0,
our policy satisfies item 2).

. o ) If k. > 0, then the entire range of timgk. + 1,%’] is composed
(this policy is not implementable because /s~ oo |Ex| — oo of adjoining subranges of timdsi:, ], i = 0,1,2,---,Q, where
below we will show how to modify it so that it is an implementable,n,0 =K, mo = ke + 1 = miy _ 1 for é" i=1,2,--.0
policy). We now must ask_ Wh_ether our policy will satisfy items nd (29') holds for alli = 0,1,2,---,0Q. Similar to before, it
and '2). Because Ogr pollcyf|nﬂl(27)agga.rantees that_(26) .W!|| nelilows thatzz':k*ﬂ D(k) = ceil(aOUt(k’ k) +b0ut). Because
be violated for anyk',k € W, k' < E, it is clear that it satisfies ., A(k) — D(k)) < 0, we see that

the second inequality in item 1) because (26) is more strict thé:“:()( ) -

the second inequality in item 1). Next consider item 2). Choosek,

A

D(k) = min (Ex U {A(k) + 2(k)}) (27)

k..

any timek’ € W. If D(%') = min{E, U {A(F) + 2(k")}} = N T ALY (L

A(K") + =(k"), then because (k' + 1) = 0 (the stream modifier ;<A(k> D) = ;(A(L) D)

buffer is cleared by the policy’s choice d(%")), it is clearly the o

case thaEQZ;O(A(k) — D(k)) = —z(0) so that item 2) holds. If, on + Z (A(k) = D(k)) (30)
the other handD (k') = min{Ey U{A(K") +2(k')}} = min(Ey/), b=kl

then from the definitions of’}, in (26) and the stream modifier policy ¥

in (27), there is somé; € W, k, < I/, such thaty"}_, D(k) = < S (A(k) - D()) (31)

ceil(a® %’ — &, +1) +6°UY). Below we define a recursive procedure h=h 41
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< ceil(ai“(k’ — k) + bi“) Comments on “A New Controller Design
_ Ceil(a,OUt(:k’ — )+ bout) (32) for a Flexible One Link Manipulator”
< (a'n - aOUt)(k' — ki) + !N — bOUt-i— 1 Susy Thomas and B. Bandyopadhyay
(33)

in outy ;. in _;out
< (a @ 1) +b P (34 Abstract—In the above-mentioned papet a variable structure sliding

. o mode controller (VSSMC) design for the tip position control of a flexible
so that forD(k') = min(E)) andk. > 0, our policy satisfies item one-link manipulator has been presented, where a switching line con-
2). Hence, items 1) and 2) are satisfied by our policy. structed from the tip position and its derivative was employed for the

We now show how to recursively calculalg for all k € . From design. The cla_irglwas that ifdthe slope of thri]_s IiIr_1e is r(‘:hose_ﬂ positive and

. the system variables are made to stay on this line, they will converge to

_(26)’ we can form Taples ! ankq . Fro,?,] theoLorm of the exprelssmri%ro exponentially, thus yielding a stable system in sliding mode (SM). The

in Tables | and II, notice thak;,, = Ey +a~ — D(k) forall k', purpose of this comment is to show that the choice of a positive constant
k' < k, so thatmin(Fjq; — {]E/’:L1 }) = min(Ey) + aOut _ D(k). as the slope for this switching line will not guarantee the stability of the
It is clear, then, that if we define the set system in SM because, in view of the functional relationship of the tip

position with the generalized coordinates of the system through the mode

shape functions, what is presented as a switching line is in fact a switching

Po— [in( B out TS hypersurface. Hence, the stability of the system in SM is guaranteed only
i {min(Ey—1) +a Dk = 1)} if the motion on this hypersurface is asymptotically stable. A positive
u {Ceil(aom—i— bOUI)} (35) value for the slope of the switching line employed by Qian and Ma will

not guarantee this stability because variations in the mode shape functions
due to varying paylpad_ conditions or other di_stt_erances at the tip will
forall k € W, k # 0 and if we letE, = {Ceil(aom—{— bOUt)}, lead to a varying switching surface. These variations can be such that the

. N - . resulting sliding motion becomes unstable. Also, the varying switching
thenmin(Ey) = min(Ex). Hence, we can define our policy for all g, ;e implies that the controller will fail to maintain sliding mode

ke W asD(k) = min{E, U {A(k) + 2(k)}}. motion.

Index Terms—Flexible manipulator, sliding mode, variable structure

control.
VIlI. CONCLUDING REMARKS

We have presented a new stability analysis of the CAF policy

focusing on its transient behavior, shown that the CAOB and RPS I. INTRODUCTION

policies are stable, and provided a stable implementation for a stream . .

modifier. We have considered only the deterministic case througho_uf:ror.n (12) of the ab_ove-m_e_ntloned papethe funptlonal rela_l-

the paper. It would be interesting to study a stochastic version of tH%ns_hlp _between the_tlp posm_on and the ger_lerahzed coordinates

problem, for example for the case of failure-prone machines. Also,ol(t)nSIderIng only the first two vibratory modes is

is an important open question whether the policies proposed in this yrr = Lgo + 61 (L)q1 + d2(L)qe (1)

paper (and others) can help improve the performance of an FMS.
where ¢; denotes the generalized coordinates an@L) the mode
shape functions of the flexible arm.
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