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Path-Clearing Policies for Flexible Manufacturing Systems

Kevin Burgess and Kevin M. Passino

Abstract—In practical manufacturing settings it is often possible to
obtain, in real-time, information about the operation of several machines
in a flexible manufacturing system (FMS) that can be quite useful in
scheduling part flows. In this brief paper the authors introduce some
scheduling policies that can effectively utilize such information (something
the policies in [1] do not do) and they provide sufficient conditions for
the stability of two such policies.

Index Terms—Boundedness, manufacturing systems, scheduling, sta-
bility, traffic control.

I. INTRODUCTION

In this paper, we consider the use of global information for sched-
uling flexible manufacturing systems (FMS) of the type considered in
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Fig. 1. Example FMS with paths labeled.

[1] and later in [2]–[4]. This paper is unique with respect to this body
of work in that it provides an analysis of a particular class of “global,”
rather than “local,” scheduling policies. The primary advantage of an
FMS composed of individual machines, each with its own scheduling
policy that utilizes only local information, is that the individual
machines need not communicate with one another so that real-time
implementation is simplified. However, for many modern FMS’s, it is
quite realistic to allow intermachine communications. Here, we seek
to exploit this fact by developing scheduling policies that incorporate
information from other parts of the network that can be useful
in making efficient scheduling decisions. In using more “global”
information, we are careful to minimize the level of necessary
communications so that our global policies are implementable in
real-time, just as the local policies mentioned above.

In this work, which we view as only a first step toward solving the
problem of how to use global FMS information to achieve high-
performance scheduling, we define and analyze a class of global
scheduling policies that we call path-clearing (PC) policies. Similar to
the way in which local policies select a buffer to service from among
the buffers of a single machine, PC policies select from among a
set of paths to service. A path is a set of topologically consecutive
buffers which can be serviced simultaneously. In general, a PC policy
will choose from amongsetsof paths to process. When a PC policy
chooses a set of paths to process, all buffers in each path in the set
are processed simultaneously (hence, all paths in a set must be able
to be processed at the same time). Once a PC policy begins servicing
a set of paths, servicing continues until all paths in the set are clear
of parts.

II. SYSTEM DESCRIPTION AND NOTATION

Let there beN “paths” within the FMS. The three important
attributes of any path are: 1) all of its buffers may be serviced at
the same time; 2) its buffers are directly connected in the network;
and 3) if a buffer is on one path it cannot be on another path, and
all buffers must be on a path. For example, in the network of Fig. 1
we can define four paths which begin and end as indicated. Notice
that the beginning and end of a path are defined as the first and last
buffer in the path, respectively. Let each buffer be referred to by
a coordinate(i; j), wherei is the path number andj is the buffer
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number along the path. For example, in the FMS of Fig. 1 the buffer
that ends path 4 is referred to by coordinate (4,2). LetQ be the set of
paths which originates at network inputs and letR be the set of paths
which originates at network re-entry points. For the FMS of Fig. 1,
Q = f1; 2; 3g andR = f4g. Note that for a fixed FMS topology
there can be many different choices for the set ofN paths (indeed it
is an important research direction to determine the best set of paths).

Let the level of buffer(i; j) at time t be xi;j(t), and letX(t) =
fxi;j(t)g be the set of all of the buffer levels at timet. Let ai be
the part arrival rate (in parts per unit time) at network input buffer
(i; 1); i 2 Q. For convenience, ifi 2 R, we let ai = 0. Let si be
the maximum setup time of all the buffers on pathi. For example,
if for path 1 it takes two time units for machine A to configure
itself to process parts from buffer (1,1) and it takes one time unit
for machine C to configure itself to process parts from buffer (1,2),
then s1 = 2. Let �i be the minimum processing rate for buffers on
pathi. All buffers in pathi are serviced at rate�i and the sum of the
transport delays between buffers on pathi (including the transport
delay between the last buffer in pathi and the head buffer of a
downstream path, if applicable) isDi. LetPi be the number of paths,
including i, that a part in buffer(i; 1) will traverse before exiting the
FMS. For example, in the FMS of Fig. 1,P1 = 2 andPi = 1 for
i = 2; 3; 4. If Pi > 1, defineHi to be the path that is fed by pathi.
For example, in the FMS of Fig. 1,H1 = 4.

Suppose that we letSj denote a set of paths such that all paths in
the setSj can be serviced simultaneously. LetS = fSj : 1 � j �
Mg be the set of such sets of paths for an FMS. We require that the set
S satisfies the following condition: for all pathsi 2 f1; 2; � � � ; Ng,
there is somej 2 f1; 2; � � � ;Mg such thati 2 Sj (each path is in
at least oneSj). For example, in the FMS of Fig. 1, we can define
S as S = ff1g;f2; 3g; f3; 4gg, whereS1 = f1g; S2 = f2; 3; g,
and S3 = f3; 4g. We must emphasize that for a given FMS there
may be many ways to define theSj andS. The results of this paper
are for any one that satisfies the above constraints (it is an important
direction to determine the best choice of theSj that make upS).

The production scheduling policies for the FMS that we now
consider are what we will call PC policies. A PC policy is one in
which a production run (i.e., a time period during which parts from a
particular set of buffers are processed) is begun by choosing a set of
pathsSi 2 S. All buffers on paths inSi are serviced until the head
buffer, (j; 1); j 2 Si, of every path inSi is clear. At that point, the
head buffers are no longer serviced and the production run continues
until all buffers, except possibly the head buffers, in the paths ofSi
are empty. In the following analysis, we will assume that all buffers
except the head buffers are initially empty (if this is not true initially,
it will be after each path has been serviced once). For convenience,
we will refer to the level of the head buffer of pathi; (i; 1) at timet
asxi(t). The goal of the following analysis is to identify PC policies
which are stable (i.e., buffer levels remain bounded for all time) and
to obtain bounds on the buffers of FMS controlled by such policies.

III. PATH CLEAR-A-FRACTION POLICY

The first PC policy that we consider is the PCAF (path clear-a-
fraction) policy. This policy is a generalization of the local CAF
policy for single machines, introduced in [1]. We define the PCAF
policy by specifying how it chooses the next set of paths to service,
upon the ending of a production run. Define a functionV (X(t))
as V (X(t)) N

i=1 Pixi(t). Notice thatV (X(t)) is the sum of
all parts in the head buffers of all paths in the network (at the
end of a production run, there can be no parts in buffers that are
not head buffers) weighted by the number of paths that the parts
must traverse, after and including the path that they are currently in,
before exiting the FMS. If a scheduling decision is to be made at

time t, the PCAF policy chooses to service a set of pathsSi such
that

j2S
xj(t) � �V (X(t)) for some sufficiently small, fixed

� > 0. We must choose� small enough so that regardless of the
distribution of parts at the end of any production run, there is some
i 2 f1; 2; � � � ;Mg that satisfies the above selection criterion. It is
easy to identify�� > 0 such that for any� � �� there is some
i 2 f1; 2; � � � ;Mg such that the selection criterion is satisfied. For
instance,�� = 1

N �P
, where �P = maxi Pi will work.

In summary, during a production run, the PCAF policy completely
clears all parts from each path processed (except for parts which may
accumulate at the head buffers after processing has stopped at the
head buffers). Notice that because all buffers in a path are serviced
at the minimum processing rate for the path, parts never accumulate
at any buffers in the path other than the head buffer. In other words,
along each individual path, parts arrive at downstream buffers at a
rate that is no greater than the rate at which they can be processed.
This is sometimes referred to as “pipelining” parts. Next, we shall
develop conditions under which the PCAF policy is stable.

To begin with, we define several parameters that will be used in
the stability analysis. First, define a set of timesT = ft0; t1; t2; � � �g
where t0 is the FMS start-up time and beginning of the first
production run,t1 is the end of the first production run and beginning
of the second production run, and, in general,ti is the end of
production runi and the beginning of production runi + 1. Let
maxfsj : j 2 Sig be denoted by�si; maxfDj : j 2 Sig by �Di;

maxf�j : j 2 Sig by �� i;minf�j : j 2 Sig by � i;maxfaj : j 2 Sig
by �ai; maxf�si : 1 � i � Mg by �s, andmaxf�ai : 1 � i � Mg
by �a. Let us choose an arbitrary timetp 2 T . Let us assume
that the PCAF policy has chosen to service buffers in the paths
of Si during the production run beginning at timetp. For every
i 2 f1; 2; � � � ;Mg, define a constant�i; 0 < �i � 1, such that at
any time tp; maxfxj(tp) : j 2 Sig � �i j2S

xj(tp). Notice
that �i follows from the topology of the FMS. In many cases,
we may have to take�i = 1 becausejSij = 1 or because the
topology of the FMS does not allow for�i < 1 in general (note
that if an �i < 1 cannot be found then�i = 1 will suffice for
the stability analysis below, no matter what FMS topology is being
considered). As an example of a situation in which we can take
�i < 1, consider pathsSi = fm;ng � Q, wherem 62 Sj and
n 62 Sj for all j 2 f1; 2; � � � ;Mg; j 6= i. Because pathsm and
n were both last cleared at the same time,xm(tp) = amt

0 and
xn(tp) = ant

0, for some t0 > 0. From the above definition of
�i, we see that�i = maxf

x (t )

x (t )+x (t ) ;
x (t )

x (t )+x (t )g. Hence,
�i = maxf a

a +a
; a

a +a
g: Generally, it is desirable to find an

�i that is as small as possible as the conditions for stability then
become less restrictive and the bounds obtained on buffer levels
become tighter, as can be seen by the following stability result.

Theorem 1: Let F (t) be a function that returns the integer number
of production runs that have been completed during the time interval
[t0; t]. If, for all i 2 f1; 2; � � � ;Mg; �ai < � i, and

�i
j 62S

Pjaj + j2S
(Pj � 1)aj

� i � �ai
< 1

then the PCAF policy is stable. Furthermore, if
 = maxf
ig and
� = maxf�ig

N

i=1

Pixi(t) � 

F (t)

V (X(t0))�
�

1� 


+
�

1� 

+

N

i=1

Pi�s�a
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where

�i =
�si + �Di

1� �a
� j 62S ;j2Q

Pjaj +
j2S

(Pj � 1)aj +
j2S

Pj �D
i
aj


i = 1� � 1� �i
j 62S

Pjaj + j2S
(Pj � 1)aj

� i � �ai
:

Proof: We first bound the length of the production run beginning
at tp in terms of

j2S
xj(tp) by a value which we shall call�p.

There are four factors which are summed to form�p: 1) a bound
on the maximum amount of time to clear parts in any head buffer of

a path inSi;
� x (t )

�
; 2) a bound on the maximum amount

of time to clear parts which arrive at any head buffer of a path in

Si during the production run,�a �

�
; 3) the maximum setup time for

any buffer in the paths inSi; �si; and 4) the maximum total transport
time of any of the paths inSi; �Di. Hence

�p �
�ai�p + �i j2S

xj(tp)

� i
+ �si + �Di

=
�i

x (t )

�
+ �si + �Di

1� �a
�

:

Next we boundV (X(tp+1)) in terms of V (X(tp)). In order to
accomplish this, we consider the contribution toV by several subsets
of S. First, notice that

j2S

Pjxj(tp+1) �
j2S

Pjxj(tp)�
j2S

Pjxj(tp)

+
j2S

Pj �D
i
aj :

This is because all paths inSi are cleared during the production run
and because some parts may accumulate at the head buffers during
any part transport time before the end of the production run. Next,
notice that

j 62S ;j2Q

Pjxj(tp+1) �
j 62S ;j2Q

Pjxj(tp)

+
j 62S ;j2Q

Pj�paj :

This is because all paths not inSi that are fed by network inputs
have their buffer levels grow at the rate of part arrival during the
production run. LetH�

S be the set of all paths fed by paths inSi so
thatH�

S = fj = Hk : k 2 Si; Pk > 1g. Then we see that

j2H

Pjxj(tp+1) �
j2H

Pjxj(tp)

+
j2S

(Pj � 1)[xj(tp) + �paj ]:

This is because a path which is fed by some pathj 2 Si has its
head buffer increase during the production run by no more than
xj(tp) + �paj , a bound on the total number of parts processed
through pathj during the production run. Notice that thePj�1 term
in the final sum is zero if pathj feeds a network output. Finally,
notice that

j 62S ;j2R

j 62H

Pjxj(tp+1) =
j 62S ;j2R

j 62H

Pjxj(tp):

This is because paths not inSi that are fed neither by network inputs
nor paths inSi have their head buffers remain unchanged during the

production run. If we sum the four preceding (in) equalities, we see
that

V (X(tp+1)) � V (X(tp))�
j2S

Pjxj(tp)

+
j2S

Pj �D
i
aj +

j 62S

Pj�paj

+
j2S

(Pj � 1)[xj(tp) + �paj ]:

Manipulating the above expression and using the bound on�p, we
see that an upper bound onV (X(tp+1)) is

V (X(tp))�
j2S

xj(tp) +
�i j2S

xj(tp)

� i � �ai
+

�si + �Di

1� �a
�

�
j 62S

Pjaj +
j2S

(Pj � 1)aj +
j2S

Pj �D
i
aj

= V (X(tp)) + �i �
j2S

xj(tp)

� 1� �i
j 62S

Pjaj + j2S
(Pj � 1)aj

� i � �ai

� V (X(tp)) + �i � �V (X(tp))

� 1� �i
j 62S

Pjaj + j2S
(Pj � 1)aj

� i � �ai

= 
iV (X(tp)) + �i

where

�i =
�si + �Di

1� �a
� j 62S

Pjaj +
j2S

(Pj � 1)aj +
j2S

Pj �D
i
aj

and


i = 1� � 1� �i
j 62S

Pjaj + j2S
(Pj � 1)aj

� i � �ai
:

Due to the sufficient condition of Theorem 1,0 < 
i < 1. Notice that
the sufficient condition of Theorem 1 is satisfied if� i is sufficiently
large with respect to�ai for all i 2 f1; 2; � � � ;Mg. If we let 
 =
maxf
i : i = 1; 2; � � � ;Mg and � = maxf�i : i = 1; 2; � � � ;Mg,
we see that for any timetp 2 T; V (X(tp+1)) � 
V (X(tp))+�. We
can solve this first-order difference inequality to yieldV (X(tk)) �

k(V (X(t0))�

�

1�
 )+
�

1�
 . Choose anytp 2 T such that the buffers
of pathSi are serviced during the production run beginning at time
tp. It is clear that in the closed time interval[tp; tp+1], the maximum
of V (X(t)) occurs either attp; tp+1, or at a pointt0 which occurs
sometime during the span of time during which servicing begins on
the head buffers of paths inSi. Specifically,tp + si � t0 � tp + �si.
Consequently, if we let�s = maxf�si : i = 1; 2; � � �Mg, we see that
for all t � t0

V (X(t))� 

F (t)

V (X(t0))�
�

1� 

+

�

1� 

+

i2Q

Pi�sai:

Further, we see from the definition ofV (X(t)) that

N

i=1

Pixi(t) � 

F (t)

V (X(t0))�
�

1� 

+

�

1� 

+

N

i=1

Pi�s�a

for all t � t0 so that clearly we have boundedness.
Notice that while the condition for the stability of the PCAF policy

is not as intuitive as the capacity condition of the CAF policy, it is,
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in some sense, a generalization of the capacity condition because, for
eachi 2 f1; 2; � � � ;Mg, it requires that the rate of growth of some
fraction (�i) of the growth ofV during a production run be less than
the rate at whichV is decreased during the production run. Notice
that the PC policies do not truly require global information (i.e., all
buffer levels and the status of processing at each machine). Because
of the manner in which a PC policy mandates part pipelining by
synchronizing production in consecutive machines, the policy only
needs to know: 1) when each head buffer has been cleared during
a production run (so that the policy can stop production at the head
buffers when they all have been cleared); 2) when all paths currently
being serviced are empty downstream from the head buffers (so that
the policy can begin a new production run); and 3) the buffer levels
of all head buffers at the end of each production run (so that the
policy can select a new set of paths to service). Similar to the way in
which the clear-largest-buffer (CLB) policy is a special case of policy
CAF [1], we can define the path clear-largest-buffer (PCLB) policy
as a special case of PCAF. The PCLB policy chooses to process the
paths in the setSi; i 2 f1; 2; � � � ;Mg, with the largest sum of parts.
More precisely, PCLB chooses at timetp to process paths of some
setSi; i 2 f1; 2; � � � ;Mg, such that

j2S
xj(tp) � j2S

xj(tp),
for all q 2 f1; 2; � � � ;Mg; q 6= i. PCLB is considered to be a special
case of PCAF because at each time PCLB picks anSi to process,
this Si could have also been chosen by PCAF. Due to this fact,
Theorem 1 also applies to the PCLB policy. The primary drawback
of the above analysis is the conservative nature of the sufficient
condition for stability. The fact is that many FMS which do not satisfy
the condition are indeed stable. In the next section, we consider a
priority PC policy that for a large number of FMS topologies will
alleviate the conservative nature of the stability condition and produce
much sharper buffer bounds than the PCAF analysis.

IV. PATH PERIODIC CLEARING POLICY

The scheduler that we now describe is inspired by the observation
that when a PC policy is allowed to control an FMS, it often falls
into a periodic pattern of servicing choices. This periodicity often
occurs whether or not the resulting FMS is stable. What we call the
Path Periodic Clearing (PPC) Policy will enforce a given periodic
service schedule. There are several ways to view such a policy. In
some cases, intuition may be used to specify a periodic policy which
will perform well. In other cases, service periods which perform well
may be identified by simulation or actual implementation. Finally, we
may identify a stable service period and use it as a “stabilizing safety
net” for some other PC policy that we cannot rigorously guarantee
is stable.

For our stability analysis, we begin by specifying a special model
of the FMS being considered. Lety(p) be the vector of the head
buffer levels at timetp so that

y(p) = [y1(p); y2(p); � � � ; yN(p)]
T

= [x1(tp); x2(tp); � � � ; xN (tp)]
T
:

The key to our analysis in this section is the fact that we can write
y(p+1) = Ai;jy(p)+ bi;j for someAi;j 2 IRN�N

[0;1) andbi;j 2 IRN

(IRN�N

[0;1) is the set of all realN � N matrices with nonnegative
entries). The subscript “i; j” in the above expression denotes that
paths in the setSi are serviced during the production run beginning
at time tp and that pathj 2 Si is a critical path. In calling pathj a
“critical path,” we mean that it is the last of the paths inSi to have
its head buffer cleared during the production run (i.e., when the head
buffer of pathj is cleared, processing ceases at all of the head buffers
of paths inSi). Let ni be the number of possible critical paths in
Si. If j is the critical path (ties are resolved arbitrarily) and paths

in Si are serviced during the production run beginning at timetp,
we can write�p, the time it takes to complete the production run
begun at timetp, as

�p =
yj(p)

�j
+
aj(�p �Dj)

�j
+ sj +Dj

=

y (p)�a D

�
+ sj +Dj

1�
a

�

=
yj(p)

�j � aj
+
sj +Dj �

a D

�

1�
a

�

: (1)

Notice that this expression for�p is similar, but not exactly the same
as, the expression for�p in the PCAF analysis. The difference arises
because this is an exact expression for�p, where the expression in
the PCAF analysis is an upper bound.

Let [Ai;j ]m;n denote the element in rowm and columnn of
Ai;j , and let [bi;j ]m denote elementm of bi;j . We now describe
how to buildAi;j and bi;j for an FMS of arbitrary topology. First,
considerm 2 Si. Because all paths inSi are cleared, except for parts
which arrive in the time segment of length�Di between the end of
head buffer servicing and the end of the production run, we see that
[Ai;j ]m;n = 0; n 2 f1; 2; � � � ; Ng and [bi;j ]m = �Diam. Secondly,
considerm 62 Si; m 2 Q (i.e., pathm is not being serviced and is
fed by a network input). Clearly,ym(p + 1) = ym(p) + am�p so
that if j is the critical path and we use (1)

[Ai;j ]m;n =

1; n = m
a

t �a
; n = j

0; otherwise

and

[bi;j ]m = am
sj + �Di �

a �D

�

1�
a

�

:

Thirdly, considerm 2 H�

S with Hq = m; q 2 Si (i.e., pathm is not
being serviced, but is fed by pathq that is being serviced). Because
m is fed by q 2 Si, we see thatym(p + 1) = ym(p) + yq(p) +
aq(�p � �Di). Hence, ifj is the critical path and we use one,

[Ai;j ]m;n =

1; n = m

1; n = q and q 6= j
a

t �a
; n = j and q 6= j

1 +
a

t �a
; n = q and q = j

0; otherwise

(note that the second and third lines correspond to the case in which
the path which feeds pathm is not the critical path and that the fourth
line corresponds to the case in which the path which feeds pathm

is the critical path) and

[bi;j ]m = aq
sj + �Di �

a �D

�

1�
a

�

� �Di
:

Finally, considerm 62 Si; m 2 R, andm 62 H�

S (i.e., pathm is not
being serviced and is fed neither by a network input nor by a path
which is being serviced). Because pathm is fed neither by a network
input nor by some path inSi, it is clear thatym(p + 1) = ym(p)
so that

[Ai;j ]m;n =
1; n = m

0; otherwise

and [bi;j ]m = 0.
In the following, we shall letk�k denote the vector two-norm or the

matrix norm induced by the vector two-norm:kxk = ( N

i=1 x
2
i ) ;
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x 2 IRN
; kAk = maxkxk=1 kAxk; A 2 IRN�N , and we shall let

�(A) denote the set of eigenvalues of the matrixA 2 IRN�N . Next,
we formally specify the PPC policy. To do this, we specify an ordered
list, �, of lengthN�, whose members are elements off1; 2; � � � ;Mg.
The elements of� are referenced by�(1); �(2); � � � ; �(N�). The list
� specifies one period of a periodic servicing sequence. For example,
once the PPC policy is activated, the periodic servicing sequence
is S�(1); S�(2); � � � ; S�(N ); S�(1); S�(2); � � � ; S�(N ); � � �. Of course,
our intuition tells us that a necessary condition for the periodic
servicing sequence to produce stable operation is that the sequence
contain at least one occurrence of eachSi; i 2 f1; 2; � � � ;Mg.

Let the notation m

i=n;�1A�(i); n � m, whereA�(i) denotes
a particular square matrix for alli 2 fm;m + 1; � � � ; ng, denote
the productA�(n)A�(n�1) � � �A�(m+1)A�(m). Let t0 be the time at
which the PPC policy is initiated. Using the model developed above,
we can write

y(1) = A�(1);j y(0) + b�(1);j

y(2) = A�(2);j y(1) + b�(2);j

= A�(2);j A�(1);j y(0) + A�(2);j b�(1);j + b�(2);j

...

y(N�) =

1

i=N ;�1

A�(i);j y(0) + b�(N );j

+

N �1

i=1

i+1

k=N ;�1

A�(k);j b�(i);j

whereji denotes the critical path for the production run beginning
at time ti.

There aren� n�(1)n�(2) � � �n�(N ) ways in which the func-

tions of matrices 1
i=N ;�1A�(i);j and b�(N );j +

N �1
i=1

( i+1
k=N ;�1A�(k);j )b�(i);j might be formed. Notice that

ni is the number of different critical paths that can feasibly re-
sult when paths inSi are serviced. We form the setsA�

fA�1; A
�
2; � � � ; A

�
n g andb� fb�1; b

�
2; � � � b

�
n g to contain all possible

formations of the matrix functions. This completes the definition of
the PPC policy and the associated FMS model.

In what follows, we derive stability conditions and buffer bounds
for FMS’s that satisfy different topological conditions. We first
consider an important class of systems with the topological property
thatni = 1 for all i; 1 � i �M . Notice that this condition is satisfied
by systems for whichjSij = 1 for all i; 1 � i � M , and that it is
also effectively satisfied by systems in which anySi with jSij > 1
contains only paths which are fed by network inputs. The last part
of the previous statement is true because in setSi with jSij > 1
which contain only paths which are fed by network inputs, after the
initial production run, the critical path for all future production runs
is determined by the fixed input and processing rates of the paths of
Si. Two examples of FMS withni = 1 are certain types of re-entrant
lines and a feedforward line. In all systems withni = 1 for all i;
1 � i � M , the setsA� andb� each contains just one element,A�1
andb�1, respectively. LetA A�1 andb b�1. In terms ofA andb,
then, we have the iterative relationy((k + 1)N�) = Ay(kN�) + b.

Theorem 2: If ni = 1 for all i; 1 � i �M , and ifmax(j�(A)j) <
1, then the PPC-controlled FMS is stable. Furthermore,y(kN�) =
Aky(0) + ( k�1

i=0 A
i)b and limk!1 y(kN�) = (I � A)�1b:

Proof: That y(kN�) can be written asy(kN�) = Aky(0) +
( k�1

i=0 A
i)b is easily shown via induction on the iterative relation

y((k + 1)N�) = Ay(kN�) + b. Given this, it is easy to see that
limk!1 y(kN�) = (I � A)�1b, because: 1)limk!1 Ak = 0 and

2) 1
i=0 A

i = (I � A)�1. Hence, the system is stable because
k(I � A)�1kkbk <1.

Notice that the “bounds” provided by this result are actually exact
characterizations of FMS behavior. In this case, we do not need to
resort to norm-based buffer bounds. Notice also that the result is
only valid once in everyN� times. In order to find the behavior
at all timesk, we must formN� different A and b matrices and
compute the behavior for each set. Each of theA and b matrix
sets should correspond to the length-N� service period starting at
a different point. For example, if the original service period isS1;

S2; S3, we need to calculate three different sets ofA andb matrices,
with one corresponding to each of the following periods:S1; S2; S3;

S2; S3; S1, andS3; S1; S2. Next, notice that it is always possible to
define theSi so thatni = 1 (e.g., choose theSi so thatjSij = 1 for
all i). However, from a performance (and stability) perspective, this
is clearly not always the best choice. For example, an FMS that, due
to its topology, requires the defining of many short paths (such as the
cellular structure I FMS of Section V) may perform badly or even
become unstable if we takejSij = 1 for all i. These types of FMS
generally require more than a single path to be processed at once.

We are now left to consider systems withni > 1 for some i;
1 � i � M . Ideally, we would like to show that the sequence of
critical paths of such systems eventually falls into periodic behavior.
Such a result would eliminate the need for Theorem 3 below. While
we have not been able to produce a simulation in which this eventual
periodicity does not occur, we have not yet been able to prove that
it must occur. In any case, we can find stability results for systems
of this type; however, the resulting bounds are not nearly so sharp
as the bounds in theni = 1 case.

Before presenting the stability result, we define some conve-
nient notation. For a fixed product of matrices from the setA�;

1
i=r;�1A

�
�(i), where�(i) is an index into the setA�, we define the

corresponding sum of productsto be the vectorb that is appropriate in
the iterative relationy((k+1)rN�) = ( 1

i=r;�1A
�
�(i))y(krN�)+b.

In other words,b = b��(r) +
r�1
i=1 (

i+1
j=r;�1A

�
�(j))b

�
�(i).

Theorem 3: Suppose that there exists integerr > 0 such that any
product ofr matrices from the setA� has matrix two-norm less than
one. LetA denote ther-length product with the largest norm, and
let b denote the corresponding sum of products. The PPC-controlled
FMS is stable and

ky(krN�)k � kAkkky(0)k+

k�1

i=0

kAkikbk

so thatlimk!1 ky(krN�)k �
kbk

1�kAk .
Proof: From the definitions ofA and b, it is clear that we

can write ky((k + 1)rN�)k � kAkky(krN�)k + kbk. By apply-
ing induction to the above iterative relation, it easily follows that
ky(krN�)k � kAkkky(0)k + k�1

i=0 kAk
ikbk. Because we have

required thatkAk < 1, it is also apparent thatlimk!1 ky(krN�)k

� kbk
1�kAk

<1.
The conditions of Theorem 3 are not completely satisfying for

two reasons. First of all, we must check all length-r multiplicative
combinations of theA�i matrices, regardless of whether all of the
combinations are physically realizable. Secondly, we would like to
avoid a norm-based result. A more exact characterization of FMS
behavior, similar to that in Theorem 2, would require showing that
after the PPC policy is enforced that eventually the resulting sequence
of critical buffers becomes periodic. This appears to be a very difficult
problem. Next, notice that even though the PPC policy prescribes a
periodic service schedule, it is still a feedback policy in that it must
know when production runs have been completed. Next, notice that
for eitherni = 1 or ni > 1, it may be the case that the production
engineer may not be aware of a good choice of service period for
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the PPC policy. In this case, one approach is to identify a stable
service period and use it as a supervisor for another, more intuitive
(e.g., PCLB) policy. As a supervisor, the purpose of the PPC policy is
simply to guarantee stability of the system. In practice, the supervising
PPC policy is invoked when some measure of system performance
(e.g., the sum of the buffer levels) exceeds some preset threshold
(i.e., once the sum of FMS buffer levels grows beyond some preset
limit, a predefined, stable periodic service sequence is implemented).

Next, note that in simulation studies for the policies introduced here
we have uncovered some interesting points [5]. First, in attempting
to formulate a general rule of thumb for determining the suitability
of PC control for a given FMS, we make the following observation:
The less variance there is among processing rates along individual
paths, the better PC policies will perform (with respect to distributed
policies). The reason for this is that because PC policies mandate that
all buffers on a given path be processed at a single rate (the minimum
processing rate of all buffers on the path), any buffers on the path that
are able to be processed at a faster rate than the minimum processing
rate are constrained to be processed at a lower rate than they would
be processed at in a distributed control scheme. In general, then, for
systems with very high processing rate “skew” along individual paths,
we may be wiser to choose a distributed policy. However, it may be
possible to choose paths intelligently so as to minimize the adverse
affects of processing rate skew.

Finally, we would like to emphasize that PC policies will not
yield stability for all FMS that would be stable under a distributed
scheduling approach where the FMS satisfies a capacity constraint.
For example, if there is a high amount of “processing rate skew” along
the paths PC policies may not be stable and a distributed policy may
be.
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Decentralized -Controller Design
for Nonlinear Systems

Guang-Hong Yang, Jianliang Wang, C. B. Soh, and James Lam

Abstract—This paper considers the decentralizedH1-controller design
problem for nonlinear systems. Sufficient conditions for the solution of
the problem are presented in terms of solutions of Hamilton–Jacobi
inequalities. The resulting design guarantees local asymptotic stability
and ensures a predeterminedL2-gain bound on the closed-loop system.

Index Terms—Decentralized control, Hamilton–Jacobi inequality, non-
linear H1 control, nonlinear system.

I. INTRODUCTION

In the area of the decentralized control of large scale systems,
numerous important advances have been accomplished in the past two
decades [9], [11]. Recently, the decentralizedH1-control problem
for linear systems has been considered in [7], [8], [10], and [13].
In particular, Veilletteet al. [13] presented a decentralizedH1-
controller design procedure in terms of solutions of the modified
algebraic Riccati equations, and the result has also been extended to
discrete-time linear systems [7]. In [8], another sufficient condition
for the decentralizedH1-control problem is derived, under which the
decentralized solution can be constructed from the central controller
solution from the standardH1-control theory in [2].

In recent years, the problem of central controller design to solve the
H1-control problem (or in short, the centralH1-control problem)
for nonlinear systems has been extensively investigated by several
authors [1], [3]–[6], [12]. In particular, Van der Schaft [12] has shown
that the solution of theH1-control problem via state feedback can
be determined from the solution of a Hamilton–Jacobi equation (or
inequality), which is the nonlinear version of the Riccati equation
for the corresponding linearH1-control problem. In the case of
measurement feedback, a set of sufficient conditions has also been
given in [1], [4], and [6] in terms of the solutions of a pair of
Hamilton-Jacobi inequalities, and the necessity of these sufficient
conditions has been discussed in [1] and [5].

In this paper, we consider the decentralizedH1-control problem
for nonlinear systems by using the Hamilton–Jacobi inequality ap-
proach. The results given in this paper are extensions of existing
results on the linear decentralizedH1-control problem [13], [8] and
nonlinear centralH1-control problem [4]. The paper is organized
as follows. The system description and problem statement are given
in Section II. The main results are given in Section III, followed by
a numerical example in Section IV to illustrate the design proce-
dure and the effectiveness of the proposed method. Finally, some
concluding remarks are given in Section V.
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