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In this work, which we view as only a first step toward solving the
problem of how to use global FMS information to achieve high-
performance scheduling, we define and analyze a class of global
scheduling policies that we call path-clearing (PC) policies. Similar to
the way in which local policies select a buffer to service from among
the buffers of a single machine, PC policies select from among a
set of pathsto service. A path is a set of topologically consecutive
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will choose from amongetsof paths to process. When a PC policy
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to be processed at the same time). Once a PC policy begins servicing
a set of paths, servicing continues until all paths in the set are clear
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Path-Clearing Policies for Flexible Manufacturing Systems

Kevin Burgess and Kevin M. Passino

Abstract—In practical manufacturing settings it is often possible to
obtain, in real-time, information about the operation of several machines
in a flexible manufacturing system (FMS) that can be quite useful in
scheduling part flows. In this brief paper the authors introduce some
scheduling policies that can effectively utilize such information (something
the policies in [1] do not do) and they provide sufficient conditions for
the stability of two such policies.

Index Terms—Boundedness, manufacturing systems, scheduling, sta-

bility, traffic control.
Il. SYSTEM DESCRIPTION AND NOTATION

Let there beN “paths” within the FMS. The three important
attributes of any path are: 1) all of its buffers may be serviced at
In this paper, we consider the use of global information for schethe same time; 2) its buffers are directly connected in the network;
uling flexible manufacturing systems (FMS) of the type considered &nd 3) if a buffer is on one path it cannot be on another path, and
all buffers must be on a path. For example, in the network of Fig. 1
Manuscript received June 17, 1996. Recommended by Associate Editorfa can define four paths which begin and end as indicated. Notice
K. P. Chong, hligat the beginning and end of a path are defined as the first and last
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buffer in the path, respectively. Let each buffer be referred to by
a coordinate(7, j), wherei is the path number and is the buffer
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number along the path. For example, in the FMS of Fig. 1 the buffeme ¢, the PCAF policy chooses to service a set of pathsuch

that ends path 4 is referred to by coordinate (4,2).Qdde the set of that Zjesi z;(t) > eV (X(t)) for some sufficiently small, fixed

paths which originates at network inputs and&ebe the set of paths ¢ > 0. We must choose small enough so that regardless of the

which originates at network re-entry points. For the FMS of Fig. Mistribution of parts at the end of any production run, there is some

Q = {1,2,3} and R = {4}. Note that for a fixed FMS topology ¢ € {1,2,---, M} that satisfies the above selection criterion. It is

there can be many different choices for the sefNopaths (indeed it easy to identifye* > 0 such that for any < " there is some

is an important research direction to determine the best set of pattisg {1,2,--- U} such that the selection criterion is satisfied. For
Let the level of buffer(i, j) at timet be x, ;(t), and letX (¢) = instance¢” = <5, where P = max; P; will work.

{z; ;(t)} be the set of all of the buffer levels at tinte Let a; be In summary, during a production run, the PCAF policy completely

the part arrival rate (in parts per unit time) at network input buffeclears all parts from each path processed (except for parts which may

(i,1), 1 € Q. For convenience, if € R, we leta; = 0. Lets; be accumulate at the head buffers after processing has stopped at the

the maximum setup time of all the buffers on pathH-or example, head buffers). Notice that because all buffers in a path are serviced

if for path 1 it takes two time units for machine A to configureat the minimum processing rate for the path, parts never accumulate

itself to process parts from buffer (1,1) and it takes one time urdt any buffers in the path other than the head buffer. In other words,

for machine C to configure itself to process parts from buffer (1,23Jong each individual path, parts arrive at downstream buffers at a

thens; = 2. Let ; be the minimum processing rate for buffers orrate that is no greater than the rate at which they can be processed.

pathi. All buffers in path: are serviced at rate and the sum of the This is sometimes referred to as “pipelining” parts. Next, we shall

transport delays between buffers on patfincluding the transport develop conditions under which the PCAF policy is stable.

delay between the last buffer in pathand the head buffer of a To begin with, we define several parameters that will be used in

downstream path, if applicable) I3;. Let P, be the number of paths, the stability analysis. First, define a set of tinls= {to,t1,t2,---}

including, that a part in buffe(i, 1) will traverse before exiting the where #;, is the FMS start-up time and beginning of the first

FMS. For example, in the FMS of Fig. 1 = 2 and P, = 1 for production run¢, is the end of the first production run and beginning

i=2,3,4. If P, > 1, defineH; to be the path that is fed by path of the second production run, and, in general,is the end of

For example, in the FMS of Fig. 1H; = 4. production runi and the beginning of production runh+ 1. Let
Suppose that we le§; denote a set of paths such that all paths imax{s; : j € S;} be denoted by', max{D, : j € S;} by D,

the setS; can be serviced simultaneously. L&t= {S; : 1 < j < max{r; :j € Si} by 7, min{r; : j € S;} by 7', max{a, : j € Si}

M} be the set of such sets of paths for an FMS. We require that thelsgta’, max{3' : 1 < i < M} by 3, andmax{a’ : 1 < i < M}

S satisfies the following condition: for all pathise {1,2,---, N}, by a. Let us choose an arbitrary timg, € T. Let us assume

there is somg € {1,2,---, M} such thati € S; (each path is in that the PCAF policy has chosen to service buffers in the paths

at least oneS;). For example, in the FMS of Fig. 1, we can definef S; during the production run beginning at tintg. For every

S asS = {{1},{2,3},{3,4}}, where S, = {1}, S> = {2,3,}, ¢ € {1,2,---, M}, define a constan};, 0 < 5; < 1, such that at

and 53 = {3,4}. We must emphasize that for a given FMS therany time ¢,, max{x;(tp) : j € Si} < 13¢5, #;(tp). Notice

may be many ways to define ti$g and.S. The results of this paper that »; follows from the topology of the FMS. In many cases,

are for any one that satisfies the above constraints (it is an importar® may have to take; = 1 because|S;| = 1 or because the
direction to determine the best choice of thig that make upS). topology of the FMS does not allow fay; < 1 in general (note
The production scheduling policies for the FMS that we nowhat if ann; < 1 cannot be found them; = 1 will suffice for

consider are what we will call PC policies. A PC policy is one inthe stability analysis below, no matter what FMS topology is being
which a production run (i.e., a time period during which parts from eonsidered). As an example of a situation in which we can take
particular set of buffers are processed) is begun by choosing a seof< 1, consider pathsS; = {m,n} C Q, wherem ¢ S; and
pathsS; € S. All buffers on paths inS; are serviced until the headn ¢ S; for all j € {1,2,---,M}, j # i. Because paths: and
buffer, (j, 1), j € S;, of every path inS; is clear. At that point, the n were both last cleared at the same tims,(t,) = a»t' and
head buffers are no longer serviced and the production run continueg?,) = a,t, for some# > 0. From the above definition of
until all buffers, except possibly the head buffers, in the pathS;of #;, we see thay; = max{ zm(tp) zullp) 1 Hence,

@ () Fen(tp) * 2o (tp)+20 (tp)
are empty. In the following analysis, we will assume that all buffers, — maX{u e Generally, it is desirable to find an

except the head buffers are initially empty (if this is not true initially,; that is as’small as possible as the conditions for stability then
it will be after each path has been serviced once). For convenienggcome less restrictive and the bounds obtained on buffer levels
we will refer to the level of the head buffer of path(i, 1) at timet  pecome tighter, as can be seen by the following stability result.
asxi(t). The goal of the following analysis is to identify PC policies Theorem 1: Let F(¢) be a function that returns the integer number

which are stable (i.e., buffer levels remain bounded for all time) arg production runs that have been completed during the time interval
to obtain bounds on the buffers of FMS controlled by such policieg,, ¢]. If, for all i € {1,2,---, M}, @ < 7, and

Ill. PATH CLEAR-A-FRACTION PoLicy . 2igs. Piag + 2205 (P — 1)a; 1

The first PC policy that we consider is the PCAF (path clear-a- Th—al
fraction) policy. This policy is a generalization of the local CAF
policy for single machines, introduced in [1]. We define the PCAfhen the PCAF policy is stable. Furthermore;if= max{~:} and
policy by specifying how it chooses the next set of paths to service,— max{(;}
upon the ending of a production run. Define a functiénX (¢))

asV(X(t) & 3V, Pix;(t). Notice thatV (X (t)) is the sum of N

all parts in the head buffers of all paths in the network (at the Zpﬂi(t) < A0 <V( (to)) — ¢ )
end of a production run, there can be no parts in buffers that are ; l—y
not head buffers) weighted by the number of paths that the parts N

must traverse, after and including the path that they are currently in, 1 = + ZP sa

before exiting the FMS. If a scheduling decision is to be made at
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where production run. If we sum the four preceding (in) equalities, we see
. that
§1 + Dl 77;
Ci = - = Z Pja]' =+ Z(P] — 1)(1]' =+ Z PJD a; "/Y(X(thrl)) < ‘r(X(fp)) _ Z ijj(fp)
Tt | JES:,IEQ JES; JES; Jes,
= 1|1y s i Y (B = Dy +3 PD'aj+ Y PiAsa
Z ' T—a ' J€s; S
Proof: We first bound the length of the production run beginning + Z — Dl (ty) + Apaj).

att, in terms of 37, ¢ x;(¢,) by a value which we shall calh,. I

There are four factors which are summed to faftp: 1) a bound Manipulating the above expression and using the bound\pnwe

on the maximum amount of time to clear parts in any head buffer sée that an upper bound 07X (¢,41)) is
z;(tp)
cs; Y

n
a path inS;, ; 2) a bound on the maximum amount n —i |
T 2 es ©ilty) 54+ D
of time to clear parts which arrive at any head buffer of a path in V(X (t,)) = > a;(t,) + TJ,Ei a: >+ bl * =
S; during the production run— 3) the maximum setup time for JES: - Cr
any buffer in the paths i$;, 5'; ;and 4) the maximum total transport _
time of any of the paths i5;, D'. Hence X Z Piaj + Z(Pj —Daj| + Z PjD"a;
ai A + Z (1‘ ) JES; JES; JES;
a . 74 x . _
e :
i =VIX(t)+G— | D wilty)
dses, mite) 51D JES;
7 e
_ T . ) ngzs PaJ—I—X:J65 (P; — 1)a;
_at X [1—mn; - -
B Th—a
Next we boundV (X (#,41)) in terms of V(X (#,)). In order to SV(X () + G — V(X (E))
accomplish this, we consider the contributioriidoy several subsets Yigs, Pias + 3 cq. (P = 1a;
of S. First, notice that L=mni 7 @
Z Pjaj(tpy1) < Z Pjx;(ty) — Z Pjaj(tp) =vwV(X(t)+ G
JES; JES; JES;
+ Z P]’Di(l,j. where )
J€S; 5+ D* _.
. . . . P = ; Pja; + P; —1)a; | + P,D'a
This is because all paths %} are cleared during the production run ¢ — % ];_ 74 J;_( ! e J; 7

and because some parts may accumulate at the head buffers during
any part transport time before the end of the production run. Ne@d

notice that i 1—el1m >jas, Didi +‘ZJ€5 % — 1)a;
> Pajltyrn) < Y Pajlty) I -
JgsiaeQ B9 Due to the sufficient condition of Theorem(L< ~; < 1. Notice that
+ Z PiApa;. the sufficient condition of Theorem 1 is satisfiedrifis sufficiently
JE5:,1€Q large with respect ta* for all i € {1,2,---, M}. If we let v =
This is because all paths not # that are fed by network inputs max{v : i = 1,2,---, M} and¢ = max{¢ : ¢ = 1,2,---, M},

have their buffer levels grow at the rate of part arrival during thee see that for any timg, € 7', V(X (,4.1)) < /V(X(1,))+(. We
production run. Let5. be the set of all paths fed by pathsSaso can solve this first-order difference inequality to yi8ld X (¢;)) <

that H;, = {j = Hy. : k € Si, P. > 1}. Then we see that M (V(X(t)) = 155 )+ 1= . Choose any, € T' such that the buffers
of path S; are serviced during the production run beginning at time

Z Pjx;(tpy1) < Z Pia;(tp) tp. Itis clear that in the closed time intenvia),, t,+1], the maximum

JEH, JEH}, of V(X (t)) occurs either at,, t,4+1, or at a pointt’ which occurs

sometime during the span of time during which servicing beglns on

the head buffers of paths ifi;. Specifically,, +s' < t' <t,+5.

Consequently, if we lef = max{s' : i = 1,2,--- M}, we see that

This is because a path which is fed by some path S; has its for all t > ¢,

head buffer increase during the production run by no more than ¢
(vexeon - 1)+ 1

+ Z (Pj — Dl (tp) + Apay].

JES;

2;(ty) + Ayaj, a bound on the total number of parts processedV (X (t)) < ~F®

through pathj during the production run. Notice that tli&_, term i€qQ
in the final sum is zero if path feeds a network output. Finally, Further, we see from the definition &f(X (#)) that
notice that ’
> Pajltyr) = > Pjlty). ZP:L (t)y <70 <V(\’(to) —~ L) oot ZP 5a
JgSi,dER JgSi,dER i=1
JEHG, JEHG,
! ! for all ¢ > ¢¢ so that clearly we have boundedness. O

This is because paths not i that are fed neither by network inputs  Notice that while the condition for the stability of the PCAF policy
nor paths inS; have their head buffers remain unchanged during the not as intuitive as the capacity condition of the CAF policy, it is,
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in some sense, a generalization of the capacity condition becauseiof; are serviced during the production run beginning at time

eachi € {1,2,---, M}, it requires that the rate of growth of somewe can writeA,, the time it takes to complete the production run
fraction (7;) of the growth ofV" during a production run be less thanbegun at timet,, as

the rate at whicH” is decreased during the production run. Notice yilp ) ;(A, = D)

that the PC policies do not truly require global information (i.e., all A, = 22X L +5;,4+D;

buffer levels and the status of processing at each machine). Because y '(p) wb. T

of the manner in which a PC policy mandates part pipelining by e 45,4+ D;

synchronizing production in consecutive machines, the policy only - 1- %

needs to know: 1) when each head buffer has been cleared during 7 .

a production run (so that the policy can stop production at the head yilp) ST D; -~

buffers when they all have been cleared); 2) when all paths currently Corj—aj + 1- % ) @

5

being serviced are empty downstream from the head buffers (so that
the policy can begin a new production run); and 3) the buffer leveldotice that this expression fak, is similar, but not exactly the same

of all head buffers at the end of each production run (so that ths, the expression fak, in the PCAF analysis. The difference arises
policy can select a new set of paths to service). Similar to the wayl@cause this is an exact expression Agy, where the expression in
which the clear-largest-buffer (CLB) policy is a special case of police PCAF analysis is an upper bound.

CAF [1], we can define the path clear-largest-buffer (PCLB) policy Let [A; ;]..,» denote the element in row» and columnn of

as a special case of PCAF. The PCLB policy chooses to process the, and let[b; ;] denote elementn of b; ;. We now describe
paths in the se§;, i € {1,2,---, M}, with the largest sum of parts. how to build A4; ; andb; ; for an FMS of arbitrary topology. First,
More precisely, PCLB chooses at timg to process paths of someconsiderm € S;. Because all paths ifi; are cleared, except for parts
setS;, i € {1,2,---, M}, suchthab_ o 2;(t,) 2 30 cq, 5(tp), which arrive in the time segment of lengi’ between the end of
forallq € {1,2,---. M}, q #1i. PCLB is considered to be a spec|a|head buffer servicing and the end of the productlon run, we see that
case of PCAF because at each time PCLB picksSano process, [4ijlmn = 0,n € {1,2,---,N} and[b; ], = D'a,.. Secondly,

this S; could have also been chosen by PCAF. Due to this fagonsiderm ¢ S;, m € @ (i.e., pathr is not being serviced and is
Theorem 1 also applies to the PCLB policy. The primary drawbad®d by a network input). Clearlyy,.(p + 1) = ym(p) + amA, SO

of the above analysis is the conservative nature of the sufficidhgt if j is the critical path and we use (1)

condition for stability. The fact is that many FMS which do not satisfy 1, n=m
the condition are indeed stable. In the next section, we consider a [Ai o = 4 22, n=
priori_ty PC policy that_ for a large number _c_)f FMS _tgpologies will ’ O’j_"’j' otherwise
alleviate the conservative nature of the stability condition and produce
much sharper buffer bounds than the PCAF analysis. an
sj + DL a; L)
J
IV. PATH PeERIODIC CLEARING PoLicy [bi jlm = = a

7

The scheduler that we now describe is inspired by the observation
that when a PC policy is allowed to control an FMS, it often falldhirdly, considenn € Hs, with H, = m, ¢ € S; (i.e., pathm is not
into a periodic pattern of servicing choices. This periodicity ofteReing serviced, but is fed by paththat is being serviced). Because
occurs whether or not the resulting FMS is stable. What we call the is fed by ¢ € Si, we see thaym(p + 1) = ym(p) + ya(p) +
Path Periodic Clearing (PPC) Policy will enforce a given periodi¢s (2, — D). Hence, ifj is the critical path and we use one,

service schedule. There are several ways to view such a policy. In 1, n=rm

some cases, intuition may be used to specify a periodic policy which 1, n=gq and q#j

will perform well. In other cases, service periods which perform well (4] =4 LTI n=j and q#j

may be identified by simulation or actual implementation. Finally, we e I B T
Yy y P y 1+ﬁ, n=q and ¢g=7

may identify a stable service period and use it as a “stabilizing safety

net” for some other PC policy that we cannot rigorously guarantee

is stable. (note that the second and third lines correspond to the case in which
For our stability analysis, we begin by specifying a special modéie path which feeds path is not the critical path and that the fourth

of the FMS being considered. Lefp) be the vector of the head line corresponds to the case in which the path which feeds jpath

buffer levels at timet, so that is the critical path) and

0, otherwise

y(p) = @) v2(p) - un @) sj+D - @

= [ea(tp)s w2 (tp)s - n ()] i = 4 — D

1— %4
5
The key to our analysis in this section is the fact that we can Wrifﬁnally considem ¢ S;, m € R, andm ¢ Hi. (i.e., pathm is not
NxXN / 1 X3 3 ; £,

J(P\+1V) = Ai ;y(p) +bi ; for somed, ; € IR, ) andbi ; € IR ~ being serviced and is fed neither by a network input nor by a path
(IR; %) is the set of all realV x N matrices with nonnegative which is being serviced). Because pathis fed neither by a network
entrles) The subscripti’j” in the above expression denotes thatnput nor by some path it$;, it is clear thaty,,(p + 1) = ym(p)
paths in the sef; are serviced during the production run beginningo that

at timet, and that patty € S; is acritical path. In calling pathj a 1. n=m
istr = {5 o

“critical path,” we mean that it is the last of the pathsSnto have 0. otherwise

its head buffer cleared during the production run (i.e., when the head
buffer of pathj is cleared, processing ceases at all of the head buffe@gd [b; ;] = 0.
of paths inS;). Let n; be the number of possible critical paths in In the following, we shall lef|-|| denote the vector two-norm or the

S;. If 7 is the critical path (ties are resolved arbitrarily) and pathsatrix norm induced by the vector two-norz|| = (Z;\;] ;v?)%,
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x € IRV, ||4|| = max)=; [|Az||, A € IRY*Y, and we shall let 2) 37 A" = (I — A)~'. Hence, the system is stable because
A(A) denote the set of eigenvalues of the mattixe IRV ™. Next, ||(I —A)||||p]| < <. O

we formally specify the PPC policy. To do this, we specify an ordered Notice that the “bounds” provided by this result are actually exact
list, p, of lengthV,,, whose members are elements{@f2,---, M }. characterizations of FMS behavior. In this case, we do not need to
The elements of are referenced by(1), p(2),---, p(N,). The list resort to norm-based buffer bounds. Notice also that the result is
p specifies one period of a periodic servicing sequence. For examgiely valid once in everyN, times. In order to find the behavior
once the PPC policy is activated, the periodic servicing sequersteall timesk, we must formN, different 4 and b matrices and

IS Sp(1)s Sp(2)s 5 Sp(Np)r Sp(1)s Sp(2)s -+ +» Sp(,), - - - Of course, compute the behavior for each set. Each of theand b matrix

our intuition tells us that a necessary condition for the periodigets should correspond to the lendéh-service period starting at
servicing sequence to produce stable operation is that the sequemciifferent point. For example, if the original service periodSis

contain at least one occurrence of edthi € {1,2,---, M}. S2, S3, we need to calculate three different setsdohndb matrices,
Let the notation] [~ _, A4y, n > m, where A4, denotes with one corresponding to each of the following periofs; S, Ss,
a particular square matrix for all € {m,m + 1,---,n}, denote S2,Ss,51, andSs, S1,52. Next, notice that it is always possible to

the productdy iy Aen—1) - - Agm+1)Asm). Letto be the time at define theS; so thatrn; = 1 (e.g., choose thé; so that|S;| = 1 for
which the PPC policy is initiated. Using the model developed aboval] ;). However, from a performance (and stability) perspective, this

we can write is clearly not always the best choice. For example, an FMS that, due
to its topology, requires the defining of many short paths (such as the
y(1) = Ap1),50¥(0) + b1, 5o cellular structure | FMS of Section V) may perform badly or even

(2) = Ao 5 y(1) + b,y become unsta_ble if we také,| = 1 for all i. These types of FMS

Y P20 Y P(2).51 generally require more than a single path to be processed at once.
= Ap2).01 Ap(1.509(0) + Ap2) 1 Do) g0 T bp(2),0 We are now left to consider systems with > 1 for someji,

1 <7 < M. Ideally, we would like to show that the sequence of

critical paths of such systems eventually falls into periodic behavior.

Such a result would eliminate the need for Theorem 3 below. While

y(No) = | II Avioy |90 +boinnin, o we have not been able to produce a simulation in which this eventual
=N, = periodicity does not occur, we have not yet been able to prove that
Np—1 i+1 it must occur. In any case, we can find stability results for systems
+ Z H Apk)dpy—1 |2 g1 of this type; however, the resulting bounds are not nearly so sharp
i=1 \k=N,,—1 as the bounds in the; = 1 case.

Before presenting the stability result, we define some conve-
where j; denotes the critical path for the production run begmmnglent notation. For a fixed product of matrices from the dét

at time ¢;. I, 1 A%y, whereg(i) is an index into the set”, we define the
There aren, = n,, Yp(2) " Mp(N,) Ways in which the func- correspondlng sum of productis be the vectob that is appropriate in
N — . . . AT 1 T
tions of matrices[T;_ Ay @DV, s, o + sNe~!  the iterative relationy((k+1)rN,) = (I[;=, —_y Aqi))y(krN,) +b.

1k r 7+1
(TTen i An) ., l)bp .3,)_, Might be formed. Notice that N other word.s,b = bory + 3oy (IG5 1 Ad)bac)-
n: is the number of different critical paths that can feasibly re- 1heorem 3: Suppose that there exists integes- 0 such that any

sult when paths inS; are serviced. We form the setd4* 2 Product ofr matrices from the set™ has matrix two-norm less than

(A7 AD, -, AY }andb* {b7.85. b7} to contain all possible one. LetA denote ther-length product with the largest norm, and

formations of the matrix functions. This completes the definition dft ? denote the corresponding sum of products. The PPC-controlled
the PPC policy and the associated FMS model. FMS is stable and
In what follows, we derive stability conditions and buffer bounds : . =
for FMS's that satisfy different topological conditions. We first lly (ke No) || < ANl (O + > 1Al 1b]]
consider an important class of systems with the topological property
thatn, = 1 forall 7,1 < 7 < M. Notice that this condition is satisfied so thatlimy . ||y(krN,)|| < %
by systems for whicHS;| = 1 for all ¢, 1 < < M, and that it is Proof: From the definitions ofA and b, it is clear that we
also effectively satisfied by systems in which aflywith |S;| > 1 can write ||[y((k + 1)rN,)|| < ||A|l[ly(krN,)|| + ||6]|. By apply-
contains only paths which are fed by network inputs. The last pang induction to the above iterative relation, it easily follows that
of the previous statement is true because inSewith |S;| > 1 [Jy(krN,)| < [JA*)ly(0)]] + Z S I4]"1]]. Because we have
which contain only paths which are fed by network inputs, after threquired that| A|| < 1, it is also apparent thatmg_ oo [Jy(krN,)||
initial production run, the critical path for all future production runs< Uil < sc. a
is determined by the fixed input and processing rates of the paths oﬂ'he conditions of Theorem 3 are not completely satisfying for
S;. Two examples of FMS withy; = 1 are certain types of re-entranttwo reasons. First of all, we must check all lengtmultiplicative
lines and a feedforward line. In all systems with = 1 for all /, combinations of thed; matrices, regardless of whether all of the
1 <i < M, the setsd™ andb™ each contains just one elemedt; combinations are physically realizable. Secondly, we would like to
andby, respectively. Letd £ 4% andb £ b%. In terms of 4 andb, avoid a norm-based result. A more exact characterization of FMS
then, we have the iterative relatigni(k + 1)N,) = Ay(kN,) +b.  behavior, similar to that in Theorem 2, would require showing that
Theorem 2: If n; = 1foralli, 1 < i < M, andifmax(|A(A4)|) < after the PPC policy is enforced that eventually the resulting sequence
1, then the PPC-controlled FMS is stable. Furthermgié,N,) = of critical buffers becomes periodic. This appears to be a very difficult
A"y(o) + (8 AN andlimg—oc y(EN,) = (I — A)7'b. problem. Next, notice that even though the PPC policy prescribes a
Proof: That y(kN,) can be written ag(kN,) = A*y(0) + periodic service schedule, it is still a feedback policy in that it must
(Zf 01 A" is easily shown via induction on the iterative relatiorknow when production runs have been completed. Next, notice that
y((k + 1)N,) = Ay(kN,) + b. Given this, it is easy to see thatfor eithern; = 1 or n; > 1, it may be the case that the production
limy oo y(kN,) = (I — A)~'b, because: 1)im;_.. A¥ = 0 and engineer may not be aware of a good choice of service period for
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the PPC policy. In this case, one approach is to identify a stable Decentralized H.,-Controller Design

service period and use it as a supervisor for another, more intuitive for Nonlinear Systems

(e.g., PCLB) policy. As a supervisor, the purpose of the PPC policy is

simply to guarantee stability of the system. In practice, the supervisingGuang-Hong Yang, Jianliang Wang, C. B. Soh, and James Lam
PPC policy is invoked when some measure of system performance

(e.g., the sum of the buffer levels) exceeds some preset threshold

(i.e., once the sum of FMS buffer levels grows beyond some preseﬁbstract—'rhis'paper considers the_d_ecentraliz_gd{m—controller de_sign
limit, a predefined, stable periodic service sequence is implementétﬁg.b'em for nonlinear systems. Sufficient conditions for the solution of

Next. note that in simulati tudies for th licies introd dh problem are presented in terms of solutions of Hamilton—Jacobi
€xt, note that In simulation studies for the policies introduce eft%qualities. The resulting design guarantees local asymptotic stability

we have uncovered some interesting points [5]. First, in attemptiagd ensures a predeterminedZ,-gain bound on the closed-loop system.
to formulate a general rule of thumb for determining the suitability . . . .

f PC control for a given EMS. we make the following observation: Index Terms—Decentr_aIlzed control, Hamilton—Jacobi inequality, non-
0 ] g . ' : g e .qrnear H, control, nonlinear system.
The less variance there is among processing rates along individual
paths, the better PC policies will perform (with respect to distributed
policies). The reason for this is that because PC policies mandate that I. INTRODUCTION

all buffers on a given path be processed at a single rate (the minimuny the area of the decentralized control of large scale systems,
processing rate of all buffers on the path), any buffers on the path thgimerous important advances have been accomplished in the past two
are able to be processed at a faster rate than the minimum procesgig¢hdes [9], [11]. Recently, the decentralizEd.-control problem
rate are constrained to be processed at a lower rate than they wagldjinear systems has been considered in [7], [8], [10], and [13].
be processed at in a distributed control scheme. In general, then, |fprparticular, Veilletteet al. [13] presented a decentralizeH..-
systems with very high processing rate “skew” along individual pathgentroller design procedure in terms of solutions of the modified
we may be wiser to choose a distributed policy. However, it may bggebraic Riccati equations, and the result has also been extended to
possible to choose paths intelligently so as to minimize the adveigigcrete-time linear systems [7]. In [8], another sufficient condition
affects of processing rate skew. for the decentralized ...-control problem is derived, under which the
Finally, we would like to emphasize that PC policies will nofgecentralized solution can be constructed from the central controller
yield stability for all FMS that would be stable under a distributedo|ytion from the standard..-control theory in [2].
scheduling approach where the FMS satisfies a capacity constrainin recent years, the problem of central controller design to solve the
For example, if there is a high amount of “processing rate skew” along__-control problem (or in short, the central..-control problem)
the paths PC policies may not be stable and a distributed policy M@y nonlinear systems has been extensively investigated by several
be. authors [1], [3]-[6], [12]. In particular, Van der Schaft [12] has shown
that the solution of theéd..-control problem via state feedback can
be determined from the solution of a Hamilton—Jacobi equation (or
inequality), which is the nonlinear version of the Riccati equation
[1] J. R. Perkins and P. Kumar, “Stable, distributed, real-time schedulifgl the corresponding lineat ..-control problem. In the case of
of flexible manufacturing/assembly/disassembly systet®=EE Trans. measurement feedback, a set of sufficient conditions has also been
Automat. Contr. vol. 34, pp. 139-148, Feb. 1989. given in [1], [4], and [6] in terms of the solutions of a pair of

[2] P. Kumar and T. J. Seidman, “Dynamic instabilities and stabilizatio : _ L. o . .
methods in distributed real-time scheduling of manufacturing systemspi’am”tOn Jacobi inequalities, and the necessity of these sufficient

IEEE Trans. Automat. Contrvol. 35, pp. 289-298, Mar. 1990. conditions has been discussed in [1] and [5].

[3] S.H.Luand P. Kumar, “Distributed scheduling based on due dates andIn this paper, we consider the decentraliZ€d,-control problem
buffer priorities,”|[EEE Trans. Automat. Contrvol. 36, pp. 1406-1416, for nonlinear systems by using the Hamilton—Jacobi inequality ap-
Dec. 1991. ; ; ; ; iati

I . ) roach. The results given in this paper are extensions of existin

[4] C. Humes, Jr., “A regular stabilization technique: Kumar—Seidmal It the li dg trali éﬂxp pt | bl 131, [8 d 9
revisited,”|EEE Trans. Automat. Contrvol. 39, pp. 191-196, Jan. 1994. resu_ S on the linear decentraliz -control problem [ - 1, (8] an

[5] K. M. Passino and K. L. Burges§tability Analysis of Discrete Event Nonlinear centrall.-control problem [4]. The paper is organized
Systems New York: Wiley, 1998. as follows. The system description and problem statement are given

in Section Il. The main results are given in Section Ill, followed by
a numerical example in Section IV to illustrate the design proce-
dure and the effectiveness of the proposed method. Finally, some

concluding remarks are given in Section V.
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