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Letters

Stable Multi-Input Multi-Output Adaptive Fuzzy/Neural Control
Rául Ordóñez and Kevin M. Passino

Abstract—In this letter, stable direct and indirect adaptive
controllers are presented that use Takagi–Sugeno (T–S) fuzzy
systems, conventional fuzzy systems, or a class of neural networks
to provide asymptotic tracking of a reference signal vector for a
class of continuous time multi-input multi-output (MIMO) square
nonlinear plants with poorly understood dynamics. The direct
adaptive scheme allows for the inclusion ofa priori knowledge
about the control input in terms of exact mathematical equations
or linguistics, while the indirect adaptive controller permits
the explicit use of equations to represent portions of the plant
dynamics. We prove that with or without such knowledge the
adaptive schemes can “learn” how to control the plant, provide
for bounded internal signals, and achieve asymptotically stable
tracking of the reference inputs. We do not impose any initial-
ization conditions on the controllers and guarantee convergence
of the tracking error to zero.

Index Terms—Direct adaptive control, fuzzy control, indirect
adaptive control, MIMO nonlinear systems, neural control.

I. INTRODUCTION

FUZZY systems and neural networks-based control
methodologies have emerged in recent years as a

promising way to approach nonlinear control problems.
Fuzzy control, in particular, has had an impact in the control
community because of the simple approach it provides to use
heuristic control knowledge for nonlinear control problems.
However, in the more complicated situations, where the plant
parameters are subject to perturbations or when the dynamics
of the system are too complex to be characterized reliably by
an explicit mathematical model, adaptive schemes have been
introduced that gather data from on-line operation and use
adaptation heuristics to automatically determine the parameters
of the controller. See, for example, the techniques in [1]–[7];
to date, no stability conditions have been provided for these
approaches. Recently, several stable adaptive fuzzy control
schemes have been introduced [8]–[12]. Moreover, closely
related neural control approaches have been studied [13]–[18].

In the above techniques, emphasis is placed on control of
single-input single-output (SISO) plants (except for [4], which
can be readily applied to multi-input multi-output (MIMO)
plants as it is done in [5] and [6], but lacks a stability
analysis). In [19], adaptive control of MIMO systems using
multilayer neural networks is studied. The authors consider
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feedback linearizable, continuous time systems with general
relative degree, and utilization of neural networks to develop
an indirect adaptive scheme. These results are further studied
and summarized in [20]. The scheme in [19] requires the
assumptions that the tracking and neural network parameter
errors are initially bounded and sufficiently small and they
provide convergence results for the tracking errors to fixed
neighborhoods of the origin.

In this paper, we present direct [21] and indirect [22]
adaptive controllers for MIMO plants with poorly understood
dynamics or plants subjected to parameter disturbances, which
extend the results in [8]. We use Takagi–Sugeno (T–S) fuzzy
systems or a class of neural networks with two hidden layers as
the basis of our control schemes. We consider a general class
of square MIMO systems decouplable via static nonlinear state
feedback and obtain asymptotic convergence of the tracking
errors to zero (rather than to a bounded neighborhood of the
origin) and boundedness of the parameter errors as well as state
boundedness provided the zero dynamics of the plant being
exponentially attractive. The stability results do not depend on
any initialization conditions and we allow for the inclusion
in the control algorithm ofa priori heuristic or mathematical
knowledge about what the control input should be in the direct
case or about the plant dynamics in the indirect case. Note that
while the indirect approach is a fairly simple extension of the
corresponding SISO case in [8] (the results in [19] and [20]
are also on indirect adaptive control), the direct adaptive case
is not. The direct adaptive method turns out to require more
restrictive assumptions than the indirect case, but is perhaps
of more interest because as far as we are aware, no other
direct adaptive methodology with stability proof for the class
of MIMO systems we consider here has been presented in
the literature. The results in this paper are nonlocal in the
sense that they are global whenever the change of coordinates
involved in the feedback linearization of the MIMO system
is global.

The paper is organized as follows. In Section II, we intro-
duce the MIMO direct adaptive controller and give a proof
of the stability results. In Section III, we outline the MIMO
indirect adaptive controller giving just a short sketch of the
proof (the complete proof can be found in [22]). In Section IV,
we present simulation results of the direct adaptive method
applied first to a nonlinear differential equation that satisfies
all controller assumptions as an illustration of the method and
then to a two-link robot. The robot is an interesting practical
application and it is of special interest here because it doesnot
satisfy all assumptions of the controller; however, we show
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how the method can be made to work in spite of this fact. In
Section V, we provide the concluding remarks.

II. DIRECT ADAPTIVE CONTROL

Consider the MIMO square nonlinear plant (i.e., a plant with
as many inputs as outputs [23], [24]) given by

...

(1)

where is the state vector,
is the control input vector,

is the output vector, and , , ,
are smooth functions. If the system is feedback

linearizable [24] by static state feedback and has a well-defined
vector relative degree , where the ’s are
the smallest integers such that at least one of the inputs appears
in , the input–output (IO) differential equations of the
system are given by

(2)

with at least one of the [note that
is the Lie derivative of with respect

to , given by ]. Define (for
convenience) and .
In this way, we may rewrite the plant’s IO equation as

...
...

...
. . .

...
... (3)

Consider the ideal feedback linearizing control law
given by

(4)

(note that, for convenience, we are dropping the references
to the independent variables except where clarification is
required) where the term is an input to the
linearized plant dynamics. In order for to be well defined
we need the following assumption.

(P1) Plant Assumption:The matrix as defined above is
nonsingular, i.e., exists and has bounded norm for all

, , where is some compact set of
allowable state trajectories. This is equivalent to assuming

(5)

(6)

where and are, respectively, the smallest and
largest singular values of .

In addition, in order to be able to guarantee state bounded-
ness under state feedback linearization we require P2.

(P2) Plant Assumption:The plant is feedback linearizable
by static state feedback; it has a general vector relative degree

and its zero dynamics are exponentially
attractive (please refer to [24] for a review on the concept
of zero dynamics and static state feedback of square MIMO
systems). We also assume the state vectorto be available
for measurement.

Our goal is to identify the unknown control function (4)
using fuzzy systems. Here, we will use generalized T–S
fuzzy systems [25] with center average defuzzification. To
briefly present the notation, take a fuzzy system denoted by

(in our context, could be thought of as the state
vector and as a vector of possibly exogenous signals).
Then, . Here, singleton
fuzzification of the input vectors ,

is assumed; the fuzzy system hasrules, and
is the value of the membership function for the premise

of the th rule given the inputs . It is assumed that the
fuzzy system is constructed in such a way that
and for all . The parameter

is the consequent of theth rule, which, in this paper,
will be taken as a linear combination of Lipschitz continuous
functions, , , so that

, .
Define

...

...
...

. . .
...

Then, the nonlinear equation that describes the fuzzy system
can be written as (notice that
standard fuzzy systems may be treated as special cases of this
more general representation). The T–S model can represent a
class of two-layer neural networks and many standard fuzzy
systems [8]. Note that while may depend on both and

and is bounded for any value they may take,depends
on only. This allows us to impose no restrictions on to
guarantee boundedness of the fuzzy system.

We will represent the th component of the ideal control
(4), , as

(7)
where is assumed to exist and is defined by

(8)
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and the representation error using optimal parameters (which
arises because of the finite number of basis functions used) is
bounded, i.e., , where is a known
bounding function. We define as a compact set within which
the matrix of coefficients estimates is allowed to lie,

as the subspace through which the state trajectory
may travel under closed-loop control, and is the
subset where the vector may lie (notice that we do not
restrict the sizes of and ; however, the in (8) is
assumed to exist). As a result of the proof, we will be able to
determine that actually remains within a compact subset of

. Note that the ideal control law (4) is a function not only
of the states but also of, which may depend on variables
other than the states (as will be described below). The vector

is provided to account for this dependence. The term
represents aknownpart of the ideal control input, which may
be available to the designer through knowledge of the plant
or expertise. If it is not available, this term may be set equal
to zero with all the properties of the adaptive controller still
holding. The only restriction on is that it must be bounded.
Note that an appropriate use of may help to significantly
improve theperformanceof the controller, even though in
principle it has no effect on stability. Thus, the fuzzy system
approximation of is given by

(9)

The matrix is to be adjusted adaptively on line in order
to try to improve the approximation. We define the parameter
error matrix, . Let .

Our objective is to have the plant outputs track a vector of
reference trajectories, on which we
make the following assumption.

(R1) Reference Input Assumption:The desired reference
trajectories are times continuously differentiable, with

measurable and bounded for .
We define the output errors . Define also

the error signals

and

The coefficients of

are picked so that the transfer functions are
stable. Let the th component of the parameter in (4) be
given by , where is a constant.
Consider the control law

(10)

where is a control term required to
ensure stability that will be defined later.

From (3) and (4), we can derive an expression for the plant
output

(11)

Then, using the previous definitions, theth component of the
output error dynamics is given by

(12)

so that

(13)

Before proceeding, we need to introduce another set of
assumptions on the plant and formalize our assumptions about
the control term .

(P3) Plant Assumption:Each entry of (besides those on
the main diagonal) is bounded by known constants

, . We require that the entries in
the main diagonal satisfy ,

and their derivatives be defined and satisfy
, , where and

are known bounds. Furthermore, the bounds have to
satisfy

(14)

(C1) Direct Adaptive Control Assumption:Bounding func-
tions such that , ,

are known and they
are continuous functions. Furthermore, the fuzzy systems or
neural networks that define the control term are defined
so that the bounding functions of the representation errors

are continuous.
Note that in P3 the entries of the main diagonal ofare

all assumed positive. This is only to simplify the analysis; the
diagonal entries may have any sign as long as they are bounded
away from zero and the stability analysis requires only slight
modifications to accommodate such a case. In C1, knowledge
of the bounding function is reasonable since both

and are known: a projection algorithm may
be employed to guarantee that stays within the compact
set of allowable parameters. Then, an upper estimate of

can be computed, and can be defined.
Consider the function

(15)

with positive definite and diagonal. This
function quantifies both the tracking error for theth plant
output and the approximation error for the parameter estimates
of the th term of (4). Taking the derivative of (15) yields

(16)
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(17)

Define the adaptation law for the T–S fuzzy system or neural
network as

(18)

so that applying the properties of the trace operator and the fact
that we obtain . Noting
that , we get

(19)

(20)

Define

Given these definitions, let

(21)

where we need to derive an expression for such that
, . From (21) we have

(22)

It follows that if we choose

(23)

and if P3 holds, then in fact .
Using (21) we can now establish

(24)

We are now ready to present our main result and give its proof.

Theorem 1—Stability and Tracking Results Using MIMO
Direct Adaptive Control: If the reference input assumption
R1 holds, the plant assumptions P1, P2, and P3 hold and the
control law is defined by (10) with the control assumption C1
and the adaptive laws (18) are used,thenthe following holds:

1) The plant states as well as its outputs and their deriva-
tives , are bounded.

2) The control signals are bounded, i.e.,
( ).

3) The magnitudes of the output errors decrease at
least asymptotically to zero, i.e., ,

.

Proof of Theorem 1:To show part 1, consider the Lya-
punov candidate

(25)

The above analysis guarantees

(26)

so is a positive definite function with negative semidefinite
derivative. This implies that ; therefore,

and for (notice that this
analysis alone does not guarantee for all time;
rather, a projection algorithm should be used to achieve this).
From the definition of we have , where

, . Since by definition
is stable, , and since by

assumption (R1) the signals are bounded, we conclude
that , .

With the outputs bounded and together with assumption P2
we have that the states are bounded [23], which
implies that the state trajectories are limited to a bounded
subset of . Let be the compact ball of minimum radius
that contains the bounded subset of state trajectories. Since

is continuous and is Lipschitz continuous by definition
in , then they are uniformly continuous and, therefore,
bounded on ; and given that is bounded, we have

. Since is defined as a continuous
function, and is assumed continuous for all

, both are bounded on , so , and
because from part 1. This implies , so

by construction. Hence, .
To prove part 3 we notice that from (26)

(27)

(28)

This establishes that (
). Having determined that

, it follows that , so is
uniformly continuous. Since and ,
by Barbalat’s Lemma we have asymptotic stability of (i.e.,

), which implies asymptotic stability of
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(i.e., ), for . Notice that although
assumption P1 is not used explicitly in the proof, it is still
necessary in order to guarantee theexistenceof without
which the argument is not sound.

Remark: Note that although in principle the choice of the
vector is arbitrary, a typical choice may be an error vector,
i.e., , or some other function of the plant
outputs and the reference model outputs. In this way, as a
result of the proof, we also obtain that remains within a
bounded subset of .

III. I NDIRECT ADAPTIVE CONTROL

Here we consider, again, the class of plants defined in (1).
If assumptions P1 and P2 of Section II are satisfied, then we
may rewrite the IO form of the plant as

...
...

...
. . .

...
... (29)

where and are known components of the plant’s
dynamics (that may depend on the state) or exogenous time
dependent signals with the only constraint that they have to be
bounded for all . Throughout the following analysis they
may be set equal to zero for all; however, as in the direct
adaptive case a good choice of these known functions may
help improve theperformanceof the controller. The functions

and represent unknown nonlinear dynamics of
the plant.

Again consider the ideal feedback linearizing control law
(4), where the term will be redefined below. Our goal is to
identify the unknown functions and using fuzzy systems
(or neural networks) in order to indirectly approximate the
ideal control law . Let the fuzzy system be a T–S form with
center average defuzzification as in Section II. We rewrite

(30)

(31)

where and are defined
by

(32)

(33)

Note that we are assuming the ability to specify fuzzy sys-
tems in such a way that the representation errors using
optimal parameters (which arise because of the finite num-
ber of basis functions used) are bounded, i.e.,

, , where and

are known bounding functions. We require the representation
errors to be small (later we will provide an explicit
condition as to how small they have to be), which means that
the matrix can, ideally, be well approximated by our fuzzy
systems (or neural networks) using optimal parameters. Our
adaptive controller’s stability will not, however, depend on its
ability to identify these optimal parameters.

The compact set is defined as before and ,
are compact sets within which the parameter matrices

estimates and are allowed to lie. Thus, the
fuzzy system approximations of and are given
by

(34)

(35)

The matrices and are to be adjusted adaptively
on line in order to try to improve the approximation.

We define the output errors and error signals and
as in Section II. Consider the control law , where

is a certainty equivalencecontrol
term. Define the matrix ,

. is an approximation of the ideal and unknown
matrix . Furthermore, let , be a
matrix of the elements of the inverse. We need to ensure that

exists for all and . If the sets are
constructed such that

(36)

(37)

for all , then as long as the matrices remain
within , respectively, we can guarantee that exists
(this can be achieved using a projection algorithm). Note that
if we knew the matrix to be, for instance, strictly diagonally
dominant [as required by the Levy–Desplanques theorem (see
[26] for an explanation of this and other invertibility results)]
with known lower bounds for the main diagonal entries, we
could relax the conditions on the sets by applying instead
a projection algorithm that kept in a strictly diagonally
dominant form similar to to ensure it is invertible.

In order to cancel the unknown parameter errors we use the
following adaptive laws:

(38)

with , positive definite
and diagonal.

Now we can write an expression for

(39)

where . Here
is chosen to provide stable tracking and

to allow for robustness to parameter uncertainty. Namely, let

(40)
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where is a design parameter and is a function
chosen so that , . It can be
shown that the choice

(41)

satisfies the requirement, where

and
. It should be noted that for many

classes of plants, each is a smooth function easily
represented by a fuzzy system. For example, if each
may be expressed as a constant, then for all
since a fuzzy system may exactly represent a constant on a
compact set. This would remove the need for the
term to be included in (40).

At this point we need to formalize our general assumption
about the controller.

(C2) Indirect Adaptive Control Assumption:The fuzzy
systems (or neural networks) that define the approximations
(34) and (35) are defined so that ,

, for all , . Furthermore, the
ideal representation errors are small enough so that
we have for all , .

Notice that the maximum sizes of that satisfy C2 can
be found since from (36) we have

and as long as assumption C2 is satisfied, we ensure
that , as desired.

We have completely specified the signals that compose the
control vector and now we state our main result; its proof
is omitted but follows ideas used in Section II (please refer to
[22] for the details of the proof).

Theorem 2—Stability and Tracking Results Using MIMO
Indirect Adaptive Control: Ifthe reference input assumption
R1 holds, the plant assumptions P1 and P2 hold and the control
law is defined by (39) with the control assumption C2,then
the following holds:

1) The plant states as well as its outputs and their deriva-
tives , are bounded.

2) The control signals are bounded, i.e., ,
.

3) The magnitudes of the output errors decrease at
least asymptotically to zero, i.e., ,

.

IV. A PPLICATIONS

A. Illustrative Example

Consider the nonlinear differential equation given by

(42)

TABLE I
RULE BASE

Notice that these are coupled nonlinear dynamics. The
matrix is not constant but contains a bounded function of the
states. We are interested in the outputs and .
It is easily verified that this system has a vector relative degree
of . We define the error equations as
and with the output errors defined appropriately. We
want the outputs of the system to track the reference vector

where and ( is the
Laplace transform operator). Thus, is computed from
and .

We use two T–S fuzzy systems to produceand and
we set the “known” controller terms .
Both fuzzy systems have and as their inputs (so here

) and we let , .
Both fuzzy systems have nine triangular membership functions
for each of the two input universes of discourse, uniformly
distributed over the interval with 50% overlap (we
use scaling gains to normalize the inputs to this interval). We
saturate the outermost membership functions and the output is
computed using center average defuzzification. Both systems’
coefficient matrices and are initialized with zeroes
and they utilize the rule base shown in Table I. The labels

denote the th fuzzy set for the th input, where
corresponds to the leftmost and to the rightmost fuzzy
set. Each entry of the table corresponds to one output function

, where , and is the th column
of , . As an example, consider the rule for that
is inside of a box in the table

is is

where we evaluate theand operation using minimum. Note
that , is the result of evaluating thepremise
of the th rule.

From the plant’s equation we choose the bounds ,
, , , , ,
, and (these two bounds are obtained

by differentiating the diagonal entries of the matrix). Also,
the fuzzy system approximation error bounds are chosen as

(note that this choice is not readily
apparent from the definitions of the fuzzy systems; rather, the
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(a) (b)

Fig. 1. (a) System states (solid lines) and reference model outputs (dashed lines). (b) Control inputs.

bounds are found through a trial and error procedure). Since
we know the vectors and , an easy way to
compute the bounding functions and is to use fuzzy
systems that have the same structure as the ones used for

and . Initially, we chose the entries in their coefficient
matrices to be large, so that they would bound the values taken
by the and fuzzy systems. We found, however, that this
created high-amplitude and high-frequency oscillations of the
control signals (due to the term ), which are undesirable.
After some tuning we determined that setting the and
fuzzy system’s coefficients to 0.1 gave us stable behavior,
good tracking, and much smoother control signals. Finally, the
adaptation gains were chosen as , where

is a 2 2 identity matrix.
In Fig. 1, we observe the results for direct adaptive control

on this system. We used a fourth-order Runge–Kutta numerical
approximation to the differential equation solution with a
step size of 0.001. The reference inputs and are
chosen as square waves, and the corresponding reference
model outputs are plotted in Fig. 1(a) with dashed lines but are
hard to see since and track them closely. In Fig. 1(b),
we observe the applied control inputs.

B. Application to a Two-Link Robot Arm

Next, we consider direct adaptive control of a two-degree of
freedom robot arm. This system does not satisfy assumption P3
because, as we will see, the matrix multiplying the input vector

contains functions of the states (similar to the example in the
previous section). However, in some regions the bounds for
the entries do not satisfy the diagonal dominance condition.
Nevertheless, our simulation results show that the method
seems to be able to provide stable tracking with adequate per-
formance; furthermore, the controller is able to compensate for
an “unknown” change in system parameters, which represents
the situation where the robot picks up an object after some
time of nominal operation (i.e., when the robot is not holding
any object).

The robot arm consists of two links—the first one mounted
on a rigid base by means of a frictionless hinge and the second
mounted at the end of link one by means of a frictionless ball
bearing. The inputs to the system are the torquesand
applied at the joints. The outputs are the joint anglesand

. A mathematical model of this system can be derived using
Lagrangian equations and is given by

(43)

where

The matrix can be shown to be positive definite and,
therefore, always invertible. In our simulation, we use the
following parameter values: kg, mass of link one;

kg, mass of link two; m, length of link one;
m, length of link two; m, distance from the

joint of link one to its center of gravity; m, distance
from the joint of link two to its center of gravity; kg
m , lengthwise centroidal inertia of link one; and kg
m , lengthwise centroidal inertia of link two. The mass ,
initially set equal to zero, represents the mass of an object at
the end of the link. After 100 s of operation, the robot “picks
up” an object of mass kg.



352 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 7, NO. 3, JUNE 1999

(a) (b)

Fig. 2. (a) System states (solid lines) and reference model outputs (dashed lines). (b) Control inputs.

We can rewrite the system dynamics in IO form

We observe that the input vector is multiplied by , which
contains the function . For some values of , is
not diagonally dominant and, thus, does not satisfy assumption
P3 (note, e.g., that for some values, ).
However, we found that not only was it possible to make the
direct adaptive method work, but also that it offered relatively
good performance and the ability to handle system parameter
changes.

We would like the outputs and to track desired
reference angles, which are obtained from the reference model
vector

where and . Clearly,
the system has a vector relative degree , so letting

and , we define the error
equations and . The error
derivatives are available since the reference inputs are twice
differentiable and the angle derivatives and are plant
states.

When designing our fuzzy systems we assumed that there
is no strong cross-coupling between the inputs and outputs,
which greatly simplifies the design: we chose and as
inputs to the fuzzy system for (so for this fuzzy system

), and and as inputs for . Both
fuzzy systems have and are otherwise
structurally identical to the systems defined in Section IV-A.
Here also, we initialized the coefficient matrices of both

systems with zeros. Since, as mentioned before, the system
does not satisfy assumption P3 for all, the way to choose
the bounds for the matrix entries is not clear. In view
of this, we took a pragmatic approach where we first picked
bounds that were as close as possible to the real bounds and
yet satisfied assumption P3: letting , substitution
of the numerical values of the parameters shows that taking
into account both values of , ,

, , and . Thus, we picked

and . This choice resulted in somewhat acceptable
behavior, but with highly oscillatory control signals. Therefore,
we decided to tune these bounds even though the theoretical
assumptions were violated. We found that reducing the size of
the bounds while meeting the diagonal dominance condition
yielded satisfactory results: the magnitude of the control
signals’ oscillations was drastically reduced and, at the same
time, we obtained adequate tracking and apparent robustness to
the plant parameter change we investigated. We finally chose
the bounds as and

. Differentiation of the diagonal entries of yields
and . We picked the fuzzy system

approximation error bounds as (again,
this is the result of a tuning process). The bounding functions

and were picked in a way similar to Section IV-A,
where the matrix coefficients are first chosen large and then
decreased until adequate performance is achieved; setting
the coefficients to 0.1 gave us the best results. Finally, the
adaptation gains were set to , where is
a 2 2 identity matrix.

We observe the control results on Fig. 2. We let
and be square waves. Initially the controller has some
difficulties and tracking is not perfect: at this point, the T–S
coefficient matrices are moving away from zero and possibly
adapting toward values that allow for better tracking. After the
first period of the square wave reference inputs we note that
tracking improves significantly. At time s, when the
system dynamics change as the robot “picks up” an object, we
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find the outputs exhibit virtually no transient overshoot, and
tracking continues to be adequate. However, at this point we
observe a high peak in as the controller tries to compensate
for the increase in the load of link two. The peaks reoccur at
the transition points, where the references step up or down,
but they tend to decrease in magnitude (we let the simulation
run for 12 000 s, and found this pattern to hold).

V. CONCLUSIONS

In this paper, we have developed direct and indirect adaptive
MIMO control schemes which use T–S fuzzy systems or a
class of neural networks. We have proven stability of the meth-
ods and shown that they guarantee asymptotic convergence of
the tracking errors to zero as well as boundedness of all the
signals and parameter errors, regardless of any initialization
constraints. Both methods allow for the inclusion of previous
knowledge or expertise in form of linguistics regarding what
the control input should be in the direct case or what the
plant dynamics are, in the indirect case. We show that with or
without such knowledge the stability and tracking properties
of the controllers hold, and present two simulations for direct
adaptive control that illustrate the method.
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