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Letters

Stable Multi-Input Multi-Output Adaptive Fuzzy/Neural Control

Rall Ordofez and Kevin M. Passino

Abstract—In this letter, stable direct and indirect adaptive feedback linearizable, continuous time systems with general
controllers are presented that use Takagi-Sugeno (T-S) fuzzy relative degree, and utilization of neural networks to develop
systems, conventional fuzzy systems, or a class of neural networksy, jndirect adaptive scheme. These results are further studied

to provide asymptotic tracking of a reference signal vector for a - . . .
class of continuous time multi-input multi-output (MIMO) square and summarized in [20]. The scheme in [19] requires the

nonlinear plants with poorly understood dynamics. The direct assumptions that the tracking and neural network parameter
adaptive scheme allows for the inclusion of priori knowledge errors are initially bounded and sufficiently small and they

about the control input in terms of exact mathematical equations provide convergence results for the tracking errors to fixed
or linguistics, while the indirect adaptive controller permits neighborhoods of the origin

the explicit use of equations to represent portions of the plant - . S
dynamics. We prove that with or without such knowledge the !N this paper, we present direct [21] and indirect [22]

adaptive schemes can “learn” how to control the plant, provide adaptive controllers for MIMO plants with poorly understood
for bounded internal signals, and achieve asymptotically stable dynamics or plants subjected to parameter disturbances, which
tracking of the reference inputs. We do not impose any initial- extend the results in [8]. We use Takagi—Sugeno (T-S) fuzzy
ization cond_itions on the controllers and guarantee convergence systems or a class of neural networks with two hidden layers as
of the tracking error to zero. - .
the basis of our control schemes. We consider a general class
Index Terms—Direct adaptive control, fuzzy control, indirect  of square MIMO systems decouplable via static nonlinear state
adaptive control, MIMO nonlinear systems, neural control. feedback and obtain asymptotic convergence of the tracking
errors to zero (rather than to a bounded neighborhood of the
|. INTRODUCTION origin) and boundedness of the parameter errors as well as state

UZZY systems and neural networks-based Con,[r(t))loundedness provided the zero dynamics of the plant being

) . exponentially attractive. The stability results do not depend on
methodologies have emerged in recent years as Lo " . .
. . any initialization conditions and we allow for the inclusion
promising way to approach nonlinear control problems.

Fuzzy control, in particular, has had an impact in the contrd] the control algorithm of priori heuristic or mathematical

. : . . nowledge about what the control input should be in the direct
community because of the simple approach it provides to use o -
C g . case or about the plant dynamics in the indirect case. Note that
heuristic control knowledge for nonlinear control problems. = L . . . :
. . o while the indirect approach is a fairly simple extension of the

However, in the more complicated situations, where the plan . . .
. . carresponding SISO case in [8] (the results in [19] and [20]
parameters are subject to perturbations or when the dynamics 2 . . .
ré also on indirect adaptive control), the direct adaptive case

of the sy;tem are too_ complex to be characterlzed reliably & not. The direct adaptive method turns out to require more
an explicit mathematical model, adaptive schemes have been

introduced that gather data from on-line operation and ursestrlctlve assumptions than the indirect case, but is perhaps

adaptation heuristics to automatically determine the paramet fsmore mte_zrest because as far as we are aware, no other
Irect adaptive methodology with stability proof for the class

of the controller. See, for example, the techniques in [1]-] § MIMO systems we consider here has been presented in
to date, no stability conditions have been provided for theﬁ(]a
I

) & literature. The results in this paper are nonlocal in the
approaches. Recently, several stable adaptive fuzzy con ghse that they are global whenever the change of coordinates
schemes have been introduced [8]-[12]. Moreover, closel y g 9

related neural control approaches have been studied [13]—[1:S 'gllgggl in the feedback linearization of the MIMO system

In the above techniques, emphasis is placed on control Of'I'he aper is organized as follows. In Section Il, we intro-

single-input single-output (SISO) plants (except for [4], whicg Pap g : : !
. . 7 . uce the MIMO direct adaptive controller and give a proof

can be readily applied to multi-input multi-output (MIMO) - . .

o . .. of the stability results. In Section Ill, we outline the MIMO
plants as it is done in [5] and [6], but lacks a stability . . S
. . . “Indirect adaptive controller giving just a short sketch of the
analysis). In [19], adaptive control of MIMO systems usin roof (the complete proof can be found in [22]). In Section IV
multilayer neural networks is studied. The authors consider PIEte p . ' . '
we present simulation results of the direct adaptive method
Manuscript received July 26, 1997; revised January 1, 1999. This woﬂppliEd first to a non!inear diﬁer_ential e_quation that satisfies
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how the method can be made to work in spite of this fact. In (P2) Plant AssumptionThe plant is feedback linearizable

Section V, we provide the concluding remarks. by static state feedback; it has a general vector relative degree
r = [r1, -+, 7] and its zero dynamics are exponentially
II. DIRECT ADAPTIVE CONTROL attractive (please refer to [24] for a review on the concept

f zero dynamics and static state feedback of square MIMO
ystems). We also assume the state veltdio be available
for measurement.
X =(X) + 0 (X)ug + - + g,(X)u,, Qur goal is to identify the unknoyvn control funetion (4)
— hi(X) using fuzzy systems. Here, we will use generalized T-S
fuzzy systems [25] with center average defuzzification. To
briefly present the notation, take a fuzzy system denoted by

Consider the MIMO square nonlinear plant (i.e., a plant wit
as many inputs as outputs [23], [24]) given by

_ f(X, W) (in our context X could be thought of as the state
Yp = hP(X) 1) . .
vector andW as a vector of possibly exogenous signals).

whereX = [z1, -+, z,]7 € R" is the state vectorlJ := Then, f(X, W) = (R | cipi/ SR us). Here, singleton
[ui, ---,up]T € R is the control input vectorY := fuzzification of the input vectorX = [z, ---, ], W =
[y1, -+, ¥p]" € WP is the output vector, andf, g;, h;, [wi, -, w,] " is assumed; the fuzzy system h&sules, and
i=1,---, p are smooth functions. If the system is feedback; is the value of the membership function for the premise
linearizable [24] by static state feedback and has a well-definefthe <th rule given the inputX, W. It is assumed that the
vector relative degree := [rq, ---, 7,] ', Where ther;’s are fuzzy system is constructed in such a way that u; <1

the smallest integers such that at Ieast one of the inputs app@ailtizZ 1 # 0 forall X € R, W € R, The parameter
in 4", the input—output (I0) differential equations of the: iS the consequent of théth rule which, in this paper,

system are given by will be taken as a linear combination of Lipschitz continuous
» functions, z,(X) € ®, £k = 1,---, m — 1, so thate; =
(re) _ L7h, Lo (L% s 2) %0 + ai,lzl(X) + -t ai,m—lzm—l(X)i i =1 R
yZ f' + Jz=:l 17_7( 7’)“] ( ) Deflne
1

with at least one of theL, (L} *h;) # 0 [note that 7(X)
Lsh(X): R — R is the L|e denvatlve ofh with respect z= ) cR™
to f, given by L;h(X) = (9h)/(8X)f(X)]. Define (for :
conveniencely; (X) := L h; and§3;;(X) := Lo (Lfm 1 hy). Zm—1(X)
In this way, we may rewrite the plant’s IO equation as T [ (X, W), -, up(X, W)

(r) - R

oy Bii o P Uy
(X
S I I P o I I P 21X, W)
(rp) .
Yp &_/ Bp1 y Bpp & aro a1 o A1 me1
Y@ o AXKY B(X, 1) u) 2,0 G2,1 " 02 m—1
AT =| 7 ’ ’
Consider the ideal feedback linearizing control 1&% — : : :
[uf, -, ux]" given by R0 AR1 " AR m—1
U* =B ' (-A+v) (4) Then, the nonlinear equation that describes the fuzzy system

. _ can be written ag(X, W) = 2 (X)A¢(X, W) (notice that
(note that, for convenience, we are dropping the referencggandard fuzzy systems may be treated as special cases of this
to the independent variables except where clarification dgore general representation). The T-S model can represent a

required) where the term = [v1, ---, 1] is an input to the class of two-layer neural networks and many standard fuzzy
linearized plant dynamics. In order f&f* to be well defined systems [8]. Note that whilé may depend on botiX and
we need the following assumption. W and is bounded for any value they may takegdepends

(P1) Plant Assumption:The matrixB as defined above is on X only. This allows us to impose no restrictions B to
nonsingular, i.e.B~! exists and has bounded norm for aljuarantee boundedness of the fuzzy system.

X € 8, t >0, whereS, € R" is some compact set of e will represent theth component of the ideal control

allowable state trajectories. This is equivalent to assuming (4),i=1,---,p, as
O'p(B) > Omin > 0 (5) U,;k (X, W’ t) = ZT(X)A:‘Q(X’ W) + dZ(X’ W) + g, (t)
||B||2 :al(B) < Omax < 0 (6) (7)

where A7 € ®m:* & s assumed to exist and is defined by
where o,,(B) and o,(B) are, respectively, the smallest and

largest singular values dB. — are min . |7TA‘C‘ + g, — |
In addition, in order to be able to guarantee state bounded T A e XESw,WSSw,tZO T SN R ¢
ness under state feedback linearization we require P2. (8)
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and the representation error using optimal parameters (whithen, using the previous definitions, tite component of the
arises because of the finite number of basis functions usedpigput error dynamics is given by
bounded, i.e.d;(X, W) < D;(X, W), whereD; is a known

bounding function. We defin®; as a compact set within which Ggi) = er(f{f) - le‘(ri)

the matrix of coefficients estimate4,(¢) is allowed to lie, P

S, C R" as the subspace through which the state trajectory =y — v = > Bijuy —uj)
may travel under closed-loop control, a®d, C R? is the J=1

subset where the vectdW may lie (notice that we do not B P .

restrict the sizes of5, and S,,; however, thesup in (8) is = MiCs; T Cs; T Z Bij(uj = uj) (12)
assumed to exist). As a result of the proof, we will be able to =1
determine thaX actually remains within a compact subset ofq that
S.. Note that the ideal control law (4) is a function not only

of the states but also af, which may depend on variables

other than the states (as will be described below). The vector

W is provided to account for this dependence. The tegm
represents &nownpart of the ideal control input, which may Before proceeding, we need to introduce another set of
be available to the designer through knowledge of the plamtsumptions on the plant and formalize our assumptions about
or expertise. If it is not available, this term may be set equtile control termU.

to zero with all the properties of the adaptive controller still (P3) Plant Assumption:Each entry ofB (besides those on
holding. The only restriction on, is that it must be bounded. the main diagonal) is bounded by known constafits(X)| <

p

6‘57. = —MiCs; — Z [sz(uj — u’;) (13)

i=1

Note that an appropriate use of, may help to significantly /_Jij, t,7 =1,---,p, ¢t # j. We require that the entries in
improve theperformanceof the controller, even though inthe main diagonal satisfg < Bii < Pu(X) < B < o0,
principle it has no effect on stability. Thus, the fuzzy system = 1, .--, p and their derivatives be defined and satisfy
approximation ofu} is given by 15i(X)| £ My(X), ¢ = 1,---,p, where 3, §,;, and
WX, W, £) = 2T (X) A (G(X, W) +ui. (8). (9) i\g}:g{/) are known bounds. Furthermore, the bounds have to

The matrix A;(¢) is to be adjusted adaptively on line in order
to try to improve the approximation. We define the parameter L Z 3. <1, i=1
error matrix,®;(t) := A;(t) — Af. Let U = [ay, «- -, i) . Bii ;4 “

Our objective is to have the plant outputs track a vector of
reference trajectoriesY, = [Ym,, -+ ¥m,]' ON which we (C1) Direct Adaptive Control AssumptiorBounding func-
make the following assumption. tions U;(X, W) such that|z (X)®()¢;(X, W)| < U(X,

(R1) Reference Input Assumptiofthe desired referenceW),i=1,---,p, X € S;, W € S, are known and they
trajectoriesy,,, arer; times continuously differentiable, with are continuous functions. Furthermore, the fuzzy systems or

p

Ymir s yr(fij) measurable and bounded foe= 1, - - -, p. neural networks that define the control tefth are defined
We define the output errors,, := #,,, — ;. Define also SO that the bounding functions of the representation errors
the error signals Diy(X, W),i=1,---, p are continuous.
g ; (ri—2)  (ri—1)T Note that in P3 the entries of the main diagonalBfare
Cs; = [ho, s Kyyma o, s el ™ e T all assumed positive. This is only to simplify the analysis; the
and diagonal entries may have any sign as long as they are bounded
Cs, =Gy, — C(():’i) =[ki, -, /gj,i_2] [Gosr o s C(():‘ﬁl)]T_ away from zero and the stability analysis requires only slight
- modifications to accommodate such a case. In C1, knowledge
The coefficients of of the bounding functio/;(X, W) is reasonable since both
r 1 z;(X) and ;(X, W) are known: a projection algorithm may
Jii(s) TosmTl 4 kf,i_Qs"f—Q +- ks + k) be employed to guarantee that(¢) stays within the compact
i = 1,--- p are picked so that the transfer functions arset ; of allowable parameters. Then, an upper estimate of

ﬁ"@i(t)n can be computed, and; can be defined.

stable. Let theith component of the parameterin (4) be Consider the function

given byy; := y,(,’{jf) +n;¢e5, + €, Wheren; > 0 is a constant.
Consider the control law Vi = 1 2+ %tr(‘PiTQui ;) (15)

- 28
U=U+U, (10)

with @,, € R™*™ positive definite and diagonal. This
function quantifies both the tracking error for thth plant
output and the approximation error for the parameter estimates
a&t the ith term of (4). Taking the derivative of (15) yields

whereUg := [ug,, -+, uq,]" is a control term required to
ensure stability that will be defined later.

From (3) and (4), we can derive an expression for the pl
output

Y® = A+BU = A+B(U-U")4+BU* = v+B(U-U"). Vi = S Co s, + tr(qgQw@) _ /37¢; ¢ (16)
(12) Bii 205
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1 r Theorem 1—Stability and Tracking Results Using MIMO
il Z Bij(u; — uj) Direct Adaptive Control: Ifthe reference input assumption
v j=1 R1 holds, the plant assumptions P1, P2, and P3 hold and the
. . Bii ) control law is defined by (10) with the control assumption C1
+ tr(‘l’i Qu, ‘I’i) TR e, - (17)  and the adaptive laws (18) are ustaknthe following holds:
Define the adaptation law for the T—S fuzzy system or neural b The plant Stat(??_?)s Wi” as its outputs and their deriva-
network as tivesy;, - -, Y ,t=1,..-,pare _bounded.
) 2) The control signals are bounded, i.dU|| € Lo
Ai = Qulaid e, (18) (Loo = {#(t): sup, |¢(t)] < oo}).
so that applying the properties of the trace operatorand the fac§) IThetmagnltutdvtas Ic;f tth e output elrroeg decreiseo at
that ®; = A; we obtalntr(éTQuz ®;) = 2 ®;{;e,.. Noting Leeis 1as'ym]|c; otically to zero, i.elim; oo e, = 0,

that u; — u} = ug, + 2 ®;¢; — d;, we get .
Proof of Theorem 1:To show part 1, consider the Lya-

Vi= _g_z 2 + ;i punov candidate
b
pr pr pr
= Biua, Y Budi— Y Bz ¢ V= ; Vi (25)
j=1 j=1 j=1,j7i
B , The above analysis guarantees
/2 (19) N
Vi< - /3— 62 — es, g, 1 |es, 2:: By (26)
soV is a positive definite function with negative semidefinite
Z /3“ Dj + Z / |ud |) derivative. This implies thaV; € L..; therefore,e,,, e, €
G=1, i 2 L., and ||®;]| € L, for i = 1,---,p (notice that this
|/3n| , analysis alone QOes nofc guarantde € €, for all Fime; _
+ 232 €, - (20) rather, a projection algorithm should be uged to achieve this).
_ " From the definition ofe,, we havecy) = Gi(s)e,., where
Define Gi(s) == s7/Li(s), j = 0,---,m — 1. Since by definition
o zp: Bij Do+ zp: Bij 7. & is stable,c) € Lo, j = 0,---,7; — 1 and since by
v = B / Py Bii assumption (R1) the signalg.”’ are bounded, we conclude
M;i(X) hatue, - o € Loowi=Liooop _
pi =€, < 2 /’32‘ ) With the outputs bounded and together with assumptl_on P2
i we have that the states, ---, z,, are bounded [23], which
Given these definitions, let implies that the state trajectories are limited to a bounded

subset 0fS,,. Let S, be the compact ball of minimum radius
(1) that contains the bounded subset of state trajectories. Since

¢; is continuous and; is Lipschitz continuous by definition

in S, then they are uniformly continuous and, therefore,
where we need to derive an expression . such that pounded onS,; and given thatw;, is bounded, we have

Ug; ‘= Sgn(esz o + Z /“ Umax | + pi
J=1, j#4

max, ¢ = 1, -+, p. From (21) we have t; € Loo, i =1, -, p. SinceU, is defined as a continuous
PG function, andD; is assumed continuous for & € 5., W €
g, | < loil +10il + Umax - D => < Umax- (22) S, both are bounded 08, S0 0; € Loo, and p; € Lo
J=1, j#i = because:,, € L., from part 1. This implied/,,,.x € Loo, SO
It follows that if we choose ug, € Loo, 1 =1, -+, p by construction. Hence|U|| € £,
To prove part 3 we notice that from (26)
‘ ‘ i o2 _ y
Unnlt) 2 max % 23) / Z ek < /0 Vdt 27)
2=1,---,p i
-2 7 =V(0) - V() <oo.  (28)
j=Llj#i ="
L This establishes that, € LQ, ;o= 1, D (LQ =
o 1 £ eld, ten nfck) £ U= L0400 R0 < . g deermined s, <
9 ﬁoo, 7 =1, r; — 1, it follows thaté,, € Lo, SO 657 is
vV, < _h 62 (24) uniformly contlnuous. Since,, € £2( Lo ande;, € Lo,

Bii * by Barbalat's Lemma we have asymptotic stabilityeof (i.e.,
We are now ready to present our main result and give its protifn,_, ., ¢;, = 0), which implies asymptotic stability of,,
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(i.e.,limy oo 5, =0), for¢z =1, ---, p. Notice that although are known bounding functions. We require the representation
assumption P1 is not used explicitly in the proof, it is stilerrors D, (X) to be small (later we will provide an explicit
necessary in order to guarantee #dstenceof U* without condition as to how small they have to be), which means that
which the argument is not sound. O the matrixB can, ideally, be well approximated by our fuzzy
Remark: Note that although in principle the choice of thesystems (or neural networks) using optimal parameters. Our
vectorW is arbitrary, a typical choice may be an error vectogdaptive controller’'s stability will not, however, depend on its
ie., W = Y — Y, or some other function of the plantability to identify these optimal parameters.
outputs and the reference model outputs. In this way, as arhe compact sef, C R" is defined as before and,,,
result of the proof, we also obtain th&¥ remains within a s, are compact sets within which the parameter matrices

bounded subset of,. estimatesA,, (t) and Ag,,(t) are allowed to lie. Thus, the
fuzzy system approximations of;(X) and j;;(X) are given
[ll. INDIRECT ADAPTIVE CONTROL by
Here we consider, again, the class of plants defined in (1). &i(X) =2, A, Ca, (34)
If assumptions P1 and P2 of Section Il are satisfied, then we Bij(X) — Z;{jAaijCaij (35)

may rewrite the 10 form of the plant as ) ) )
The matricesA,, (t) and A, (t) are to be adjusted adaptively

yirl) o1 + o, on line in order to try to improve the approximation.
: = : We define the output erroes, and error signals,, ande,,

(rp) as in Section Il. Consider the control laW := U, where
Yp ap + o, T : .
Uce = [ttee,; =+, Uee,| 1S @ certainty equivalenceontrol
AX.1) term. Define the matrixB := [3;;(X) + By, (1)), 4,5 =
Pu+Pug o Pip B u1 1,---, p. B is an approximation of the ideal and unknown

+ : : : (29) matrix B. Furthermore, lef;;] :=B~1,4,j=1,---,pbea

Bt + Bote - B+ Bope " matrix of the elements of the inverse. We need to ensure that
? P - el s - B! exists for allX € S, andt > 0. If the sets()s,, are

B(X.1) v constructed such that

wherec;, (t) and3;;, (t) are known components of the plant’s O—p(]fg,) > Oiin (36)
dynamics (that may depend on the state) or exogenous time O_l(]g_,,) <o 37)

dependent signals with the only constraint that they have to be
bounded for alk > 0. Throughout the following analysis theyfor all X € S,, then as long as the matrice$s,, remain
may be set equal to zero for &ll however, as in the direct within 4, ,, respectively, we can guarantee tHat! exists
adaptive case a good choice of these known functions m@his can be achieved using a projection algorithm). Note that
help improve theperformanceof the controller. The functions if we knew the matrixB to be, for instance, strictly diagonally
«;(X) and 3;;(X) represent unknown nonlinear dynamics oflominant [as required by the Levy—Desplanques theorem (see
the plant. [26] for an explanation of this and other invertibility results)]
Again consider the ideal feedback linearizing control lawith known lower bounds for the main diagonal entries, we
(4), where the tern» will be redefined below. Our goal is to could relax the conditions on the séls, ; by applying instead
identify the unknown functions; ands;; using fuzzy systems a projection algorithm that kepB in a strictly diagonally
(or neural networks) in order to indirectly approximate thgominant form similar tdB to ensure it is invertible.

ideal control lawU". Let the fuzzy system be a T-S form with |n order to cancel the unknown parameter errors we use the
center average defuzzification as in Section Il. We rewrite following adaptive laws:

o (X) :Z:lx:- AL Cas + da, (X) (30) Ao = —Qa 7aiCas s,

BZJ(X) :Z;irij Z;ij C,@gj + d,@gj (X) (31) A,Bij = _Q’E;_I; Z,Bij C,ﬁijGSiucej (38)
where Az, € R *Pe; and A% € R P are defined With Qa, € R >™ei, Q€ R "™ positive definite
by o and diagonal.

Now we can write an expression f@f ..
kL . . T v S N
AL, = arg A [;ggﬁ |24, A Ca; azl} (32) U =B 1(_ Ad ,,) (39)
Aj, =arg min [Sup |24, Ap,, a5 — /37;]»@. (33) Wwhere A = [41 + ai,, -+, & + op,]T. Here v(t) =
Ap;; €85 | Xes, [11(t), -+, ,(H)]T is chosen to provide stable tracking and

Note that we are assuming the ability to specify fuzzy Sygc_) allow for robustness to parameter uncertainty. Namely, let

tems in such a way that the representation errors using  1;(t) :=y) + mie,, + €, + Do, (X)sgn(es,)
optimal parameters (which arise because of the finite hum- P

ber of basis functions used) are bounded, i&,,(X) < + Unax(X)sgn(es, ) Z Dg, (X) (40)
D,,(X), dg,,(X) < Dg,,(X), where D, (X) and Dg,, (X) j=1
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wherern; > 0 is a design parameter aibd,,(X) is a function TABLE |

chosen so thatuc..| < Upax(X), @ = 1, ---, p. It can be RuLe Base
shown that the choice |FI | Fi|F} |FI[FL|FL|F}|FL]F]
2k k k k k k k % k
a;(X) Fila|oa|a e lale ¢ |clc

U, X)> max |———%— 41

m&>—mhmh_qm (41) A ACICICICIEIE

satisfies the requirement, whesg(X) := >%_, [bi;|[|&;] +
el + [ws | + miles,| + [6,] + Do) and ¢(X) =

Y1 Ibijl 21—, Dg,,. It should be noted that for many
classes of plants, eacl¥;; is a smooth function easily
represented by a fuzzy system. For example, if eggch
may be expressed as a constant, tiiey, = 0 for all i, j
since a fuzzy system may exactly represent a constant on a

compact set. This would remove the need for thg,.(X)
term to be included in (40). Notice that these are coupled nonlinear dynamics. Bhe

At this point we need to formalize our general assumptiamatrix is not constant but contains a bounded function of the
about the controller. states. We are interested in the outputs= x; andys = zs.

(C2) Indirect Adaptive Control Assumptiorthe fuzzy Itis easily verified that this system has a vector relative degree
systems (or neural networks) that define the approximatioos[2, 1]7. We define the error equations ag = ¢,, + ¢,
(34) and (35) are defined so tha, (X) € L, Dg,,;(X) € ande,, = ¢,, with the output errors defined appropriately. We
Lo, forall X e S, CR*, ¢, 5 =1, ---, p. Furthermore, the want the outputs of the system to track the reference vector
ideal representation errof9s, .(X) are small enough so that T

. Rl(S) RQ(S):|

we haved < ¢;(X) <1forall X € S,,i=1, -, p. Y (5), Yoo (8)] = [ 7
Notice that the maximum sizes @#g, , that satisfy C2 can ' ’ (s+1)?" s+1
be found since from (36) we havié;;(X)| < [[B7'l2 < whereR, (s) = L{r,()} and Ro(s) = L{ra(t)} (L{-} is the
(1/omin) and as long as assumption C2 is satisfied, we ensuyrgplace transform operator). Thus, is computed fromy,,,,
that |uce,| € Unax(X), ¢ =1, ---, p as desired. and wo.
We have completely specified the signals that compose thepe use two T-S fuzzy systems to produteand @, and
control vectorU and now we state our main result; its proofye set the “known” controller termsy, = 0,7 = 1, 2.
is omitted but follows ideas used in Section Il (please refer fgoth fuzzy systems have,, ande,, as their inputs (so here
[22] for the details of the proof). W = [e,,, ¢,,]7) and we letz] =[1, z1, z2, 3], k =1, 2.
Theorem 2—Stability and Tracking Results Using MIM@oth fuzzy systems have nine triangular membership functions
Indirect Adaptive Control: lfthe reference input assumptionfor each of the two input universes of discourse, uniformly
R1 holds, the plant assumptions P1 and P2 hold and the congigkributed over the interval—1, 1] with 50% overlap (we
law is defined by (39) with the control assumption @n yse scaling gains to normalize the inputs to this interval). We

FZ |l k| k| k|| cE |k |ck|ck|ck

2 k & E k k k k
Fr il 5 | ¢ | o C¢ | &7 | C8 | G

FZ | k| cE| o | ck
2 E % 3 E k k k
Fgllcs | e | e | e |6 | ¢ | ¢

the following holds:

saturate the outermost membership functions and the output is

1) The plant states as well as its outputs and their deriveemputed using center average defuzzification. Both systems’

tivesy;, -,y i=1, -

2) The control signals are bounded, i.eu.,
i=1,--,p

3) The magnitudes of the output erroes, decrease at
least asymptotically to zero, i.elim; .. e,, = 0,
i=1-,p.

, p are bounded.
6 £OO|

IV. APPLICATIONS

A. lllustrative Example
Consider the nonlinear differential equation given by

T x2
To | = x1 + 37% + x3
Z3

1 + 272 + 3T371

0
3uy + us

ug + 2(2 4 0.5 sin(zq))us

+ (42)

coefficient matrices4; and A, are initialized with zeroes
and they utilize the rule base shown in Table I. The labels
F! denote theith fuzzy set for thejth input, wherei = 1
corresponds to the leftmost afid= 9 to the rightmost fuzzy
set. Each entry of the table corresponds to one output function
ek i=1,.--,9, whereck = 2] a¥, andal is theith column
of Ax, k=1, 2. As an example, consider the rule fdy that
is inside of a box in the table
If c,, is Fy and ¢,, is FZ then c§ = 2] a}

where we evaluate thand operation using minimum. Note
thatu;, s =1, ---, 9, is the result of evaluating theremise
of the ith rule.

From the plant’s equation we choose the boufids= 3.3,
Bi1 = 2.7, Byy = 5.3, Boy = 2.7, fo1 = 1.3, f1o = 1.3,
M;; = 0.0, and My, = z, (these two bounds are obtained
by differentiating the diagonal entries of the matBy. Also,
the fuzzy system approximation error bounds are chosen as
D; = 0.1, D, = 0.1 (note that this choice is not readily
apparent from the definitions of the fuzzy systems; rather, the
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Fig. 1. (a) System states (solid lines) and reference model outputs (dashed lines). (b) Control inputs.

bounds are found through a trial and error procedure). SinceThe robot arm consists of two links—the first one mounted
we know the vectorg, and(¢,, k = 1, 2, an easy way to on a rigid base by means of a frictionless hinge and the second
compute the bounding functiori$; and U/, is to use fuzzy mounted at the end of link one by means of a frictionless ball
systems that have the same structure as the ones usedbé&aring. The inputs to the system are the torquesnd 7

w1 andis. Initially, we chose the entries in their coefficientapplied at the joints. The outputs are the joint anglesnd
matrices to be large, so that they would bound the values tak#n A mathematical model of this system can be derived using
by the#; and, fuzzy systems. We found, however, that thikagrangian equations and is given by

created high-amplitude and high-frequency oscillations of the -
control signals (due to the terfdy), which are undesirable. [Hll Hl?} [91}

After some tuning we determined that setting e and U Hyn Ha | |6
fuzzy system’s coefficients to 0.1 gave us stable behavior, H
good tracking, and much smoother control signals. Finally, the —hfy —hb; — hd>] 6, g -
' ' = - . i L=t 43)
adaptation gains were chosen@s, = @, = 2.41, where hé, 0 b, s - (

I is a 2 x 2 identity matrix.
In Fig. 1, we observe the results for direct adaptive contralhere
on this system. We used a fourth-order Runge—Kutta numerical
approximation to the differential equation solution with a1 =11+ Lo +mall mo[If + 12, + 2011, cos(62)]
step size of 0.001. The reference inputgt) and r»(t) are +ma[l] +13 + 2115 cos(62)]
chosen as square waves, a_md the (_:orrespondl_ng refere@le2e2 =1+ mzlfz + mal2
model outputs are plotted in Fig. 1(a) with dashed lines but are 9
hard to see since; and s track them closely. In Fig. 1(b), H12 =H21 =12 +m2 [1c, + bile, cos(62)]
we observe the applied control inputs. + m3[13 + l1l> cos(62)]
h Imglllc2 Sin(eg)
g1 =male, g cos(b1) + mog[l., cos(f1 + 62) + 11 cos(61)]

B. Application to a Two-Link Robot Arm
PP 9 =male,g cos(fy + 62).

Next, we consider direct adaptive control of a two-degree ofg
freedom robot arm. This system does not satisfy assumption & matrix H can be shown to be positive definite and,
because, as we will see, the matrix multiplying the input vecttierefore, always invertible. In our simulation, we use the
U contains functions of the states (similar to the example in tifi@lowing parameter valuegn; = 1.0 kg, mass of link one;
previous section). However, in some regions the bounds far, = 1.0 kg, mass of link twoj; = 1.0 m, length of link one;
the entries do not satisfy the diagonal dominance conditidla.= 1.0 m, length of link two;l., = 0.5 m, distance from the
Nevertheless, our simulation results show that the methjmint of link one to its center of gravityl., = 0.5 m, distance
seems to be able to provide stable tracking with adequate peom the joint of link two to its center of gravityf; = 0.2 kg
formance; furthermore, the controller is able to compensate fof, lengthwise centroidal inertia of link one; adg = 0.2 kg
an “unknown” change in system parameters, which represent$, lengthwise centroidal inertia of link two. The mass,
the situation where the robot picks up an object after sonmétially set equal to zero, represents the mass of an object at
time of nominal operation (i.e., when the robot is not holdinthe end of the link. After 100 s of operation, the robot “picks
any object). up” an object of massns = 3.0 kg.
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Fig. 2. (a) System states (solid lines) and reference model outputs (dashed lines). (b) Control inputs.

We can rewrite the system dynamics in 10 form systems with zeros. Since, as mentioned before, the system
i, 1 does not satisfy assumption P3 for &jl, the way to choose
{,, } = the bounds for théd—! matrix entries is not clear. In view

O2 HiHy — HioHo of this, we took a pragmatic approach where we first picked

_ s Py ‘o _ yet satisfied assumption P3: lettifd = H—!, substitution
Hnh92(20, + 02) — Huht + Hogr = Huge ] 600 1 imerical values of the parameters shows that taking
4{ Hyy _Hlﬂ [71”. into account both values ofi3, 1.1 < 11 < 1.2, 2.3 <
—Hxn  Hu[m Bra, Bor < 2.5, and 0.7 < Bar < 7.3. Thus, we picked

. H Hyohf2(261 + 65) + Hyoh82 — Hyogy + Hiago bounds that were as close as possible to the real bounds and

We observe that the input vector is multiplied By, which P = 1.3, fu = 1.1, /3,22 = 2.3 52_2 = 25, fn = 2.3,
contains the functioros(é,). For some values of,, HL is and 812 = 2.3. This choice resulted in somewhat acceptable

not diagonally dominant and, thus, does not satisfy assumptB‘?haVior* but with highly oscillatory control signals. Therefore,
P3 (note, e.g., that for somé, values, Hyy < |His[). W€ decided to tune these bounds even though the theoretical
However, we found that not only was it possible to make tfRSSUmptions were violated. We found that reducing the size of
direct adaptive method work, but also that it offered relativef® bounds while meeting the diagonal dominance condition

changes. signals’ oscillations was drastically reduced and, at the same

We would like the outputsd; and 6, to track desired time, we obtained adequate tracking and apparent robustness to
reference angles, which are obtained from the reference mot@ plant parameter change we investigated. We finally chose
vector the bounds ag;; = f11 =12, By =Por =12, and 31 =
i " T B12 = 0.3. Differentiation of the diagonal entries @& yields
T_ |07 Rl(s), 1.5%Ra(s) M, = 0.0 and My, = 3.16,. We picked the fuzzy system

(s +0.75)?" (s + 1.5) approximation error bounds a3; = 0.1, D, = 0.1 (again,
where Ry(s) = L{ri(£)} and Ry(s) = L{rs(t)}. Clearly, this is the result of a tuning process). The bounding functions

the system has a vector relative degfee2]", so letting U; and /5 were picked in a way similar to Section IV-A,
o, = Ym, — 01 and e,, = ym, — 62, we define the error Where the matrix coefficients are first chosen large and then

equationse,, = e,, + ¢,, ande,, = e,, + ¢,. The error decreased until adequate performance is achieved; setting

derivatives are available since the reference inputs are twib€ coefficients to 0.1 gave us the best results. Finally, the
differentiable and the angle derivativés and 6, are plant adaptation gains were set @,, = Q,, = 4.711, where! is
states. a 2 x 2 identity matrix.

When designing our fuzzy systems we assumed that therdVe observe the control results on Fig. 2. We te(t)
is no strong cross-coupling between the inputs and outpua®d 72(t) be square waves. Initially the controller has some
which greatly simplifies the design: we chosg and¢,, as difficulties and tracking is not perfect: at this point, the T-S
inputs to the fuzzy system for, (so for this fuzzy system coefficient matrices are moving away from zero and possibly
W = [, ¢s]"), ande,, and é,, as inputs forr. Both adapting toward values that allow for better tracking. After the
fuzzy systems have| = [1, 61, 61, 6>, 6] and are otherwise first period of the square wave reference inputs we note that
structurally identical to the systems defined in Section IV-Aracking improves significantly. At timé = 100 s, when the
Here also, we initialized the coefficient matrices of botlBystem dynamics change as the robot “picks up” an object, we

(Yo (8); Yom, (5)]
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find the outputs exhibit virtually no transient overshoot, and7] w. A. Kwong and K. M. Passino, “Dynamically focused fuzzy learning
tracking continues to be adequate. However, at this point we_ control,”IEEE Trans. Syst., Man, Cybeywol. 26, pp. 53-74, Feb. 1996.

observe a high peak i, as the controller tries to compensate

for the increase in the load of link two. The peaks reoccur at
the transition points, where the references step up or dowif]
but they tend to decrease in magnitude (we let the simulati?l%]
run for 12000 s, and found this pattern to hold).

[11]
V. CONCLUSIONS

In this paper, we have developed direct and indirect adaptil/&]
MIMO control schemes which use T-S fuzzy systems or a
class of neural networks. We have proven stability of the metsg)

ods and shown that they guarantee asymptotic convergence of
the tracking errors to zero as well as boundedness of all t
signals and parameter errors, regardless of any initialization

constraints. Both methods allow for the inclusion of previous
knowledge or expertise in form of linguistics regarding what
the control input should be in the direct case or what t
plant dynamics are, in the indirect case. We show that with i)
without such knowledge the stability and tracking properties
of the controllers hold, and present two simulations for direﬁn
adaptive control that illustrate the method.
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