
Genetic Adaptive and Supervisory Control ∗

La Moyne L. Porter II and Kevin M. Passino †

Department of Electrical Engineering
The Ohio State University

2015 Neil Avenue
Columbus, Ohio 43210

Abstract

A genetic algorithm (GA) uses the principles of evolution, natural
selection, and genetics to offer a method for parallel search of complex
spaces. Motivated by past work using the GA as a tool for off-line
computer-aided-design of control systems, we introduce several ways to
use the GA for on-line identification and controller tuning. In particular,
we introduce two new, but closely related approaches to genetic adaptive
control which we call “genetic model based control” (GMBC) and “ge-
netic model reference adaptive control” (GMRAC). In these techniques
a GA manipulates a set (population) of parameterized controllers in or-
der to evolve the controller most capable of providing good performance
for the current plant operating conditions. Next, we introduce a hierar-
chical GA-based supervisory controller (GASC) that seeks to evolve the
GMRAC’s fitness evaluation procedure so that the controllers chosen by
GMRAC guide the system towards reduced error and decreased use of
control energy. The use of GASC removes the need for the designer to
specify GMRAC parameters. In addition, we show how GA-based esti-
mation (GAE) can be used to evolve a model of the plant that is used in
the model based controllers GMBC and GMRAC. A cargo ship steering
problem is used throughout this paper as a theme example to illustrate
each of the genetic adaptive control concepts and techniques.

Keywords: Adaptive control, genetic algorithms, supervisory control.

∗This work was supported in part by National Science Foundation Grant IRI 9210332.
Bibliographic information for this paper: Porter L., Passino K., “Genetic Adap-
tive and Supervisory Control,” Int. Journal of Intelligent Control and Systems,
Vol. 2, No. 1, pp. 1–41, 1998.

†Please address all correspondence to K. Passino; (614) 292-5716, email:
passino@ee.eng.ohio-state.edu.

1

1 Introduction

Since the inception of the genetic algorithm (GA) concept by Holland [1] in
1975 it has been useful in solving a wide variety of problems. Economics, game
theory, and the traveling salesman problem are just a few instances of situa-
tions where the GA has been used to prize an optimal solution from a complex,
nonlinear search space [2, 3]. The GA has also found application in the area
of design automation for conventional and intelligent controllers. Typically, for
this, a controller is decomposed into a set of parameters which the GA attempts
to optimize by using simulation based fitness evaluation of candidate controllers
in the closed-loop system. For instance, Lee and Takagi [4] design a fuzzy system
using a genetic algorithm for the inverted pendulum. Their controller fitness
evaluation is based upon simulation of the system over a variety of initial con-
ditions to obtain a fuzzy controller capable of handling a variety of operating
conditions. Their GA manipulates strings which represent input and output
membership functions. Their fitness evaluation incorporates a strategy to min-
imize the number of rules and “scores” the ability of the fuzzy controller to
balance the pendulum. Porter and Borairi [5] use the GA in an eigenstructure
assignment technique. Their GA chooses values of a linear feedback matrix to
minimize the error between actual closed-loop eigenvalues and desired eigenval-
ues as well as actual and desired eigenvectors. Michalewicz, et al. [6] use the
GA to solve certain optimal control problems. Ishibuchi, et al. [7] design fuzzy
controllers for pattern classification with the GA attempting to minimize the
number of rules while maximizing the number of correct classifications. Katai,
et al. [8] present a technique which utilizes a GA and a fuzzy controller to reduce
the error between a model of the system and the actual system over a time win-
dow. Karr and Gentry [9] use a GA to design a fuzzy controller to control the
pH of an acid-base system. Park, Kandel, and Langholz [10] optimize a fuzzy
reasoning model via a genetic algorithm to control a direct current series motor.
Vars̆ek, et al. [11] use a GA to derive and subsequently optimize rules for the
control of an inverted pendulum. Nomura, et al. [12] present a method for GA
tuning of a fuzzy controller that fits input-output data. They utilize a gradient
descent method coupled with rule minimization to obtain optimal input mem-
bership functions. Das and Goldberg [13], Maclay and Dorey [14], Kristinsson
and Dumont [15], and Etter, et al. [16] use the GA for system identification.
Yao and Sethares [17] use the GA for nonlinear parameter estimation.

Off-line design schemes often require many simulations to validate an ac-
ceptable controller and results are generally obtained at the expense of a large
amount of computation. An exhaustive study of a plant (especially a very
nonlinear one) with respect to disturbances and reference inputs is usually not
feasible and off-line design by a GA may produce a control system which is only
effective for the operating conditions studied. Despite these disadvantages, the
GA has a great deal of flexibility in that any ideas of how to control, identify, or
estimate a system which can be codified by a string representation are amenable

2

to search by the GA (and any system that can be parameterized can have its
parameters represented by strings). The references above are a testament to
the GA’s breadth of usage. In this paper we show how GA’s can be used in on-
line adaptive control and system identification to evolve the control system that
performs well under the current operating conditions. To do this we exploit the
flexibility of the GA found in off-line design within a framework which allows
the GA to make decisions quickly (within a sampling instant) so that evolution
occurs in real-time.

The development of the genetic adaptive control techniques and ideas is pre-
sented in a constructive manner where later techniques build on earlier ones.
First, in the genetic model based control (GMBC) approach a GA uses (i) a
model of the plant, (ii) current and past input-output data, and (iii) an es-
timate of future plant outputs to decide which controller in a population of
controllers should be used to control the plant at each time step. Genetic model
reference adaptive control (GMRAC) uses (i) - (iii) for GMBC along with a
“reference model” [18, 19] that is used to characterize the desired performance
of the closed-loop system. GMRAC fitness evaluation is based upon the ability
of a controller to meet user-specified design objectives. GA-based supervisory
control (GASC) acts as a supervisor for GMRAC and has a goal to decrease sys-
tem error and use of control energy by manipulating GMRAC’s fitness function.
GASC provides a method to adaptively tune GMRAC so that manual design
iterations can be avoided. GA-based estimation (GAE) evolves the model in (i)
above when no mathematical model of the plant is available for GMRAC. The
use of GAE coupled with MRAC bears some conceptual similarity to the work
in [15]. There the authors use the GA as an on-line identifier for the parameters
of a linear system then use the parameter estimates in a certainty equivalence
control law [18, 19] to specify the controller parameters (i.e., “indirect adaptive
control”). In our approach we use one GA to identify the plant parameters but
use the parameter estimates in the fitness evaluation in another GA in GMRAC
rather than using a certainty equivalence approach. Overall, then we study
both “indirect” and “direct” methods for genetic adaptive control (in “direct”
adaptive control we identify the controller parameters that will result in good
closed-loop behavior without estimating the plant parameters). An early version
of this paper appeared in [20] where only the GMRAC is discussed.

Note that we use a base-10 GA (i.e., one that operates on a string of digits
between 0 and 9) in all of our adaptive schemes since (i) it provides a natural
representation for the controller and model parameters to be manipulated and
(ii) no encoding and decoding of parameters is necessary as it is for base-2
GA’s [2]. We emphasize, however, that our techniques do not depend on the
use of the base-10 GA; a standard base-2 GA will work in a similar manner.
Moreover, a floating point based GA will work similarly. Also note that due
to past investigations in conventional adaptive control [18, 19], we have a good
idea of how to define the necessary controller and model structures that we will
tune in the adaptive controller. Hence, the fixed length structures typically

3

associated with the GA can be employed and there is no need for the more
general representation proposed in [21, 22]. Next, we provide a brief overview
of this paper.

In Section 2, we give an overview of the base-10 genetic algorithm which
is used throughout this paper. Section 3 describes the use of the GA in the
GMBC and GMRAC adaptive schemes. In particular, we begin by developing
the GMBC technique, illustrate its use in a cargo ship steering application, and
provide broad guidelines on how to design genetic adaptive controllers. Next
we introduce the GMRAC technique and show how the design guidelines we
have established can be used to design a GMRAC for the cargo ship. We
evaluate the performance of the technique by studying (i) the effects of a rudder
disturbance, (ii) ship speed variations, (iii) computational delay in the adaptive
loop, and (iv) the use of reduced order models in GMRAC. The performance of
GMRAC is compared to conventional model reference adaptive control (MRAC)
and fuzzy model reference learning control (FMRLC) by using the results in
[23]. Section 4 develops GASC, GASC with “population splitting” and then
describes the application of GASC to the cargo ship steering application. Section
5 illustrates the combined use of GASC, GMRAC, and GAE for the cargo
ship steering application. Finally, Section 6 provides concluding remarks as
well as suggestions for modification of GA implementation to possibly improve
performance and recommendations for further GA adaptive control studies.

2 Background: A Base-10 Genetic Algorithm

The GA performs a parallel search of a parameter space by using genetic op-
erators (e.g., selection, crossover, and mutation) to manipulate a set of en-
coded strings which represent system parameters1. These genetic operators
combine the strings in different arrangements where the optimal configuration
being sought is one which maximizes a user specified objective function (also
called a “fitness function”). The parallel nature of this search is realized by
the algorithm’s repetitive processing of a population (set) of strings beginning
with an initial population. This initial population is either a set of guesses of
potential solutions to the optimization problem or a random set of strings gen-
erated by the computer. A subsequent population is created via evaluation of
the objective function and the use of genetic operators to form a new generation
of strings which hopefully comprise the best characteristics of the previous set.
Ideally, the strings of the new generation are either as capable or more capable
of maximizing the value of the objective function than those of the previous pop-
ulation. Typically, the strings that maximize the objective function at the time
of termination of the GA are taken to be solutions to the optimization problem.

1While a brief overview is provided, we assume that the reader has a familiarity with the
conventional base-2 GA for which there exist many excellent tutorial introductions (see e.g.,
[2, 3, 24]).

4

A string is composed of digits (genes) each of which can take on different val-
ues (alleles). In our artificial genetic environment we can use alphabets of any
cardinality we desire in order to encode these values. In a binary environment,
we can represent an allele with a 0 or 1. The reproduction operation merely
copies selected strings from the old generation into the new generation. Strings
are selected for reproduction based upon their fitness values; thus strings with
higher than average fitnesses are preferentially copied into the new generation.
Goldberg [2, p. 11] cites the analogy of spinning a roulette wheel partitioned
according to the fitness of each individual string with respect to the average
fitness of the entire population. Thus, strings with large fitness values occupy
a greater portion of the wheel and are more likely to be selected. The crossover
operation is the primary vehicle for developing new structures. Crossover quali-
fies as a genetic operator since it allows for the exchange of chromosome building
blocks (genes) which occurs in natural genetics. Once two strings are selected
by the reproduction operation, crossover will occur with a probability, pc, which
is specified by the user during initialization of the routine. If crossover occurs, a
“cross site” is randomly determined. This cross site is a number between 1 and
p− 1, where p is the length of the string, which determines how much genetic
material will be exchanged between the two selected strings. Once the cross
site, k, is determined, crossover dictates that the two strings simply exchange
the alleles between the k + 1 position and the end of the string.

The mutation operator is the secondary method for introducing new struc-
tures into the population. The mutation operation is performed on a digit-
by-digit basis: each digit (position) of the string has an equal probability of
mutation, pm, against which it is tested. When mutation occurs, the string
position is changed to a different allele selected from the set of possible digits.
Mutation should be used sparingly (by choosing pm to be small) as increased
use results in a random walk through the search space.

The operation of the GA changes slightly depending on the base of the
numbers to which we apply the genetic operators. Traditionally GA’s have
been designed to operate over binary numbers (we refer to as “GA2”) and more
recently there have been several base-10 GA’s (“GA10”) developed [3]. To avoid
the need for encoding and decoding of strings we will employ a GA10 algorithm
that operates similarly to the GA2 described in [2] except: (i) its digits vary
over the numbers 0, 1, 2, . . . , 9 and there is an extra digit for the “+” or “-
” sign, (ii) we split the strings into a portion to the left and to the right of
the decimal point, and (iii) its genetic mutation operator randomly perturbs
the digits to any value (including the value it currently has) in 0, 1, 2, . . . , 9 or
toggles between “+” and “-” for the sign digit with probability, pm. If strings
outside the domain are generated by the mutation and crossover operators then
we generate another candidate via these operations. For pathological cases, a
limit is placed upon the number successive mutations allowed and in violation
of this limit, we reset the parameter (and string) to its maximum or minimum
value (whichever is closest to the actual value of the string). An alternative

5

approach would be to simply pick the value for the string to saturate along the
boundary of the allowed range of the parameter. It is important to note that
the approaches presented in this paper do not depend in any critical way on
using GA10. The standard GA2 method works in a similar manner (we have
done some simulation-based investigations to verify this for the maximization
problem in [3, p. 18]). We use GA10 to simply avoid issues in coding and
decoding strings and to make an algorithm for which it is easy to gain insight
into its search procedure. For instance, we find it easier to gain intuition about
the operation of the GMBC and GMRAC since the underlying GA operates
over base-10 numbers rather than long binary strings.

3 Genetic Adaptive Schemes

3.1 Genetic Model Based Control

In genetic model based control (GMBC), which is shown in Figure 1, we use a
GA that tunes an underlying controller by using a mathematical model of the
plant. Receiving plant output and reference input information, the GA selects
the “best” controller at each time step from a “bank” of candidate controllers
(denoted by “C”) by using an objective function to evaluate the suitability of
each controller. It is important to emphasize that adaptation occurs between
one time step and the next where one time step corresponds to one generation
of GA operation2. Learning is only taking place in the sense that the population
of strings is shaped by GA operators over successive generations. Controllers
that provide “good” closed loop control are retained within the population while
“bad” controllers are removed from the genetic pool thus improving the ability
of GMBC to control the plant. Next, we provide a detailed explanation of each
component of the GMBC in Figure 1.

3.1.1 Functional Architecture

The plant is defined by a nonlinear differential equation

ẋ(t) = f(x(t), u(t), d(t)) (1)
y(t) = g(x(t), u(t), d(t)). (2)

where u(t) is the control input, d(t) is the disturbance input, x(t) is the state,
and y(t) is the plant output (all quantities can be vectors or scalars as necessary).

2Real-time implementation issues must be considered. It will become clear that we will fold
one step of the GA’s operation into one time step in discrete time. Since the computational
resources for computing one generation in a GA can for many applications be quite minimal
we gain an ability to implement genetic adaptive control in real time. We have, in fact,
implemented GMRAC in our lab on a 486 PC for the control of a tank system. We will
discuss issues of computational complexity in more detail later in this paper.

6

Let y(kT) = y(t) where T is the sampling period, be the sampled output of the
continuous time plant. Let y(k), . . . , y(k−Ny) denote the sampled plant outputs
from time k to time k−Ny where Ny is a fixed positive integer (notice that we
often omit the sampling period T in our notation). Similarly, we use the fixed
positive integers Nu and Nr to indicate the number of past values of u and r
we will consider.

Plant

GA

*

r

c

u

P C

d

y

ŷ û

reference
 input

Controller

control
 input

disturbance

plant
output

Operation module

Adaptation
 Level

Figure 1: Genetic Model Based Control

We will use a model of the plant, P which we denote by

x̂(k + 1) = f̂(x̂(k), û(k)) (3)
ŷ(k) = ĝ(x̂(k), û(k)) (4)

where û(k) is the control input, x̂(k) is the state, and ŷ(k) is the output in the
adaptation level of GMBC shown in Figure 1.

Multiple steps into the future associated with any of the variables ŷ, r̂, or
û will be demarcated by Nf as in ŷ(k), . . . , ŷ(k + Nf). GMBC uses P and
candidate controller outputs û to determine estimated plant outputs ŷ(k). GA
processing occurs in the “operation module” shown in Figure 1. It uses r, u,
y (and their past values), and the plant model P to evaluate the fitness of the
strings in the population C of candidate controllers. At each time step (i.e.,
each generation) the GA chooses the c∗ ∈ C with maximum fitness value to
control the plant from time k to time k + 1 (hence c∗ ∈ C always denotes the
controller that is currently being used).

7

3.1.2 GA Operation Module

In addition to the three GA operators selection, crossover, and mutation, we
will also utilize an operator called elitism [2, p. 115]. Elitism ensures that
the string with the largest fitness value will propagate to the next generation
without manipulation by other GA operators. Elitism is used since it is likely
that within a sufficiently small time range (i.e., a small number of generations),
one candidate controller (i.e., c∗ ∈ C) will be better than other controllers. To
perturb the parameters of the best controller unnecessarily may result in an
unsatisfactory performance for which no genetic technique can adapt. Hence,
using the elitism operator, over a certain time range the best controller will
consistently determine the control signal to the plant. The string which defines
the best controller is given a number of copies in proportion to its fitness relative
to the average fitness of the population. The remaining slots, if any, are chosen
as in the previous sections (i.e., via selection, crossover, and mutation).

The use of elitism fits well with genetic adaptive control when the nature of
its operation is considered. We are not primarily concerned with finding a global
optimum for this system (i.e., a set of controller parameters which will perform
perfectly over a wide range of plant states, reference inputs, and time ranges)
but more of an instantaneous local optimum which will satisfy performance
criteria between time k and time k + 1. It is interesting to note, however, that
we do in fact obtain a control system which performs well over a wide range of
plant states, reference inputs and time ranges even though we are optimizing
in a local fashion. Because the time range of optimization is short (i.e., per
generation) and we do not have the stringent global optimum criteria as for a
typical problem in off-line design [4] or a maximization problem [3], we are free
to have a relatively large crossover and a particularly large mutation probability.
The large crossover and mutation rates will greatly aid in the adaptive nature of
this scheme; however with these large rates, the probability of every string being
changed in every generation is large. While in general no convergence of the
genetic algorithm is guaranteed, global and even local optimization is hindered
by excessive operator manipulation. We cannot afford to gamble that the very
next generation will produce a controller of a comparable or greater aptitude
to control the plant; with elitism we are ensured that our best idea of how to
control the plant will remain in the genetic pool.

It is interesting to note that we have found that larger than normal mutation
probabilities are sometimes useful in on-line use of GAs (a similar characteris-
tic was found in [17] where the authors used ‘”extinction and migration” to
essentially achieve a very high mutation rate). The higher mutation rates are
sometimes necessary since unlike many off-line optimization problems the on-
line approach will use a fitness function that changes over time. Intuitively,
then it is necessary to more broadly search the space when the fitness function
you are trying to optimize is continually changing (i.e., the GA is continually
seeking to maximize a fitness function that is continually changing – to do this

8

is has to be more liberal in its search strategy).
Let Ci denote the ith controller (a string of digits parameterizing the con-

troller structure) in the population of controllers C shown in Figure 1 and
assume that the size of the population |C| is n. The objective function utilized
in GMBC is of the form, Ji =

∑Np

j=1 αjpj
2 where pj is a parameter used to

evaluate the “goodness” of Ci, Np is the number of those parameters, and the
αj are scaling factors. For example, pj might represent the amount of error
between the reference signal and the plant output. We wish Ji to approach zero
as the algorithm operates so to form the fitness function that the GA maximizes
we use:

J̄i =
{ 1

|Ji| Ji �= 0
2 ∗max(J̄i) Ji = 0

(5)

where i = 1, 2, . . . , n and n is the population size. In the rather unlikely event
that a Ji has a fitness of zero, the second equation in 5 identifies this Ji as the
“elite” string by mapping it to the largest fitness value. We choose the quantity
2 ∗max here more or less arbitrarily. Assigning a fitness value that is too large
would result in the next generation completed dominated by this “zero” fitness
valued string. This may not be desirable in all cases, so the 2 ∗max represents
an acceptable trade-off. Once a J̄i has been assigned to all strings, selection
proceeds normally with J̄i used as the fitness value.

Suppose that the candidate controllers are of the proportional-derivative
(PD) form and we allow the GA to pick the proportional (Kp) and derivative
(Kd) gains. In this case, GMBC proceeds according to the following pseudo-
code (the pseudo-code changes only slightly for general linear or nonlinear con-
trollers):

1. Initialize the GA. Choose the number of digits to represent each controller
parameter Kp and Kd. Choose crossover probability pc and mutation
probability pm. Generate an initial population of Kp and Kd gains (we
make a random selection; however, if one has good a priori knowledge of
how to choose Kp and Kd then the initial population can be seeded with
a better set of candidate controllers). Initialize sample time, T . Set time,
t, to zero. Set initial conditions for the plant and the model of the plant
P . We choose all initial conditions to be zero.

2. Collect r(k) and y(k).

3. Generate û(k), for each population member Ci, i = 1, 2, . . . , n using the
PD control law û(k) = Kpe(k) − Kdedt(k) where e(k) = r(k) − y(k) and
edt(k) = e(k)−e(k−1)

T . Then generate ŷ(k + 1) using equations 3 and 4
(x̂(0) = 0). Thus the architecture of the “operation module” can be mod-
eled as in Figure 2. Note that r(k) represents our closest approximation
to r̂(k + 1) and in this paper we always choose r̂(k + 1) = r(k).

9

4. Assign fitness to each element of the population Ci, i = 1, 2, . . . , n:

Let p1 = e(k)− e(k − 1) (we want all controllers to minimize this error).
Let p2 = r̂(k + 1) − ŷ(k + 1) (estimated amount of error caused by the
candidate controller).
Let p3 = û(k) (estimated control energy employed by candidate con-
troller).

Ji = −(α1p
2
1 + α2p

2
2 + α3p

2
3) Notice that this fitness function can vary

significantly over time since the environment of the plant and the plant
itself can change over time. The fitness function must capture such dy-
namical changes so that it can evolve a new set of controllers for the new
conditions.

5. The maximally fit Ci becomes c∗. This c∗ is the controller used between
times k and k + 1.

6. Produce the next generation using GA operators.

7. Let t := t+ T . Go to Step 2.

Kp

K d

P

Ji

_
Ji

_
Max()

c*

r(k)

y(k) u(k)^ y(k+1)^

1 − z
T

−1

^

(model of the plant)

r(k+1) = r(k)

Candidate PD Controller Ci

Fitness evaluation for all iC ε C

Figure 2: GMBC Operation Module

By studying the GMBC pseudo-code it should be apparent that the amount
of computation required to compute a control action is not excessive. Steps 2 -
7 execute during the operation of the GMBC. Step 2 is executed for any control
algorithm and is simple. In Steps 3 - 5 we compute the value of J̄i for the n
candidate controllers (hence the population size n must be chosen based upon

10

the sampling period T). This involves taking one time step forward using the
model P and the candidate controller Ci (as the designer chooses the structure
of the controller it is typically of a reasonable order) and is not memory stor-
age or computationally intensive. Step 6 involves the use of GA operators to
produce the next generation and is a prepatory step for Steps 2 - 5 in the next
iteration. As Step 6 is stochastic (depending upon the probabilities of crossover
and mutation) there is no fixed time for completion of this step (however, we
can put a limit on the computations). The operations as explained in Section 2
are relatively simple and, in general, can be completed without excessive com-
putation. Along with the sampling period considerations described above, the
key to making the method computationally viable is the choice of liberal domain
limits for the parameterization. One of the complexities of GA10 (that GA2 also
has) is that GA10 can produce strings outside the designer defined domain lim-
its. For example, if we allow three digits to the left of the decimal point for Kp

representation and choose domain limits as [-100,100] then eight out of 10 per-
turbations of the first digit will result in an unusable string. Limit checking and
string regeneration functions are provided which also serve to place a limit on
the number of crossovers/mutations allowed; however, these procedures intro-
duce additional computation. The choice of liberal domain limits can forestall
some of this complexity. Some further discussion of computational complexity
issues is provided after the introduction of the GMRAC method.

3.1.3 Ship Steering Example

As an example, we apply GMBC to a cargo ship steering problem. The problem
is to use GMBC to adaptively control the heading of the ship, ψ by manipulating
the rudder angle, δ. A coordinate system fixed to the ship is shown in Figure 3
and the problem was taken from [18, pp. 355-359]. The cargo ship is described
by a third order nonlinear equation [23, p. 27] and we use this in all simulations:

...

ψ (t) +
(

1
τ1

+
1
τ2

)
ψ̈(t) +

(
1

τ1τ2

)
H(ψ̇(t)) =

K

τ1τ2
(τ3δ̇(t) + δ(t)) (6)

where H(ψ̇) is a nonlinear function of ψ̇(t). The function H(ψ̇) can be evaluated
from the relationship between δ and ψ̇ at steady state such that

...

ψ= ψ̈ = δ̇ = 0.
An experiment known as the “spiral test” approximates H(ψ̇) by aψ̇3+bψ̇. The
real valued constants a and b are assigned a value of one for all simulations. The
constants K, τ1, τ2, and τ3 are defined as

K = K0
u

l
(7)

τi = τi0
l

u
i = 1, 2, 3. (8)

where u is the forward velocity of the ship in meters/sec and l is the length of

11

v

y

V

u

x

δ

ψ

Figure 3: Cargo Ship

the ship in meters. For the cargo ship K0 = −3.86, τ10 = 5.66, τ20 = 0.38,
τ30 = 0.89, l = 161m and ū = 5m/s (nominally).

The magnitude of the maximum allowable rudder angle is 80o and u(k) is
normalized by this value (i.e., we will choose p3 = û(k)

80 in the pseudo-code for
GMBC). The model, P , used by GMBC is the linear, zero-order hold, discrete
equivalent (T = 0.05 seconds) of the following third order linear continuous time
plant provided in [18]

G(s) =
K(1 + sτ3)

s(1 + sτ1)(1 + sτ2)
(9)

where K, τi, τ2, and τ3 are defined as in equations 7 and 8. The PD type control
law used is:

δ(k) = Kpψe(t) −Kdψ̇(t) (10)

where ψe(k) = ψr(k) − ψ(k), ψr(k) is the desired heading of the ship.
For all simulations we choose ψr(t) = 45o for 0 ≤ t < 250 and ψr(t) = 0o

for 250 ≤ t ≤ 500. All initial conditions of the plant were set to zero at t = 0.0.
The string length is a relatively minor factor in GMBC design and can be
chosen depending upon desired accuracy. The total string length for Kp and
Kd representation was 26 digits, 3 digits to the left and 9 to the right, plus 1 digit
for sign information for each. The initial population of Kp and Kd gains was
chosen by random number generation. After some experimentation, crossover
and mutation probabilities were chosen as 0.82 and 0.33 with a population size
of n = 17. Note that we use the relatively large mutation rate since the fitness
function is time-varying and we must then ensure that the GA actively pursues

12

many possible regions in it search space (research in other on-line GAs has found
the same thing; e.g., the work in [17] uses an even higher effective mutation rate
via the use of “extinction and migration”). The search does not, however,
degrade to a random walk in the parameter space. Note that since we use the
elitism operator we are most often (unless we have a significant disturbance)
guaranteed to have at least as good of a controller at time k as we did at time
k − 1. This has an overall effect of reducing the randomness of the search
(especially considering the effect of the elite individual on selection). Elitism
coupled with a slightly higher mutation rate has an overall effect of consistently
providing a good controller yet making sure that the GAC is responsive to plant
and environmental changes.

Figure 4 shows simulation results 3 if the values of α1, α2, and α3 are 1.0, 1.0,
and 0.003, respectively. Figure 5 shows simulation results for a different choice
of αi’s, namely 950, 1.0, and 2.0 for α1, α2, and α3, respectively. It is evident
that by manipulation of the ratios of the αi’s we can control the response of the
plant. Increasing the value of an αi coefficient makes that term more important
to the GA; however, it is the ratio between αi’s that is crucial in determining
the response.

-20

0

20

40

60

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

H
ea

di
ng

 (
de

g)

Cargo Ship Response

___ Cargo Ship
... Reference Input

-100

-50

0

50

100

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

R
ud

de
r

A
ng

le
 (

de
g)

Figure 4: GMBC α1 = 1.0,α2 = 1.0,α3 = 0.003

The lower value of the α3 coefficient (compare Figures 4 and 5) results in
the GA using more control energy. This phenomenon makes sense because
the use of control energy is not penalized as much compared to the second
example. The GA is basically “free” to pick a large use of control over a small

3All simulations reflect data collected every five seconds. This number merely refers the
frequency of data collection for the plots and is exclusive of system simulation. Therefore each
figure with a time range of 500 seconds is a plot of 100 data points.

13

-20

0

20

40

60

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

H
ea

di
ng

 (
de

g)

Cargo Ship Response

___ Cargo Ship
... Reference Input

-100

-50

0

50

100

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

R
ud

de
r

A
ng

le
 (

de
g)

Figure 5: GMBC α1 = 950.0,α2 = 1.0,α3 = 2

use by keeping the value of α3 small relative to the other coefficients. From the
appearance of the graphs we also note that the same average behavior occurs
over each interval of 250 seconds. This is hardly a trivial observation as the
initial conditions at 0 and 250 seconds while comparable are not equal, and at
249 seconds the population of strings is locally tuned to reflect the current state
of the plant (i.e., ψe(t) and ψ̇(t) are small). As it has not been proven, this
average behavior phenomenon is not guaranteed; however, for constant αi’s this
behavior was always observed. It is suspected that despite the local tuning of
Kp and Kd, a sufficient mutation probability can allow the GA to adapt and
maintain acceptable system performance.

Figures 6 and 7 show the progression of fitness throughout the simulations
of Figures 4 and 5 (note that zero fitness is best). As expected, the fitness goes
to zero rapidly after a step input. In Figure 7 the fitness decreases dramatically
at t = 250 seconds. Due to the increase in the α1 coefficient in Figure 7, we are
penalizing a change in error to a greater degree than in Figure 6. The graph in
Figure 7 is a truncated version; the actual fitness decreased to approximately
−1.9×106 at t = 250.0 seconds. The crossover and mutation rates are sufficient
to drive the fitness to zero after this occurrence.

3.2 Genetic Model Reference Adaptive Control

The extension from GMBC to GMRAC is straightforward as it merely allows for
the presence of a reference model to dictate how we wish the closed-loop system
to respond to the reference signal. The objective function is similar to that of
GMBC except that we make control decisions based upon the error between the

14

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

Fi
tn

es
s

Figure 6: GMBC Fitness α1 = 1.0,α2 = 1.0,α3 = 0.003

actual system and the reference model. This change in the controller structure
seems to dramatically increase the capability of the genetic adaptive scheme.
GMRAC seems to be more resilient to model inaccuracies and disturbances than
GMBC for the cargo ship studied. We will also show that GMRAC compares
favorably to conventional techniques (gradient and Lyapunov model reference
adaptive control (MRAC)) as well as fuzzy model reference learning control
(FMRLC) for the cargo ship by comparing to the results in [23].

A general framework for GMRAC is shown in Figure 8. Note that in addition
to the variables defined for GMBC we now have a reference model M which has
an input r(k) (or for predicting into the future r(k) = r̂(k + 1)) and an output
ym(k + 1). For the cargo ship the reference model M used is

ψ̈m(t) + 0.1ψ̇m(t) + 0.0025ψm(t) = 0.0025ψr(t) (11)

where ψm is the desired ship performance for the heading ψr . The reference
model is taken from [23, p. 28] to reflect somewhat realistic performance re-
quirements.

Similar to GMBC, the objective function utilized in GMRAC is of the form,
Ji =

∑Np

j=1 αjpj
2. For this technique pj might be the amount of error between

the reference model and the plant output and again the αj used as a scaling
factor. For selection purposes, the value of Ji is mapped as in equation 5.
GMRAC proceeds according to the following pseudo-code assuming that the
same PD controller adopted in GMBC is employed.

1. Initialize the GA. Choose the number of digits to represent each controller
parameter Kp and Kd. Choose crossover probability pc and mutation

15

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

Fi
tn

es
s

Figure 7: GMBC Fitness α1 = 950.0,α2 = 1.0,α3 = 0.003

probability pm. Generate an initial population of Kp and Kd gains (we
make a random selection). Initialize sample time, T . Set time, t, to zero.
Set initial conditions for plant and model of plant P . We choose all initial
conditions to be zero.

2. Collect y(k) and r(k).

3. Generate û(k), for each population member Ci, i = 1, 2, . . . , n using the
PD control law û(k) = Kpe(k) − Kdedt(k) where e(k) = r(k) − y(k) and
edt(k) =

e(k)−e(k−1)
T . Then generate ŷ(k+1) using equations 3 and 4. Thus

the architecture of the “operation module” can be modeled as in Figure 2
except that now r̂(k+1) is passed through M to produce ym(k+1). Note
that as with GMBC r(k) = r̂(k + 1).

4. Assign fitness to each element of the population Ci, i = 1, 2, . . . , n:
Let p1 = em(k) − em(k − 1) where em(k) = ym(k) − y(k). Let p2 =
ym(k+1)− ŷ(k+1). Let p3 =

û(k+1)
80 (recall that we scaled p3 in a similar

manner earlier).

Ji = −(α1p
2
1 + α2p

2
2 + α3p

2
3)

5. The maximally fit Ci becomes c∗. This c∗ is the controller used between
times k and k + 1.

6. Produce the next generation using GA operators.

16

reference
 input

Plant

GA

*

r

c

u

P C

d

y

ŷ û

control
 input

disturbance

plant
output

Operation module

Adaptation
 Level

y
m

M

Controller

Figure 8: Genetic Model Reference Adaptive Control

7. Let t := t+ T . Go to Step 2.

Note that the complexity of GMRAC is only slightly higher than that of GMBC.
In fact, cursory investigations of this algorithm with respect to real-time imple-
mentation prove satisfactory. For example, for a population size of 19, string
length of 20 and representative crossover and mutation probabilities (0.6 and
0.24, respectively) the calculation of one c∗ (one generation, i.e., one discrete
time step) requires approximately 0.02 seconds 4. We obtained this value even
though in its present form the program is not optimized and extraneous pro-
gramming which facilitates analysis of the genetic adaptive technique is present.
For a real-time implementation it is clear that the time to compute the control
value would be even less.

Next, we establish design guidelines for GMRAC using the cargo ship as a
case study. With regard to the choice of mutation and crossover probabilities
and αi’s, we expect a similar amount of complexity in determining exact cause
and effect relationships as for GMBC. However, guided by our investigations of
GMBC in the previous section we can expect the following general features:

1. The ratios, α3
α1

and α3
α2
, will be the most important factors in determining

system response. Ratios can be scaled by the user to reflect the importance
of either system error or use of control authority. If the ratios are large,
we except the amount and rate of change of system error to be sacrificed
at the expense of the use of small control energy. Smaller ratios can offer
varying degrees of trade-off.

4This value is based upon averages over 4, 40, and 400 generations run on a Unix-based
Sun4 Sparc station.

17

2. A high crossover probability promotes “learning” between generations and
a strong base of “good” controllers can be built.

3. The mutation probability should be kept large enough to allow for adapt-
ability but not so large as to completely change the “non-elite” members
of the population with each generation.

Using the above trends as guidelines we present the following method for deter-
mining GMRAC parameters for the cargo ship steering example.

1. Fix string length, population size, and crossover and mutation probabil-
ities. If one were to actually implement this control scheme then pop-
ulation size and string length would be bounded by the sampling rate.
As discussed previously the crossover probability should be chosen to be
relatively large (i.e., 0.6 to 0.8). We have found that a good initial guess
at the starting mutation probability is to use approximately 40% of the
chosen crossover probability (i.e., 0.24 to 0.32 – see our discussion in the
last section on why this is a relatively high probability). For the cargo
ship we choose a string length of 18 to code the parameters of the PD
controller: 3 digits to the left of the decimal, 5 digits to the right and 1
digit to convey sign information for each parameter. The population size
is set at 17. Crossover and mutation probabilities are chosen as 0.6 and
0.24, respectively. As mentioned in the first subsection of this section,
the effect of crossover and mutation will in general be subordinate to the
effect of the αi’s. Therefore we fix the probabilities and concentrate our
design on the proper choice of the αi’s.

2. Choose an initial set of αi’s. Keep the value of the control energy coef-
ficient small with respect to the other coefficients. For the PD adaptive
scheme described above this means keeping the ratios, α3

α1
and α3

α2
small.

A good starting set might be α1 = 50, α2 = 500, and α3 = 0.001. Figures
9 and 10 show system responses for this choice of controller parameters.
Notice that the plant output tracks the reference model almost perfectly.

3. At this point, the criteria for an acceptable system response must be deter-
mined by the user in order to decide what parameters to tune. Looking at
Figure 10 we see a large use of control energy and high frequency fluctua-
tions in the error between the reference model and the cargo ship heading.
Suppose the latter phenomenon is unacceptable in our design. The fluc-
tuations are occurring because we are not penalizing the change in model
error enough. Let us increase the value of the α1 coefficient from 50 to
500. Figure 11 shows the response of the system. The cargo ship heading
behaves as it did in Figure 9; hence we omit the plot. We notice that
the model error changes in a smooth fashion, but perhaps the amount of
control is still unacceptable.

18

-10

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

H
ea

di
ng

 (
de

g)

Cargo Ship Response

____ Cargo Ship
.... Reference Input
.. Reference Model

Figure 9: Cargo Ship Response for each set of αi’s

4. To alter the use of control energy, we can either increase the value of α3

or decrease the value of α2. Both changes represent an attempt to allow
more system error by decreasing the control authority used. We choose
the latter alternative and change the α2 coefficient to 50. We obtain the
response shown in Figure 12 where once again the heading response is is
virtually identical to that of the two previous trials so we omit the plot. We
have successfully reduced the large variations in the rudder angle and the
high frequency fluctuations in the error between the reference model and
cargo ship heading; however, the reference model error increased slightly
(representing a typical trade-off).

The αi values for GMRAC in Figure 12 provide better responses than the
gradient and Lyapunov MRAC approaches in [23, pp. 31-32] for this same
cargo ship steering application. Gradient and Lyapunov MRAC techniques
show a large system overshoots until the Kp and Kd converge to provide a good
tracking response and exhibit the similar amounts of control energy for the third
GMRAC case (Figure 12). GMRAC provides a heading response that compares
well with FMRLC in [23, p. 31].

Now that we have obtained an acceptable controller, we will investigate
how the system responds to various disturbances. The effect of a disturbance
input acting through the rudder angle characterizes the effect that wind and
waves have on the control that is applied to the plant. Figure 13 shows the
system response for a sinusoidal disturbance at the rudder of 1 + 2 ∗ sin(2π ft)
where f is one cycle per minute. GMRAC proves to be quite robust to this
type of disturbance as opposed to GMBC where the ship heading perceptibly

19

-100

-50

0

50

100

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

R
ud

de
r

A
ng

le
 (

de
g)

-0.1

-0.05

0

0.05

0.1

0 50 100 150 200 250 300 350 400 450 500

R
ef

. M
od

el
 E

rr
or

 (
de

g)

Time (sec)

Error Between the Reference Model Output and the Cargo Ship Heading

Figure 10: Cargo Ship Response: α1 = 50, α2 = 500, α3 = 0.001 (reference
model error = ym − y)

changed (we omit the plots in the interest of brevity). Furthermore, the GMRAC
technique compares favorably to the disturbance response of the FMRLC as
shown in [23, p. 32].

From equation 6 we see that the dynamics of the cargo ship are sensitive
to the speed of the ship. Intuitively this makes sense because the effectiveness
of the rudder decreases as speed decreases (so the ship is harder to control at
lower velocities). Figures 14 and 15 show how the GMRAC will respond to
a changing velocity profile. Clearly, the system responds well to this type of
variation in the underlying ship dynamics. This is rather surprising considering
that GMRAC bases its controller selection decisions upon a fixed model that
has been obtained by linearizing the nonlinear plant using a velocity of 5m/s
and the ship is harder to control at a velocity of 3m/s.

What if we cannot make all of the necessary computations within an ac-
ceptable fraction of the sampling rate? Suppose GMRAC can only provide a c∗

every 4 sampling periods and this controller is based upon information collected
4 sampling periods ago (in the interim the plant has been controlled by the
previous c∗). Figure 16 shows the effect on the system of delay due to excessive
computational time in the adaptation loop. We see that the error and amount
of control increase but not excessively (compare to Figure 12).

Finally, suppose that there is an order mismatch between P and the plant
defined by equation 6. Åström and Wittenmark [18, p. 356] propose a second
order linear model for the cargo ship. If we use the second order linear model as
P but still simulate the actual plant using the third order nonlinear differential
equation, Figure 17 shows that we still obtain good results.

20

-100

-50

0

50

100

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

R
ud

de
r

A
ng

le
 (

de
g)

-0.1

-0.05

0

0.05

0.1

0 50 100 150 200 250 300 350 400 450 500

R
ef

. M
od

el
 E

rr
or

 (
de

g)

Time (sec)

Error Between the Reference Model Output and the Cargo Ship Heading

Figure 11: Cargo Ship Response: α1 = 500, α2 = 500, α3 = 0.001 (reference
model error = ym − y)

The reader may be concerned with all the random actions that are taken by
the adaptive schemes. It is somehow a bit disconcerting, not quite as comfort-
able to believe in as opposed to conventional deterministic adaptive techniques.
Looking at Figure 19 which plots the Kp and Kd for the GMRAC (with the
response shown in Figure 18) it is not quiescent at all - it’s a virtual “storm” of
digits with seemingly no discernible pattern. If we take a simple average over
the simulation we can calculate an average of Kp and Kd of -6.76 and -26.038,
respectively. If we compare these values to the equilibrated values of the Lya-
punov (-3.0974, -105.0242) and gradient (-4.775, -171.85) techniques in [23] this
offers some reassurance that despite the randomness perhaps some reasonable
average behavior is achieved.

4 Genetic Algorithm Based Supervisory Con-

trol

In this section and the next one we attempt to resolve two issues of GMRAC
operation which were reviewed in simulations at the end of Section 3: (i) the
choice of the scaling factors of the objective function (αi’s) and the choice of
crossover/mutation probabilities and (ii) choice of the model P used to calculate
ŷ. Instead of having the designer choose the αi’s and the model P , we study
the use of a hierarchical scheme where the subordinate controller, GMRAC, is
supervised by another GA that evolves these quantities. In the first subsection of
this section we discuss a basic GA supervisory scheme. In the second subsection

21

-100

-50

0

50

100

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

R
ud

de
r

A
ng

le
 (

de
g)

-0.5

0

0.5

0 50 100 150 200 250 300 350 400 450 500

R
ef

. M
od

el
 E

rr
or

 (
de

g)

Time (sec)

Error Between the Reference Model Output and the Cargo Ship Heading

Figure 12: Cargo Ship Response: α1 = 500, α2 = 50, α3 = 0.001 (reference
model error = ym − y)

we augment this concept by introducing “population splitting” which allows for
reduced computational complexity and faster adaptation. In Section 5 we show
how to use GASC coupled with a GA-based estimation scheme that estimates
P .

In GA supervision we extend the concept of design evolution to the objective
function itself in an attempt to provide a “learning” system that can choose the
best objective function for meeting the specifications represented in the reference
model. To implement this concept, we will use a GA to make choices regarding
the value of the αi’s (weights in the objective function) and crossover/mutation
probabilities of the GMRAC system. The GA that makes these decisions will
be called a Genetic Algorithm-based Supervisor and this type of control will be
called GA-based Supervisory Control (GASC).

To propose GA control of another GA immediately conjures up questions of
utility: Why add this complexity? We have already shown in Section 3 that with
proper choice of the αi’s and crossover/mutation probabilities we obtain good
performance with the GMRAC. If we suggest one level of GA supervision, why
not have two or more levels of GASC (i.e., supervisors for supervising)? Where
is the point where we obtain no benefit by increasing the system complexity?
To answer some of these questions, we must first outline the supposed benefit
of one level of GASC.

The purpose of the GA supervisor is to evolve sets of αi’s and crossover/mutation
probabilities to arrive at the optimal sets which are most effective in reducing
error and control energy used in the system. The general framework for GASC
is shown in Figure 20. In Section 3 we chose one set of GMRAC parameters

22

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

H
ea

di
ng

 (
de

g)

Cargo Ship Response

____ Cargo Ship
.... Reference Input
.. Reference Model

Figure 13: Response to Sinusoidal Disturbance at Rudder: α1 = 500, α2 = 50,
α3 = 0.001

and tuned these to obtain good performance. We have no way of knowing if a
different set of controller parameters would result in an even better performance
(i.e., use of less control energy, smaller system error and, greater resilience to
the studied disturbances). By adding the GA supervisor to GMRAC we are
adding a method for seeking optimal GMRAC parameters. While the GMRAC
structure of the combined GASC/GMRACwill still operate using generation-to-
generation (local) optimization as discussed in Section 3, the GASC will guide
the system towards improved performance, i.e., it will learn the best objective
function to use for GMRAC. We will study adding just one level of supervisory
control. Clearly, more levels could be added if there was sufficient justification
(i.e., where the choice of scaling coefficients of the objective function of the
GASC were difficult to determine without excessive trial and error). One level
of supervision proved satisfactory for our needs.

GASC also offers two benefits in terms of control methodology. It provides
the controller a way to “think” about how to control the system in terms of
various “high” level concepts: (i) the summation of the error-squared between
the reference model and the actual plant over a time window, (ii) the control
energy used in the system over a time window, (iii) the maximum error-squared
in the system over a time window, (iv) the size of that time window, and (v)
any other parameters that can be perturbed to vary the performance of the
system. GASC acts as a “tuner” for the control system. Because of GASC’s
use of “high” level concepts it has a large degree of flexibility in its application.
While (v) above can be used to include problem specific information, the other
concepts can be applied to virtually all systems.

23

0

10

20

30

40

50

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

H
ea

di
ng

 (
de

g)

Cargo Ship Response

____ Cargo Ship
.... Reference Input
.. Reference Model

0

2

4

6

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

Sh
ip

 V
el

oc
ity

 (
m

/s
)

Velocity Profile

Figure 14: Changing Velocity Profile: α1 = 500, α2 = 50, α3 = 0.001

While the first benefit outlined above is typical of hierarchical control struc-
tures, a second benefit of GASC is more specific to genetic supervisory con-
trol. While some hierarchical control structures “learn” to control a system (as
GASC does) it is just as important that GASC makes mistakes. Without the
specification of some termination condition, GASC is constantly searching for
areas of improved performance. It does not “know” a priori where these areas
are; the GA operators give it a systematic method for searching, but as aver-
age/maximum fitness is not guaranteed to increase over any span of generations,
it will also locate areas of bad performance (i.e., it makes mistakes). Normally,
this penchant for making mistakes would not be desirable in a controller; how-
ever, in this learning system it can be viewed as a positive attribute. A mistake
in the control of the system (i.e., a bad controller – one that if employed over all
time would, e.g., result in an unstable system) for one particular set of operating
conditions can be a benefit for a different set of operating conditions. Because
of the stochastic nature of GASC, it has the ability to learn how to control a
plant according to some specified level of performance while continually intro-
ducing new phenotypes into the system which could control the plant better in
the future when it enters different regions of operation.

4.1 Basic GASC

GASC performs tuning upon receipt of information regarding the error between
the reference model and the actual response and the amount of control energy
used over the time window (See Figure 20). As with GMRAC we can describe
the objective function of GASC as Bi =

∑Nq

j=1 βjqj where qj represents infor-

24

-100

-50

0

50

100

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

R
ud

de
r

A
ng

le
 (

de
g)

-0.4

-0.2

0

0.2

0.4

0.6

0 50 100 150 200 250 300 350 400 450 500

R
ef

. M
od

el
 E

rr
or

 (
de

g)

Time (sec)

Figure 15: Changing Velocity Profile: α1 = 500, α2 = 50, α3 = 0.001 (reference
model error = ym − y)

mation garnered from GMRAC over a specified time period, Ts. For example,
qj might represent the summation of the error-squared over a moving window of
lengthNt samples (i.e., the pastNt samples) which we denote as qj =

∑
Nt

e(k)2.
The principle is still similar to that of GMBC and GMRAC, but now, choice
of the βi’s determines how GASC will tune GMRAC. Population members of
GASC are coded in terms of parameters of GMRAC, namely the αi’s, crossover
and mutation probabilities, and any problem specific information we might wish
to include. For example, in the application of GASC to the cargo ship steering
problem we allow the value of the maximum allowable rudder angle to be a
tuned quantity (i.e., in Section 3 the maximum allowable rudder angle was 80o;
here we allow this controller parameter to vary). The essential goal of GASC is
to accurately control the plant so that the closed-loop system behaves like the
reference model using the least amount of control energy.

For the cargo ship steering application GASC proceeds according to the
following pseudo-code:

1. Initialize GMRAC as in Step 1 of the GMRAC pseudo-code in Section 3.

2. Initialize GASC. Choose string length, pc, and pm for GASC. Generate
an initial population of GMRAC parameters with elements si via, e.g.,
random number generation. s1 = α1, s2 = α2, s3 = α3, s4 = pc, s5 = pm,
s6 = umax (umax = 80 in Section 3).
Let the ith GASC population member, Si be one string consisting of the
concatenation, s1s2s3s4s5s6 .

25

-100

-50

0

50

100

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

R
ud

de
r

A
ng

le
 (

de
g)

-0.4

-0.2

0

0.2

0.4

0 50 100 150 200 250 300 350 400 450 500

R
ef

. M
od

el
 E

rr
or

 (
de

g)

Time (sec)

Figure 16: Computational Delay: α1 = 500, α2 = 50, α3 = 0.001 (reference
model error = ym − y)

Set time, t, to zero. Let i := 1, so that we are processing S1, the first
string in the population.

3. Start GMRAC and let it operate until t+Ts with parameters specified by
Si.

4. Let t := t+ Ts.

5. Collect GMRAC data , qj, j = 1, 2, . . . , Nq for the time period, Td =
{k, (k− 1), . . . , (k−Nt)}. Nt = Ts

T
is an integer, where T is the sampling

period of the plant and Ts is the window of time over which we will evaluate
each qj. Suppose that Nq = 4 and that

q1 =
∑

k∈Td
ψe(k)

2 where ψe(k) = ψr(k)− ψ(k).

q2 =
∑

k∈Td

(
u(k)
umax

)2

.

q3 = maxk∈Td
{e(k)2}.

q4 = (ψe(k)
2|k∈max Td − ψe(k)

2|k∈min Td)
2

Thus q1 represents the error-squared sum, q2 is the normalized control
energy sum, q3 is the maximum error-squared, and q4 is the change in the
error-squared over the time interval Td.

26

-100

-50

0

50

100

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

R
ud

de
r

A
ng

le
 (

de
g)

-0.2

-0.1

0

0.1

0.2

0 50 100 150 200 250 300 350 400 450 500

R
ef

. M
od

el
 E

rr
or

 (
de

g)

Time (sec)

Error Between the Reference Model Output and the Cargo Ship Heading

Figure 17: Model Mismatch: α1 = 500, α2 = 50, α3 = 0.001 (reference model
error = ym − y)

6. Assign fitness to Si:

Gi =
∑Nq

j=1 βjqj. Map −Gi to a positive fitness as in equation 5.

7. If all members of the population have not been processed (assigned a fit-
ness value) let i := i + 1. That is, prepare to evaluate the next string in
the population over the next Ts seconds. Go to Step 3. When all members
of the population have been processed, produce the next generation using
GA operators (as with GMBC and GMRAC). Let i = 1. Go to step 3.

To illustrate the use of GASC we will implement this technique on the cargo ship
steering application. Intervals for components of the Si were chosen from our
experience using GMRAC for the cargo ship steering problem and are assigned
as follows:

s1: [1,3000]
s2: [1,2000]
s3: [1× 10−8,0.009]
s4: [0.5,1.0]
s5: [0.0,0.5]
s6: [40,80]

After some simulation based investigations the GASC objective function gains
were chosen to be β1 = 2000, β2 = 1, β3 = 1000, and β4 = 4500. The total

27

-40

-20

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000

Time (sec)

H
ea

di
ng

 (
de

g)

Cargo Ship Response

____ Cargo Ship
.... Reference Input
.. Reference Model

Figure 18: GMRAC response

population size was 40 with each string having a length of 51 digits. The value
of Ts was 5.0 seconds. Crossover and mutation probabilities for GASC were
chosen as 0.82 and 0.025, respectively. Notice that we have chosen the mutation
probability to be much smaller than in the case for GMRAC. We made this
choice because we view the GACS as a global optimizer for GMRAC so that its
parameters should be chosen similar to those of a GA used to solve an off-line
design problem.

All values were obtained by experimentation with the system but the ratio-
nale for the choice of si limits and the βi’s is similar to the reasoning proffered
for GMBC and GMRAC. Interactions are complicated by the fact that the un-
derlying GMRAC which is being tuned by GASC is stochastic. We notice that
the maximum ratio between s3 and s1 or s2 is 0.009. This is in keeping with
the guidelines illustrated in Section 3. Limits for s4 and s5 were chosen to effec-
tively span the range of reasonable probabilities. Examination of the βi’s shows
that the change in modeling error over the time period is heavily weighted thus
we expect adaptation to be relatively slow. Despite the values of the βi’s it is
also necessary to look at the value of the quantities over which the βi’s will be
acting. Typically, the value of q1 will be the largest as it is the sum of the error
over a time period. The value of q2 can be no larger than the total number of
samples within the time window. The value of q3 will be a small fraction of q1

and q4 will also in general be small since it is only the difference between the
starting error-squared and ending error-squared. Thus GASC is most likely to
tune the system by choosing GMRAC parameters which are most effective in
(first) reducing the amount of system error, (second) reducing the amount of
control and (third) reducing the change in model error. It is difficult to deter-

28

-400

-200

0

200

400

0 1000 2000 3000 4000 5000 6000

Time (sec)

K
p

-400

-200

0

200

400

0 1000 2000 3000 4000 5000 6000

K
d

Time (sec)

Figure 19: Kp and Kd gains for the GMRAC

mine the effect of the scaling on the maximum error-squared, but it is included
in an effort to enhance the best fitness search. The ratios β2

β1
and β2

β4
are small

so that the amount of error in the system is not completely sacrificed to the
amount of control energy used.

Figures 21 and 22 show the cargo ship heading for the supervised system.
Clearly, GASC is reducing the amount of system error while attempting to
maintain and/or minimize the use of control. System adaptation is relatively
slow, thus system error is reduced in a gradual manner. If desired the βj ’s could
be adjusted so as to give highest priority to the reduction of control energy.

4.2 GASC with Population Splitting

Another method of supervision involves partitioning the main population of the
GASC into multiple sub-populations. In our population splitting method there
is no interaction between sub-populations and therefore this splitting is nothing
more than running two or more GA’s at the same time. GA operators, selection,
crossover, mutation, and elitism, proceed as described previously but only occur
between strings within the same population split. The criteria for population
splitting is specified by the user and should relate in a substantive manner to
the performance of the system. For instance, population splitting may allow the
GA to learn to control different operating regions of a plant without perturbing
the entire population to do so. Situations where a plant is highly nonlinear
might call for radically different control strategies in different operating regions.
If the population is not split, GASC/GMRAC may not be able to adapt quickly
enough to stabilize a particular region’s dynamics. Secondly, the processing

29

GASC

e2Σ

u2Σ

Plant

GA

*

r

c

u

P C

d

y

ŷ û

reference
 input

Controller

control
 input

disturbance

plant
output

Operation module

Adaptation
 Level

y
m

M

k

kpc

p
m

α i, ,

Figure 20: GA-based Supervisory Control (GASC)

time to obtain GMRAC parameters is substantially decreased (i.e., it is less
computationally intensive if GASC only has to process 15 strings at a time as
opposed to 40 strings).

To allow for the same rate of chromosome update between sub-populations,
the mutation probability specified by the user is accorded to the one of the
sub-populations (designer-specified) and the mutation probabilities of the other
sub-populations are adjusted to match this mutation rate. For example, a total
population of 40 members is divided into two sets of 25 and 15, respectively,
with a mutation probability of 0.25. The string length of each member is 40
digits. The sub-population of 15 is assigned a pm = 0.25 giving it a mutation
rate of 15 · 40 · 0.25 = 150 digits per generation. For equality we assign the
sub-population of size 25 to have a pm of 0.15. While it is of course possible,
we do not perform the same type of equalization with respect to crossover rate
since in some ways this operator is a measure of how often we want to combine
“good ideas” of how to control the plant as opposed to mutation where we
are not sure if the ideas introduced will be good or not. The equalization of

30

-40

-20

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000

H
ea

di
ng

 (
de

g)

____ Cargo Ship
.... Reference Input
.. Reference Model

Time (sec)

Figure 21: GASC: Cargo ship heading

mutation rate allows for the same degree of “randomness” to take place within
each sub-population.

The elitism operator is used as discussed previously, however, we place a
limit on the number of copies of the best fit string which propagates to the next
generation. This prevents a “super-individual” from completely dominating the
sub-population, making it incapable of learning new ideas due to premature
convergence.

The crossover probability of the GASC was set at 0.8. The mutation proba-
bility, 0.020, was attached to sub-population P1 and the mutation probability of
P2 adjusted for equality. Let ψ̄e(k) =

∣∣∣ψe(k)−ψe(k−1)
T

∣∣∣. We will use population

P1 at time k if 0 ≤ ψ̄e(k) ≤ γ and P2 if ψ̄e(k) > γ, where γ > 0. The population
sizes of the sub-populations are based upon the value of the change in reference
model error in the system and the number of members in each sub-population
will change every time a new run is initiated. For an overall population size
of 40, typically, the number of strings in P1 was approximately 30. It would
also make sense to split populations based upon the value of ψe(k) but it was
found that the use of ψ̄e(k) showed better performance. The explicit value of γ
is chosen after initial processing of the entire population. For example, with a
population size of 40 and a time period Ts, the value of γ is not calculated until
40·Ts seconds (i.e., all 40 strings have been processed). After 40·Ts seconds, the
sizes of P1 and P2 are fixed. GASC with population splitting proceeds according
to the same pseudo-code as outlined above except that there is an initialization
phase where the entire population is processed (i.e., steps 1 - 5). Each string is
assigned a value of ψ̄e(k). As we are still evaluating data over time window Ts,

31

-100

-50

0

50

100

0 1000 2000 3000 4000 5000 6000

R
ud

de
r

A
ng

le
 (

de
g)

Time (sec)

-2

-1

0

1

2

0 1000 2000 3000 4000 5000 6000

R
ef

. M
od

el
 E

rr
or

 (
de

g)

Time (sec)

Figure 22: GASC: System error and control input (reference model error =
ym − y)

the value of ψ̄e(k) at end of the time interval, Ts, is used to determine whether
data from that interval is of P1 or P2. Once all strings have been processed γ is
assigned to be one-third of the maximum value of ψ̄e(k). Thus, strings Si with
values of ψ̄e(k) less than or equal to γ form P1 (“small”) and those larger than
γ form P2 (“large”). Subsequent data from GMRAC is assigned a “small” or
“large” label according to the value of ψ̄e(k) at the end of the time interval and
is processed in either P1 or P2, respectively.

For the cargo ship steering application5, Figure 23 shows the GASC response
for the case of population splitting where we have two sub-populations, P1 and
P2. The cargo ship heading is the same as in Figure 21 and is not repeated.
In Figure 22 the summation of the error-squared over the entire time interval
is 7.2 as opposed to Figure 23 where the summation of the error-squared is 3.1.
The summation of the control energy for GASC without population splitting is
1.57×106 as compared to 1.29×106 with population splitting. For this example,
(GASC is a stochastic system) GASC has better performance (in terms of total
system error) with population splitting. As it has a smaller number of strings to
process for each sub-population, adaptation is quicker and less computationally
expensive.

With respect to plant parameter variations (i.e., a velocity change in the
cargo ship steering problem) GASC provides good performance for a wide range
of velocities and still reduces system error and is moderately successful in reduc-
ing the use of control energy. Figures 24 and 25 show the system responses and

5We have also shown in simulation that the GASC with population splitting produces good
results for an inverted pendulum control problem.

32

-100

-50

0

50

100

0 1000 2000 3000 4000 5000 6000

R
ud

de
r

A
ng

le
 (

de
g)

Time (sec)

-1

-0.5

0

0.5

1

0 1000 2000 3000 4000 5000 6000

R
ef

. M
od

el
 E

rr
or

 (
de

g)

Time (sec)

Figure 23: GASC: System error and control input with population splitting
(reference model error = ym − y)

use of control for the velocity profile in Figure 14. After some simulation based
investigations the GASC objective function gains were chosen to be β1 = 9000,
β2 = 5, β3 = 1000, and β4 = 120000. The total population size was 40 with each
string having a length of 51 digits. The value of Ts was 5.0 seconds. Crossover
and mutation probabilities for GASC were chosen as 0.82 and 0.025, respec-
tively. With proper tuning of the GASC objective function gains we are able to
obtain a response in Figure 25 which performs better than Figure 15 (assum-
ing the same average behavior over 6000 seconds which we have validated in
simulation) in terms of the amount of system error.

5 Genetic Algorithm Based Estimation for Adap-

tive Control

In this section we illustrate use of the GA in an on-line scheme to identify the
plant model P that is used by GMRAC in making its fitness evaluation. Ba-
sically, in this section we combine many techniques outlined throughout this
paper. We wish to find a collection of minimal order plant models which ac-
curately represent the plant in different operating regions. To do this we will
apply the normal GA operators selection, crossover, mutation (Section 2), and
elitism (Section 3), and population splitting (Section 4), and the use of a “trans-
mission digit”, to be explained below, as a means of finding a minimal order
representation.

For GA-based estimation (GAE), we might use sub-populations based upon

33

-40

-20

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000

H
ea

di
ng

 (
de

g)

____ Cargo Ship
.... Reference Input
.. Reference Model

Time (sec)

Figure 24: GASC: Cargo ship heading for changing velocities

the operating conditions of the plant. If we can accurately subdivide the popu-
lations to encompass the nonlinearity then a collection of linear models will be
developed which describe the plant in different operating regions. These linear
models can then be used to calculate ŷ(k+1) in Figure 20. For the cargo ship ex-
ample we construct three sub-populations (thus use three linear models) based
upon whether the value of |ψ̄| =

∣∣∣ψ(k)−ψ(k−1)
T

∣∣∣ is “small”, “medium”, or “large”

(to be defined below) . The size of ψ̄ affects the influence of the nonlinearity.
GAE has population members which represent the coefficients of a discrete-

time representation of a strictly proper plant

ŷ(z)
û(z)

= Kz
(an̄−1z

n̄−1 + · · ·+ a0)
(bn̄zn̄ + bn̄−1zn̄−1 + · · ·+ b0)

(12)

where the compensator gain Kz ∈ R, aj , bk ∈ R, j = 0, 1, . . . , n̄ − 1, k =
0, 1, . . . , n̄ (ŷ(z) and û(z) represent the z-transforms of ŷ(k) and û(k)).

The use of a “transmission digit” allows any of the aj or bk parameters
to have a value of exactly zero or any value within the chosen domain. This
“transmission digit” is merely an extra digit (having a 0 or 1 value) attached
to each parameter which allows the parameter to decoded as zero regardless of
the value of its digits or as its actual value. In this manner we can easily zero
out any of the plant coefficients in our attempt to search for a minimal order
representation. We allow any of the aj or bk parameters to be zero (subject
to the caveat that we have a strictly proper, causal model). As we will only
be using P to calculate the value of ŷ one step into the future, the amount
of accuracy required from the estimator can be somewhat relaxed and it is

34

-100

-50

0

50

100

0 1000 2000 3000 4000 5000 6000

R
ud

de
r

A
ng

le
 (

de
g)

Time (sec)

-0.4

-0.2

0

0.2

0.4

0.6

0 1000 2000 3000 4000 5000 6000

R
ef

. M
od

el
 E

rr
or

 (
de

g)

Time (sec)

Figure 25: GASC: System error and control input for changing velocities (ref-
erence model error = ym − y)

acceptable to look for a minimal order representation. For our implementation,
proper estimation requires that we know the sign on the gain of the plant as it is
possible for the GA to find linear models that result in controls of the wrong sign
to be sent to the plant even though the input/output data is matched (similar
conditions are needed in conventional adaptive control [18, 19]). Strings whose
parameters are not of the same sign as the plant dc gain are rejected as possible
candidates. In addition, strings which do not reflect a strictly proper plant are
also rejected. For a proper plant, calculation of ŷ(k + 1) would require that we
know or can estimate the value of û(k+1). Strings are selected for GA operators
by Ei =

∑
k∈Te

(ŷ(k)− y(k))2 where Te := {k, (k−1), . . . , (k−Ne)}. The value
of −Ei is mapped to a positive fitness value as in equation 5. GAE determines
an estimate for the plant model by selecting the set of parameters in equation
12 which minimize the error between the actual value of y(k) and the estimate,
ŷ(k), for Ne samples of input-output data (hence our approach is similar to the
off-line technique in [15]).

GAE implementation takes place entirely within the P model in Figure 20.
Pictorially, we can think of GAE as in Figure 26 with the following variables
defined:

Y Vector of Ne plant outputs,
Y = [y(k), y(k − 1), . . . , y(k −Ne)]

U Corresponding vector of Ne plant inputs,
U = [u(k), u(k− 1), . . . , u(k −Ne)]

35

Ŷ Vector of estimated plant outputs,
Ŷ = [ŷ(k), ŷ(k − 1), . . . , ŷ(k −Ne + n̄+ 1)]
where n̄ is as defined in equation 12.

P ∗ Best linear approximation of plant (i.e., the one with the best fitness)

Candidate Model of Plant

Y

U Y
^

P*
−

Max(E)i
iE

−
Fitness Evaluation for all M i ε M

= Cy
k

^ xk
^

Buk= +A xk
^

k+1x̂

Figure 26: Genetic Algorithm-Based Estimator

GAE proceeds according to the following pseudo-code:

1. Choose string length, pc, and pm for GAE. Initialize the Kz , aj and bk in
equation 12 via, e.g., random number generation. The ith string in the
population is denoted by Mi.

2. Collect Ne samples of y and u data.

3. Calculate a set of ŷ’s , for each population member Mi using the vectors
Y , U , and equation 12.

4. Assign fitness to each Mi: Ei = −∑
k∈Te

(y(k) − ŷ(k))2

5. The maximally fit Mi becomes m∗. This m∗ represents the coefficients for
the best approximation of P that we denote by P ∗.

6. If the m∗ calculated in this generation has a larger fitness than that of the
previous generation’s (denoted by m∗

−1) replace m∗
−1 with m∗. If the m∗

calculated in this generation has a fitness less than or equal to that of the
previous generation’s (denoted by m∗

−1) retain m∗
−1 as the best estimate.

36

7. Produce the next generation using GA operators. Go to Step 2.

We will see in the system responses that the interaction between GAE and
GMRAC is rather complex and it is postulated that a constant set of GMRAC
parameters would not result in suitable performance. Therefore, we will use
GASC to supervise the GMRAC/GAE system.

For GASC we define the following intervals for the parameters si s1 = α1,
s2 = α2, s3 = α3, s4 = pc, s5 = pm, s6 = umax (umax = 80 in Section 3):

s1: [1,3000]
s2: [1,2000]
s3: [1× 10−8,9.0]
s4: [0.5,0.9]
s5: [0.0,0.4]
s6: [40,80]

GASC crossover/mutation probabilities were set at 0.65 and 0.02, respectively.
The population size was 40 with a string length of 45. Sub-populations P1 and
P2 are employed as outlined in GASC with population splitting. Td for GASC
was set at 5 seconds. The GASC objective function gains were β1 = 2000,
β2 = 1, β3 = 0, and β4 = 5500. We remove the scaling on the maximum
error-squared component to reduce system complexity. In addition, we allow
calculation of the fitness (Step 3 of the GASC pseudo-code) only when GAE
is providing accurate estimates of the plant so that data collected during the
Ts interval is “valid” data. Very simply this means that GASC won’t supervise
a system it knows nothing about (if the P ∗ model is inaccurate, how can the
GASC draw any conclusions about the performance of the underlying controller,
GMRAC).

Naturally, GAE proceeds on an interval basis. For the cargo ship, which is
sampled at 0.05 seconds, we initially “update” the estimator every 0.5 seconds
based upon the previous 10 samples (or 0.5 seconds) of input/output data.
“Update” is enclosed in quotes because it is quite possible that a particular
generation’s estimation of P ∗ will not perform as well as its predecessor. In this
case, we can see from Step 6 above that the current P model is not changed.
It can occur that the P ∗ model calculated for the case where |ψ̄| is “large”
might perform better (i.e., provide more accurate estimates) than the P ∗ model
calculated for the case where |ψ̄| is “medium” despite the actual value of |ψ̄|
being “large”. To compensate for this occurrence, every Tc seconds we allow
the string with maximum fitness over the total population to be copied into the
two sub-populations which do not carry this chromosome in their midst. The
value of Tc for our simulations was 5 seconds.

For initialization of the estimator, we allow Kz to be any value between
0.99 and -0.99. Each aj and bk in equation 12 can have any values from -

37

10.0 to 10.0 (n̄ = 2 in our examples, so we are searching over second order
models). Crossover and mutation probabilities are set at 0.80 and 0.09 with
a total population size of 120 members. There are three sub-populations as
described previously each of which contains 40 members. The total population
is split according to the value of |ψ̄|. |ψ̄| < 0.07 is “small”, 0.07 ≤ |ψ̄| ≤ 0.6 is
“medium”, and |ψ̄| > 0.6 is “large”. These splits were determined after several
simulation-based investigations.

For the GMRAC candidate Kp and Kd gains the population size was 30 with
a string length of 16. To the GMRAC objective function outlined in Section 3,
we make two changes in Step 4.

1. Assign fitness to each Ci:

Let p1 = e(k) − e(k − 1), p2 = ym(k + 1) − ŷ(k + 1), p3 = û(k+1)
80 , and

p4 = ŷ(k + 1)− y(k).

If p4
2 ≤ γ, then Ei = −(α1p

2
1 + α2p

2
2 + α3p

2
3) else Ei = −(α3p

2
4p

2
3)

Thus when our estimator is not doing a “good” job (i.e, p2
4 ≥ γ), we base

the control decision only upon the value of û(k+1). This tends to minimize the
control signal to the plant. When the estimator is providing accurate values,
the usual objective function is used. The value of γ for the simulations was 10.0.

Figures 27 - 29 show the responses for the system. In initial stages of oper-
ation (i.e., the first 40 seconds. in Figure 30) the actual system response lags
greatly behind the reference model response and the system generates large ψ̄’s
(by using large control signals) to reduce the system error. Secondly, once the
reference model has reached the setpoint (45o at approximately 110 seconds),
we would like the controller to send a small control signal to the plant. This
is impossible, however, because at this point ψ̄ is “large” and a small control
signal would result in a large error. Thus even when ψ̄e is small the controller
is still sending out large control signals. In this instance |ψ̄| is not small and no
plant estimation is taking place for the “small” sub-population or if it is, the
P ∗ model developed is only based upon large control signals. A second problem
occurs when once ψ̄ has been reduced to a small level and ψ̄e is small, the small
value of the control signal that the controller would like to send to the plant
results in an inaccurate estimate from the P ∗ model thus decreasing its fitness
with respect to a larger signal which gives a more accurate estimate. Certainly,
we have a persistency of excitation [19] issue here that is complicated by the
fact that the system that we are trying to identify is under closed-loop control.
We need to perturb the system enough to discover the internal dynamics, but
we are also trying to track a reference model while doing this. These two re-
quirements can sometimes conflict. So, it is apparent that this is a multi-faceted
problem for the combined GASC/GMRAC/GAE: (i) in the initial stages, we
would like to relax the scaling on the error term (α2) or perhaps increase the

38

scaling on the change in error term (α2), allowing the system to expend less
control energy and thereby decrease ψ̄, (ii) we also wish to have persistency of
excitation so that GAE can produce accurate models (in some sense ψ̄ must be
“large” for this to occur), and (iii) in later stages, we wish to reduce system
error while also reducing the use of control energy. With the proper choice of
GASC objective function gains and “good” set of initial GMRAC parameters,
the combined GASC/GMRAC/GAE can perform adequately as seen Figures
27 - 29. With this implementation, however, it is difficult, to make a choice of
either these gains or a “good” initial population.

-40

-20

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000

H
ea

di
ng

 (
de

g)

____ Cargo Ship
.... Reference Input
.. Reference Model

Time (sec)

Figure 27: GAE: Cargo Ship

As a final note it is important to point out that while the GAE does not
enhance the performance beyond that achieved with GASC and GMRAC alone
(even after extensive tuning), this is not too surprising since GAE tries to au-
tomatically specify a model of the plant where in the past techniques it was
assumed available. Actually, the combined GASC/GMRAC/GAE approach is
very general. It tries to identify the plant it is trying to control and simul-
taneously make it act as the reference model specifies it should behave. This
fundamental conflict between identification and control objectives that we see
above with the combined GASC/GMRAC/GAE seems to exist in many adap-
tive control schemes [18, 19].

39

-100

-50

0

50

100

0 1000 2000 3000 4000 5000 6000

R
ud

de
r

A
ng

le
 (

de
g)

Time (sec)

-10

-5

0

5

10

0 1000 2000 3000 4000 5000 6000

R
ef

. M
od

el
 E

rr
or

 (
de

g)

Time (sec)

Figure 28: GAE: System error and control input (reference model error = ym−y)

6 Concluding Remarks

We have shown that the genetic algorithm has a great deal of flexibility in its
application to control systems. In particular, we introduced (i) two new (but
closely related) approaches to genetic adaptive control, GMBC and GMRAC,
and (ii) we introduced the idea of GASC, GASC with population splitting and
GAE for use in GMRAC. While both GMBC and GMRAC depend on the
accuracy of the model of the plant P that they use, GMRAC appears to be more
resilient to various system disturbances. If an accurate P model is available,
GMBC and GMRAC are relatively easy techniques to apply as tuning of the αi’s
in the objective function can usually be approached in a methodical manner.
In addition, GMBC and GMRAC are not very computationally complex and
should prove amenable to real-time implementation. If the user does not wish
to manually tune the GMRAC system, GASC offers an alternative which can
provide an even better performance than that of a constant set of GMRAC
parameters. GASC’s hierarchical view allows the user to think of the control
problem at a higher level and apply this manner of thinking to on-line tuning of
GMRAC parameters. GASC with population splitting is an enhancement which
allows for faster adaptation and decreased computation time. If no P model
is available GAE may prove capable of delivering an accurate model; however,
the combined GASC/GMRAC/GAE system seems to be difficult to tune and
at this stage this is not an approach to embark on cavalierly.

While each of the investigations provides new ideas about how to use GA’s
to solve control problems, several topics for other investigations immediately
suggest themselves:

40

-4

-2

0

2

4

6

8

0 1000 2000 3000 4000 5000 6000

E
st

im
at

or
 e

rr
or

 (
de

g)

seconds

Figure 29: GAE: Estimator error ȳ(k) − y(k)

1. The size of the population used in the various genetic adaptive techniques
could be allowed to vary (i.e., evolve). This could provide certain advan-
tages in ensuring population diversity for highly nonlinear and time vary-
ing plants but the size of the population would have to remain bounded
for practical implementation reasons.

2. The P model in GMBC and GMRAC could be used to predict more
than one step into the future. This technique would of course have a
greater dependence on an accurate P model. Furthermore, the presence of
disturbances could make prediction too far into the future quite inaccurate.

3. Different underlying controllers could be tuned. Due to past experience
with the cargo ship steering problem we use a PD controller exclusively
and despite its simple structure it was sufficient to provide a worthwhile
investigation. The GA could easily be modified to operate over more com-
plicated linear controllers or nonlinear controllers (e.g., fuzzy controllers,
conventional adaptive, or variable structure controllers). One simply has
to provide a parameterization of the controller structure and represent
this in the strings of the population.

4. The reference model M could be evolved by a GA so that the system
is “performance adaptive” and seeks to achieve the best performance.
An example of a system where such performance adaptive behavior is
desirable is a reconfigurable flight control system where failures occur and
the control system seeks to maintain the best, but reasonable performance.

41

-40

-20

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

H
ea

di
ng

 (
de

g)

____ Cargo Ship
.... Reference Input
.. Reference Model

Time (sec)

Figure 30: GAE: Cargo Ship, Close-up

5. More general population splitting schemes could be used. For instance,
instead of using a fixed number of sub-populations, genetic programming
[21] could be used to automatically synthesize sub-populations by treating
them as tasks. Thus we could have a set of PD controllers for one operating
condition of the plant and perhaps a set of dynamic controllers for another
region. Alternatively, for a fixed number of sub-populations, fuzzy logic
could be applied to allow for exchange of genetic material between two
sub-populations.

The genetic adaptive techniques presented also raise additional issues and
concerns. It cannot be overemphasized that GMBC and GMRAC are stochastic
controllers. They are not guaranteed to perform in the same manner given the
same reference inputs and plant initial conditions. The plots shown throughout
this paper represent the response of the adaptive schemes for one trial. While
all trials showed similar responses, the graphs presented here are not meant to
convey any type of average behavior or guarantee of such. While the simula-
tions in this paper show acceptable behavior, clearly there is a need for control
theoretic analysis of stability, convergence and robustness properties of GMBC
and GMRAC. With regard to estimator performance, it would be profitable
to understand how the GA’s randomness relates to “persistency of excitation”
[18, 19] while the system is under closed-loop control. As described previously,
it is difficult to tune the GAE system to obtain performance which is as good as
that of GASC or GMRAC. Perhaps the combined GASC/GMRAC/GAE sys-
tem actually needs another level of supervisory control in order to obtain better
performance. Also, as this strategy is a method of indirect adaptive control, in

42

that we are identifying the plant parameters and the controller is based upon an
estimate of the plant model, it would be useful to understand the relationships
between the GASC/GMRAC/GAE scheme and conventional stochastic indirect
adaptive control [18]. In addition, there is also a need to evaluate more fully
the issues of computational complexity. A cursory study of the execution time
required for the controller to compute the command input seemed to provide
acceptable results, but no investigations were made on GASC or GAE which
add complexity to GMRAC. Finally, a full evaluation of the approaches for other
control applications and in a experimental test bed would be quite valuable.

References

[1] J. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor: The
University of Michican Press, 1975.

[2] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning. New York: Addison-Wesley, 1989.

[3] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Pro-
grams. New York: Springer-Verlag, 1992.

[4] M. A. Lee and H. Takagi, “Integrating design stages of fuzzy systems using
genetic algorithms,” in Second IEEE International Conference on Fuzzy
Systems, (San Francisco, CA.), pp. 612–617, 1993.

[5] B. Porter and M. Borairi, “Genetic design of linear multivariable feedback
control systems using eigenstructure assignment,” International Journal of
Systems Science, vol. 23, no. 8, pp. 1387–1390, 1992.

[6] Z. Michelewicz, et. al, “Genetic algorithms and optimal control problems,”
in Proceedings of the 29th Conference on Decision and Control, (Honolulu,
Hawaii), pp. 1664–1666, 1990.

[7] H. Ishibuchi, K. Nozaki, and N. Yamamoto, “Selecting fuzzy rules by ge-
netic algorithm for classification problems,” in Second IEEE International
Conference on Fuzzy Systems, (San Francisco, CA.), pp. 1119–1124, 1993.

[8] Osamu Katai, et. al, “Constraint-oriented fuzzy control schemes for cart-
pole systems by goal decoupling and genetic algorithms,” in Fuzzy Control
Systems (A.Kandel and G. Langholz, eds.), pp. 181–195, Boca Raton: CRC
Press, 1994.

[9] C. Karr and E. Gentry, “Fuzzy control of ph using genetic algorithms,”
IEEE Transactions on Fuzzy Systems, vol. 1, no. 1, pp. 46–53, 1993.

43

[10] Daihee Park and Abraham Kandel and Gideon Langholz, “Genetic-based
new fuzzy reasoning models with application to fuzzy control,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 24, no. 1, pp. 39–47,
1994.

[11] Alen Vars̆ek and Tanja Urbanc̆ic̆ and Bodgan Filipic̆, “Genetic algorithms
in controller design and tuning,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 23, no. 5, pp. 1330–1339, 1993.

[12] H. Nomura, I. Hayashi, and N. Wakami, “A self-tuning method of fuzzy
reasoning by genetic algorithm,” in Fuzzy Control Systems (A.Kandel and
G. Langholz, eds.), pp. 338–354, Boca Raton: CRC Press, 1994.

[13] R. Das and D. Goldberg, “Discrete-time parameter estimation with genetic
algorithms,” in Proceedings of the 19th annual Pittsburgh Conference on
Modeling and Simulation, (Pittsburgh, PA.), pp. 2391–2395, 1988.

[14] D. Maclay and R. Dorey, “Applying genetic search techniques to drivetrain
modeling,” IEEE Control Systems, vol. 13, no. 2, pp. 50–55, 1993.

[15] K. Kristinsson and G. Dumont, “System identification and control using ge-
netic algorithms,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 22, no. 5, pp. 1033–1046, 1992.

[16] D. Etter, M. Hicks, and K. Cho, “Recursive adaptive filter design using
adaptive genetic algorithm,” in Proc. IEEE Int. Conf. Acoustics, Speech,
Signal Processing, vol. 2, pp. 635–638, 1982.

[17] L. Yao and W. A. Sethares, “Nonlinear parameter estimation via the ge-
netic algorithm,” IEEE Transactions on Signal Processing, vol. 42, no. 4,
pp. 927–935, 1994.

[18] Karl Åström and Björn Wittenmark, Adaptive Control, p. 356. New York:
Addison-Wesley, 1989.

[19] S. Sastry and M. Bodson, Adaptive Control: Stability, Robustness, and
Convergence. New Jersey: Prentice Hall, 1989.

[20] L. L. Porter II and K. M. Passino, “Genetic model reference adaptive
control,” in Proc. IEEE International Symposium on Intelligent Control,
(Columbus, OH.), pp. 219–224, August 16-18, 1994.

[21] J. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge: MIT Press, 1993.

[22] J. Koza, Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. Cambridge: MIT Press, 1994.

44

[23] J. R. Layne and K. M. Passino, “Fuzzy model reference learning control
for cargo ship steering,” IEEE Control Systems, vol. 13, no. 6, pp. 23–34,
Dec. 1993.

[24] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” IEEE
Computer, pp. 17–26, 1994.

45

La Moyne L. Porter II received a B.S. in Chemical Engineering and Electrical
Engineering at Stanford University in 1991 and a M.S. in Electrical Engineer-
ing at The Ohio State University in 1994. He has worked at British Petroleum
Research configuring a graphical interface for control of a chemical reactor and
at Intel doing research in a manufacturing environment. He currently works
at SC Solutions, an engineering consulting firm, providing control solutions for
aerospace and semiconductor manufacturing firms. His interests include non-
linear systems, intelligent control, English literature, and real-time control.

Kevin M. Passino received his Ph.D. in Electrical Engineering from the Uni-
versity of Notre Dame in 1989. He has worked on control systems research at
Magnavox Electronic Systems Co. and McDonnell Aircraft Co. He spent a year
at Notre Dame as a Visiting Assistant Professor and is currently an Associate
Professor in the Dept. of Electrical Engineering at The Ohio State University.
He has served as a member of the IEEE Control Systems Society Board of
Governors; has been an Associate Editor for the IEEE Transactions on Auto-
matic Control; served as the Guest Editor for the 1993 IEEE Control Systems
Magazine Special Issue on Intelligent Control; and a Guest Editor for a special
track of papers on Intelligent Control for IEEE Expert Magazine in 1996; and
was on the Editorial Board of the Int. Journal for Engineering Applications of
Artificial Intelligence. He is currently the Chair for the IEEE CSS Technical
Committee on Intelligent Control and is an Associate Editor for IEEE Trans.
on Fuzzy Systems. He was a Program Chairman for the 8th IEEE Int. Symp.
on Intelligent Control, 1993 and was the General Chair for the 11th IEEE Int.
Symp. on Intelligent Control. He is co-editor (with P.J. Antsaklis) of the book
”An Introduction to Intelligent and Autonomous Control,” Kluwer Academic
Press, 1993; co-author (with S. Yurkovich) of the book ”Fuzzy Control,” Ad-
dison Wesley Longman Pub., 1998; and co-author (with K.L. Burgess) of the
book ”Stability Analysis of Discrete Event Systems,” John Wiley and Sons,
1998. His research interests include intelligent systems and control, adaptive
systems, stability analysis, and fault tolerant control.

46

