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I. Introduction

F
oraging theory is an area of behavioral ecology that
mathematically describes a foraging animal searching for
nutrients and choosing which ones to consume [1], [2].
One of the classical foraging models is the prey model.

This model describes a forager searching for prey items indi-
vidually dispersed throughout its environment and predicts
which types of prey the forager should exploit in order to
maximize its rate of energy gain. The analogy established in
[3], [4] between a biological forager and an “agent”
(autonomous vehicle or software module) allows for applica-
tion of foraging models to engineering problems involving
agents (i) searching for tasks dispersed throughout a domain,
and (ii) deciding which task types to process and how long to
process tasks or sets (patches) of tasks.

Here, we use the conceptual framework in [3], [4], along
with the idea of “foraging for error” from [5], [6] to develop a
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controller for a multizone temperature control problem. The
goal is to achieve a uniform desired temperature across a grid of
eight temperature zones, where a zone comprises a temperature
sensor and a lamp. The controller (agent) moves around the

grid searching for regions
of temperature error (the
task). The prey model
approach to the problem
relies on the definition of a
“task type” as a zone with
a particular error with
respect to the desired tem-
perature. Given this defini-
tion, an encounter with a
task of type i occurs when
the controller comes across
a zone with a temperature
error corresponding to task
type i. The controller then
uses the prey model algo-
rithm [1] to decide
whether to process the
task, that is, whether to
heat the zone associated
with the error. We imple-
ment the experiment and
controller in our laboratory
[7] and provide data to
illustrate the performance
of the foraging algorithm.

The temperature con-
trol problem we are
addressing is essentially
that of a distributed feed-
back control problem.
Recent relevant work in
this area includes spatially
distributed control [8], [9]

modeling and estimation of distributed processes [10], distrib-
uted control of thermal processes [11]–[14], spatially inter-
connected systems [15], and semiconductor processing
[16]–[18]. In [9], the authors implement various decentral-
ized and hierarchical control ideas for the actuation allocation
problem of an air-jet system. Distributed temperature control
of thermal processes is addressed in [13], and the authors
focus on multivariable distributed control in order to main-
tain a uniform temperature across a wafer during ramp-up. In
[16], [18] the authors present methods where resources are
allocated using geometric and adaptive techniques in order to
utilize a heat source in designing a model-based control sig-
nal. In [19], the authors describe a lithographical system that
is heated by 49 independently controlled zones. Distributed
temperature control methods have been used to improve the
performance of some devices in personal computers [20].
More recently, in [21] the authors studied dynamic resource

allocation strategies for different processes (e.g., a multizone
temperature control with 16 zones).

Our approach is novel with respect to what is found in the
literature. Broadly speaking, we demonstrate for the first time
the utility of merging the fields of engineering and behavioral
ecology by using models from foraging theory to address an
important class of distributed temperature control problems.
Specifically, we show how a bioinspired distributed decision-
making system (i.e., multiagent system) that communicates over
a network can be used to control a complex dynamical system.
The communication network consists of two “clients,” which
obtain data from each of the temperature zones, connected to a
central “supervisor” that controls agent actions across the grids.
Network delays from this topology as well as disturbances, such
as interzone effects, ambient temperature changes, and wind,
introduce additional challenges that, when overcome, highlight
the robust nature of the agent-based controller. Restrictions on
the number of agents and the amount of lamp voltage they can
apply give our control strategy characteristics of dynamic
resource allocation problems such as those mentioned above.
Overall, while applications of foraging theory to autonomous
vehicles are studied in [3], [4], [22], this is to our knowledge
the only other existing control engineering application of forag-
ing theory. This paper should, thus, be viewed as early work,
but with results that show clear paths to further exploit con-
cepts from mathematical behavioral ecology in engineering.

We begin by discussing the theory of the prey model, and
how this theory can be used in a multizone temperature con-
trol experiment. Then, we show implementation results for
tracking and regulation problems where we specify a desired
temperature that must be reached by each zone in the temper-
ature grid. In order to test the controller’s performance, we
add a disturbance and we limit the number of zones that a for-
ager can search. Finally, to explain a key feature of the emer-
gent behavior of the temperatures in our experiment, we
discuss connections between our foraging algorithm approach
and the “ideal free distribution” (IFD) [23], an idea from theo-
retical ecology that has recently been found to have potential
uses in engineering applications [24]–[26].

II. Foraging Model
From a biological perspective, the environment of a foraging
animal comprises prey or food items that are spatially dispersed.
Each forager’s primary “goal” is to obtain energy, and the only
way in which to do so is by searching for, attacking, and con-
suming prey. The forager must make decisions about how to
interact with its environment to maximize some correlate of
Darwinian fitness. If there are different types of prey, which
types should be attacked? Why not specialize on particular types
to avoid wasting time on substandard prey? On the other hand,
why not generalize and take advantage of all opportunities?
This optimal diet problem is studied using the so-called prey
model from foraging theory [1]. The work in [3], [4] discusses
the applicability of this theory to many engineering problems
by viewing a forager as an agent and sources of energy or prey
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as tasks that must be processed. Here, using this general agent-
based terminology, we provide an overview of the prey model
following the treatment in [1].

The prey model describes an agent searching for tasks of dif-
ferent types in a particular environment. Each task holds a cer-
tain “point value” corresponding to the increment in the success
level of an agent if it successfully processes the task. Processing is
the equivalent of a biological forager handling prey. Point values
quantify reward. The agent must search for tasks, recognize a
task once it is encountered, and then decide whether to process
the task based upon this recognition. The prey model, in its
original form, assumes that a task is recognized correctly, that no
time is required for recognition, and that the goal of the agent is
to maximize its average rate of point gain.

Let there be n different types of tasks in the environment
described by: e i , the expected time required to process a task
of type i; v i , the expected number of points obtained from
processing a task of type i; λ i , the average rate of encounter
with tasks of type i while searching; and pi , the probability of
processing a task of type i if it is found and recognized.
Encounters with type i are assumed to be sequential and to
follow a Poisson process. While we have assumed no explicit
cost for time spent searching, one may be accounted for by
redefining v i [1]. The average rate of point gain J for the agent
is the expected number of points obtained divided by the
expected total amount of time spent foraging, which includes
both search time and time spent processing tasks. If an agent
spends on average Ts time units searching, then we have

J =

n∑
i =1

piλ iTsv i

Ts +
n∑

i =1
piλ iTs e i

=

n∑
i =1

piλ i v i

1 +
n∑

i =1
piλ i e i

.

The probability of processing each task type is the decision
variable for the agent. Thus, the goal of the agent is to choose
the pi that maximizes J. We first rewrite J as

J = piλ i v i + ki

c i + piλ i e i
,

where ki is the summation of all terms in the numerator not
involving task type i and c i is a similar variable for the denom-
inator. Differentiating with respect to pi ,

∂ J
∂pi

= λ i v i( c i + piλ i e i) − λ i e i(piλ i v i + ki)

( c i + piλ i e i)2

= λ i v i c i − λ i e ik i

( c i + piλ i e i)2
. (1)

Note that if the numerator of Equation (1) is negative, then J is
maximized by choosing the lowest possible pi . Corresponding-
ly, if the numerator is positive, then J is maximized by choos-
ing the highest possible pi . Therefore, because 0 ≤ pi ≤ 1, the
pi that maximizes J is either pi = 1 or pi = 0 for each i
depending on the sign of v i c i − e ik i . This concept is known as
the zero-one rule: to maximize its rate of point gain, an agent
must either process a task of type i every time it encounters it
or never process a task of type i. The question then is which
tasks the agent should process and which tasks it should ignore.
The answer must account for missed opportunity. If the rate of
point gain that results from processing task type i is larger than
that of searching for and processing tasks of other types, then
the agent should process the task of type i. On the other hand,
if the agent would gain more points by searching for other tasks
and processing those, then the task of type i should not be
processed. Summarizing, this results in the rule

set pi = 0 if v i/e i < ki/ c i

set pi = 1 if v i/e i > ki/ c i,

where v i/e i is the rate of gain that results from processing task
type i and ki/ c i is the alternative rate of gain resulting from
searching for and processing other task types.

We now describe the prey model algorithm in light of the
above discussion. Denote the rate of point gain that results
from processing type i (v i/e i) as the profitability of task type i,
and rank the tasks in the environment according to their prof-
itability such that v1/e1 > v2/e2 > · · · > vn/en . If type j is
included in the agent’s “task pool,” those types that the agent
will process once encountered, then all types with profitabili-
ties greater than that of type j will be included in the task pool
as well. Thus, the prey algorithm states that, after ranking the
task types by profitability, include types in the task pool start-
ing with the most profitable type until

j∑
i =1

λ i v i

1 +
j∑

i =1
λ i e i

>
v j+1

e j+1
. (2)

The highest j that satisfies this equation is the least profitable
task type in the task pool. In other words, if task types in the
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FIGURE 1  Zone layout on a single temperature grid. Each zone con-
tains a lamp and a temperature sensor.
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environment are ranked according to profitability with i = 1
being the most profitable, and if type j + 1 is the most prof-
itable type such that the agent will benefit more from searching
for and processing types with profitability higher than that of
j + 1, then tasks of types 1 through j should be processed
when encountered and all other tasks should not. If the equa-
tion does not hold for any j, then all task types should be
processed when encountered. A derivation of (2) is given in [1].

The exclusion of type j + 1 does not depend on the rate of
encounter with type j + 1. This exclusion implies that if the
expected missed opportunity gains exceed the immediate gains
of processing a particular type, then it does not benefit the
agent to process the type, no matter how often the agent
encounters it. Equivalently, if a type’s rate of encounter exceeds
a critical threshold, then less profitable types should be ignored
regardless of how common they are in the environment.

It is important to note that the prey model assumes the agent
has knowledge of all parameters. In many engineering applica-
tions, it is reasonable to imagine the expected processing time e i

and the expected points obtained v i to be parameters that are
known or approximated. However, knowledge of the rate of
encounter with tasks λ i often may be an unrealistic assumption,
and online estimation techniques may need to be used [3]. An
additional assumption of the prey model is that the agent has
infinite life; for example, infinite fuel for an autonomous vehicle.
Also, since the rate of encounter is constant, an infinite number
of tasks are assumed to exist. This idea might imply the ability of
tasks to arrive within the environment, an infinite number of
spatial task arrangements, or an infinite number of ways that the
agent can move through the environment. More realistic, time-
constrained situations are accounted for in a risk-sensitive ver-
sion of the prey model [1]–[3].

III. Temperature System and Application 
of the Prey Model
The temperature system under consideration comprises a tem-
perature grid divided into eight “zones” as shown in Figure 1. A
zone contains a lamp and a National Semiconductors LM35CAZ
temperature sensor. Two computers (clients) are each connected
to four different zones via four analog inputs and four analog out-
puts on a DS1104 dSPACE card. The digital outputs transmit
on/off signals from the client to the lamps, and the analog inputs
transmit temperature data from the sensors on the grid to the

client. The DS1104 card has eight analog inputs: four with 16 bit
resolution and four with 12 bit resolution. Because of this, the
use of two computers (and correspondingly two dSPACE cards)
allows for all eight zones to have a 16 bit resolution input con-
nection. Communication between each client and the supervisor
takes place over a TCP/IP connection via Matlab. Data collected
via dSPACE and the Real-Time Workshop is acquired with
MLIB/MTRACE. In general, MLIB/MTRACE captures the
data from the board and transfers the information to Matlab. This
provides access to all variables from the application running on
the dSPACE card, and allows the use of various Matlab com-
mands. Using these capabilities, data is acquired and sent over the
network connection to the supervisor. The supervisor gathers
data from the clients, implements the appropriate control algo-
rithm, and then sends information back to the clients as to which
lamps should be turned on.

To apply the prey model to the temperature control exper-
iment, we view a controller as an agent (animal) and a task
(prey) as a zone with a specific error relative to the overall
desired temperature. Hence, the number of task types n is free
to be chosen as any reasonable number of discretized error
quantities. In the specific application that follows, we choose
n = 100 so that the agent may encounter any of 100 types of
error. We choose these 100 types to span a range of error of
0◦C (type 100) to 5◦C (type 1) with the type distribution
defined by the function

i = ceil
(
100e−1.2(Td−T k)

)
(3)

where k = 1, 2, . . . , 8 is the zone number and “ceil” is the
standard ceiling function for converting to an integer. Equa-
tion (3) is shown in Figure 2(a), where i is the task type and
(Td − T k) ∈ [0, 5] is the error of the kth zone with respect to
the desired temperature Td . This nonlinear function is chosen
since it defines a larger number of types for errors with small
magnitude, thus providing better accuracy near the desired
temperature. The ceiling function discretizes the type, and a
saturation function is used to assure that the error lies within
the required domain. In other words, errors that correspond to
T k being above Td are equivalent to 0◦C errors and are con-
sidered to be of type 100.

The controller “moves” around the temperature grid by
being randomly placed on one of the eight zones and detecting
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FIGURE 2  Parameter functions. Panel (a) depicts the determination of task type from encountered error, and panel (b) illustrates the processing
times for each task type.
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the temperature associated with that zone. Since the tempera-
ture of each zone constantly changes, placement of the con-
troller on a specific zone does not imply an encounter with a
particular task type. The type that the controller encounters
depends on the temperature of the zone. The random zone
selection adds to the stochastic nature of search and prevents
oscillatory behavior that may result from systematic movement
over the zones.

Processing times for each task type are determined by the
function

e i = 100 + 1000e−0.05( i−30)

shown in Figure 2(b) where i is the task type. This function
assigns longer processing times to task types that correspond to

larger Td − T k temperature errors since larger errors require a
longer length of heating time by a lamp. The exponential
characteristic of this function matches the distribution of pro-
cessing times to the distribution of task types. Note that the
processing times span a range of more than 4 seconds to 0.1
seconds. Although we examine one specific illustrative e i ,
other processing-time functions may be chosen and will
potentially result in different performance.

Task type point values are additional parameters that can be
chosen freely and will affect the performance of the controller.
Generally, task types corresponding to larger errors should
have larger point values than task types corresponding to small-
er errors. We choose point values according to the function

v i = 101 − i
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FIGURE 3  Multizone temperature control tracking performance, desired temperature (dashed), and actual temperature (solid) with plot layout cor-
responding to spatial zone positions in Figure 1. The stem plot at the bottom of each panel indicates the on/off state of the lamp xi for zone i at a
given point in time.
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for i ∈ {1, . . . , n − 1}. This point gain function assigns point
values ranging from 100 points for a type-1 task to two points
for a type-99 task. For a type-100 task, we assign a negative
point value since tasks corresponding to zero or negative error
do not need to be actuated with the lamp.

Rates of encounter λ i with different task types are estimat-
ed in real time as the experiment runs. The controller of an
agent has a memory and is able to keep track of its number of
encounters with a specific error. At any given time instant, an
estimate λ̂ i of the rate of encounter with type i for that particu-
lar agent is calculated as the number of times type i has been
encountered by the agent divided by the time that the agent has
spent searching for tasks. Once the relationship between error
and type, the processing time function e i , and the point value
function v i are determined, the prey model algorithm described
by (2) is implemented at each simulation time step using the
rate of encounter estimates in order to determine which task
types should be processed when encountered.

Summarizing, the controller agent is randomly placed on a
zone (implying an encounter with, for example, task type i ),
λ̂ i is updated, and the prey model algorithm is calculated using
the new rate of encounter estimate in order to determine
whether the controller should stop searching for tasks momen-
tarily and heat (with the lamp) the zone corresponding to the
encountered task for the amount of time specified by e i .

IV. Experiments and Results
To illustrate the ideas described in the theory, we performed
three different experiments. The first is a tracking problem
where the desired temperature is altered over time. The sec-
ond experiment illustrates how the foragers reallocate when a
disturbance is applied after the desired temperature is reached
in the temperature grid. Finally, we limit the number of zones
that each forager can search to see whether a desired tempera-
ture is achieved. In all of these cases we use four foragers, each
of which use the prey algorithm described in the previous sec-
tion. Our results show that the desired temperature is achieved
despite sensor inaccuracy, noise, and network delays. We also
highlight an interesting connection with the “ideal free distrib-
ution” (IFD) concept from theoretical ecology [23], [27].

A. Tracking
To evaluate controller tracking abilities, we alter the desired
temperature over time. Initially, the desired temperature is set
to Td = 23◦C. We then change Td at 340 and 680 seconds to
Td = 24◦C and Td = 22◦C, respectively. The ambient room
temperature is Ta = 21.3◦C. Typical results are shown in Fig-
ure 3. We ran the experiment many times and found similar
performances for other Td values and ambient conditions.

The prey model algorithm achieves the desired result: the
temperature of each zone tracks the desired temperature
changes. Note that data is acquired from the sensors at a sam-
pling rate of 1 ms. This value was chosen to obtain accurate
estimates of the rate of encounter with tasks for a particular
agent. Although the sensors are very accurate (±0.2◦C typical

NOVEMBER 2006 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 23

FIGURE 4  In this figure, we illustrate the task-type encounters of each for-
ager with respect to time. Encounters are downsampled for visualization.
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accuracy, and ±0.5◦C guaranteed), their thermal constants are
slow relative to the chosen sampling rate, yielding the noisy
responses observed in Figure 3. Nevertheless, Figure 3 shows
that on average good tracking performance is achieved.

The processing of tasks in each zone over time is indicated
by the overlaying stem plot in Figure 3, which shows whether
the lamp for a given zone is on or off at a particular point in
time. It is clear from this plot that the decrease in desired tem-
perature at 680 seconds results in no tasks being processed for a
short period. This is because the temperature error of all zones
during this time is negative (the actual temperature is above
the desired temperature) implying encounters with only type
100 tasks, which have negative point value and are not worth
processing. Also note that when the zones’ temperatures are
essentially at the desired temperature, some task types are still
ignored. This is evident from the existence of gaps in the stem

plot around steady state and is due to the exponential nature of
the e i curve. When all of the errors are small, the processing
times of the encountered types do not differ much from one
another (since they occur on the flatter part of the e i curve).
The controller then is not willing to waste time processing
very tiny errors when it can search for and spend the same
amount of time processing small (but not tiny) errors and
receive a larger number of points.

The task types that each forager encounters over time are
shown in Figure 4. Each forager encounters lower task types at
the beginning due to the initial presence of large positive
errors that correspond to low task types (Figure 2(a)). This
characteristic is also seen when the desired temperature is
increased at 340 seconds. As mentioned above, however, the
second Td change at 680 seconds causes encounters with only
type-100 tasks because of a negative temperature error.

24 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2006

FIGURE 5  Multizone temperature control performance when a disturbance is applied. The desired temperature (dashed), the actual tempera-
ture (solid), and the lamps that are on (stem) are shown in the plot layout corresponding to spatial zone positions in Figure 1. The stem plot at
the bottom of each panel indicates the on/off state of the lamp xi for zone i at a given point in time.
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B. Disturbance Effects
The tracking experiment showed that the prey model con-
troller achieves good tracking performance. Here, we introduce
a disturbance by means of an extra lamp located next to the
sensor in zone 3. The idea is to regulate the temperature of the
grid to a desired temperature Td = 20◦C, and once a steady-
state value is achieved, the new lamp in zone 3 is turned on.

The experiment was begun with an ambient room temper-
ature of Ta = 18.5◦C. Figure 5 illustrates the temperatures
and the lamps that were on for the first 10 minutes of the
experiment. The controller was initially run in the absence of
any disturbance, and the extra lamp in zone 3 was turned on
after approximately 60 seconds. As seen in Figure 5, the tem-
perature in zone 3 starts to increase, but the temperature in the
other zones remains close to the desired temperature Td . The
disturbance is turned off around 110 seconds, and the tempera-

ture drops until it again reaches Td . Figure 5 also shows the
lamps that are on at a given time. We see that, during the time
the disturbance was on, no foragers heated zone 3, even
though the zone could have been selected by the algorithm.
This behavior is expected considering the negative error in
zone 3 after the disturbance. Foragers that randomly select
zone 3 encounter a type-100 task and do not process it because
it is not profitable enough to be included in the task pool.
However, once the disturbance is turned off, and the tempera-
ture returns close to Td , the foragers visit that zone in order to
keep the grid at the desired temperature.

C. Search Limitations
The previous two experiments were based on the assumption
that all foragers could sense the temperature in every zone of
the multizone temperature grid. However, an interesting case
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FIGURE 6  Multizone temperature control performance when there is not perfect information. The desired temperature (dashed), the actual
temperature (solid), and the lamps that are on (stem) are shown with plot layout corresponding to spatial zone positions in Figure 1. The stem
plot at the bottom of each panel indicates the on/off state of the lamp xi for zone i at a given point in time.
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arises when the foragers do not have access to all zones’ tem-
peratures. To investigate this issue, we divide the four foragers
into two sets of two. The first set contains foragers 1 and 2,
which are limited to search zones 1 through 5. The second set,
comprising foragers 3 and 4, is limited to search only zones 4
through 8. Zones 4 and 5 are common to both sets. The prey
model is still applied; however, the number of zones the for-
ager can randomly encounter is limited.

The goal of this experiment is to regulate the temperature
grid to a desired temperature Td = 20◦C when the ambient
room temperature is Ta = 18.9◦C. Figure 6 shows the results
for 600 seconds. After 10 minutes, the temperature across the
multizone temperature grid is essentially constant at the desired
temperature. Some expected oscillations exist around the
desired temperature due to the number of foragers, network
delays, and sensing limitations. The search limitation is evident
in Figure 7: only two foragers search zones 1 through 5, while
the other two search zones 4 through 8. These limitations,
however, do not affect tracking performance. The desired tem-
perature is reached even in the absence of perfect information.

D. Discussion
Our results show that the temperature of each zone reaches
each desired temperature that is applied despite several perfor-
mance-limiting effects, namely resource allocation constraints,
network delays, disturbances, and imperfect information.
Resources are limited owing to the fact that only four foragers
are allocated around the grid. Thus, the maximum number of
lamps on at any given time is four. The result is at least four
unattended zones that must experience a decrease in tempera-
ture and then later receive attention again due to the tempera-
ture error that has developed. This pattern yields slight
oscillatory behavior in Figure 3 that is most evident in the
zones where the desired temperature is reached the fastest.
Network and communication delays also affect controller per-
formance. The clients sample temperature data every 1 ms via
the sensors and transmit this data back to the supervisor.
Because these connections are implemented over a TCP/IP
connection, internet delays exist. However, the controller per-
forms quite well in the presence of such constraints. Addition-
ally, good performance was achieved after the introduction of
disturbances and information limitations.

It should be noted that the experiments were performed at
different times of the day and year, leading to different ambient
conditions. In addition to temperature fluctuations from experi-
ment to experiment, wind current due to, for example, air con-
ditioning systems and window drafts also exists. Although such
adverse experimental conditions can significantly affect experi-
ment results (e.g., making achieved steady-state behavior differ-
ent, compare Figure 3 to Figures 5 and 6), the performance of
the controller is quite good. Furthermore, parameter value and
function tuning may lead to improved results. For example, the
type function in (3), the processing-time function e i , and the
point-value function v i were chosen in our experiments to
simply demonstrate the utility of a foraging theory approach to
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FIGURE 7  Corresponding zones for each of the four foragers.
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control; however, different functions may be used and, with
proper tuning, may result in improved performance.

An important characteristic of the experimental results given
above is the connection to the “ideal free distribution” (IFD)
concept from theoretical ecology [23], [27]. This concept has
been used to analyze how animals (foragers) distribute them-
selves across different habitats. These habitats have different
characteristics (e.g., one habitat might have a higher nutrient
input rate than another), but animals tend to reach an equilibri-
um point where each has the same correlate of fitness (e.g.,
consumption rate). The term “ideal” means that the animals
can sense the quality of all habitats and seek to maximize the
suitability of the habitat they are in, and the term “free” means
that the animals are free to move to any habitat. In the temper-
ature control experiment, the group of foragers tends to reach
an IFD. Why? If we think of temperature error in a given zone
as a nutrient, the foragers will allocate themselves in the zones
where the temperature is below the desired one, and they tend
to choose those zones where the reward is higher (i.e., where
they are getting a high number of points v i). In this way, they
persistently move around the grid and maintain the same con-
sumption rate for each of them that corresponds to the equili-
bration of the zone temperatures in Figures 3, 5, and 6.

V. Conclusions
The utility of foraging theory for decision-making system design
was established in [3], [4] for autonomous vehicles via simula-
tions. Here we examine an application of the theory to an actual
physical experiment, namely temperature control of a grid of
eight zones. A controller is thought of as an agent searching for
error across the grid, and it uses the prey model algorithm to
decide which types of error to actuate with a lamp to achieve a
uniform desired temperature across the grid. The algorithm caus-
es the controller to ignore certain types of error when the missed
opportunity of more profitable types is too great to forgo. Results
show that the controller does very well in tracking desired tem-
peratures, even in the presence of disturbances and sensing limita-
tions. The results also illustrate a connection between the prey
model and the ideal free distribution. The desired temperature is
reached in all three experiments by the foragers allocating them-
selves in the zones where the error is higher.

Future directions include applications of extended foraging
theory concepts such as the patch model to determine how long
to process certain error types and risk-sensitive foraging theory to
decide which types to process when time is limited. Moreover,
there is a need to mathematically analyze the stability of the con-
troller; however, this is quite challenging due to the need to con-
sider sensor noise, disturbances, lack of perfect information (i.e.,
decentralized control), asynchronous operation, and the fact that
the control input is of the on-off type that is constrained so that
only a limited number of zones can be heated at one time.
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