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Abstract

Recently it has been shown that the conventional notions of stability in the sense of Lyapunov
and asymptotic stability can be used to characterize the stability properties of a class of “logical”
discrete event systems (DES). Moreover, it has been shown that stability analysis via the choice of
appropriate Lyapunov functions can be used for DES and can be applied to several DES applica-
tions including manufacturing systems and computer networks [1, 2]. In this paper we extend the
conventional notions and analysis of uniform boundedness, uniform ultimate boundedness, practi-
cal stability, finite time stability, and Lagrange stability so that they apply to the class of logical
DES that can be defined on a metric space. Within this stability-theoretic framework we show
that the standard Petri net-theoretic notions of boundedness are special cases of Lagrange stability
and uniform boundedness. In addition we show that the Petri net-theoretic approach to bounded-
ness analysis is actually a Lyapunov approach in that the net-theoretic analysis actually produces
an appropriate Lyapunov function. Moreover, via the Lyapunov approach we provide a sufficient
condition for the uniform ultimate boundedness of General Petri nets. To illustrate the Petri net
results, we study the boundedness properties of a rate synchronization network for manufacturing
systems. In addition, we provide a detailed analysis of the Lagrange stability of a single-machine
manufacturing system that uses a priority-based part servicing policy.
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1 Introduction

Discrete event systems (DES) are dynamical systems which evolve in time by the occurrence of

events at possibly irregular time intervals. “Logical” DES are a class of discrete time asynchronous
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DES with equations of motion that are most often non-linear and discontinuous with respect to the

random occurrence of events. Recently there has been much interest in the characterization of the

stability properties of logical DES and in [1, 3, 4] the authors show how to adapt the metric space

approach to Lyapunov stability analysis in [5] so that a wide class of DES can be analyzed with this

conventional approach. In fact in [1, 3, 4] the authors showed that the standard Lyapunov method

via the choosing of appropriate Lyapunov functions can be applied to several particular classes

of DES applications including manufacturing systems and computer networks. More recently, a

detailed analysis of load balancing systems has been conducted in [2, 6] using the framework in

[1, 3, 4]. Earlier work on the analysis of boundedness properties of DES is contained in [7].

In this paper we extend the conventional Lyapunov framework so that it applies to the study of

uniform boundedness, uniform ultimate boundedness, practical stability, finite time stability, and

Lagrange stability of the class of logical DES that can be defined on a metric space. As mentioned

above, Lyapunov concepts have been already been studied on a metric space (see, e.g., [5] for an

introductory treatment, [8] for more advanced studies of stability preserving mappings on metric

spaces and their applications, and [9] for more recent work on the use of a metric space Lyapunov

approach for interconnected systems). There have also been studies of stability for more general

topological spaces (see, e.g., [10]). In addition, there have been studies of stability for automata

(see, e.g., [11]) and in temporal logic systems (see, e.g., [12]); for an overview of other DES-theoretic

work along these lines see [1]. This paper shows how to perform stability and boundedness analysis

of logical DES that are defined on a metric space. Logical DES that can be defined on a metric space

include Petri nets [13, 14], Vector DES [15, 16], and many applications (see, e.g., [2]). The DES to

be studied, such as Petri nets, do not enjoy having a state space that is a vector space so that the

general stability formulations in, for instance, [17, 18, 19, 20] for normed linear spaces do not directly

apply. Moreover, the logical DES to be considered here are inherently asynchronous and at each

state there may be up to an infinite number of events that can occur and hence there can possibly

be an infinite number of next states. Hence, the approach in [11] (and similar automata-theoretic

approahes) does not apply since it is for finite systems. In addition, the standard formulations in

[8, 17, 18, 19, 20] do not directly apply since for them it is assumed that at each state there is

a unique next state (for DES there is often non-deterministic behavior that results in uncertainty

about what the next state is).

The results in Section 3 show that via relatively straightforward extensions, the Lyapunov

analysis of uniform boundedness extends to the study of logical DES (Theorem 1). For uniform

ultimate boundedness extensions must be made to ensure sufficient conditions that will be more

generally applicable to logical DES (Theorem 2 and Corollary 1). Perhaps most importantly (due
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to its wide variety of possible applications), in Section 3 we show that the analysis of practical

stability, finite time stability [21, 22], and Lagrange stability can be extended to include logical

DES (Theorems 3 and 4 and Corollary 2).

We also investigate several applications of the theory of stability and boundedness for logical

DES that is introduced in Section 3. For instance, in Section 4 we show how the standard notions

of boundedness in Petri net theory are really special cases of the conventional notions of stability

and boundedness in Section 3. In Theorem 5 we show that the standard approach to the analysis

of “structural boundedness” for General Petri nets [13] is equivalent to a Lyapunov approach where

an appropriate Lyapunov function is chosen. In addition, in Theorem 5 we introduce the notion

of uniform ultimate boundedness for General Petri nets and using the Lyapunov approach provide

sufficient conditions for uniform ultimate boundedness of General Petri nets. Finally, to illustrate

the Petri net results we analyze a rate synchronization network for manufacturing systems.

In Section 5 we provide a detailed investgation into the Lagrange stability of a single-machine

manufacturing system that uses a priority-based part servicing policy. The investigation was moti-

vated by the work of Perkins and Kumar [23] and Lu and Kumar [24], but we conduct our studies

in the stability framework established in Section 3 and investigate stability properties of a new

scheduling policy. Although the priority-based policy that we study can be expected to be less

efficient than, e.g., the Clear-a-Fraction or Clear-Largest-Buffer policies in [23], practical consid-

erations in manufacturing systems (e.g., constraints due to the ordering of how parts must be

processed) often dictate the use of the type of priority-based policy that we study. Hence, our man-

ufacturing system appplication serves to illustrate the utility of the stability framework of Section

3 and provides a result that can be practically useful (See Theorem 6). Finally, we note that some

concluding remarks are provided in Section 6.

2 A Discrete Event System Model

We study the stability of systems that can be accurately modeled with

G = (X , E , fe, g, Ev). (1)

X is the set of states and E is the set of events. State transitions are defined by the operators,

fe : X −→ X where e ∈ E . An event, e, may only occur if it is in the set defined by the enable

function, g : X −→ P(E) − {Ø}, where P(E) denotes the power set of E . We only require that fe

be defined when e ∈ g(x). Notice that according to the definition of g, it can never be the case

that no event is enabled. We can, however, model deadlock by defining a null event, e0, so that

3



fe0(x̄) = x̄ where x̄ ∈ X is the state that the system is deadlocked at.

We associate “logical time” indices with the states and events so that xk ∈ X represents the

state at time k ∈ {0, 1, 2, . . .} = IN (the set of natural numbers) and ek ∈ g(xk) represents an

enabled event at time k ∈ IN. Notice that there can be just one state at time k, but that many

events may be enabled at time k. Should an enabled event ek occur, then the next state, xk+1 is

defined by xk+1 = fek
(xk).

We now define state trajectories and event trajectories. A state trajectory is any sequence

{xk} ∈ X IN such that xk+1 = fek
(xk) for some ek ∈ g(xk) for all k ∈ IN. An event trajectory is any

sequence {ek} ∈ E IN such that there exists a state trajectory, {xk} ∈ X IN, where for every k ∈ IN,

ek ∈ g(xk). The set of all such event trajectories is denoted by E ⊂ E IN. Notice that corresponding

to a given event trajectory, there can be only one state trajectory. In general, however, an event

trajectory that produces a given state trajectory is not unique. Notice that all state and event

trajectories must be infinite sequences.

Let Ev ⊂ E denote a set of what we call “valid” event trajectories that we assume is specified

as part of the modeling process. Let Ev(x0) be the set of valid event trajectories when the initial

state is x0 ∈ X . The framework provides another mechanism for further pruning E. Ea ⊂ Ev is

the set of what we call “allowed” event trajectories. Including Ea in our model yields a great deal

of modeling power. In particular, we will make use of Ea to model the decision-making policies

which we impose on our systems.

If we fix k ∈ IN, then Ek denotes the sequence of events e0, e1, . . . , ek−1, and the EkE ∈ Ev(x0)

is used to denote the concatenation of Ek with a sequence of infinite length E = ek, ek+1, . . . such

that EkE ∈ Ev (E0 = Ø, the string with no elements in it which we also use to denote the empty

set). If E is a string then |E| denotes the length of the string (i.e., the number of elements in

the string). Let Ef
v = {E ′ : E ′E ∈ Ev, |E ′| < ∞} (i.e., the set of all finite length valid event

trajectories). Let X : X × Ef
v × IN → X . The value of the function X(x0, Ek, k) will be used to

denote the state reached at time k from x0 ∈ X by application of event sequence Ek such that

EkE ∈ Ev. For fixed x0, the functions X(x0, Ek, k), where EkE ∈ Ev(x0), are called motions.

3 Sufficient Conditions for Stability and Boundedness of DES in

a Metric Space

Let ρ : X × X denote a metric on X , and {X ; ρ} a metric space. Let Xz ⊂ X and ρ(x,Xz) =

inf{ρ(x,x′) : x′ ∈ Xz} denote the distance from point x to the set Xz. The r-neighborhood of

an arbitrary set Xz ⊂ X is denoted by the set S(Xz; r) = {x : 0 < ρ(x,Xz) < r} where r > 0.
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Also, let S̄(Xz;R) = {x ∈ X : ρ(x,Xz) ≥ R}. Let �+ denote the nonnegative reals. A continuous

function ψ : [0, r1] → �+ (resp., ψ : [0,∞) → �+) is said to belong to class K, i.e., ψ ∈ K, if

ψ(0) = 0 and if ψ is strictly increasing on [0, r1] (resp., on [0,∞)). If ψ : �+ → �+, if ψ ∈ K, and

if limr→∞ ψ(r) = ∞, then ψ is said to belong to class KR. Let Ea ⊂ Ev be a set of allowed event

trajectories and Xb ⊂ X denote a bounded subset of X for the remainder of the paper.

Defintion 1: The motions X(x0, Ek, k) of G which begin at x0 ∈ X are bounded w.r.t Ea and Xb if

there exists a β > 0 such that ρ(X(x0, Ek, k),Xb) < β for all Ek such that EkE ∈ Ea(x0) and for

all k ∈ IN. The DES G is said to possess Lagrange Stability w.r.t. Ea and Xb if for each x0 ∈ X
the motions X(x0, Ek, k) for all Ek such that EkE ∈ Ea(x0) and all k ∈ IN are bounded w.r.t. Ea

and Xb.

Definition 2: The motions of G are uniformly bounded w.r.t Ea and Xb if for any α > 0 there exists

a β > 0 (that depends on α) such that if ρ(x0,Xb) < α then ρ(X(x0, Ek, k),Xb) < β for all Ek such

that EkE ∈ Ea(x0) and for all k ∈ IN.

Definition 3: The motions of G are uniformly ultimately bounded with bound B w.r.t Ea and Xb if

there exists a B > 0 and if corresponding to any α > 0 there exists T (α) > 0 such that ρ(x0,Xb) < α

implies that ρ(X(x0, Ek′, k′),Xb) < B for all Ek′ such that Ek′E ∈ Ea(x0) where k′ ≥ T (α).

Definition 4: Fix α and β such that β ≥ α > 0, let ρ be a specified metric on X , and let Xb ⊂ X
and Ea ⊂ Ev . The DES G is said to be practically stable w.r.t. (α, β, ρ,Xb,Ea) if for all x0 ∈ X
such that ρ(x0,Xb) < α, ρ(X(x0, Ek, k),Xb) < β for all Ek such that EkE ∈ Ea(x0) and all k ∈ IN.

Definition 5: Fix α and β such that β ≥ α > 0, let ρ be a specified metric on X , and let Xb ⊂ X
and Ea ⊂ Ev. Furthermore, let Tf denote a fixed final time. The DES G is said to be finite-time

stable w.r.t. (α, β, Tf , ρ,Xb,Ea) if for all x0 ∈ X such that ρ(x0,Xb) < α, ρ(X(x0, Ek′, k′),Xb) < β

for all Ek′ such that Ek′E ∈ Ea(x0) where k′ < Tf .

Notice that if the above properties hold for some Ea then they also hold for all E′
a such that

E′
a ⊂ Ea.

Theorem 1 In order for the motions of G to be uniformly bounded w.r.t. Ea and Xb it is sufficient

that there exists a function V defined on S̄(Xb;R) (where R may be large), and ψ1, ψ2 ∈ KR such

that

(i) ψ1(ρ(x,Xb)) ≤ V (x) ≤ ψ2(ρ(x,Xb)), x ∈ S̄(Xb;R), and
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(ii) V (X(x0, Ek, k)) is a non-increasing function for x0 ∈ S̄(Xb;R), for all Ek such that EkE ∈
Ea(x0) and all k ∈ IN (i.e., V is non-increasing along all possible motions of the system).

Proof:

Fix r′ > R and let x0 ∈ S(Xb; r′) with ρ(x0,Xb) > R. By conditions (i) and (ii), V (X(x0, Ek, k)) ≤
V (X(x0,Ø, 0)) ≤ ψ2(r′) for all Ek such that EkE ∈ Ea(x0). By condition (ii) it is the case that

ψ1(ρ(X(x0, Ek, k),Xb)) ≤ V (X(x0, Ek, k)) ≤ ψ2(r′) for all Ek such that EkE ∈ Ea(x0) pro-

vided that ρ(X(x0, Ek, k),Xb) > R. Since ψ1 ∈ KR, its inverse exists, so ρ(X(x0, Ek, k),Xb)) ≤
ψ−1

1 (ψ2(r′)) .= β for all Ek such that EkE ∈ Ea(x0) provided that ρ(X(x0, Ek, k),Xb) > R. If

x0 �∈ S̄(Xb;R) or if x0 ∈ S̄(Xb;R) and there exists k′, Ek′ such that Ek′E ∈ Ea(x0) where

X(x0, Ek′, k′) �∈ S̄(Xb;R) then it could be that for all k ≥ k′, X(x0, Ek, k) ∈ S(Xb; r′) or it could

be that for this Ek′ there exist k1 ≥ k′, k2 ≥ k′ such that X(x0, Ek′′, k′′) �∈ S(Xb; r′) for all k′′,

k1 < k′′ < k2 ≤ ∞. However, the above argument yeilds ρ(X(x0, Ek′′, k′′),Xb)) ≤ β for all such k′′

so that ρ(X(x0, Ek, k),Xb)) ≤ max{R, β} for all Ek such that EkE ∈ Ea(x0).

Theorem 2 In order for the motions of G to be uniformly ultimately bounded with bound B w.r.t.

Ea and Xb it is sufficient that there exists a function V defined on S̄(Xb;R) (where R may be large),

ψ1, ψ2 ∈ KR, and ψ3 ∈ K such that

(i) ψ1(ρ(x,Xb)) ≤ V (x) ≤ ψ2(ρ(x,Xb)), x ∈ S̄(Xb;R), and

(ii) V (X(x0, Ek+1, k+ 1)) − V (X(x0, Ek, k)) ≤ −ψ3(ρ(X(x0, Ek, k),Xb)) for all x0 ∈ S̄(Xb;R),

and for all Ek such that Ek+1 = Eke (e ∈ E) and Ek+1E ∈ Ea(x0) and all k ∈ IN.

Proof:

Fix r1 > R, choose B > r1 such that ψ2(r1) < ψ1(B) (which is always possible), choose r2 > B,

and let T ′ = (ψ2(r2)/ψ3(r1)) + 1. With B < ρ(x0,Xb) ≤ r2, assume that ρ(X(x0, Ek, k),Xb) > r1

for all Ek such that EkE ∈ Ea(x0). By condition (ii), V (X(x0, Ek, k)) ≤ V (X(x0,Ø, 0)) −∑
k ψ3(ρ(X(x0, Ek, k),Xb)) for allEk such thatEkE ∈ Ea(x0). But V (X(x0,Ø, 0)) ≤ ψ2(ρ(x0,Xb)) ≤

ψ2(r2) and ψ3(ρ(X(x0, Ek, k),Xb)) > ψ3(r1) so that we get V (X(x0, Ek′, k′)) ≤ ψ2(r2) − kψ3(r1)

for all Ek such that EkE ∈ Ea(x0). Let k = T ′ = (ψ2(r2)/ψ3(r1)) + 1 as above so that,

V (X(x0, Ek, k)) ≤ −ψ3(r1) for all Ek such that EkE ∈ Ea(x0) which is a contradiction. Then

there exists k∗ such that ρ(X(x0, Ek∗, k∗),Xb)) ≤ r1 where Ek∗E ∈ Ea(x0). Suppose now that

ρ(X(x0, Ek∗, k∗),Xb)) ≤ r1 and ρ(X(x0, Ek, k),Xb)) > r1 for k such that k∗ < k ≤ k′ ≤ ∞ and
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EkE ∈ Ea(x0) then

ψ1(ρ(X(x0, Ek, k),Xb)) ≤ V (X(x0, Ek, k)) ≤ V (X(x0, Ek∗ , k∗)) ≤ ψ2(ρ(X(x0, Ek∗, k∗),Xb))

and ψ2(ρ(X(x0, Ek∗, k∗),Xb)) ≤ ψ2(r1) < ψ1(B) so that ρ(X(x0, Ek, k),Xb) < ψ−1
1 (ψ1(B)) = B for

all k ≥ k∗, and Ek such that EkE ∈ Ea(x0).

Corollary 1: In order for the motions of G to be uniformly ultimately bounded with bound B

w.r.t. Ea and Xb it is sufficient that there exists a function V defined on S̄(Xb;R) (where R may

be large), D ∈ IN, and ψ1, ψ2 ∈ KR, ψ3 ∈ K such that

(i) Conditions (i) and (ii) of Theorem 1 hold, and

(ii) V (X(x0, Ek+1, k + 1)) − V (X(x0, Ek, k)) ≤ −ψ3(ρ(X(x0, Ek, k),Xb)) for all x0 ∈ S̄(Xb;R),

and for all Ek such that Ek+1 = Eke (e ∈ E), Ek+1E ∈ Ea(x0), k ∈ [0, D) and if this

inequality holds for k′ ∈ IN then it holds for each Ek such that EkE ∈ Ea(x0) for some

k ∈ (k′, k′ +D] (i.e., for each E ∈ Ea(x0) the inequality holds at least once every D steps).

Proof:

Choose r1, r2, and B as above and T ′ as above and by condition (ii) for k′ ≥ kD, k ∈ IN,

V (X(x0, Ek′, k′)) ≤ V (X(x0,Ø, 0)) − kψ3(ρ(x0,Xb)) for all Ek′ such that Ek′E ∈ Ea(x0). As

above, we find that for k′ ≥ kD, k ∈ IN, V (X(x0, Ek′, k′)) ≤ ψ2(r2) − kψ3(r1) for all Ek′ such that

Ek′E ∈ Ea(x0). Choosing k = T ′ we get a contradiction for k′ ≥ DT ′. The remainder of the proof

is the same as for Theorem 2.

Theorem 3 For the DES G to be practically stable w.r.t. (α, β, ρ,Xb,Ea) it is sufficient that there

exists a function V defined on X and a real valued function φ(k) such that

(i) V (X(x0, Ek+1, k+1))−V (X(x0, Ek, k)) ≤ φ(k) for all Ek+1 = Eke (e ∈ E), Ek+1E ∈ Ea(x0)

and all k ∈ IN, and

(ii)
∑k

i=0 φ(i) < inf{V (x) : ρ(x,Xb) ≥ β} − sup{V (x) : ρ(x,Xb) < α} for all k ∈ IN.

Proof:

The result is shown via contradiction. Let X(x0, Ek, k) be any motion with x0 ∈ X such that

ρ(x0,Xb) < α and with Ek such that EkE ∈ Ea(x0). Assume that there exists a k′ ≥ 0 which is
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the earliest time such that ρ(X(x0, Ek′, k′),Xb) ≥ β for any Ek′ such that Ek′E ∈ Ea(x0). From

(ii),
∑k′−1

i=0 φ(i) < inf{V (x) : ρ(x,Xb) ≥ β} − sup{V (x) : ρ(x,Xb) < α} and substituting in (i) it

is the case that

V (X(x0, Ek′, k′)) − V (X(x0,Ø, 0)) < inf{V (x) : ρ(x,Xb) ≥ β} − sup{V (x) : ρ(x,Xb) < α}

for all Ek′ such that Ek′E ∈ Ea(x0). Using the fact that

V (X(x0,Ø, 0))− sup{V (x) : ρ(x,Xb) < α} ≤ 0

for x0 ∈ X such that ρ(x0,Xb) < α it follows that V (X(x0, Ek′, k′)) < inf{V (x) : ρ(x,Xb) ≥ β}
for all Ek′ such that Ek′E ∈ Ea(x0). This implies that ρ(X(x0, Ek′, k′),Xb) < β which is a

contradiction. Therefore there does not exist k′ such that ρ(X(x0, Ek′, k′),Xb) ≥ β for any Ek′ such

that Ek′E ∈ Ea(x0) and all k′ ∈ IN so ρ(X(x0, Ek, k),Xb) < β for all Ek such that EkE ∈ Ea(x0)

and all k ∈ IN.

Corollary 2: Replace in Theorem 3 the infinite time interval [0,∞) with the finite time interval

[0, Tf) and sufficient conditions for finite time stability w.r.t. (α, β, Tf , ρ,Xb,Ea) are obtained.

Using ideas from the proof for uniform boundedness (Theorem 1) and practical stability (The-

orem 3) we state and prove the following result on Lagrange stability.

Theorem 4 For a DES G to possess Lagrange stability w.r.t. Ea and Xb it is sufficient that there

exists a function V defined on X and ψ1, ψ2 ∈ KR such that

(i) ψ1(ρ(x,Xb)) ≤ V (x) ≤ ψ2(ρ(x,Xb)), for all x ∈ X ,and

(ii) V (X(x0, Ek, k)) − V (x0) < β(x0) for each x0 ∈ X ,and all Ek such that EkE ∈ Ea(x0) for

all k ∈ IN and some β(x0) > 0.

Proof:

Fix r′ > 0 and let x0 ∈ S(Xb; r′) so that V (x0) ≤ ψ2(r′). For all Ek such that EkE ∈ Ea(x0)

and all k ∈ IN,

ψ1(ρ(X(x0, Ek, k),Xb)) ≤ V (X(x0, Ek, k)) ≤ V (x0) + β(x0) ≤ ψ2(r′) + β(x0)

Since ψ1 ∈ KR,

ρ(X(x0, Ek, k),Xb) ≤ ψ−1
1 (ψ2(r′) + β(x0)) .= β′(x0)

which shows that G possesses Lagrange stability.
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4 A Lyapunov Stability-Theoretic Approach to the Analysis of

Boundedness Properties of Petri Nets

4.1 Petri Net Model

For our discussions on Petri nets we will adhere (to the greatest extent possible) to the somewhat

standard notation in [13] where a Petri net PN = (P, T, F,W,M0) where

(i) P = {p1, p2, . . . , pm} is a finite set of places (represented with circles),

(ii) T = {t1, t2, . . . , pn} is a finite set of transitions (represented with line segments),

(iii) F ⊂ (P × T )
⋃

(T × P ) is a set of arcs (represented with arrows),

(iv) W : F → {1, 2, 3, . . .} is an arc weight function (represented with numbers labeling arcs and

assume for convenience that if (p, t) �∈ F or if (t, p) �∈ F we will extend the arc weight function

so that W (t′, p′) = W (p, t) = 0 for these cases and the arrow will be omitted), and

(v) M0 : P → IN is a (initial) marking (represented with dark dots, i.e., tokens, in places).

It is the case that P
⋂
T = Ø and P

⋃
T �= Ø. The Petri net structure is N = (P, T, F,W ) so PN =

(N ,M0). The Petri net PN is normally referred to as the “General Petri net” while if “inhibitor

arcs” are added it is called an “Extended Petri net” [13, 14] (also recall that “finite capacity nets”

can be reduced to General Petri nets and that Marked Graphs and State Machines [13] are special

cases of General Petri nets). If the initial marking is pre-specified then we will refer to the Petri

net as (N ,M0) or simply PN , whereas, if the initial marking is not specified we will refer to the

net as N . Also note that if W (p, t) = α (or W (t, p) = α′) then this is often represented graphically

by α(α′) arcs from p to t (t to p) each with no numeric label.

Let Mk(pi) denote the marking (i.e., the number of tokens) at place pi ∈ P at time k and let

the marking (state) of PN at time k (the “k” will be dropped when it is not needed) be denoted by

Mk = [Mk(p1) · · ·Mk(pm)]t. A transition tj ∈ T is said to be enabled at time k if Mk(pi) ≥W (pi, tj)

for all pi ∈ P such that (pi, tj) ∈ F . It is assumed that at each time k there exists at least one

transition to fire. If a transition is enabled, then it can fire. If an enabled transition tj ∈ T fires at

time k, then the next marking for place pi ∈ P is given by

Mk+1(pi) = Mk(pi) +W (tj , pi) −W (pi, tj)

where (tj, pi) ∈ F and (pi, tj) ∈ F . Let R(M0) denote the set of makings of PN (states) that can

be reached from M0. Let R1(M) denote the set of all markings that are reachable from M in one
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transition firing. Let A = [aij] denote an n ×m matrix of integers (the incidence matrix) where

aij = a+
ij − a−ij with a+

ij = W (ti, pj) and a−ij = W (pj, ti). Let uk ∈ {0, 1}n denote a firing vector

where if tj ∈ T is fired then its corresponding firing vector is uk = [0 · · ·0 1 0 · · ·0]t with the “1”

in the jth position in the vector and zeros are everywhere else. The matrix equations (nonlinear

difference equations defined on INm with non-unique solutions) describing the dynamical behavior

represented by a Petri net are given by [13, 14]

Mk+1 = Mk + Atuk (2)

where if at step k, a−ij ≤ Mk(pj) for all pj ∈ P , then ti ∈ T is enabled and if this ti ∈ T fires

then its corresponding firing vector uk is utilized in equation 2 to generate the next state. Notice

that if Md ∈ R(M0), and we fire some sequence of d transitions with corresponding firing vectors

u0, u1, u2, . . . , ud−1 we will get Md = M0 + Atu with u =
∑d−1

k=0 uk where u is called the firing

count vector.

An Extended Petri net is obtained from a General Petri net by adding inhibitor arcs (sometimes

called “not arcs”). Let Fn ⊂ (P × T ) denote the set of inhibitor arcs for the extended Petri

net EPN = (P, T, F, Fn, W,M0) (F
⋂
Fn = Ø). We use a line with a small circle on the end

to graphically represent the inhibitor arc. The inhibitor arc does not change in any way what

happens when a transition t ∈ T fires (i.e., equation 2 remains unchanged for the Extended Petri

net). The inhibitor arc does, however, change which transitions are enabled at each step. The

set of transitions in EPN enabled at time k is given by {tj : Mk(pi) ≥ W (pi, tj) for all pi ∈
P s.t. (pi, tj) ∈ F} − {tj : (pi, tj) ∈ Fn and M(pi) = 0}. Hence, the inhibitor arc tests if a

place has a zero marking. It is important to study properties of Extended Petri nets due to fact

that the addition of the inhibitor arc greatly enhances the “modeling power” of the Petri net [14].

The characterization and analysis of the qualitative properties of systems represented via Petri

nets is based on the the fact that Petri net models are a special case of the general DES model in

equation 1 [3, 4].

4.2 Boundedness Properties of Petri Nets: A Lyapunov Approach

The fact that systems represented by Petri nets are amenable to Lyapunov stability analysis was

first pointed out in [3, 4]. Below we show that the Petri net theoretic boundedness properties

and analysis [14, 13] are actually special cases of the boundedness definitions in Section 3 and the

Lyapunov approach to boundedness analysis. Let ξ = [ξ1ξ2 . . . ξm]t such that ξ ∈ �m and ξi > 0,
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i = 1, 2, ...,m. Throughout this Section we will use the metric ρ : INm × INm → � where

ρ(M,M ′) =
m∑

i=1

ξi|M(pi) −M ′(pi)| (3)

and we will use D ⊂ INm to denote a bounded set. Next we state the standard definitions of

boundedness for Petri nets [13, 14].

Definition 6: A Petri net (N ,M0) is said to be γ-bounded or simply bounded if for a given γ,

M(pi) ≤ γ for all pi ∈ P and M ∈ R(M0).

Definition 7: A Petri net N is said to be structurally bounded if it is bounded for any finite initial

marking M0.

For a Petri net (N ,M0): (i) (N ,M0) is γ-bounded for some γ ≥ 0 iff the motions of (N ,M0)

which begin at M0 are bounded, (ii) N is structurally bounded iff N possesses Lagrange stability,

and (iii) N is structurally bounded iff the motions of N are uniformly bounded. Next, we show how

the Petri net-theoretic approach to the analysis of structural boundedness is actually a Lyapunov

stability-theoretic approach. Moreover, we introduce the characterization and analysis of uniform

ultimate boundedness for Petri nets.

Theorem 5 For the Petri net N with D = {0}:

(i) N is uniformly bounded if there exists an m-vector φ > 0 such that Aφ ≤ 0 and

(ii) N is uniformly ultimately bounded if there exists an m-vector φ > 0 and n-vector π > 0 such

that Aφ ≤ −π.

Proof:

For (i) the proof follows by extending the one for structural boundedness in [13]. Let ξ = φ

and choose

V (M) = inf

{
m∑

i=1

φi|M(pi) −M ′′(pi)| : M ′′ ∈ D

}
= M tφ (4)

so that due to the choice of ρ in equation 3 the appropriate ψ1 and ψ2 exist so that ψ1(ρ(M,D)) ≤
V (M) ≤ ψ2(ρ(M,D)). Notice that V must only be defined and satisfy the appropriate properties

on {M : ρ(M,D) ≥ R} where R may be large. Choose

R = inf{r′ : 0 < ρ(M,D) < r′ and all t ∈ T are enabled at M}
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(R is finite since W (pi, tj) is finite.) For (i), it suffices to show that for all M and M ′ ∈ R1(M)

such that M ∈ {M : ρ(M,D) ≥ R}, M ′tφ ≤ M tφ. We know that for all M and M ′ ∈ R1(M),

M ′ = M + Atu for some u ≥ 0 (we know that u ≥ 0 exists since M ∈ {M : ρ(M,D) ≥ R})

and M ′t = M t + utA so M ′tφ = M tφ + utAφ. Since u ≥ 0, Aφ ≤ 0 implies that for all M and

M ′ ∈ R1(M), M ′tφ ≤M tφ whenever M ∈ {M : ρ(M,D) ≥ R}.

For (ii), it suffices to show that for all M and M ′ ∈ R1(M) such that M ∈ {M : ρ(M,D) ≥ R},

M ′tφ ≤ M tφ − γ for some γ > 0. From equation 2, if M ′ ∈ R1(M), then M ′tφ = M tφ + utAφ so

that M ′tφ ≤M tφ − utπ. Since u ≥ 0 exists (as long as M ∈ {M : ρ(M,D) ≥ R}) and πi > 0,

M ′tφ−M tφ ≤ −min{πi}

for all M and M ′ ∈ R1(M). Hence, if we choose

ψ3(ρ(M,D)) = min{πi}
(

ρ(M,D)
1 + ρ(M,D)

)

(ii) holds.

Corollary 3: For the Petri net N with D = {0} if for each tj ∈ T ,

∑
p

W (p, tj) ≥
∑
p

W (p, tj)

(∑
p

W (p, tj) >
∑
p

W (p, tj)

)

then N is uniformly bounded (resp., uniformly ultimately bounded).

Proof:

Choose V (M) = M tφ where φ = [1 1 . . .1]t and use Theorem 5.

Due to the fact that stability in the sense of Lyapunov and asymptotic stability are local prop-

erties, they hold trivially for any invariant set for a Petri net [1, 3, 4]. An analogous result to

Theorem 5 part (ii) exists for asymptotic stability in the large. Note that the addition of inhibitor

arcs to the General Petri net to obtain the Extended Petri net simply reduces the number of pos-

sible motions that can be generated by the system. Therefore, if a general Petri net is uniformly

bounded or uniformly ultimately bounded, no matter what inhibitor arcs are added to obtain an

Extended Petri net the Extended Petri net will maintain the corresponding properties. Theorem

5 shows that the standard approach to boundedness analysis for General Petri nets is actually a

special case of a Lyapunov approach to boundedness analysis. Really what is shown is that in

the Petri net-theoretic approach to the analysis of structural boundedness [13], in picking φ one

is actually picking a Lyapunov function V (M) = M tφ. Once this is recognized it will perhaps

be easier to study boundedness properties due to the wealth of experience there is with regard
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to the choice of Lyapunov functions. Part (ii) of Theorem 5 provides what seems to be the first

characterization and analysis of uniform ultimate boundedness for Petri nets. It is important to

note that the Lyapunov approach also applies to the many subclasses of Petri nets (e.g., Marked

Graphs and State Machines) or for Extended Petri nets.

4.3 Petri Net Application: Manufacturing System

In [7] the authors provide simple computer network and production network applications that

illustrate the use of the Lyapunov approach for analysis of boundedness properties. In this paper

we introduce the study of boundedness properties of a special class of manufacturing lines with

rate synchronization shown in Figure 1.

Figure 1: Manufacturing Line with Rate-Synchronization

Suppose that we are given the manufacturing system line shown in Figure 1 where transitions

represent machines (a transition firing represents the completion of processing a part), and the

places are used as shown to represent buffers where parts are passed through the system for pro-

cessing (e.g., M(p1) represents the number of parts that have already been processed by the first

machine and that are waiting to be processed by the second machine). The “rate-synchronizers”

are used to ensure that the rates of processing of parts in the manufacturing system line are syn-

chronized (to allow maximum flexibility in processing, we only seek to maintain a loosely coupled

form of rate synchronization). Let N = (P, T, F,W ) represent a manufacturing system with N such

machines connected in series (similar analysis applies for other topologies). With this, m = 3(N−1)

and n = N .

For the analysis of boundedness properties choose V (M) = M tφ where φ = [1 1 2 1 1 2 . . .2]t.

Notice that if either t or t′ fires V (Mk+1) ≤ V (M) so that the manufacturing line with rate-

synchronization is uniformly bounded. The choice of the “2” in the φ vector weights the adding

and subtacting of tokens to, e.g., place p3, so that the weighted sum of tokens for the network will

not increase. Checking that Aφ ≤ 0 per part (i) of Theorem 5 also verifies the uniform boundedness

of the manufacturing line.
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5 Lagrange Stability of DES: A Manufacturing Application

We consider machines as shown in Figure 2 which are capable of servicing parts of type i such that

i ∈ P where P = {1, 2, . . . , N}. We fix the rate of arrival of parts to the machine. The machine

can only service one part at a time and must be configured differently to service parts of different

types. There is a set-up time when reconfiguring the machine for processing different part types.

Parts that have arrived at the machine and have not yet been processed are accumulated in buffers.

We will show that some such machines can be implemented with buffers of finite size.

Figure 2: Machine with Buffers

Because we are concerned with arrival rates and because the processing of any part takes a

finite amount of real time, we require that our DES model of the machine be synchronous. The

events, ek, will be required to occur with a fixed real time period. All references to real time will be

given in terms of the event period, which we will call a cycle. Accordingly, we define the relevant

rate and delay constants. There must be bi > 0 cycles between arrivals of parts of type i ∈ P at

buffer i, the machine requires mi > 0 cycles to process one part of type i ∈ P (when the machine is

producing parts of type i ∈ P ), and si > 0 cycles are required to configure the machine to produce

parts of type i ∈ P .

We further define

wi =
mi

bi

w =
∑
i∈P

wi.

From the definitions of mi and bi, wi is the number of parts that can arrive at buffer i per every

part of type i that enters the machine to be processed (when parts of type i are being processed).

In other words, the frequency of arrivals of part type i is 1 part per bi cycles and the frequency

of processing of part type i is 1 part processed per mi cycles (assuming the machine is currently

processing parts of type i); wi is the ratio of the frequency of arrivals to the frequency of departures.

14



Clearly, it is not possible to bound the buffer levels in general if w > 1. Hence, we require that

w < 1 so that wi < 1 for all i ∈ P .

The machine described above is similar to the machine in [23]. The authors of [23] assume that

the parts are fluid and continuously arrive at and depart from the machine. We assume that the

parts arrive singularly at discrete points in time. In addition in [23] they study several different

scheduling policies for this machine. Here, we shall study the Lagrange stability of a priority-based

part servicing policy.

5.1 Single Machine Priority-Based Part Servicing Problem

Let X = �N. The number of parts in buffer i ∈ P at time k ∈ IN is xi, and xk = [x1x2 . . .xN ]t.

Let ebi represent that one part of type i ∈ P arrives at buffer i, let emi represent that one part of

type i ∈ P enters the machine for processing, and let e0 be the null event. Let B = {ebi : i ∈ P}
and M = {emi : i ∈ P}, so that the set of events is

E = P
(
B
⋃
M
⋃

{e0}
)
− {Ø}.

Notice that each event ek ∈ E is defined as a set of “sub-events”.

We now specify g and fe for ek ∈ g(xk). For ek ∈ g(xk), it is necessary that ek ∈ E and that ek

satisfy the following conditions:

• If emi ∈ ek then xi > 0.

• If e0 ∈ ek then ek = {e0}.

If xk+1 = fek
(xk) then

xi(k + 1) =




xi, ebi ∈ ek, e
m
i ∈ ek

xi + 1, ebi ∈ ek, e
m
i �∈ ek

xi − 1, ebi �∈ ek, e
m
i ∈ ek

xi, ebi �∈ ek, e
m
i �∈ ek.

If xk+1 = fe0(xk), then

xk+1 = xk.

Let Ev = E be the set of valid event trajectories. We further specify the set of allowed event

trajectories, Ea, in order to specify the manner in which the machine chooses which parts to

produce and to guarantee the synchronicity of the machine. We specify that the machine observe a

priority-based part servicing policy. This policy mandates that once a production run is begun on
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a particular part type, the run must continue until the buffer of the chosen part type is emptied.

Additionally, the parts in buffer i ∈ P will be servicied before the parts in buffer i + 1. Once all

buffers have been serviced, the first buffer will be serviced again. For Ea ⊂ Ev, every E ∈ Ea

must satisfy the following conditions:

• ebi ∈ ek′ for some 0 ≤ k′ ≤ bi for all i ∈ P .

• If ebi ∈ ek, then ebi ∈ ek+bi , and ebi �∈ ek′ for all k′, k < k′ < k + bi.

• Let k∗ = min{k ≥ 0 : xi(k) > 0 for some i ∈ P} and i∗ = min{i ∈ P : xi(k∗) > 0}.

emi∗ ∈ ek∗+si∗ where (i) emi �∈ ek∗+si∗ for all i �= i∗ and (ii) emi �∈ ek′ for all i ∈ P and all k′,

0 ≤ k′ < k∗ + si∗ .

• If emi ∈ ek, then

(i) if xi(k + 1) > 0, then

(a) emi ∈ ek+mi and emi �∈ ek′ for all k′, k < k′ < k +mi.

(b) for all j ∈ P , j �= i, emj �∈ ek′ for all k′, k < k′ ≤ k + mi.

(ii) if xi(k + 1) = 0, then

(a) emj ∈ ek+sj and emj �∈ ek′ for all k′, k < k′ < k + sj where j = i+ 1 if (i+ 1) ∈ P or

j = 1 if (i+ 1) �∈ P .

(b) for all k′, k < k′ ≤ k + sj, emi �∈ ek′ for all i ∈ P , i �= j.

• For any k′ ≥ 0, if ebi �∈ ek′ for all i ∈ P and emi �∈ ek′ for all i ∈ P , then ek′ = {e0}.

• The real time between events ek and ek+1 is fixed for all k ≥ 0.

Notice that with this definition, for start-up the priority-based policy sets up for and processes

the first part to arrive that has the highest priority. Following this, it cycles through the processing

of part types according to their fixed priority ordering (where after the lowest priority part is

processed, the highest priority part is serviced again).

5.2 Lagrange Stability Analysis

We will show that the machine whose operation is described above can be implemented with finite

buffers by showing that the machine with a priority-based part processing policy possesses Lagrange

stability. Choose

Xb = {[00 . . .0]t}
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and

ρ(xk,Xb) =
∑
i∈P

mixi. (5)

For any variable ai which is defined for all i ∈ P , we let a = mini{ai} and ā = maxi{ai}.

Theorem 6 The machine with priority-based part servicing policy possesses Lagrange stability

w.r.t. Ea and Xb.

Proof:

Choose

V (xk) = ρ(xk,Xb) (6)

so that condition (i) of Theorem 4 is satisfied. We define the set of times R = {k0, k1, k2, . . .},

kp < kq if p < q, to include every time k′ such that emi ∈ ek′−1 and xi(k′) = 0 for some i ∈ P

(these times define the ends of production runs). Additionally, let k0 = 0. Let j∗(kp) ∈ P , kp ∈ R,

denote the part type that is being processed by the machine between times kp and kp+1. We define

kp+1 − kp
	
= ∆p. In order to bound ∆p, we consider:

• xj∗(kp)(kp), the number of parts of type j∗(kp) that are in the buffer at time kp and

• ∆p

bj∗(kp)
+ 1, the maximum number of parts of type j∗(kp) that can arrive during time ∆p.

The sum of the above two classifications of parts of type j∗(kp) is the maximum number of parts

that must be processed between times kp and kp+1. The maximum number of cycles, ∆′
p, that the

machine may require to accomplish the necessary processing is simply mj∗(kp) times the sum of

parts:

∆′
p = mj∗(kp)

(
xj∗(kp)(kp) +

∆p

bj∗(kp)
+ 1

)
.

∆p can be no larger than ∆′
p plus the number of cycles required to configure the machine to process

parts of type j∗(kp). Hence, we find that

∆p ≤ ∆′
p + sj∗(kp) ,

so that

∆p ≤

(
xj∗(kp)(kp) + 1

)
mj∗(kp) + sj∗(kp)

1 −wj∗(kp)
. (7)
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We now bound V (xkp+1) in terms of V (xkp). In order to do this, we consider the following relations,

which are easily derived from the specification of Ea:

xj∗(kp)(kp+1) = 0 (8)

xi(kp+1) − xi(kp) ≤ ∆p

bi
+ 1 for all i ∈ P , i �= j∗(kp) (9)

From equations 8, 9, and the definition of Ea, it follows that

∑
i∈P

mixi(kp+1) ≤
∑
i∈P

mixi(kp) −mj∗(kp)xj∗(kp)(kp) + ∆p

∑
i∈P,i
=j∗(kp)

mi

bi
+

∑
i∈P,i
=j∗(kp)

mi (10)

Applying equations 5, 6 , 7, and 10, we see that

V (xkp+1) ≤ V (xkp) − xj∗(kp)(kp)mj∗(kp) + ∆p

∑
i∈P,i
=j∗(kp)

mi

bi
+

∑
i∈P,i
=j∗(kp)

mi

= V (xkp) − xj∗(kp)(kp)mj∗(kp) + ∆p(w −wj∗(kp)) +
∑

i∈P,i
=j∗(kp)

mi

≤ V (xkp) − xj∗(kp)(kp)mj∗(kp) +
[(
xj∗(kp)(kp) + 1

)
mj∗(kp)+

sj∗(kp)

] w −wj∗(kp)

1 − wj∗(kp)
+

∑
i∈P,i
=j∗(kp)

mi

= V (xkp) − xj∗(kp)(kp)mj∗(kp)

(
1 −w

1 − wj∗(kp)

)
+

(
mj∗(kp) + sj∗(kp)

)(w − wj∗(kp)

1 −wj∗(kp)

)
+

∑
i∈P,i
=j∗(kp)

mi . (11)

While up to this point the proof has been similar to the proof of stability for the CAF policy

in [23], next we must account for the the fact that we are using the priority-based part servicing

policy.

From the definition of Ea (which characterizes the priority-based part processing policy), it is

evident that

max
i

{xi(kp)} <

(
xj∗(kp)(kp) + 1

)
bj∗(kp)

b
+ 1 (12)

where
(
xj∗(kp)(kp) + 1

)
bj∗(kp) is an upper bound on the number of cycles that have transpired since

the last time kq, q < p, such that xj∗(kq) = 0. From equation 12, we see that

∑
i∈P

xi(kp) < N



(
xj∗(kp)(kp) + 1

)
bj∗(kp)

b
+ 1


 . (13)

Manipulating equation 13 yields

xj∗(kp)(kp) >

(
1
N

∑
i∈P xi(kp) − 1

)
b

bj∗(kp)
− 1 (14)
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=
b

Nbj∗(kp)

∑
i∈P

xi(kp) − b

bj∗(kp)
− 1 (15)

>
b

Nb̄m̄

∑
i∈P

mixi(kp) − 2

=
b

Nb̄m̄
V (xkp) − 2

∆= εV (xkp) − 2

where ε = b
Nm̄b̄

and 0 < ε < 1. If we define

γ = max
i

{
1 − εmi

(
1 −w

1 − wi

)}

and

ζ = max
i


(mi + si)

(
w− wi

1 −wi

)
+

∑
j∈P,j 
=i

mj + 2mi

(
1 − w

1 − wi

)
 ,

we see from equations 11 and 16 that

V (xkp+1 ) < γV (xkp) + ζ. (16)

Notice that by definition, 0 < γ < 1. We now show via induction that

V (xkp+q ) < γqV (xkp) +
q−1∑
n=0

γnζ. (17)

As the induction hypothesis, we assume that equation 17 is true for some general q. Given the

induction hypothesis and equation 16, we have

V (xkp+q+1) < γV (xkp+q ) + ζ

< γ


γqV (xkp) +

q−1∑
n=0

γnζ


+ ζ

< γq+1V (xkp) +
q∑

n=0

γnζ.

Hence equation 17 is true for q + 1. Because equation 16 is precisely equation 17 with q = 1,

equation 17 must be true for all q ≥ 1. If we let p = 0 in equation 17, we see that

V (xkq) < γqV (x0) +
q−1∑
n=0

γnζ

< V (x0) +
ζ

1 − γ
. (18)

Thus, we have bounded V (xkq ) for all kq ∈ R.
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Consider now the set of times Sq such that if k ∈ Z and k ∈ (kq, kq+1), then k ∈ Sq. In

equation 18, we have found a bound for V (xk), for k = kq and k = kq + 1. We now wish to bound

V (xk) for all k ∈ Sq
⋃{kq, kq+1}. Clearly, the maximum of V over Sq

⋃{kq, kq+1} must occur at

one of the following times: kq, kq+1, or at km
q , where km

q
∆= max{k ∈ Sq : emi �∈ ek, i ∈ P} (i.e. km

q

is the time in Sq immediately before the beginning of part production). We can bound the increase

in V that occurs between times kq and km
q as

V (xkm
q

) − V (xq) ≤
∑
i∈P

mi

(
s̄

bi
+ 1

)

= s̄w +
∑
i∈P

mi .

Hence, for all k > 0,

V (xk) ≤ V (x0) +
ζ

1 − γ
+ s̄w +

∑
i∈P

mi , (19)

so that by Theorem 4, the machine posses Lagrange stability.

Remark 1: Utilizing equation 19 it is easy to see that the buffer levels will for all k ≥ 0 be

constrained by

∑
i∈P

xi ≤ 1
m

(
s̄w +

∑
i∈P

mi (xi(0) + 1) +
ζ

1 − γ

)

=
1
m


s̄w +

Nb̄m̄maxi

{
(mi + si)

(
w−wi
1−wi

)
+
∑

j∈P,j 
=imj + 2mi

(
1−w
1−wi

)}
bmini

{
mi

(
1−w
1−wi

)}

+
∑
i∈P

mi (xi(0) + 1)

)
.

Remark 2: Notice that the results verify our intuition that increasing N , w, or
∑

i∈P mixi(0) for

the priority-based part servicing policy will create the possibility that buffer levels can rise even

higher.

Remark 3: If the CAF (clear a fraction) policy is used the authors in [23] show that the buffer

levels will be constrained by

∑
i∈P

xi =
1
m


s̄w +

maxi

{
si
(

w−wi
1−wi

)}
mini

{
εmi
m̄

(
1−w
1−wi

)} +
∑
i∈P

mixi(0)


 ,

where 0 < ε < 1. If ε is chosen to be 1
N and we have a machine such that mi = mj, bi = bj for

all i, j ∈ P , and we have all the same set-up times, then the bound given in Remark 1 is the same
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as the CAF bound (except for the differences induced by the discrete nature of our part flow).

Intuitively, this is not surprising since it indicates that if all the arrival rates are the same and all

the processing times are the same then in this special case the priority-based policy is a special case

of the CAF policy so we get the same bounds as in [23]. It is easy, however, to pick the machine

parameters so that the priority-based policy will perform much differently than the CAF policy (in

fact this is most often the case), and for these cases our results provide bounds for this new policy.

6 Concluding Remarks

We have shown that it is straightforward to extend the conventional notions and analysis of uniform

boundedness, uniform ultimate boundedness, practical stability, finite time stability, and Lagrange

stability to the class of DES that can be defined on a metric space (e.g., Petri nets and Vector DES).

We show that the Petri net-theoretic notions and analysis of boundedness are really a special case

of conventional notions and analysis of boundedness. Also, we introduce the notion of uniform

ultimate boundedness to Petri net theory and provide a sufficient condition for this property. We

use a rate-synchronization network in manufacturing systems to illustrate some of the Petri net

results. Moreover, we show that a machine with a priority-based part servicing policy possesses

Lagrange stability. In fact we provide explicit bounds on the maximum number of parts that will

be in the buffers at any one time in terms of the machine parameters and initial buffer levels.

References

[1] K. M. Passino, A. N. Michel, and P. J. Antsaklis, “Lyapunov stability of a class of discrete event
systems,” IEEE Transactions on Automatic Control, vol. 39, pp. 269–279, February 1994.

[2] K. Burgess and K. Passino, “Stability analysis of load balancing systems,” Int. Journal of Control,
vol. 61, no. 2, Feb., 1994.

[3] K. Passino, A. Michel, and P. Antsaklis, “Stability analysis of discrete event systems,” in Proc. of
the 28th Allerton Conf. on Communication, Control, and Computing, pp. 487–496, Univ. of Illinois at
Champaign–Urbana, October 1990.

[4] K. Passino, A. Michel, and P. Antsaklis, “Lyapunov stability of a class of discrete event systems,” in
Proc. of the American Control Conference, pp. 2911–2916, Boston, MA, June 1991.

[5] V. Zubov, Methods of A.M. Lyapunov and their Application. Noordhoff Ltd., The Netherlands, 1964.

[6] K. Burgess, “Stability and boundedness analysis of discrete event systems,” Master’s thesis, Dept.
Electrical Engineering, The Ohio State University, 1992.

[7] K. Passino and A. Michel, “Stability and boundedness analysis of discrete event systems,” in Proc. of
the American Control Conference, pp. 3201–3205, Chicago, IL, June 1992.

[8] A. N. Michel and R. Miller, “On stability preserving mappings,” IEEE Transactions on Circuits and
Systems, vol. 30, pp. 671–679, September 1983.

[9] A. Michel, K. Wang, and K. Passino, “On stability preserving mappings and qualitative equivalence of
general dynamical systems,” in Proc. of the IEEE Conf. on Decision and Control, pp. 731–736, Tucson
AZ, December 1992.

21



[10] J. Tsitsiklis, “On the stability of asynchronous iterative processes,” Mathematical System Theory,
vol. 20, pp. 137–153, 1987.

[11] C. Ozveren, A. Willsky, and P. Antsaklis, “Stability and stabilization of discrete event dynamic systems,”
Journal of the Association of Computing Machinery, vol. 38, no. 3, pp. 730–752, 1991.

[12] J. Knight and K. M. Passino, “Decidability for a temporal logic used in discrete event system analysis,”
Int. Journal of Control, vol. 52, no. 6, pp. 1489–1506, 1990.

[13] T. Murata, “Petri nets: Properties, analysis, and applications,” in Proc. of the IEEE, pp. 541–580,
April 1989.

[14] J. Peterson, Petri Net Theory and the Modeling of Systems. Prentice-Hall, Engelwood Cliffs, NJ, 1981.

[15] Y. Li and W. Wonham, “Linear integer programming techniques in the control of vector discrete-event
systems,” in Proc. of the 27th Allerton Conf. on Comm., Control, and Computing, pp. 528–537, Univ.
of Illinois at Champaign–Urbana, September 1989.

[16] Y. Li, Control of Vector Discrete Event Systems. PhD thesis, University of Toronto, May 1991.

[17] W. Hahn, Stability of Motion. Springer-Verlag, NY, 1967.

[18] T. Yoshizawa, Stability Theory by Liapunov’s Second Method. Math. Soc. of Japan, Japan, 1966.

[19] A. Michel and R. Miller, Ordinary Differential Equations. Academic Press, NY, 1982.

[20] A. Michel and R. Miller, Qualitative Analysis of Large Scale Dynamical Systems. Academic Press, NY,
1977.

[21] A. Michel, “Quantitative analysis of simple and interconnected systems: Stability, boundedness and
trajectory behavior,” IEEE Trans. on Circuit Theory, vol. 17, pp. 292–301, 1970.

[22] A. Michel and D. Porter, “Practical stability and finite-time stability of discontinuous systems,” IEEE
Trans. on Circuit Theory, vol. CT-19, No. 2, pp. 123–129, 1972.

[23] J. Perkins and P. Kumar, “Stable, distributed, real-time scheduling of flexible manufactur-
ing/assembly/disassembly systems,” IEEE Transaction on Automatic Control, vol. 34, pp. 139–148,
February 1989.

[24] P. Kumar and S. Lu, “Distributed scheduling based on due dates and buffer priorities,” IEEE Trans-
actions on Automatic Control, vol. 36, pp. 1406–1416, December 1991.

22


