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atural selection tends to eliminate animals
with poor “foraging strategies” (methods
for locating, handling, and ingesting food)
and favor the propagation of genes of those
animals that have successful foraging
strategies since they are more likely to en-
joy reproductive success (they obtain enough food to en-
able them to reproduce). After many generations, poor
foraging strategies are either eliminated or shaped into
good ones (redesigned). Logically, such evolutionary princi-
ples have led scientists in the field of “foraging theory” to
hypothesize that it is appropriate to model the activity of
foraging as an optimization process: A foraging animal takes
actions to maximize the energy obtained per unit time spent
foraging, in the face of constraints presented by its own
physiology (e.g., sensing and cognitive capabilities) and en-
vironment (e.g., density of prey, risks from predators, physi-
cal characteristics of the search area). Evolution has
balanced these constraints and essentially “engineered”
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what is sometimes referred to as an “optimal foraging pol-
icy” (such terminology is especially justified in cases where
the models and policies have been ecologically validated).
Optimization models are also valid for “social foraging”
where groups of animals cooperatively forage.

Here, we explain the biology and physics underlying the
chemotactic (foraging) behavior of E. coli bacteria (yes, the
ones that are living in your intestines). We explain a variety
of bacterial swarming and social foraging behaviors and dis-
cuss the control system on the E. coli that dictates how for-
aging should proceed. Next, a computer program that
emulates the distributed optimization process represented
by the activity of social bacterial foraging is presented. To il-
lustrate its operation, we apply it to a simple multi-
ple-extremum function minimization problem and briefly
discuss its relationship to some existing optimization algo-
rithms. The article closes with a brief discussion on the po-
tential uses of biomimicry of social foraging to develop
adaptive controllers and cooperative control strategies for
autonomous vehicles. For this, we provide some basic ideas

and invite the reader to explore the concepts further. Hence,
this article should be thought of as an introduction to some
interesting biological phenomena that suggest new types of
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optimization methods; the relevance to control systems
needs to be further investigated, and thorough compari-
sons to the vast literature on global optimization remain to
be done.

Foraging

Elements of Foraging Theory

Foraging theory is based on the assumption that animals
search for and obtain nutrients in a way that maximizes

their energy intake F per unit time T spent foraging. Hence,
they try to maximize a function like

~ |

(or they maximize their long-term average rate of energy in-
take). Maximization of such a function provides nutrient
sources to survive and additional time for other important
activities (e.g., fighting, fleeing, mating, reproducing, sleep-
ing, or shelter building). Shelter-building and mate-finding
activities sometimes bear similarities to foraging. Clearly,
foraging is very different for different species. Herbivores
generally find food easily but must eat a lot of it. Carnivores
generally find it difficult to locate food but do not have to eat
as much since their food is of high energy value. The “envi-
ronment” establishes the pattern of nutrients that are avail-
able (e.g., via what other organisms are nutrients available,
geological constraints such as rivers and mountains, and
weather patterns), and it places constraints on obtaining
that food (e.g., small portions of food may be separated by
large distances). During foraging there can be risks due to
predators, the prey may be mobile so it must be chased, and
the physiological characteristics of the forager constrain its
capabilities and ultimate success.

For many animals, nutrients are distributed in “patches”
(e.g., alake, a meadow, a bush with berries, a group of trees
with fruit). Foraging involves finding such patches, deciding
whether to enter a patch and search for food, and whether
to continue searching for food in the current patch or to go
find another patch that hopefully has a higher quality and
quantity of nutrients than the current patch. Patches are
generally encountered sequentially, and sometimes great ef-
fort and risk are needed to travel from one patch to another.
Generally, if an animal encounters a nutrient-poor patch,
but based on past experience it expects that there should be
a better patch elsewhere, then it will consider risks and ef-
forts to find another patch, and if it finds them acceptable, it
will seek another patch. Also, if an animal has been in a
patch for some time, it can begin to deplete its resources, so
there should be an optimal time to leave the patch and ven-
ture out to try to find a richer one. It does not want to waste
resources that are readily available, but it also does not
want to waste time in the face of diminishing energy returns.

Optimal foraging theory formulates the foraging problem
as an optimization problem and via computational or ana-
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lytical methods can provide an optimal foraging “policy”
that specifies how foraging decisions are made (tradition-
ally, dynamic programming formulations have been used
[1]). There are quantifications of what foraging decisions
must be made, measures of currency (the opposite of cost),
and constraints on the parameters of the optimization. For
instance, researchers have studied how to maximize
long-term average rate of energy intake where only certain
decisions and constraints are allowed. Constraints due to
incomplete information (e.g., due to limited sensing capabil-
ities) and risks (e.g., due to predators) have been consid-
ered. Essentially, these optimization approaches seek to
construct an optimal controller (policy) for making foraging
decisions. Some biologists have questioned the validity of
such an approach, arguing that no animal can make optimal
decisions (see the references in [1]). However, the optimal
foraging formulation is only meant to be a model that ex-
plains what optimal behavior would be like. In fact, some re-
searchers have shown that foraging decision heuristics are
used very effectively by animals to approximate optimal
policies, given the physiological (and other) constraints
that are imposed on the animal [1].

Search Strategies for Foraging

In one approach to the study of foraging search strategies
[2], predation is broken into components that are similar for
many animals. First, predators must search for and locate
prey. Next, they pursue and attack the prey. Finally, they
“handle” and ingest the prey. The importance of various
components of foraging behavior depends on the relation-
ship between the predator and the prey. If the prey is larger
than the predator, then the pursuit, attack, and handling can
be most important. The prey may be easy to find, but the
prey’s size gives it an advantage. If the prey is smaller than
the predator, then generally the search component of forag-
ing is most important. Small size can be an advantage for the
prey. Since prey are often smaller than predators for many
animals, they must be consumed often and in large num-
bers; this makes the search time limit other components of
the predation cycle. In this article, we consider cases where
the searching behavior is the dominant factor in foraging.
This is the case for many birds, fish, lizards, and insects.
Some animals are “cruise” or “ambush” searchers. For
the cruise approach to searching, the forager moves contin-
uously through the environment, constantly searching for
prey at the boundary of the volume being searched (tuna
fish and hawks are cruise searchers). In ambush search, the
forager (e.g., arattlesnake) remains stationary and waits for
prey to cross into its strike range. The search strategies of
many species are actually between the cruise and ambush
extremes. In particular, in “saltatory search” strategies, an
animal will intermittently cruise and sit and wait, possibly
changing direction at various times when it stops and possi-
bly while it moves. To envision this strategy, consider Fig. 1,
where distance traveled in searching is plotted versus time.
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Figure 1. Search strategies for foraging animals (figure adapted

from [2]).

In cruise search, distance increases at a constant rate dic-
tated by how fast the animal moves in search. At the other
extreme, the ambusher sits and waits for a long time and
then makes a move to try to obtain a prey. In between are
many possible saltatory search strategies that are based on
an alternating sequence of cruising and waiting. Many ani-
mals’ foraging strategies seem to lie somewhere on the con-
tinuum between ambush and cruise and hence are saltatory
search strategies.

Saltatory search can be adjusted to suit the environ-
ment by changing rates of movement during cruises and
thelengths of cruises and waits. For instance, some fish are
known to pause more briefly and swim farther and faster
during repositioning when searching for large prey com-
pared to small ones. This is consistent with foraging theory
in that the fish is willing to spend more effort to obtain
more energy. In many species the pauses are used for ori-
enting the animal toward prey; that is, they stop and
change their direction based on their scan information.
Then, for instance, if there is not an abundance of prey, in
some species of fish fewer pursuits follow pauses. Also, in
some fish the length of the stop and wait generally de-
creases when they are looking for large, easily located prey.
Often, as the difficulty of the search increases, the pauses
get longer. In environments where there are few prey, the
fish persistently search.

Social and Intelligent Foraging

The foraging and search strategies discussed above were
for individual animals. Clearly, however, there can be advan-
tages to group (or social) foraging. Some method of commu-
nication is necessary for group foraging. In humans, this
could include language. In other animals, it might be certain
movements or noises or “trail-laying” mechanisms. The ad-
vantages of group foraging include:
e More animals searching for nutrients, so the likeli-
hood of finding nutrients increases. When one animal
finds some nutrients, it can tell others in the group
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where the nutrients are. Joining a group provides ac-

cess to an “information center” to assist in survival.
¢ Increased capability to cope with larger prey. The group

can “gang up” on a large prey and kill and ingest it.

¢ Protection from predators can be provided by mem-

bers of the group (e.g., in some species the members
in the middle of the group are protected by the ones
at the edges).

Sometimes it is useful to think of a group (swarm) of ani-
mals as a single living creature, where via grouping and com-
munication a “collective intelligence” emerges that actually
results in more successful foraging for each individual in the
group (and the gains can offset effects of food competition
within groups; by working together there can be more food
than if there is no cooperation).

For group foraging, you may think of how a pack of
wolves hunts or a flock of birds, swarm of bees, colony of
ants, or school of fish behave. Connections between optimi-
zation, engineering applications, and foraging behavior of
colonies of ants have been studied. Bonabeau et al. [3] ex-
plain how colonies of ants can solve shortest-path prob-
lems, minimum spanning-tree problems, and traveling
salesperson problems (all combinatorial optimization prob-
lems), among other engineering applications (the resulting
computer algorithms are called, for instance, “ant colony
optimization” algorithms). These ants use “indirect” com-
munications called “stigmergy,” where one ant can modify
its environment and later another ant can change its behav-
ior due to that modification. For instance, if an ant goes out
foraging, it may search far and wide in a relatively random
pattern; however, once it finds a food source, it goes back to
the anthill laying a trail of “pheromone” (which can stay in
place for up to a few months). Then, when other ants go out
foraging, they tend to follow the pheromone trail and find
food more easily. You can then think of the first ant as having
“recruited” additional foragers and the trails as a type of
memory for the whole ant colony (i.e., using communica-
tions and working together, they gain the important physio-
logical capability of learning). Communications, memory,
and learning result in more efficient foraging for the group.
Other social insects use other communication methods. For
instance, evidence suggests that after successful foraging, a
bee will come back to the hive and communicate the quality
and location of the food source via different types of
“dances.” For studies of group behavior of organisms via
computer simulations, see [4]-[6].

Lower life forms can achieve higher forms of foraging in-
telligence by cooperating in groups (e.g., the ants “learn”
where food is located). Lone individuals of higher life forms,
however, are naturally endowed with more cognitive and
hence foraging capabilities. For instance, in some species an
individual forager can pay attention to the critical parts of its
environment. It may be able to learn about the environment
and characteristics of its prey (e.g., by developing and stor-
ing cognitive maps). It may be able to use this learned infor-
mation to plan its foraging activities. Furthermore, if groups
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of foragers can learn and plan their activities, it is possible
for even greater success to be obtained. Indeed, it seems
that humans often act as group foragers that can collec-
tively learn and plan. Of course, humans are significantly dif-
ferent from many life forms since, rather than simply trying
to cope with a given foraging environment, we focus on
modifying our environment via farming to improve our for-
aging success.

In the next section, we will consider individual and group
foraging for bacteria, organisms that are much simpler than
ants or humans yet can still work together for the benefit of
the group. You may think of these as tiny autonomous vehi-
cles or as executing a simple yet effective optimization pro-
cess during foraging, one that may be useful in the solution
to control problems. Or you may simply be interested in the
underlying control science (e.g., what type of control algo-
rithm operates to implement their foraging strategy). After
explaining how bacteria forage, we will model them via a
computer simulation and then briefly discuss their rele-
vance to adaptive control and cooperative control for au-
tonomous vehicles.

Bacterial Foraging: E. coli

The E. coli bacterium has a plasma membrane, cell wall,
and capsule that contains the cytoplasm and nucleoid. The
pili (singular, pilus) are used for a type of gene transfer to
other E. coli bacteria, and flagella (singular, flagellum) are
used for locomotion. The cell is about 1 um in diameter and
2 pm in length. The E. coli cell only weighs about 1
picogram and is about 70% water. Salmonella typhimurium
is a similar type of bacterium.

The E. colibacterium is probably the best understood mi-
croorganism. Its entire genome has been sequenced; it con-
tains 4,639,221 of the A, C, G, and T “letters”—adenosine,
cytosine, guanine, and thymine—arranged into a total of
4,288 genes. Mutations in E. coli occur at a rate of about 107
per gene, per generation, and can affect its physiological as-
pects (e.g., reproductive efficiency at different tempera-
tures). E. coli bacteria occasionally engage in a type of “sex”
called “conjugation” where small gene sequences are
unidirectionally transferred from one bacterium to another
via an extended pilus.

When E. coli grows, it gets longer, then divides in the mid-
dle into two “daughters.” Given sufficient food and held at
the temperature of the human gut (one place where they
live) of 37 °C, E. coli can synthesize and replicate everything
it needs to make a copy of itself in about 20 min; hence
growth of a population of bacteria is exponential with a rela-
tively short time to double. For instance, following [8], if at
noon today you start with one cell and sufficient food, by
noon tomorrow there will be 22 =4.7x10? cells, which is
enough to pack a cube 17 m on one side (it should be clear
that with enough food, at this reproduction rate, they could
quickly cover the entire earth with a knee-deep layer!).
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The E. colibacterium has a control system (guidance sys-
tem) that enables it to search for food and try to avoid nox-
ious substances. For instance, it swims away from alkaline
and acidic environments and toward more neutral ones. To
explain the behavior of the E. coli bacterium, we will explain
its actuator (the flagellum), “decision making,” sensors, and
closed-loop behavior (i.e., how it moves in various environ-
ments—its motile behavior). You will see that E. coli per-
forms a type of saltatory search. This section is based on the
work in [7]-[15].

Swimming and Tumbling via Flagella

Locomotion is achieved via a set of relatively rigid flagella
that enable the bacterium to swim via each of them rotating
in the same direction at about 100-200 revolutions per second
(in control systems terms, we think of the flagellum as provid-
ing for actuation). Each flagellum is a left-handed helix config-
ured so that as the base of the flagellum (i.e., where it is
connected to the cell) rotates counterclockwise, as viewed
from the free end of the flagellum looking toward the cell, it
produces a force against the bacterium so it pushes the cell.
You may think of each flagellum as a type of propeller. If a
flagellum rotates clockwise, it will pull at the cell. From an en-
gineering perspective, the rotating shaft at the base of the
flagellum is quite an interesting contraption that seems to
use what biologists call a “universal joint” (so the rigid
flagellum can “point” in different directions relative to the
cell). In addition, the mechanism that creates the rotational
forces to spin the flagellum in either direction is described by
biologists as a biological motor (a relatively rare contraption
in biology, even though several types of bacteria use it) [8],
[15]. The motor is quite efficient in that it makes a complete
revolution using only about 1,000 protons, and thereby E. coli
spends less than 1% of its energy budget for motility.

An E. coli bacterium can move in two different ways; it
can run (swim for a period of time) or it can tumble, and it al-
ternates between these two modes of operation its entire
lifetime (i.e., it is rare that the flagella will stop rotating).
First, we explain each of these two modes of operation. Fol-
lowing that, we will explain how it decides how long to swim
before it tumbles.

If the flagellarotate clockwise, each flagellum pulls on the
cell, and the net effect is that each flagellum operates rela-
tively independently of the others, and so the bacterium
“tumbles” about (i.e., the bacterium does not have a set di-
rection of movement and there is little displacement). See
Fig. 2(a). To tumble after a run, the cell slows down or stops
first; since bacteria are so small, they experience almost no
inertia, only viscosity, so when a bacterium stops swim-
ming, it stops within the diameter of a proton [14]. Call the
time interval during which a tumble occurs a “tumble inter-
val.” Under certain experimental conditions (an isotropic,
homogeneous medium—one with no nutrient or noxious
substance gradients), for a “wild-type” cell (one found in na-
ture), the mean tumble interval is about 0.14 £0.19 s (mean +
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standard deviation), and it is exponentially distributed [8],
[12]. After a tumble, the cell will generally be pointed in a
random direction, but there is a slight bias toward being
placed in the direction it was traveling before the tumble.

If the flagella move counterclockwise, their effects accu-
mulate by forming a bundle (it is thought that the bundle is
formed due to viscous drag of the medium), and hence they
essentially make a composite propeller and push the bacte-
rium so that it runs (swims) in one direction (see Fig. 2(a)).
In one type of medium, on arun the bacteria swim at a rate of
about 10-20 um/s, or about ten of its body lengths per sec-
ond (assuming the faster speed and an E. coli that is 2 ym
long, a typical length), but in a rich medium they can swim
even faster [16]. This is a relatively fast rate for a living or-
ganism to travel; consider how fast you could move through
water if you could swim at ten of your body lengths per sec-
ond (you would certainly win a gold medal in the Olym-
pics!). Call the time interval during which a run occurs the
“run interval.” Under certain experimental conditions (an
isotropic, homogeneous medium—the same as the one
mentioned above), for a wild-type cell the mean run interval
is about 0.86 +1.18 s (and it is exponentially distributed) [8],
[12]. Also, under these conditions, the mean speed is 14.2 +
3.4 um/s. Runs are not perfectly straight since the cell is sub-
ject to Brownian movement that causes it to wander off
course by about 30° in 1 s in one type of medium, so this is
how much it typically can deviate on a run. In a certain me-
dium, after about 10 s it drifts off course more than 90° and
hence essentially forgets the direction it was moving [8].
Finally, note that in many bacteria and media the motion of
the flagella can induce other motions (e.g., rotating the bac-
teria about an axis).

Bacterial Motile Behavior:
Climbing Nutrient Gradients

The motion patterns (called “taxes™) that the bacteria will
generate in the presence of chemical attractants and
repellants are called chemotaxes. For E. coli, encounters
with serine or aspartate result in attractant responses,
whereas repellant responses result from the metal ions Ni

and Co, changes in pH, amino acids like leucine, and organic
acids like acetate. What is the resulting emergent pattern of
behavior for awhole group of E. coli bacteria? Generally, as a
group, they will try to find food and avoid harmful phenom-
ena, and when viewed under a microscope, you will get a
sense that a type of intelligent behavior has emerged, since
they will seem to intentionally move as a group.

To explain how chemotaxis motions are generated, we
must simply explain how the E. coli decides how long to run,
since from the above discussion we know what happens
during a tumble or run. First, note that if an . coliis in some
substance that is neutral in the sense that it does not have
food or noxious substances, and if it is in this medium for a
long time (e.g., more than 1 min), then the flagella will simul-
taneously alternate between moving clockwise and counter-
clockwise so that the bacterium will alternately tumble and
run. This alternation between the two modes will move the
bacterium, but in random directions, and this enables it to
“search” for nutrients (see Fig. 2(b)). For instance, in the iso-
tropic homogeneous environment described above, the
bacterium alternately tumbles and runs with the mean tum-
ble and run lengths given above and at the speed that was
given. If the bacteria are placed in a homogeneous concen-
tration of serine (i.e., one with a nutrient but no gradients),
then a variety of changes occurs in the characteristics of
their motile behavior. For instance, mean run length and
mean speed increase and mean tumble time decreases.
They do still produce, however, a basic type of searching
behavior; even though the bacterium has some food, it per-
sistently searches for more. Suppose that we call this its
baseline behavior. As an example of tumbles and runs in the
isotropic homogeneous medium described above, in one
trial motility experiment lasting 29.5 s there were 26 runs,
the maximum run length was 3.6 s, and the mean speed was
about 21 um/s [8], [12].

Next, suppose that the bacterium happens to encounter
a nutrient gradient (e.g., serine), as shown in Fig. 2(c). The
change in the concentration of the nutrient triggers a reac-
tion such that the bacterium will spend more time swim-
ming and less time tumbling. As long as it travels on a
positive concentration gradient (i.e., so that it moves to-
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Figure 2. Swimming, tumbling, and chemotactic behavior of E. coli.
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ward increasing nutrient concentrations)
it will tend to lengthen the time it spends
swimming (i.e., it runs farther), up to a
point. The directions of movement are “bi-
ased” toward increasing nutrient gradi-
ents. The cell does not change its direction
on a run due to changes in the gradient—
the tumbles basically determine the direc-
tion of the run, aside from the Brownian in-
fluences mentioned above.

On the other hand, typically if the bacte-
rium happens to swim down a concentra-
tion gradient (or into a positive gradient of
noxious substances), it will return to its
baseline behavior so that essentially it tries to search for a
way to climb back up the gradient (or down the noxious sub-
stance gradient). For instance, under certain conditions, for
awild-type cell swimming up serine gradients, the mean run
length is 2.19 £3.43 s, but if it swims down a serine gradient
the mean run length is 1.40 +1.88 s [12]. Hence, when it
moves up the gradient, it lengthens its runs. The mean run
length for swimming down the gradient is the one that is ex-
pected considering that the bacteria are in this particular
type of medium; they act basically the same as in a homoge-
neous medium, so that they are engaging their search/
avoidance behavior (baseline behavior) to try to climb back
up the gradient.

Finally, suppose that the bacterium reaches a region with
constant nutrient concentration after having been on a posi-
tive gradient for some time. In this case, after a period of
time (not immediately), the bacterium will return to the
same proportion of swimming and tumbling as when it was
in the neutral substance, so that it returns to its standard
searching (baseline) behavior. It is never satisfied with the
amount of surrounding food; it always seeks higher concen-
trations. Actually, under certain experimental conditions,
the cell will compare the concentration observed over the
past 1 s with the concentration observed over the 3 s before
that, and it responds to the difference [8]. Hence it uses the
past 4 s of nutrient concentration data to decide how long to
run [13]. Considering the deviations in direction due to
Brownian movement discussed above, the bacterium basi-
cally uses as much time as it can in making decisions about
climbing gradients [14]. In effect, the run length results from
how much climbing it has done recently. If it has made a lot
of progress and hence has just had a long run, then even if
for a little while it is observing a homogeneous medium
(without gradients), it will take a longer run. After a certain
time period, it will recover and return to its standard behav-
ior in a homogeneous medium.

Basically, the bacterium is trying to swim from places with
low concentrations of nutrients to places with high concentra-
tions. An opposite type of behavior is used when it encounters
noxious substances. If the various concentrations move with
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Optimal foraging theory formulates
foraging as an optimization problem
and via computational or analytical
methods can provide an optimal
foraging “policy” that specifies how

foraging decisions are made.

time, then the bacterium will tend to “chase” after the more
favorable environments and run from harmful ones.

Underlying Sensing and
Decision-Making Mechanisms

The sensors are the receptor proteins that are signaled di-
rectly by external substances (e.g., in the case for the pic-
tured amino acids) or via the periplasmic substrate-binding
proteins. The sensor is very sensitive, in some cases requir-
ing less than ten molecules of attractant to trigger a reac-
tion, and attractants can trigger a swimming reaction in less
than 200 ms. You can then think of the bacterium as having a
“high gain” with a small attractant detection threshold (de-
tection of only a small number of molecules can trigger a
doubling or tripling of the run length). On the other hand,
the corresponding threshold for encountering a homoge-
neous medium after being in a nutrient-rich one is larger.
Also, atype of time averaging is occurring in the sensing pro-
cess. The receptor proteins then affect signaling molecules
inside the bacterium. Also, there is in effect an “adding ma-
chine” and an ability to compare values to arrive at an over-
all decision about which mode the flagella should operate
in; essentially, the different sensors add and subtract their
effects, and the more active or numerous have a greater in-
fluence on the final decision. The sensory and deci-
sion-making system in E. coli is probably the best
understood one in biology; here, we are ignoring the under-
lying chemistry needed for a full explanation.

It is interesting to note that the “decision-making” sys-
tem in the E. coli bacterium must have some ability to
sense a derivative, and hence it has a type of memory! At
first glance, it may seem possible that the bacterium
senses concentrations at both ends of the cell and finds a
simple difference to recognize a concentration gradient (a
spatial derivative); however, this is not the case. Experi-
ments have shown that it performs a type of sampling, and
roughly speaking, it remembers the concentration a mo-
ment ago, compares it with a current one, and makes deci-
sions based on the difference (i.e., it computes something
like an Euler approximation to a time derivative). Actually,
in [17] the authors recently showed how internal bacterial
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decision-making processes involve some type of integral
feedback control mechanism.

In summary, we see that with memory, a type of addition
mechanism, an ability to make comparisons, a few simple in-
ternal “control rules,” and its chemical sensing and locomo-
tion capabilities, the bacterium is able to achieve a complex
type of search and avoidance behavior. Evolution has de-
signed this control system. It is robust and clearly very suc-
cessful at meeting its goals of survival when viewed from a
population perspective.

Elimination and Dispersal Events

It is possible that the local environment where a population
of bacteria live changes either gradually (e.g., via consump-
tion of nutrients) or suddenly due to some other influence.
Events can occur such that all the bacteria in a region are
killed or a group is dispersed into a new part of the environ-
ment. For example, local significant increases in heat can kill
a population of bacteria that are currently in a region with a
high concentration of nutrients (you can think of heat as a
type of noxious influence). Or it may be that water or some
animal will move populations of bacteria from one place to
another in the environment. Over long periods of time, such
events have spread various types of bacteria into virtually
every part of our environment—f{rom our intestines to hot
springs and underground environments.

What is the effect of elimination and dispersal events on
chemotaxis? They have the effect of possibly destroying
chemotactic progress, but they also have the effect of assist-
ing in chemotaxis, since dispersal may place bacteria near
good food sources. From a broad perspective, elimination
and dispersal are parts of the population-level long-distance
motile behavior.

Bacterial Motility and Swarming

Most bacteria are motile, and many types have analogous
taxes capabilities to E. coli bacteria. The specific sensing,
actuation, and decision-making mechanisms are different
[10], [18]. Some bacteria can search for oxygen, and hence
their motility behavior is based on aerotaxis, whereas oth-
ers search for desirable temperatures resulting in
thermotaxis. Actually, the E. coliis capable of thermotaxis in
that it seeks warmer environments with a temperature
range of 20 to 37 ° C. Other bacteria search for or avoid light
of certain wavelengths, and this is called phototaxis.
Actually, the E. coli tries to avoid intense blue light, so it is
also capable of phototaxis. Some bacteria swim along mag-
netic lines of force that enter the earth, so that in the north-
ern hemisphere they swim toward the north magnetic pole
and in the southern hemisphere they swim toward the south
magnetic pole.

A particularly interesting group behavior has been dem-
onstrated for several motile species of bacteria, including £.
coli and S. typhimurium, where intricate stable
spatiotemporal patterns (swarms) are formed in semisolid
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nutrient media [18]-[22]. (Microbiologists reserve the term
“swarming” for other characteristics of groups of bacteria.
Here, we abuse the terminology and favor using the termi-
nology that is used for higher forms of animals such as
bees.) When a group of E. coli cells is placed in the center of
a semisolid agar with a single nutrient chemo-effector (sen-
sor), they move out from the center in a traveling ring of
cells by moving up the nutrient gradient created by con-
sumption of the nutrient by the group. Moreover, if high lev-
els of succinate are used as the nutrient, then the cells
release the attractant aspartate so that they congregate into
groups and hence move as concentric patterns of groups
with high bacterial density. The spatial order results from
outward movement of the ring and the local releases of the
attractant; the cells provide an attraction signal to each
other so they swarm together. Pattern formation can be sup-
pressed by a background of aspartate (since it seems that
this will in essence scramble the chemical signal by elimi-
nating its directionality). The pattern seems to form based
on the dominance of the two stimuli (cell-to-cell signaling
and foraging).

The role of these patterns in natural environments is not
fully understood; however, there is evidence that stress to
the bacteria results in them releasing chemical signals to-
ward which other bacteria are chemotactic. If enough stress
is present, then a whole group can secrete the chemical sig-
nal, strengthening it, and hence an aggregate of the bacteria
forms. It seems that this aggregate forms to protect the
group from the stress (e.g., by effectively hiding many cells
in the middle of the group). It also seems that the aggregates
of the bacteria are not necessarily stationary; under certain
conditions they can migrate, split, and fuse. This has led re-
searchers to hypothesize that other communication meth-
ods are being employed that are not yet understood.

As another example, biofilms exist that can be composed
of multiple types of bacteria (e.g., E. coli) that can coat vari-
ous objects (e.g., roots of plants or medical implants). It
seems that both motility and “quorum sensing” [18], [23]
are involved in biofilm formation. A biofilm is a mechanism
for keeping a bacterial species in a fixed location, avoiding
overcrowding and avoiding nutrient limitation and toxin
production by packing them in a low density in a
polysaccharide matrix [23]. Secreted chemicals provide a
mechanism for the cells to sense population density, but
motility seems to assist in the early stages of biofilm forma-
tion. Researchers also think that chemotactic responses are
used to drive cells to the outer edges of the biofilm where
nutrient concentrations may be higher.

Finally, it should be noted that other types of bacteria ex-
hibit swarm behaviors [23]. For instance, the luminous bac-
teria Vibrio fischeri will emit light when its population
density reaches a certain threshold. Streptomycete colonies
can grow a branching network of long fiberlike cells that can
penetrate and degrade vegetation and then feed on the re-
sulting decaying matter (in terms of combinatorial optimi-
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zation, you may think of finding optimal
trees or graphs). Myxococcus xanthus, one
type of myxobacterium (slime bacteria), ex-
hibits relatively exotic foraging and sur-
vival behaviors [18], [23]-[27]. For
instance, while moving across solid sur-
faces (via gliding), they secrete slime trails
and tend to follow slime trails of each
other. Some myxobacteria prey on other
bacteria (in what has been likened to the
behavior of wolves). Mutants of
Myxococcus xanthus can exhibit “social”
and “adventurous” motility (essentially different group for-
aging behaviors). Under starvation conditions, they form
aggregates called fruiting bodies where some cells die and
others form spores. These fruiting bodies can then be trans-
ported via insects or wind into more favorable environ-
ments where the spores germinate and form a new colony.
Simulations of myxobacteria based on a stochastic cellular
automata approach are described in [28] and [29].

There is a great diversity of strategies for foraging and
survival, even at the bacterial level! Clearly, we cannot out-
line them all here. Our objective is simply to explain how
motile behaviors in both individual and groups of bacteria
implement foraging and hence optimization.

E. coli Bacterial Swarm

Foraging for Optimization

Suppose that we want to find the minimum of J(6), 6 € R?,
where we do not have measurements or an analytical de-
scription of the gradient VJ(0). Here, we use ideas from bac-
terial foraging to solve this nongradient optimization
problem. First, suppose that 6is the position of a bacterium
and J(0) represents the combined effects of attractants and
repellants from the environment, with, for example, J(6) <0,
J(06)=0, and J(6) > O representing that the bacterium at loca-
tionOis in nutrient-rich, neutral, and noxious environments,
respectively. Basically, chemotaxis is a foraging behavior
that implements a type of optimization where bacteria try to
climb up the nutrient concentration (find lower and lower
values of J(0)), avoid noxious substances, and search for
ways out of neutral media (avoid being at positions 6 where
J(6) 20). It implements a type of biased random walk.

Chemotaxis, Swarming, Reproduction,
Elimination, and Dispersal

Define a chemotactic step to be a tumble followed by a tum-
ble or a tumble followed by a run. Let j be the index for the
chemotactic step. Let k be the index for the reproduction
step. Let/ be the index of the elimination-dispersal event. Let

PC kD=1 kDIi=12,...,5}
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It is possible that the local

environment where a population of
bacteria live changes either gradually
(e.g., via consumption of nutrients)

or suddenly due to some
other influence.

represent the position of each member in the population of
the S bacteria at the jth chemotactic step, kth reproduction
step, and [th elimination-dispersal event. Here, let J(i, j,k,[)
denote the cost at the location of the ith bacterium
0'(j,k,1) e R’ (sometimes we drop the indices and refer to
the ith bacterium position as 6'). Note that we will inter-
changeably refer to J as being a “cost” (using terminology
from optimization theory) and as being a nutrient surface
(in reference to the biological connections). For actual bac-
terial populations, S can be very large (e.g., S=10"), but
p=23.Inour computer simulations, we will use much smaller
population sizes and will keep the population size fixed. We
will allow p >3 so we can apply the method to higher dimen-
sional optimization problems.

Let N, be the length of the lifetime of the bacteria as mea-
sured by the number of chemotactic steps they take during
their life. LetC(i) >0,i =12,...,S, denote a basic chemotactic
step size that we will use to define the lengths of steps dur-
ing runs. To represent a tumble, a unit length random direc-
tion, say ¢( ), is generated; this will be used to define the
direction of movement after a tumble. In particular, we let

ei(j+lvk’l) = 9'(],k,[)+C(z)¢(]}

so that C(7) is the size of the step taken in the random direc-
tion specified by the tumble. If at 6'(j+1,k,[) the cost
J(i,j+1,k,0) is better (lower) than at 8'(j,k,0), then another
step of size C(7) in this same direction will be taken, and
again, if that step resulted in a position with a better cost
value than at the previous step, another step is taken. This
swim is continued as long as it continues to reduce the cost,
but only up to a maximum number of steps, N,. This repre-
sents that the cell will tend to keep moving if it is headed in
the direction of increasingly favorable environments.

The above discussion was for the case where no
cell-released attractants are used to signal other cells that
they should swarm together. Here, we will also have
cell-to-cell signaling via an attractant and will represent that
with J..(6,6'(j,k,1)),i=12,...,S, for the ith bacterium. Let

d

attract —
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IEEE Control Systems Magazine 59



be the depth of the attractant released by the cell (a quantifi-
cation of how much attractant is released) and

w 02

attract —
be a measure of the width of the attractant signal (a quantifi-
cation of the diffusion rate of the chemical). The cell also re-
pels a nearby cell in the sense that it consumes nearby
nutrients and it is not physically possible to have two cells
at the same location. To model this, we let

h d

repellant = attract

be the height of the repellant effect (magnitude of its effect)
and

w 10

repellant =

be a measure of the width of the repellant. The values for
these parameters are simply chosen to illustrate general

Nutrient Concentration (Valleys = Food, Peaks = Noxious)

15 00

Figure 3. Nutrient landscape.
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Figure 4. Cell-to-cell chemical attractant model, S = 2.
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bacterial behaviors, not to represent a particular bacterial
chemical signaling scheme. The particular values of the pa-
rameters were chosen with the nutrient profile that we will
use later in Fig. 3 in mind. For instance, the depth and width
of the attractant is small relative to the nutrient concentra-
tions represented in Fig. 3. Let

VACXIGA)))

Mln

JCC(Q,P(j,k,l)) =

i= 1

Il
Mln

[_dattract exp [_wattract zp: (em - e:n )2 J}
s T
+z [

i=1

2 )\
hrepellant exp(_wrepellant 2 (em - e;n )2 )J
m=1

denote the combined cell-to-cell attraction and repelling ef-
fects, where6=[0,,... ,Gp]T is a point on the optimization do-
main and 6], is the mth component of the ith bacterium
position &' (for convenience we omit some of the indices).
An example for the case of S =2 and the above parameter
values is shown in Fig. 4. Here, note that the two sharp peaks
represent the cell locations, and as you move radially away
from the cell, the function decreases and then increases (to
model the fact that cells far away will tend not to be at-
tracted, whereas cells close by will tend to try to climb down
the cell-to-cell nutrient gradient toward each other and
hence try to swarm). Note that as each cell moves, so does
its J! (0,6'(j,k,1)) function, and this represents that it will re-
lease chemicals as it moves. Due to the movements of all the
cells, the J_.(6,P(j,k,0)) function is time varying in that if
many cells come close together there will be a high amount
of attractant and hence an increasing likelihood that other
cells will move toward the group. This produces the swarm-
ing effect. When we want to study swarming, the ith bacte-
rium,i=12,...,S, will hill-climb on

J(ivjvk71)+Jcc(e7P)

(rather than the J(i, j,k,l) defined above) so that the cells
will try to find nutrients, avoid noxious substances, and at
the same time try to move toward other cells, but not too
close to them. The J_(6,P) function dynamically deforms
the search landscape as the cells move to represent the de-
sire to swarm (i.e., we model mechanisms of swarming as a
minimization process).

After N, chemotactic steps, a reproduction step is taken.
Let N, be the number of reproduction steps to be taken. For
convenience, we assume that.Sis a positive even integer. Let

@
be the number of population members who have had suffi-

cient nutrients so that they will reproduce (split in two) with
no mutations. For reproduction, the population is sorted in
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For initialization, you must choose p, S, N,, N, N,,, N,,, P
and the C(i), i=12,...,S. If you use swarming, you will also
have to pick the parameters of the cell-to-cell attractant
functions; here we will use the parameters given above.
Also, initial values for the 6%, i=12,...,S, must be chosen.
Choosing these to be in areas where an optimum value is
likely to exist is a good choice. Alternatively, you may want
to simply randomly distribute them across the domain of
the optimization problem. The algorithm that models bacte-
rial population chemotaxis, swarming, reproduction, elimi-
nation, and dispersal is given here (initially, j= £ = [ = 0). For
the algorithm, note that updates to the 6' automatically re-
sult in updates to P. Clearly, we could have added a more so-
phisticated termination test than simply specifying a
maximum number of iterations.

1) Elimination-dispersal loop: [ = [+1

2) Reproduction loop: k=k+1

3) Chemotaxis loop: j= j+1

a) For i=12,...,S, take a chemotactic step for bacte-
rium i as follows.

b) Compute J(i,j,k,0). Let J(i,j,k,D)=J(i,j,kR,D+
J.(0'(j,k,D,P(j,k,D) (i.e., add on the cell-to-cell at-
tractant effect to the nutrient concentration).

c) Let J, = J(i,j,kR,0) to save this value since we may
find a better cost via a run.

d) Tumble: Generate a random vector A(7) e H” with
each elementA | (i),m=12,...,p,arandom number
on [H,1].

e) Move: Let

i . A -
O'(j+ Lk, D)= e‘(j,k,l)+C(0%.

This results in a step of size C(i) in the direction of
the tumble for bacterium i.

f) Compute J(i,j+1,k,0), and then let J(i,j+ L,k,[) =
J(i,j+ LR, D+ J (8'(j+1,k,D,P(j+LR,D).

g) Swim (note that we use an approximation since we
decide swimming behavior of each cell as if the bac-
teria numbered {12,...,i} have moved and
{i+1,i+2,...,S} have not; this is much simpler to
simulate than simultaneous decisions about swim-
ming and tumbling by all bacteria at the same time):

i) Let m = 0 (counter for swim length).

Bacterial Foraging Optimization Algorithm

if) While m < NV, (if have not climbed down too long)

e letm=m+1

e If J(i,j+1Lk,D<J,, (if doing better), let
Jo =J(,j+ 1Lk, D) and let

ACD

JAT(DA(D)

and use this 6'(j+1,k,0) to compute the new
J(i,j+1L,k,0) as we did in f).
e Else, letm= N,. This is the end of the while state-
ment.
h) Go to next bacterium (i+1) if i # .S (i.e., go to b) to
process the next bacterium).
4)If j< N_, goto step 3. In this case, continue chemotaxis,
since the life of the bacteria is not over.
5) Reproduction:
a) For the given k and /, and for each i=12,..., S, let

0'(j+1Lk,D=0'(j+1Lk,D+C(i)

N+ 1

T = 2 J(i,jk,D
Jj=1

be the health of bacterium i (a measure of how
many nutrients it got over its lifetime and how suc-
cessful it was at avoiding noxious substances). Sort
bacteria and chemotactic parameters C(7) in order
of ascending cost J,_,,, (higher cost means lower
health).

b) The S, bacteria with the highestJ, _ . values die and
the other S, bacteria with the best values split (and
the copies that are made are placed at the same lo-
cation as their parent).

6) Ifk < N,,, goto step 2. In this case, we have not reached
the number of specified reproduction steps, so we
start the next generation in the chemotactic loop.

7) Elimination-dispersal: For i = 12,..., S, with probability
P.,,» €liminate and disperse each bacterium (this
keeps the number of bacteria in the population con-
stant). To do this, if you eliminate a bacterium, simply
disperse one to arandom location on the optimization
domain.

8) IfI<N,,, then go to step 1; otherwise end.

order of ascending accumulated cost (higher accumulated
cost represents that a bacterium did not get as many nutri-
ents during its lifetime of foraging and hence is not as
“healthy” and thus unlikely to reproduce); then the S, least
healthy bacteria die and the other S, healthiest bacteria each
split into two bacteria, which are placed at the same location.
Other fractions or approaches could be used in place of (1);
this method rewards bacteria that have encountered a lot of
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nutrients and allows us to keep a constant population size,
which is convenient in coding the algorithm.

Let N,, be the number of elimination-dispersal events,
and for each elimination-dispersal event each bacterium in
the population is subjected to elimination-dispersal with
probability p,. We assume that the frequency of
chemotactic steps is greater than the frequency of repro-
duction steps, which is in turn greater in frequency than
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Our objective is to explain how
motile behaviors in both individual
and groups of bacteria implement
foraging and hence optimization.

elimination-dispersal events (e.g., a bacterium will take
many chemotactic steps before reproduction, and several
generations may take place before an elimination-dis-
persal event).

Clearly, we are ignoring many characteristics of the ac-
tual biological optimization process in favor of simplicity
and capturing the gross characteristics of chemotactic
hill-climbing and swarming. For instance, we ignore many
characteristics of the chemical medium and we assume
that consumption does not affect the nutrient surface (e.g.,
while a bacterium is in a nutrient-rich environment, we do
not increase the value of Jnear where it has consumed nu-
trients), where clearly in nature bacteria modify the nutri-
ent concentrations via consumption. A tumble does not
result in a perfectly random new direction for movement;
however, here we assume that it does. Brownian effects
buffet the cell so that after moving a small distance, it is
within a pie-shaped region with its start point at the tip of
the piece of pie. Basically, we assume that swims are
straight, whereas in nature they are not. Tumble and run
lengths are exponentially distributed random variables,
not constant, as we assume. Run-length decisions are actu-
ally based on the past 4 s of concentrations, whereas here
we assume that at each tumble, older information about nu-
trient concentrations is lost. Although naturally asynchron-
ous, we force synchronicity by requiring, for instance,
chemotactic steps of different bacteria to occur at the same
time, all bacteria to reproduce at the same time instant, and
all bacteria that are subjected to elimination and dispersal
to do so at the same time. We assume a constant population
size, even if there are many nutrients and generations. We
assume that the cells respond to nutrients in the environ-
ment in the same way that they respond to ones released by
other cells for the purpose of signaling the desire to swarm
(amore biologically accurate model of the swarming behav-
ior of certain bacteria is given in [22]). Clearly, other
choices for the criterion of which bacteria should split
could be used (e.g., based only on the concentration at the
end of a cell’s lifetime, or on the quantity of noxious sub-
stances that were encountered). We are also ignoring con-
jugation and other evolutionary characteristics. For
instance, we assume that C(i), N, and N, remain the same
for each generation. In nature it seems likely that these pa-
rameters could evolve for different environments to maxi-
mize population growth rates. The intent here was simply
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to come up with a simple model that only
represents certain aspects of the foraging
behavior of bacteria.

Guidelines for

Algorithm Parameter Choices
The bacterial foraging optimization algo-
rithm requires specification of a variety of
parameters. First, you can pick the size of
the population, S. Clearly, increasing the size of S can signifi-
cantly increase the computational complexity of the algo-
rithm. However, for larger values of S, if you choose to
randomly distribute the initial population, it is more likely that
you will start at least some bacteria near an optimum point,
and over time, it is then more likely that many bacterium will
be in that region, due to either chemotaxis or reproduction.

What should the values of the C(i),i=12,...,S, be? You
can choose a biologically motivated value; however, such
values may not be the best for an engineering application. If
the C(i)values are too large, then if the optimum value lies in
avalley with steep edges, the search will tend to jump out of
the valley, or it may simply miss possible local minima by
swimming through them without stopping. On the other
hand, if the C(7) values are too small, convergence can be
slow, but if the search finds a local minimum it will typically
not deviate too far from it. You should think of the C(i) as a
type of “step size” for the optimization algorithm.

The size of the values of the parameters that define the
cell-to-cell attractant functions J/, will define the characteris-
tics of swarming. If the attractant width is high and very deep,
the cells will have a strong tendency to swarm (they may
even avoid going after nutrients and favor swarming). On the
other hand, if the attractant width is small and the depth shal-
low, there will be little tendency to swarm and each cell will
search on its own. Social versus independent foraging is then
dictated by the balance between the strengths of the
cell-to-cell attractant signals and nutrient concentrations.

Next, large values for N_ result in many chemotactic
steps, and hopefully more optimization progress, but of
course more computational complexity. If the size of V_ is
chosen to be too short, the algorithm will generally rely
more on luck and reproduction, and in some cases, it could
more easily get trapped in a local minimum (premature con-
vergence). You should think of N_ as creating a bias in the
random walk (which would not occur if N, =0), with large
values tending to bias the walk more in the direction of
climbing down the hill.

If N, is large enough, the value of NV, affects how the algo-
rithm ignores bad regions and focuses on good ones, since
bacteria in relatively nutrient-poor regions die (this models,
with a fixed population size, the characteristic where bacte-
ria will tend to reproduce at higher rates in favorable envi-
ronments). If N, is too small, the algorithm may converge
prematurely; however, larger values of NV,, clearly increase
computational complexity.
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A low value for N, dictates that the algorithm will not
rely on random elimination-dispersal events to try to find fa-
vorable regions. A high value increases computational com-
plexity but allows the bacteria to look in more regions to
find good nutrient concentrations. Clearly, if p,, is large, the
algorithm can degrade to random exhaustive search. If,
however, it is chosen appropriately, it can help the algo-
rithm jump out of local optima and into a global optimum.

Connections with other Nongradient
Global Optimization Methods

The reader already familiar with genetic algorithms (or evo-
lutionary programming) may recognize the algorithmic anal-
ogies between the fitness function and the nutrient
concentration function (both a type oflandscape), selection
and bacterial reproduction (bacteria in the most favorable
environments gain a selective advantage for reproduction),
crossover and bacterial splitting (the children are at the
same concentration, whereas with crossover they generally
end up in a region around their parents on the fitness land-
scape), and mutation and elimination and dispersal. How-
ever, the algorithms are certainly not equivalent, and
neither is a special case of the other. Each has its own distin-
guishing features. The fitness function and nutrient concen-
tration functions are not the same (one represents
likelihood of survival for given phenotypic characteristics,
whereas the other represents nutrient/noxious substance
concentrations, or perhaps other environmental influences
such as heat or light). Crossover represents mating and re-
sulting differences in offspring, something we ignore in the
bacterial foraging algorithm (we could, however, have made
less than perfect copies of the bacteria to represent their
splitting). Moreover, mutation represents gene mutation
and the resulting phenotypical changes, not physical dis-
persal in a geographical area. From one perspective, note
that all the typical features of genetic algorithms could aug-
ment the bacterial foraging algorithm by representing evo-
lutionary characteristics of a forager in its environment.
From another perspective, foraging algorithms can be inte-
grated into evolutionary algorithms and thereby model
some key survival activities that occur during the lifetime of
the population that is evolving (i.e., foraging success can
help define fitness, mating characteristics, etc.). For the
bacteria studied here, foraging happens to entail
hill-climbing via a type of biased random walk, and hence
the foraging algorithm can be viewed as a method to inte-
grate a type of approximate stochastic gradient search
(where only an approximation to the gradient is used, not
analytical gradient information) into evolutionary algo-
rithms. Of course, standard gradient methods, quasi-New-
tonmethods, etc., depend on the use of an explicit analytical
representation of the gradient, something that is not needed
by a foraging or genetic algorithm. Lack of dependence on
analytical gradient information can be viewed as an advan-
tage (fewer assumptions) or a disadvantage (e.g., since if
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gradient information is available then the foraging or ge-
netic algorithm may not exploit it properly).

There are in fact many approaches to “global optimiza-
tion” when there is no explicit gradient information avail-
able; however, it is beyond the scope of this article to
evaluate the relative merits of foraging algorithms to the
vast array of such methods that have been studied for many
years. To start such a study, it makes sense to begin by con-
sidering the theoretical convergence guarantees for certain
types of evolutionary algorithms, stochastic approximation
methods, and pattern search methods (e.g., see [30] for
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Figure 5. Bacterial motion trajectories, generations 1-4, on
contour plots. (a) Generation 1, (b) generation 2, (c) generation 3,
and (d) generation 4.

30

30

Figure 6. Bacterial motion trajectories, generations 1-4, on
contour plots, after an elimination-dispersal event. (a) Generation
1, (b) generation 2, (c) generation 3, and (d) generation 4.
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Figure 7. Swarm behavior of E. coli on a test function. (a)
Generation 1, (b) generation 2, (c) generation 3, and (d) generation 4.

work along these lines) and then proceed to consider forag-
ing algorithms in this context. Finally, note that evolution
designed the bacteria to forage in a time-varying and noisy
environment (i.e., to achieve robust optimization for noisy
time-varying cost functions). Can we exploit the character-
istics of such an optimization approach for engineering
problems?

Example: Function Optimization via
Bacterial Foraging

As a simple illustrative example, we use the algorithm to try
to find the minimum of the function in Fig. 3 (note that the
point [155]” is the global minimum point). To gain more in-
sight into the operation of the algorithm, it is recommended
that you run the algorithm yourself (see the sidebar on p. 61
for a Web address from which you can obtain the code).

Nutrient Hill-Climbing: No Swarming

According to the above guidelines, choose .S =50, N_ =100,
N, =4 (a biologically motivated choice), N,, =4, N, =2,
DP.. =025, and the C(i)=01,i =12,...,S. The bacteria are ini-
tially spread randomly over the optimization domain. The
results of the simulation are illustrated by motion trajecto-
ries of the bacteria on the contour plot of Fig. 3, as shown in
Fig. 5. In the first generation, starting from their random ini-
tial positions, searching occurred in many parts of the opti-
mization domain, and you can see the chemotactic motions
of the bacteria as the black trajectories where the peaks are
avoided and the valleys are pursued. Reproduction picks
the 25 healthiest bacteria and copies them, and then as
shown in Fig. 5 in generation 2, all the chemotactic steps are
in five local minima. This again happens in going to genera-
tions 3 and 4, but bacteria die in some of the local minima
(due essentially to our requirement that the population size
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stay constant), so that in generation 3 there are four groups
of bacteria in four local minima, whereas in generation 4
there are two groups in two local minima.

Next, with the above choice of parameters there is an elim-
ination-dispersal event, and we get the next four generations
shownin Fig. 6. Notice that elimination and dispersal shift the
locations of several of the bacteria, and thereby the algo-
rithm explores other regions of the optimization domain.
However, qualitatively we find a similar pattern to the previ-
ous four generations where chemotaxis and reproduction
work together to find the global minimum; this time, how-
ever, due to the large number of bacteria that were placed
near the global minimum, after one reproduction step, all the
bacteria are close to it (and remain this way). In this way, the
bacterial population has found the global minimum.

Swarming Effects

Here we use the parameters defined earlier to define the
cell-to-cell attraction function. Also, we choose .S =50,
N.=100, N,=4, N, =4, N,, =1, p,, =025, and the C(i)=01,
i=12,...,5. Wewill first consider swarming effects on the nu-
trient concentration function with the contour map shown
on Fig. 7, which has a zero value at [15,15]" and decreases to
successively more negative values as you move away from
that point; hence, the cells should tend to swim away from
the peak. We will initialize the bacterial positions by placing
all the cells at the peak [15,15]". Using these conditions, we
get the result in Fig. 7. Notice that in the first generation, the
cells swim radially outward, and then in the second and
third generations, swarms are formed in a concentric pat-
tern of groups. Notice also that with our simple method of
simulating health of the bacteria and reproduction, some of
the swarms are destroyed by the fourth generation. We omit
additional simulations that show the behavior of the swarm
on the surface in Fig. 3 since qualitatively the behavior is as
one would expect from the above simulations. The inter-
ested reader can obtain the code mentioned above and fur-
ther study the behavior of the algorithm. Note, however,
that simulation of swarming mechanisms is somewhat deli-
cate and stretches the simple inaccurate model that we are
using for the bacteria.

Biomimicry of Foraging for Control:
Challenges and Directions

It is certainly impossible to explore all the potential uses of
foraging algorithms in this single article, even if we only fo-
cused on the field of control. To conclude this article, how-
ever, we next point to some ideas on the potential uses of
foraging algorithms in control to give the reader a flavor of
their potential applicability. Even from this brief discussion,
it should seem at least plausible that there are applications
of the methods to optimization, optimal control, model pre-
dictive control, adaptive estimation and control, and com-
puter-aided control system design.
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Foraging for Adaptive Control

Optimization methods such as gradient algorithms and
least squares are used to implement estimation methods,
which are used to estimate models or controllers in adap-
tive control. Hence, we can use foraging algorithms as the
basis for adaptive control. To see this, suppose that we
consider indirect adaptive control where we seek to learn a
plant model during the operation of a system. Suppose that
we view learning as foraging for good model information
(i.e., information that is truthful and useful for meeting
goals). Suppose that we use an “identifier model,” which is
aparametrized model of the plant, and think of the foraging
algorithm as searching in the parameter space of that
model. By moving parameters, it searches for regions in
the parameter space that correspond to finding nutrients;
hence, we need to define what we mean by nutrients. Sup-
pose that we use the standard definition of identifier error
as the error between the model output and the plant out-
put, but squared and summed over the past several sam-
ples to define J. Moreover, we will think of having multiple
identifier models as in [31] and social foraging (i.e., multi-
ple models being tuned simultaneously, with foragers pos-
sibly sharing information to try to improve foraging
success) as shown in Fig. 8. There, S foraging algorithms
search in the parameter space for locations that corre-
spond to getting low identification errors between the
model and plant. Then, according to the sum of the
squared identifier errors, we sim-

known tank cross-sectional area (creating the need for esti-
mation of plant dynamics for compensation). We let each
identifier model be an an affine mapping (linear plus con-
stant) to match plant nonlinearities. The identifier model
parameters represent the forager’s position. We choose to
have S =10 foragers. The cost function for each forager,
which defines the nutrient profile, is defined to be the sum
of squares of N =100 past identifier error (e(t)) values for
each identifier model. For parameter adjustment, we use a
foraging algorithm that is based on E. coli chemotactic be-
havior as defined earlier but no forager-forager communi-
cation. We interleave movements in the parameter space
(i.e., estimator updates) with chemotactic steps as you
would for many adaptive control algorithms for discrete
time systems. The tracking performance and the best cost
and index of the best forager are shown in Fig. 9. Note that it
takes time before the controller adapts, but that as the cost
index decreases over time (representing that at least the
best forager has found nutrients), the tracking error de-
creases. Also, notice that there is a lot of switching be-
tween which forager is the best, and hence which
controller is chosen to select the control input. You can ob-
tain the MATLAB code for this simulation at http://
eewww.eng.ohio-state.edu/~passino.

While the above approach may hold some promise, it
also raises the following questions: How well can the
method perform relative to standard adaptive control ap-

ply choose at each time instant
the model that is the best and use
it in a standard certainty equiva-
lence approach to specify a con-
troller. Such a strategy is similar
to indirect genetic adaptive con-
trol strategies [32], and direct
adaptive control strategies can be
developed using the approach in
[33], [34] (combined direct/indi-
rect strategies in [33] and [34] are
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adaptive model predictive con-
trol approaches).

Consider a “surge tank” liquid
level control problem where we
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and b also constants, is the un-
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Figure 8. Swarm foraging in adaptive control (r(t): reference or desired plant output).
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Figure 9. Closed-loop response of adaptive controller.

proaches? For example, could we get better tracking perfor-
mance using other methods (or by tuning this one better)?
Which approach is easier to develop so that it can achieve
acceptable performance? Which is more computationally
complex and more difficult to implement? Can we mathe-
matically prove that the tracking error will converge? What
class of problems might be particularly appropriate for this
type of approach? While we did not illustrate it above, com-
pared to standard multiple-model adaptive control ap-
proaches, the social foraging approach suggests ideas for
sharing information between different parameter update
mechanisms for different identifier models (as do genetic
adaptive control methods). How fruitful will such ideas be
for applications? It is beyond the scope of this article to ad-
dress these questions.

Autonomous Vehicle Guidance:

What Can Nature Teach Us?

The “artificial potential field method” in autonomous vehi-
cle guidance bears some similarities to bacterial foraging al-
gorithms. There are clear analogies between foraging and
cooperative control of groups of uninhabited autonomous
vehicles (UAVs) that are used in military (or commercial)
applications: i) Animals, organisms = UAVs, ii) social forag-
ers = group of cooperating UAVs that can communicate with
each other, iii) prey, nutrients = targets, iv) predators, nox-
ious substances = threats, and v) environment = battlefield.
Are these analogies useful? Biomimicry of social foraging of
ants [3] has provided some concepts for UAV problems [35],
[36]. What future research directions does this article sug-
gest along these lines? Some are as follows: First, the utility
of further development of the social foraging metaphor
needs more study. For example, do bacteria employ cooper-
ative control methods that would also be effective strate-
gies for military applications? Do other social foraging
animals? For example, ones that operate with a similar
“physiology” as a UAV and in a similar environment to the
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one the animal is found in and hence optimized for via evolu-
tion? We need to understand the social foraging strategies of
several organisms, try to understand why these are good for
the environment they live in, and then seek to develop anal-
ogous implementable strategies for groups of UAVs. Second,
it would be interesting to characterize the physiological and
environmental aspects that drove evolution to “design” a
specific foraging strategy and optimize its operation. This
would help us understand how vehicular constraints and
tactical situations affect the design and operation of the co-
operative strategy. Perhaps it would also suggest ideas for
how to optimize the design of cooperative control strategies
for UAVs.

The warfare strategies (foraging) employed by many ani-
mals have been optimized via evolution for millions of
years; it seems logical that they may suggest some novel ap-
proaches to the design of guidance strategies for UAVs. Can
we find engineering applications that call for functionalities
that are similar to what evolution has fine-tuned for an or-
ganism, then exploit the bio-design for solution to practical
technological problems? Or, put another way, can we find bi-
ological systems that can solve technological problems that
are beyond our current engineering capabilities?
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